A UNIVERSAL IMPEDANCE FOR SOILS

Mission Research Corporation
735 State Street
Santa Barbara, California 93101

October 1975

Topical Report for Period 1 July 1975—30 September 1975

CONTRACT No. DNA 001-75-C-0094

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

PREPARED FOR: NATIONAL TECHNICAL INFORMATION SERVICE
U. S. DEPARTMENT OF COMMERCE SPRINGFIELD, VA. 22161

Prepared for
Director
DEFENSE NUCLEAR AGENCY
Washington, D. C. 20305

THIS WORK SPONSORED BY THE DEFENSE NUCLEAR AGENCY UNDER RDT&E RMSS CODE B323075464 R99QAXEA09452 H2590D.

REPRODUCED BY
Title: A Universal Impedance for Soils

Type of Report: Topical Report

Period Covered: 1 Jul 75—30 Sep 75

Author(s): Conrad L. Longmire, Ken S. Smith

Contract or Grant Number(s): DNA 001-75-C-0094

Performing Organization Name and Address: Mission Research Corporation, 735 State Street, Santa Barbara, California 93101

Controlling Office Name and Address: Defense Nuclear Agency, Washington, D.C., 20305

Report Date: October 1975

Number of Pages: 27

Distribution Statement: Approved for public release; distribution unlimited.

Supplementary Notes: This work sponsored by the Defense Nuclear Agency under RDT&E RMSS Code E323075464 R99QA49A0949-52 H5990D.

Keywords: Dielectric Constant of Soils, Conductivity of Soils

Abstract: A set of universal formulae are proposed for the dielectric constant and conductivity of soils over the frequency range 5 Hz to 3 x 10^10 Hz. These formulae are based on an RC network model, with parameters adjusted to fit Scott's data for soils and Wilkenfeld's data for some concrete and grout samples.
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF ILLUSTRATIONS</td>
<td>2</td>
</tr>
<tr>
<td>SECTION 1—INTRODUCTION</td>
<td>3</td>
</tr>
<tr>
<td>SECTION 2—THE RC NETWORK MODEL</td>
<td>6</td>
</tr>
<tr>
<td>SECTION 3—THE UNIVERSAL SOIL</td>
<td>9</td>
</tr>
<tr>
<td>SECTION 4—WILKENFELD'S DATA</td>
<td>16</td>
</tr>
<tr>
<td>SECTION 5—SUMMARY</td>
<td>17</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>24</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>Description</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Relative dielectric constant of soils. Solid curves are Scott's fits to results of measurements of many samples. Circles are from our universal formulae.</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Electrical conductivity of soils. Solid curves are Scott's fits to results of measurements of many soils. Circles are from our universal formulae.</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Equivalent network for arbitrary two-terminal RC network.</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>Universal curve for relative dielectric constant ε_r. Points are calculated from Equation (12), with Equations (17) and (18) and Table 1. Smooth curve is drawn through decade points.</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>Frequency scale factor F and zero frequency conductivity σ_0 from Scott's results.</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>Universal curve for conductivity $\sigma - \sigma_0$. Points are calculated from Equation (13), with Equation (17) and Table 1. Smooth curve is drawn through decade points.</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>Relative dielectric constant and conductivity for Sample 1. Data points are Wilkenfeld's. Curves are from universal formulae with $F = 0.007$, and $\sigma_0 = 0$.</td>
<td>18</td>
</tr>
<tr>
<td>8</td>
<td>Relative dielectric constant and conductivity for Sample 2. Data points are Wilkenfeld's. Curves are from universal formulae with $F = 1.0$, and $\sigma_0 = 0$.</td>
<td>19</td>
</tr>
<tr>
<td>9</td>
<td>Relative dielectric constant and conductivity for Sample 3. Data points are Wilkenfeld's. Curves are from universal formulae with $F = 2.50$, and $\sigma_0 = 0$.</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>Relative dielectric constant and conductivity for Sample 4. Data points are Wilkenfeld's. Curves are from universal formulae with $F = 0.50$, and $\sigma_0 = 0$.</td>
<td>21</td>
</tr>
<tr>
<td>11</td>
<td>Relative dielectric constant and conductivity for Sample 5. Data points are Wilkenfeld's. Curves are our universal formulae with $F = 5.0$, and $\sigma_0 = 0$.</td>
<td>22</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

Several years ago Scott\(^1\) reported the results of measurements of the dielectric constant \(\varepsilon\) and the conductivity \(\sigma\) of many samples of soils, over the frequency range \(10^2\) to \(10^6\) Hz. He noted that the results for the many samples could be correlated quite well in terms of just one parameter, the water content. By averaging his data, he produced a set of curves \(\varepsilon(f)\) and \(\sigma(f)\) as functions of frequency \(f\) for various values of water content. These curves are reproduced in Figures 1 and 2. Thus if one knows the water content of a soil, one can predict what its \(\varepsilon\) and \(\sigma\) will be with generally useful accuracy. Or, if one measures \(\varepsilon\) or \(\sigma\) at some frequency, one can use Scott's curves to predict \(\varepsilon\) and \(\sigma\) over the frequency range \(10^2\) to \(10^6\) Hz.

In 1971, the present author proposed a time-domain method for solving Maxwell's equations in dispersive soils, based on the assumption that each volume element of the soil could be represented by an RC network. He and Longley\(^2\) worked out the parameters for the network by fitting Scott's averaged curves. A consequence of the RC network model is that the variation of \(\varepsilon\) and \(\sigma\) with frequency are not independent. In fact if the variation of \(\varepsilon\) is given, the variation of \(\sigma\) is determined, or vice versa; only a constant remains to be chosen freely in either case. Scott's curves obey this relation rather well.

The author also noticed the fact that all of Scott's curves for \(\varepsilon(f)\) will very nearly coincide with each other if displaced to the right or left, i.e., that there is just one curve for \(\varepsilon(f/f_0)\), where \(f_0\) scales with water content. In terms of the RC network, this means that as the water content is varied, only the \(R\) values change, while the \(C\) values remain fixed, as we shall see below. However, this fact was not used in Reference 2.
Figure 1. Relative dielectric constant of soils. Solid curves are Scott's fits to results of measurements of many samples. Circles are from our universal formulae.
Figure 2. Electrical conductivity of soils. Solid curves are Scott's fits to results of measurements of many soils. Circles are from our universal formulae.
Recently, Wilkenfeld3 has measured ε and σ for several samples of concrete and grout over the frequency range 10^6 to 2×10^8 Hz. In examining this data, we found that it connected rather well with Scott's curves, and also obeys the RC network relation between variations in ε and σ. We therefore decided to make a universal impedance (actually, admittance) function which would include both Scott's and Wilkenfeld's data.

2. THE RC NETWORK MODEL

Maxwell's equations in a non-magnetic medium are (MKS units)

$$\frac{\partial \vec{B}}{\partial t} = - \nabla \times \vec{E}, \quad (1)$$

$$\varepsilon \frac{\partial \vec{E}}{\partial t} + \sigma \vec{E} = \frac{1}{\mu_0} \nabla \times \vec{B}. \quad (2)$$

In the frequency domain, the properties ε and σ of the medium are contained in the relation between the (total) current density \vec{J} and electric field \vec{E} ($\vec{E} \sim e^{i\omega t}$),

$$\vec{J} = (i\omega \varepsilon + \sigma)\vec{E} \equiv Y(\omega)\vec{E}. \quad (3)$$

This equation defines the admittance Y appearing between opposite faces of a cubic meter of the medium. We have assumed here that Y is isotropic, although that is not necessary. We have also made the standard assumption that the relation between \vec{J} and \vec{E} is linear.

The basic assumption of our model is that the cubic meter of medium is equivalent to a network of resistors and capacitors, as far as the relation between \vec{J} and \vec{E} is concerned. The inductance of space is included in other terms in Maxwell's equations, but our model assumes that there are no helical conduction paths in the medium—a reasonable assumption for soils.

An arbitrary two-terminal RC network can be replaced by an equivalent network of the type shown in Figure 3 with the same impedance, as a function
of frequency, as the arbitrary network. R_0 is the resistance at zero frequency, C_∞ is the capacitance at infinite frequency, and the other branches provide transient responses with various time constants. The admittance of the equivalent network is

$$Y = \frac{1}{R_0} + i\omega C_\infty + \sum_{n=1}^{N} \frac{1}{R_n + \frac{i\omega C_n}{n}}$$ \hspace{1cm} (4)$$

$$= \frac{1}{R_0} + i\omega C_\infty + \sum_{n=1}^{N} \frac{i\omega C_n (1 - i\omega R_n C_n)}{1 + (\omega R_n C_n)^2}.$$ \hspace{1cm} (5)$$

The real and imaginary parts of Y are related to σ and ϵ through Equation 3. Defining, for brevity,

$$\beta_n = (R_n C_n)^{-1},$$ \hspace{1cm} (6)$$

we have

$$\epsilon = C_\infty + \sum_{n=1}^{N} \frac{C_n}{1 + (\omega/\beta_n)^2},$$ \hspace{1cm} (7)$$

$$\sigma = \frac{1}{R_0} + \sum_{n=1}^{N} C_n \beta_n \frac{(\omega/\beta_n)^2}{1 + (\omega/\beta_n)^2}.$$ \hspace{1cm} (8)$$

Figure 3. Equivalent network for arbitrary two-terminal RC network.
From these expressions it is clear that if $\varepsilon(\omega)$ has been specified, σ is fixed except for an additive constant, and vice versa. It is also clear that if changing the water content changes only the frequency scale of ε, then the C_n must be independent of water content and all of the β_n must scale by the same factor.

Equations (7) and (8) also show that ε decreases with increasing frequency, while σ increases. Since

$$
\frac{1}{1 + (\omega/\beta_n)^2} + \frac{(\omega/\beta_n)^2}{1 + (\omega/\beta_n)^2} = 1,
$$

the decrease in ε and the increase in σ, due to the n'th term, are related by

$$
\Delta \sigma(\text{mho/m}) = -\beta_n \Delta \varepsilon(\text{farad/m}) = \beta_n \varepsilon_0 \Delta \varepsilon_\tau.
$$

Here we have introduced the relative dielectric constant ε_τ and the dielectric constant ε_0 of vacuum

$$
\begin{align*}
\varepsilon_\tau &= \varepsilon/\varepsilon_0, \\
\varepsilon_0 &= 8.85 \times 10^{-12} \text{ farad/m}.
\end{align*}
$$

In the neighborhood of a given central frequency f_c, the variation in ε and σ will be dominated by the term with $\beta_n \approx 2\pi f_c$, so that we may write Equation (9) as

$$
\Delta \sigma(\text{mho/m}) \approx -2\pi \varepsilon_\delta f_c \Delta \varepsilon_\tau,
$$

$$
\approx -5.5 \times 10^{-11} f_c \Delta \varepsilon_\tau.
$$

This relation provides a useful rough test of the consistency of experimental data with our model.
Since most data are given for ε_r rather than ε, and in terms of frequency f rather than ω, we rewrite Equations (7) and (8) as

$$\varepsilon_r = \varepsilon_\infty + \sum_{n=1}^{N} \frac{a_n}{1 + (f/f_n)^2} \quad \text{(relative)},$$ \hspace{1cm} (12)

$$\sigma = \sigma_0 + 2\pi\varepsilon_\infty \sum_{n=1}^{N} a_n f_n \frac{(f/f_n)^2}{1 + (f/f_n)^2} \left(\frac{\text{mho}}{m}\right).$$ \hspace{1cm} (13)

The connection with Equations (7) and (8) is obviously

$$C_\infty = \varepsilon_\infty \varepsilon_0, \quad C_n = \varepsilon_0 a_n, \quad \{ \}$$

$$R_0 = \frac{\sigma_0}{\varepsilon_0}, \quad \beta_n = 2\pi f_n. \quad \{ \}$$ \hspace{1cm} (14)

3. THE UNIVERSAL SOIL

In this section, we shall produce a single formula for ε_r of the type of Equation (12) in which only the f_n scale with water content, and all f_n scale by the same factor. We start with Scott's curve for 10 percent water. We extend it to higher frequencies by shifting the curves for lower water content to the right until they coincide with the 10 percent curve. It can be seen from Figure 1 that the shifted 0.3 percent curve will then extend to approximately 10^8 Hz. Similarly, we extend the 10 percent curve to lower frequencies by shifting the curves for higher water content to the left until they coincide with the 10 percent curve. It can be seen from Figure 1 that the shifted 100 percent curve will then extend down to about 5 Hz, and we extrapolated it to 1 Hz.

The curve so obtained runs from 10^0 to 10^8 Hz, and at its upper end ε_r is about 11. One of Wilkenfeld's samples was a very dry concrete for which ε_r was as low as 6.0 at 2×10^8 Hz (see Figure 7). By adjoining this data smoothly to the extended 10 percent Scott curve, we extended the latter
to 3×10^{10} Hz (equivalent). For good measure, we then extrapolated ε_r to 10^{12} Hz, bringing the final ε_r down to about 5, a value appropriate for crystalline materials typically found in soils. Whether these last two decades will prove useful for some exceptionally dry soil is speculative. The entire curve is graphed in Figure 4.

It should be borne in mind that the actual data on which this curve is based was for frequencies between 10^2 and 2×10^8 Hz. Extrapolations to 5 Hz and 3×10^{10} Hz are based on the universal RC network model, and extrapolation beyond these frequencies is based simply on graphical extrapolation of the curves.

The factor F by which the frequency must be scaled to bring Scott's ε_r curves for water content P percent into coincidence with the 10 percent curve is graphed versus P in Figure 5. The function $F(P)$ is fitted to a few percent by the formula

$$ F = (P/10)^{1.28} \ . \quad (15) $$

This factor is defined such that the frequencies f_n or β_n scale as

$$ f_n(P) = F(P)f_n(10 \text{ percent}) \ , \quad (16) $$

$$ \beta_n(P) = F(P)\beta_n(10 \text{ percent}) \ . \quad (16) $$

These results imply that the resistances R_n decrease with increasing water content, as $P^{-1.28}$. The sense of this variation of the R_n with P is reasonable, but why the power should be 1.28, rather than 1.00 say, is unexplained.

The very large dielectric constant at the lower frequencies, much larger than the value 80 for pure water, is puzzling if one thinks in terms of good dielectric materials. Soils typically contain a broad size spectrum of crystalline grains, with electrolytically conducting fissures between. One is reminded somewhat of the behavior of electrolytic capacitors. It has been suggested that the large dielectric constants are actually evidence
Figure 4. Universal curve for relative dielectric constant ε_r. Points are calculated from Equations (17) and (18) and Table 1. Smooth curve is drawn through decade points.
of a phenomenon occurring at the electrodes of the sample holder, rather than in the body of the material. However, Scott went to great pains to assure good electrical contact with the sample.

Having thus obtained a curve for ε_{∞} at $P = 10$ percent, we fitted it by the formula (12), choosing one f_n per decade, i.e., we let

$$f_n = 10^{n-1} \text{ Hz}, \quad n = 1, 2, 3, \ldots, 13. \quad (17)$$

The value of ε_{∞} chosen was

$$\varepsilon_{\infty} = 5.00. \quad (18)$$

The values of the a_n are listed in Table 1. Points computed from Equation (12) using these values are indicated as dots in Figure 4. The computed points are on the curve at the decade lines where the fit values were chosen, but fall slightly below the curve in the middle of each decade. The fit could be improved by increasing the number N of f_n's, but the present fit is probably adequate, in view of the general nature of our undertaking.

Table 1. Coefficient a_n for universal soil.

<table>
<thead>
<tr>
<th>n</th>
<th>a_n^*</th>
<th>n</th>
<th>a_n</th>
<th>n</th>
<th>a_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.40(6)</td>
<td>6</td>
<td>1.33(2)</td>
<td>11</td>
<td>9.80(-1)</td>
</tr>
<tr>
<td>2</td>
<td>2.74(5)</td>
<td>7</td>
<td>2.72(1)</td>
<td>12</td>
<td>3.92(-1)</td>
</tr>
<tr>
<td>3</td>
<td>2.58(4)</td>
<td>8</td>
<td>1.25(1)</td>
<td>13</td>
<td>1.73(-1)</td>
</tr>
<tr>
<td>4</td>
<td>3.38(3)</td>
<td>9</td>
<td>4.80(0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5.26(2)</td>
<td>10</td>
<td>2.17(0)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* $3.40(6)$ means 3.40×10^6
Having the a_n, we then computed the quantity $\sigma - \sigma_0$ from Equation (13), and the result is graphed in Figure 6. The computed points are shown as dots, and the smooth curve is drawn through the decade points. This curve is for $P = 10$ percent water content. For other values of P, the f_n are scaled according to Equation (16). Because of the additional factor f in Equation (13), the magnitude of $\sigma - \sigma_0$ also scales up and down with F as the f_n do.

For use on a computer, Equations (12), (13), (15) and (16) are sufficient. However, one can use Figures (4) and (6) for quick graphical analysis for arbitrary P without redrawing the curves, by scaling f as $1/F$ instead of scaling the f_n as F. Suppose, for example, that one has ε_τ for a quite dry soil graphed versus frequency on the same log paper as Figure 4, preferably transparent. To make this curve of ε_τ fall on top of that of Figure 4, it is likely that it will have to be moved to the right of the position relative to Figure 4 where the frequencies coincide. Let us suppose that sliding it to the right one decade makes the ε_τ's coincide. We would then conclude that $F = 0.1$ and, from Figure 5, that $P = 1.6$ percent.

In order to obtain a prediction for $\sigma - \sigma_0$, label another sheet of log paper as in Figure 6, i.e., with 10^{-5} mho/m at the bottom. Then slide this sheet one decade to the right (of the position where frequencies coincide) and one decade upwards, and trace the curve from Figure 6 onto the sheet. If our universal soil model applies to this sample, the traced curve should fall on or slightly below the data points for the sample σ (the difference being σ_0).

The term σ_0 is adjustable for any soil sample. However, Scott's curves of Figure 2 determine σ_0 as a function of P for his soil samples. This function is also graphed in Figure 5, and is expressed to a few percent accuracy by the relation

$$\sigma_0 = 8.0 \times 10^{-3}(P/10)^{1.50} \text{ (mho/m)} \ (Scott). \quad (19)$$
Figure 5. Frequency scale factor F and zero frequency conductivity σ_0 from Scott's results.
Figure 6. Universal curve for conductivity $\sigma - \sigma_0$. Points are calculated from Equation (13), with Equation (17) and Table 1. Smooth curve is drawn through decade points.
We have used Equations (12) and (13), with (15), (16), (17) and (18) and Table 1, to calculate \(\varepsilon_r \) and \(\sigma \) for Scott's values of \(P \) and frequencies between \(10^2 \) and \(10^6 \) Hz. The results are shown as the circles in Figures 1 and 2. It is seen that computed \(\varepsilon_r \) points fit Scott's curves very well. The fit to \(\sigma \) is quite good except for the highest and lowest water content. According to our model, \(\sigma \) cannot decrease with increasing frequency. Scott assumed no connection between \(\varepsilon_r \) and \(\sigma \). Whether the deviations between our model and Scott's curves are statistically significant is not clear. It would be interesting to try to fit Scott's sample data directly in terms of our model.

4. WILKENFELD'S DATA

We have tested five of Wilkenfeld's concrete and grout sample results against our universal curves, using the graphical analysis. The samples are identified in Table 2.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Material</th>
<th>Moisture (weight %)</th>
<th>F</th>
<th>(P) (volume %)</th>
<th>(\sigma_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Concrete</td>
<td>1.75%</td>
<td>0.007</td>
<td>0.2%</td>
<td>negligible</td>
</tr>
<tr>
<td>2</td>
<td>Concrete</td>
<td>6.4%</td>
<td>1.0</td>
<td>10%</td>
<td>(1 \times 10^{-3})</td>
</tr>
<tr>
<td>3</td>
<td>Concrete</td>
<td>7.9%</td>
<td>2.50</td>
<td>20%</td>
<td>(2 \times 10^{-3})</td>
</tr>
<tr>
<td>4</td>
<td>Grout</td>
<td>5.9%</td>
<td>0.50</td>
<td>5.8%</td>
<td>negligible</td>
</tr>
<tr>
<td>5</td>
<td>Grout</td>
<td>11%</td>
<td>5.0</td>
<td>35%</td>
<td>negligible</td>
</tr>
</tbody>
</table>

In this table, the column labeled "Moisture" is the weight percent determined by Wilkenfeld, and should be multiplied by about 2 to give a volume percent comparable to Scott's \(P \). Instead of using Wilkenfeld's
moisture content to determine a frequency scale factor, we have chosen the scale factor \(F \) which gives the best fit with our universal \(\varepsilon_r \) curve. This value of \(F \) is given in the table, along with the value of Scott's \(P \) which yields this \(F \) (Equation (15) or Figure 5). It is seen that \(P \) is not uniformly twice Wilkenfeld's moisture content, but the correlation is not bad, except for Sample 1. For this sample, the moisture determined by Wilkenfeld is much higher than the value of \(P \) which makes the Sample 1 data lie on the universal curve.

Comparison of Wilkenfeld's data for \(\varepsilon_r \) and \(\sigma \) with our fitted curves are given in Figures (7) - (11). The fits are quite good, which indicates the validity of the RC network model. The value of \(\sigma_0 \) suggested by the \(\sigma \) curves is also listed in Table 2.

Sample 1 was the sample used to extend our universal curves to \(3 \times 10^{10} \) Hz. The fact that \(P \) disagrees with Wilkenfeld’s moisture content implies that measurement of the moisture content is not always a reliable way of determining electrical properties of dry soils. In general it is wise to have measurements of \(\varepsilon_r \) and \(\sigma \) made at a few frequencies. Our universal curves can then be used to extend and fill in the data.

5. SUMMARY

Equations (12) and (13) give a prediction for \(\varepsilon_r \) and \(\sigma \) for frequencies \(f \) between 5 and \(3 \times 10^{10} \) Hz, for a soil containing 10 percent (by volume) water. Here \(\varepsilon_\infty \) is given by Equation (18), \(\sigma_0 \) by Equation (19), the \(f_n \) by Equation (17), and the \(a_n \) by Table 1. For any other water content \(P \) percent, scale the \(f_n \) by Equations (16) and (15).
Figure 7. Relative dielectric constant and conductivity for Sample 1. Data points are Wilkenfeld's. Curves are from universal formulae with $F = 0.007$, and $\sigma_0 = 0$.
Figure 8. Relative dielectric constant and conductivity for Sample 2. Data points are Wilkenfeld's. Curves are from universal formulae with $F = 1.0$, and $\sigma_0 = 0$.
Figure 9. Relative dielectric constant and conductivity for Sample 3. Data points are Wilkenfeld's. Curves are from universal formulae with $F = 2.50$, and $\sigma_0 = 0$.
Figure 10. Relative dielectric constant and conductivity for Sample 4. Data points are Wilkenfeld's. Curves are from universal formulae with $F = 0.50$, and $\sigma_0 = 0$.
Figure 11. Relative dielectric constant and conductivity for Sample 5. Data points are Wilkenfeld's. Curves are our universal formulae with $F = 5.0$, and $\sigma_0 = 0$.

22
If one has a soil for which the water content is unknown, but one has a measurement of ε_τ and σ at some frequency f_m, proceed as follows. Read from Figure 4 the value of f at which ε_τ equals the measured value. Then determine the frequency scale factor F from

$$F = \frac{f_m}{f}.$$ \hspace{1cm} (20)

Use this value in Equation (16) to scale the f_n. Then compute from Equations (12) and (13) the values of ε_τ and $\sigma - \sigma_0$ at any frequency of interest. Adjust σ_0 to agree with the measured value at f_m. The water content of the soil can be determined from the value of F above and Equation (15) or Figure 5.

It is more reliable to use measured ε_τ and σ data at a few frequencies, in establishing the fit with the universal curve, than to use a measured water content, especially for dry soils.
REFERENCES

3. Wilkenfeld, J., private communication. We gratefully acknowledge several useful discussions with Dr. Wilkenfeld.
DISTRIBUTION LIST

DEPARTMENT OF DEFENSE

Assistant to the Secretary of Defense
Atomic Energy
 ATTN: Doc. Con.

Director
Defense Advanced Research Projects Agency
 ATTN: Tech. Lib.

Director
Defense Civil Preparedness Agency
 ATTN: RE(EO)
 ATTN: TS AED
 ATTN: Tech. Lib.

Defense Communication Engineer Center
 ATTN: Code R110, James W. McLean
 ATTN: Code R720, C. Stansberry
 ATTN: Code R406

Director
Defense Communications Agency
 ATTN: Code 540.5
 ATTN: Code 400
 ATTN: Tech. Lib.
 ATTN: Code 930, Franklin D. Moore
 ATTN: Code 900, Monte I. Burgett, Jr.
 ATTN: Code 950

Defense Documentation Center
2 cy ATTN: TC

Commander
Defense Electronic Supply Center
 ATTN: Tech. Lib.

Director
Defense Intelligence Agency
 ATTN: Tech. Lib.
 ATTN: DI-7D, Edward O'Farrell

Director
Defense Nuclear Agency
 ATTN: RBTN
 ATTN: RAEV
 ATTN: STVL
 ATTN: STSI, Archives
 ATTN: DDST
 ATTN: RAAE
2 cy ATTN: STTL, Tech. Lib.

Director of Defense Research & Engineering
 ATTN: DD/S&S

Commander
Field Command
Defense Nuclear Agency
 ATTN: FCPH

Director
Joint Strategic Target Planning Staff, JCS
 ATTN: STINFO Library

DEPARTMENT OF DEFENSE (Continued)

Chief
Livermore Division, Field Command, DNA
Lawrence Livermore Laboratory
 ATTN: Doc. Con. for L-395
 ATTN: FCPRL

National Communications System
Office of the Manager
 ATTN: NCS-TS, Charles D. Bodson

Commander
National Military Command Sys. Support Center
 ATTN: Paul Colman, MD718

Director
National Security Agency
 ATTN: Orland O. Van Gunten R-425
 ATTN: TD1
 ATTN: Tech. Lib.
 ATTN: J-6 ESD-2

Director
Telecommunications & Comd. & Con. Sys.
 ATTN: AD/ODTACCS

Weapons Systems Evaluation Group
 ATTN: Doc. Con.

DEPARTMENT OF THE ARMY

Asst. Chief of Staff for Intelligence
 ATTN: DASA-TAS, Jack T. Blackwell

Commander
Ballistic Defense System Command
 ATTN: Tech. Lib.
 ATTN: BDMSC-TEN, Noah J. Hurst

Director
BMD Advanced Tech. Center
 ATTN: Tech. Lib.

Chief of Research, Development & Acquisition
 ATTN: DASA-CSM-N, LTC E. V. Deboeser, Jr.

Commander
Harry Diamond Laboratories
 ATTN: AMLDO-EM, William T. Wyatt, Jr.
 ATTN: AMXDO-EM, Robert F. Gray
 ATTN: AMXDO-RBI, John A. Rosado
 ATTN: AMXDO-EM, John F. Sweton
 ATTN: AMXDO-EM, John B. Oswahn, Jr.
 ATTN: AMXDO-EM, John B. Oswald, Jr.
 ATTN: AMXDO-TI, Tech. Lib.
 ATTN: AMXDO-EM, J. W. Belfuss
DEPARTMENT OF THE ARMY (Continued)

Commander
Picatinny Arsenal
ATTN: Tech. Lib.

Commander
Redstone Scientific Information Center
U.S. Army Missile Command
ATTN: AMSMI-RBD, Clara T. Rogers

Commander
TRASANA
ATTN: ATAA-EAC, Francis N. Winans

Director
U.S. Army Ballistic Research Labs.
ATTN: AMXRD-BVL, David L. Rigotti
ATTN: AMXBR-AM, W. R. VanAntwerp
ATTN: Tech. Lib., Edward Daley
ATTN: AMXBR-X, Julius J. Meszaros
ATTN: AMXBR-VL, John W. Kimch

U.S. Army Communications Command
C-E Services Division
ATTN: CEEO-7, Wesley T. Heath, Jr.

Commander
U.S. Army Communications Command
ATTN: Tech. Lib.

Commander
U.S. Army Communications Command
Combat Development Division
ATTN: ACCM-TD-A, Library

Chief
U.S. Army Communications Sys. Agency
ATTN: SCCM-AD-SV, Library

Commander
U.S. Army Computer Systems Command
ATTN: Tech. Lib.

Commander
U.S. Army Electronics Command
ATTN: AMSEL-PL-ENV, Hans A. Bomke
ATTN: AMSEL-NL-D
ATTN: AMSEL-CE, T. Preifffer
ATTN: AMSEL-CT-HDK, Abraham E. Cohen
ATTN: AMSEL-GG-TD, W. R. Werk
ATTN: AMSEL-WL-D
ATTN: AMSEL-TL-MD, Corhart K. Gaule
ATTN: AMSEL-TL-Me, M. W. Fomenants
ATTN: AMSEL-TL-IR, Robert A. Freiberg

Commanding Officer
U.S. Army Electronics Command
Night Vision Laboratory
ATTN: Tech. Lib.

Commander
U.S. Army Electronics Proving Ground
ATTN: STEEP-MT-M, Gerald W. Durbin

Project Engineer
U.S. Army Engineer District, Huntsville
ATTN: F. Smith

Division Engineer
U.S. Army Engr. District, Missouri River
ATTN: MRDED-MC, Floyd L. Hazlett

DEPARTMENT OF THE ARMY (Continued)

Commandant
U. S. Army Field Artillery School
ATTN: ATSFA-CTD-ME, Harley Moberg
ATTN: Tech. Lib.

Commander
U. S. Army Mat. & Mechanics Research Center
ATTN: Tech. Lib.

Director
U. S. Army Material Sys. Analysis Agency
ATTN: AMSMI-RBD, Clara T. Rogers
ATTN: Tech. Lib.

Commander
U. S. Army Materiel Dev. & Readiness Command
ATTN: AMSMI-RGD, Vic Ruwe
ATTN: Tech. Lib.

Commander
U. S. Army Mobility Equip. R&D Center
ATTN: STSF-MW, John W. Bond, Jr.
ATTN: Tech. Lib.

Commander
U. S. Army Nuclear Agency
ATTN: ATCN-W, LTC Leonard A. Suga

Commander
U. S. Army Security Agency
ATTN: IARD-T, Robert H. Barkhardt
ATTN: Technical Library

Commandant
U. S. Army Southeastern Signal School
ATTN: Tech. Library
ATTN: ATSO-CTD-CS, CPT G. M. Alexander

Commander
U. S. Army Task Automotive Command
ATTN: Tech. Lib.
ATTN: AMSTE-RHM, LTC Peter A. Hasek
ATTN: AMSTAE-GCM-SW, Lyle A. Wocleit

Commander
H. S. Army Test and Evaluation Command
ATTN: Tech. Lib.
ATTN: AMSTE-NB, Russell R. Galasso
ATTN: AMSTE-EL, Richard L. Kolchin

Commander
White Sands Missile Range
ATTN: STEWS-TL-NT, Marvin P. Squires
ATTN: Tech. Lib.
DEPARTMENT OF THE AIR FORCE (Continued)

SAMSO/MN
ATTN: MNNH, Capt B. Stewart
ATTN: MNNH, Capt Michael V. Bell

Commander in Chief
Strategic Air Command
ATTN: DEF, Frank N. Bousha
ATTN: NRL-STINFO Library
ATTN: XPFS, Maj Brian S. Stophan

544TH IES
ATTN: RDPO, Lt Alan B. Merrill

ENERGY RESEARCH & DEVELOPMENT ADMINISTRATION

Division of Military Application

EG&G, Inc.
Los Alamos Division
ATTN: Tech. Lib.
ATTN: L. Dech

University of California
Lawrence Berkeley Laboratory
ATTN: Kenneth M. Watson
ATTN: Library, Bldg. 50 Rm 134

University of California
Lawrence Livermore Laboratory
ATTN: Frederick R. Koval, L-94
ATTN: Robert A. Anderson, L-156
ATTN: Hans Kruger, L-66
ATTN: William J. Hogan, L-531
ATTN: Leland C. Logist
ATTN: Terry R. Donich
ATTN: Tech. Info. Dept., L-3
ATTN: E. K. Miller, L-156
ATTN: Donald J. Meckler, L-153

Los Alamos Scientific Laboratory
ATTN: Doc. Con. for Reports Lib.
ATTN: Doc. Con. for Richard L. Wakefield
ATTN: Doc. Con. for J-8, R. E. Partridge
ATTN: Doc. Con. for J. Arthur Freed
ATTN: Doc. Con. for John S. Malik

Sandia Laboratories
Livermore Laboratory

Sandia Laboratories
ATTN: Doc. Con. for Charles N. Vititoe
ATTN: Doc. Con. for Gerald W. Barr, 1114
ATTN: Doc. Con. for Elmer F. Hartman
ATTN: Doc. Con. for 5245, T. H. Martin
ATTN: Doc. Con. for Org. 9053, R. L. Parker
ATTN: Doc. Con. for J. S. Cooper, 2126
ATTN: Doc. Con. for Albert A. Lemieux

Albuquerque Operations Office
ATTN: Doc. Con. for WSSB

Union Carbide Corporation
Hollifield National Laboratory
ATTN: Paul R. Barnes

OTHER GOVERNMENT AGENCIES

Central Intelligence Agency
ATTN: RD/SI for William A. Decker

Administrator
Defense Electric Power Admin.
Department of the Interior
ATTN: Doc. Con.

Department of Commerce
National Bureau of Standards
ATTN: Tech. Lib.

Department of Commerce
National Oceanic & Atmospheric Admin.
Environmental Research Laboratories
ATTN: Class. Doc. Lib.

Department of Transportation
Federal Aviation Administration
ATTN: ARD-350
ATTN: Fredrick S. Sakata, ARD-350

NASA
ATTN: Tech. Lib.

NASA
Lewis Research Center
ATTN: Library

DEPARTMENT OF DEFENSE CONTRACTORS

Aerojet-General Corporation
ATTN: Tech. Lib.
ATTN: Thomas D. Hanawome

Aeronutronic Ford Corporation
Aerospace & Communications Ops.
Aeronutronic Division
ATTN: Tech. Info. Section
ATTN: Ken C. Attinger
ATTN: E. R. Poncelet, Jr.
ATTN: L. H. Linder

Aeronutronic Ford Corporation
Western Development Laboratories Div.
ATTN: Samuel B. Crawford, M.S. 531
ATTN: Library
ATTN: J. T. Mattingley, M.S. X22

Aerospace Corporation
ATTN: C. B. Pearston
ATTN: Norman D. Stockwell
ATTN: Irving M. Garfunkel
ATTN: Melvin J. Bernstein
ATTN: Julian Reinheimer
ATTN: Library
ATTN: Bal Krishan
ATTN: S. P. Bower

Avco Research & Systems Group
ATTN: Research Lib., A830 Rm 7201

Battelle Memorial Institute
ATTN: David A. Dingee
ATTN: Tech. Lib.
ATTN: STOIA
<table>
<thead>
<tr>
<th>Company</th>
<th>ATTN:</th>
</tr>
</thead>
<tbody>
<tr>
<td>The BDM Corporation</td>
<td>Tech. Lib.</td>
</tr>
<tr>
<td>Bell Aerospace Company</td>
<td>Doc. Con.</td>
</tr>
<tr>
<td>The Bendix Corporation</td>
<td></td>
</tr>
<tr>
<td>The Boeing Company</td>
<td></td>
</tr>
<tr>
<td>Brown Engineering Company, Inc.</td>
<td></td>
</tr>
<tr>
<td>Burroughs Corporation</td>
<td></td>
</tr>
<tr>
<td>Calspan Corporation</td>
<td></td>
</tr>
<tr>
<td>Charles Stark Draper Laboratory Inc.</td>
<td></td>
</tr>
<tr>
<td>Cincinnati Electronics Corporation</td>
<td></td>
</tr>
<tr>
<td>Computer Sciences Corporation</td>
<td></td>
</tr>
<tr>
<td>Computer Sciences Corporation</td>
<td></td>
</tr>
<tr>
<td>Cutler-Hammer, Inc.</td>
<td></td>
</tr>
<tr>
<td>The BDM Corporation</td>
<td>Tech. Lib.</td>
</tr>
<tr>
<td>ATTN: T. H. Neighbors</td>
<td></td>
</tr>
<tr>
<td>ATTN: William Duen</td>
<td></td>
</tr>
<tr>
<td>ATTN: B. Gage</td>
<td></td>
</tr>
<tr>
<td>Division of Textron, Inc.</td>
<td></td>
</tr>
<tr>
<td>ATTN: Martin A. Henry</td>
<td></td>
</tr>
<tr>
<td>ATTN: Technical Library</td>
<td></td>
</tr>
<tr>
<td>The Bendix Corporation Communication Division</td>
<td>Doc. Con.</td>
</tr>
<tr>
<td>Research Laboratories Division</td>
<td></td>
</tr>
<tr>
<td>ATTN: Mgr. Frm. Dev., Donald J. Nickaus</td>
<td></td>
</tr>
<tr>
<td>The Bendix Corporation Navigation and Control Division</td>
<td>Tech. Lib.</td>
</tr>
<tr>
<td>ATTN:</td>
<td></td>
</tr>
<tr>
<td>ATTN: David Kemle</td>
<td></td>
</tr>
<tr>
<td>ATTN: David L. Dye, M.S. 87-75</td>
<td></td>
</tr>
<tr>
<td>ATTN: Aerospace Library</td>
<td></td>
</tr>
<tr>
<td>ATTN: Howard W. Wicklein, M.S. 17-11</td>
<td></td>
</tr>
<tr>
<td>ATTN: B. E. isbell</td>
<td></td>
</tr>
<tr>
<td>Booz-Allen and Hamilton, Inc.</td>
<td></td>
</tr>
<tr>
<td>ATTN: Tech. Lib.</td>
<td></td>
</tr>
<tr>
<td>ATTN: Raymond J. Chrisser</td>
<td></td>
</tr>
<tr>
<td>Brown Engineering Company, Inc.</td>
<td></td>
</tr>
<tr>
<td>ATTN: David L. Lambert, M.S. 18</td>
<td></td>
</tr>
<tr>
<td>ATTN: John M. McSwain, M.S. 18</td>
<td></td>
</tr>
<tr>
<td>ATTN: Tech. Lib., M.S. 12, P. Shelton</td>
<td></td>
</tr>
<tr>
<td>Barroughs Corporation</td>
<td></td>
</tr>
<tr>
<td>Federal and Special Systems Group</td>
<td></td>
</tr>
<tr>
<td>ATTN: Tech. Lib.</td>
<td></td>
</tr>
<tr>
<td>ATTN: Angelo J. Mauriello</td>
<td></td>
</tr>
<tr>
<td>Calspan Corporation</td>
<td></td>
</tr>
<tr>
<td>ATTN: Tech. Lib.</td>
<td></td>
</tr>
<tr>
<td>ATTN: Kenneth Fertig</td>
<td></td>
</tr>
<tr>
<td>Cincinnati Electronics Corporation</td>
<td></td>
</tr>
<tr>
<td>ATTN: Tech. Lib.</td>
<td></td>
</tr>
<tr>
<td>ATTN: C. R. Stump</td>
<td></td>
</tr>
<tr>
<td>Computer Sciences Corporation</td>
<td></td>
</tr>
<tr>
<td>ATTN: Tech. Lib.</td>
<td></td>
</tr>
<tr>
<td>Computer Sciences Corporation</td>
<td></td>
</tr>
<tr>
<td>ATTN: Richard H. Dickhaut</td>
<td></td>
</tr>
<tr>
<td>ATTN: Alvin T. Schiff</td>
<td></td>
</tr>
<tr>
<td>Cutler-Hammer, Inc.</td>
<td></td>
</tr>
<tr>
<td>All Division</td>
<td></td>
</tr>
<tr>
<td>ATTN: Central Tech. Files, Anne Anthony</td>
<td></td>
</tr>
<tr>
<td>University of Denver</td>
<td></td>
</tr>
<tr>
<td>ATTN: Sec. Officer for Ron W. Buchanon</td>
<td></td>
</tr>
<tr>
<td>ATTN: Sec. Officer for Tech. Lib.</td>
<td></td>
</tr>
<tr>
<td>ATTN: Sec. Officer for Fred P. Venditti</td>
<td></td>
</tr>
<tr>
<td>The Dikewood Corporation</td>
<td></td>
</tr>
<tr>
<td>ATTN: K. Lee</td>
<td></td>
</tr>
<tr>
<td>ATTN: L. Wayne Davis</td>
<td></td>
</tr>
<tr>
<td>ATTN: Tech. Lib.</td>
<td></td>
</tr>
<tr>
<td>E-Systems, Inc.</td>
<td></td>
</tr>
<tr>
<td>Greenville Division</td>
<td>Library 8-50100</td>
</tr>
<tr>
<td>Effects Technology, Inc.</td>
<td></td>
</tr>
<tr>
<td>ATTN: Edward John Steele</td>
<td></td>
</tr>
<tr>
<td>ATTN: Tech. Lib.</td>
<td></td>
</tr>
<tr>
<td>EG&G, Inc.</td>
<td></td>
</tr>
<tr>
<td>Albuquerque Division</td>
<td></td>
</tr>
<tr>
<td>ATTN: Tech. Lib.</td>
<td></td>
</tr>
<tr>
<td>ESL, Inc.</td>
<td></td>
</tr>
<tr>
<td>ATTN: Tech. Lib.</td>
<td></td>
</tr>
<tr>
<td>ATTN: William Metzer</td>
<td></td>
</tr>
<tr>
<td>Exp. & Math. Physics Consultants</td>
<td></td>
</tr>
<tr>
<td>ATTN: Thomas M. Jordan</td>
<td></td>
</tr>
<tr>
<td>Fairchild Camera and Instrument Corp.</td>
<td></td>
</tr>
<tr>
<td>ATTN: Sec. Dept. for 2-233, David K. Myers</td>
<td></td>
</tr>
<tr>
<td>ATTN: Sec. Dept. for Tech. Lib.</td>
<td></td>
</tr>
<tr>
<td>Fairchild Industries, Inc.</td>
<td></td>
</tr>
<tr>
<td>Sherman Fairchild Technology Center</td>
<td></td>
</tr>
<tr>
<td>ATTN: Leonard J. Schreiber</td>
<td></td>
</tr>
<tr>
<td>ATTN: Tech. Lib.</td>
<td></td>
</tr>
<tr>
<td>The Franklin Institute</td>
<td></td>
</tr>
<tr>
<td>ATTN: Tech. Lib.</td>
<td></td>
</tr>
<tr>
<td>ATTN: Ramie H. Thompson</td>
<td></td>
</tr>
<tr>
<td>Garrett Corporation</td>
<td></td>
</tr>
<tr>
<td>ATTN: Robert F. Weir, Dept. 93-9</td>
<td></td>
</tr>
<tr>
<td>ATTN: Tech. Lib.</td>
<td></td>
</tr>
<tr>
<td>General Dynamics Corp.</td>
<td></td>
</tr>
<tr>
<td>Pomona Operation</td>
<td></td>
</tr>
<tr>
<td>Electro-Dynamic Division</td>
<td></td>
</tr>
<tr>
<td>ATTN: Tech. Lib.</td>
<td></td>
</tr>
<tr>
<td>General Dynamics Corp.</td>
<td></td>
</tr>
<tr>
<td>Electronics Division</td>
<td></td>
</tr>
<tr>
<td>ATTN: Tech. Lib.</td>
<td></td>
</tr>
<tr>
<td>General Electric Company Space Division</td>
<td></td>
</tr>
<tr>
<td>ATTN: Tech. Info. Center</td>
<td></td>
</tr>
<tr>
<td>ATTN: Dante M. Tasca</td>
<td></td>
</tr>
<tr>
<td>ATTN: Daniel Edelman</td>
<td></td>
</tr>
<tr>
<td>ATTN: John R. Greinbaum</td>
<td></td>
</tr>
<tr>
<td>ATTN: Larry I. Chazen</td>
<td></td>
</tr>
<tr>
<td>ATTN: James P. Syratt</td>
<td></td>
</tr>
<tr>
<td>ATTN: Joseph C. Pedon, CCF 8301</td>
<td></td>
</tr>
<tr>
<td>ATTN: John W. Palchesky, Jr.</td>
<td></td>
</tr>
<tr>
<td>Company/Division</td>
<td>ATTN:</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>General Electric Company Ordnance Systems</td>
<td>Joseph J. Reidt</td>
</tr>
<tr>
<td>General Electric Company TEMPO-Center for Advanced Studies</td>
<td>Royden R. Rutherford</td>
</tr>
<tr>
<td>General Electric Company</td>
<td>Tech. Lib.</td>
</tr>
<tr>
<td>General Electric Company</td>
<td>CSP 6-7, Richard C. Fries</td>
</tr>
<tr>
<td>General Electric Company Aerospace TEMPO</td>
<td>DASILC for William Alfonte</td>
</tr>
<tr>
<td>General Research Corporation</td>
<td>Tech. Info. Office</td>
</tr>
<tr>
<td>General Research Corporation</td>
<td>Robert D. Hill</td>
</tr>
<tr>
<td>Georgia Institute of Technology Office of Contract Admin</td>
<td>Res. & Sec. Coord. for Hugh Denny</td>
</tr>
<tr>
<td>Grumman Aerospace Corporation</td>
<td>Jerry Rogers, Dept. 533</td>
</tr>
<tr>
<td>GTE Sylvania, Inc. Electronic Systems Grp-Eastern Division</td>
<td>James A. Waldon</td>
</tr>
<tr>
<td>GTE Sylvania, Inc. Applied Physics Laboratory</td>
<td>Charles A. Thornhill, Librarian</td>
</tr>
<tr>
<td>Harris Corporation Semiconductor Division</td>
<td>Carl F. Davis, M.S. 17-220</td>
</tr>
<tr>
<td>Harris Corporation</td>
<td>Tech. Lib.</td>
</tr>
<tr>
<td>Hercules, incorporated</td>
<td>100K-26, W. R. Woodruff</td>
</tr>
<tr>
<td>Honeywell Incorporated Government and Aeronautical Products Division</td>
<td>Ronald R. Johnson, A1622</td>
</tr>
<tr>
<td>Hughes Aircraft Company</td>
<td>Tech. Lib.</td>
</tr>
<tr>
<td>Hughes Aircraft Company Space Systems Division</td>
<td>Edward C. Smith, M.S. 6020</td>
</tr>
<tr>
<td>Hughes Aircraft Company Applied Physics Laboratory</td>
<td>ACOAT</td>
</tr>
<tr>
<td>Hughes Aircraft Company Applied Physics Laboratory</td>
<td>Irving N. Mindel</td>
</tr>
<tr>
<td>Institute for Defense Analyses</td>
<td>IDA, Librarian, Ruth S. Smith</td>
</tr>
<tr>
<td>Intelcom Rad Tech</td>
<td>Eric P. Wenas</td>
</tr>
<tr>
<td>Intl. Tel. & Telegraph Corporation</td>
<td>Tech. Lib.</td>
</tr>
<tr>
<td>Johns Hopkins University Applied Physics Laboratory</td>
<td>Wayde E. Abare, M.S. 16-111</td>
</tr>
</tbody>
</table>

30
DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

R & D Associates
ATTN: Richard R. Schaefer
ATTN: Tech. Lib.
ATTN: Charles Mo
ATTN: Gerald K. Schlegel
ATTN: Leonard Schlesinger
ATTN: William H. Graham, Jr.
ATTN: William J. Karzas

Raytheon Company
ATTN: Library

Raytheon Company
ATTN: Tech. Lib.
ATTN: Harold L. Flescher
ATTN: James R. Weckback

RCA Corporation
Government & Commercial Systems
Astro Electronics Division
ATTN: Tech. Lib.
ATTN: George J. Brucker

RCA Corporation
Government & Commercial Systems
Missile & Surface Radar Division
ATTN: Tech. Lib.
ATTN: Andrew L. Warren

RCA Corporation
ATTN: E. Van Keuren, 13-5-2
ATTN: Tech. Lib.

Rockwell International Corporation
ATTN: Donald J. Stevens, FA70
ATTN: Tech. Lib.
ATTN: K. F. Hull
ATTN: James E. Bell, HA10
ATTN: David C. Bausch

Rockwell International Corporation
Space Division
ATTN: TIC, D/41-002 AJ/81

Rockwell International Corporation
ATTN: T. B. Yates

Sanders Associates, Inc.
ATTN: Tech. Lib.
ATTN: R. G. Despathy, Sr. P E, 1-8270
ATTN: Moe L. Aitel, MCA 1-9326

Science Applications, Inc.
ATTN: Frederick M. Tesche

Science Applications, Inc.
ATTN: William L. Chadsey

Science Applications, Inc.
ATTN: Technical Library
ATTN: Lewis M. Linson

Science Applications, Inc.
Huntsville Division
ATTN: Noel R. Byrn
ATTN: Tech. Lib.

DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

Science Applications, Inc.
ATTN: R. Park, Sr.
ATTN: Richard L. Knight
ATTN: James R. Hill

Simulation Physics, Inc.
ATTN: John R. Ughum

The Singer Company (Data Systems)
ATTN: Tech. Info. Center

The Singer Company
ATTN: Tech. Lib.
ATTN: Irwin Goldman, Eng. Management

Sperry Flight Systems Division
Sperry Rand Corporation
ATTN: D. J. Keating
ATTN: D. Andrew Schow
ATTN: Tech. Lib.

Sperry Microwave Electronics Division
Sperry Rand Corporation
ATTN: Tech. Lib.

Sperry Rand Corporation
Univac Division
Defense Systems Division
ATTN: Tech. Lib.

Sperry Rand Corporation
Sperry Division
Sperry Gyroscope Division
Sperry Systems Management Division
ATTN: Tech. Lib.
ATTN: Paul Marraffmo
ATTN: Charles L. Craig, EV

Stanford Research Institute
ATTN: Phillip J. Dolan
ATTN: George Carpenter
ATTN: Arthur Lee Whitson
ATTN: William C. Taylor
ATTN: SLI Library, Rm. G021

Stanford Research Institute
ATTN: Tech. Lib.
ATTN: MacPherson Morgan

Sundstrand Corporation
ATTN: Curtis B. White

Systems, Science and Software
ATTN: Tech. Lib.

Systems, Science and Software, Inc.
ATTN: Andrew R. Wilson
ATTN: Tech. Lib.

Systron-Donner Corporation
ATTN: Tech. Lib.

Texas Instruments, Inc.
ATTN: Gary F. Hanson
ATTN: Donald J. Matus, M.S. 72
ATTN: Tech. Lib.
DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

TRW Semiconductors
Division of TRW, Inc.
ATTN: Tech. Lib.
ATTN: Ronald N. Clarke

TRW Systems Group
ATTN: Fred N. Holmquist, M.S. R1-2028
ATTN: Jerry L. Lubell
ATTN: Lillian D. Singletary, M.S. R1-1070
ATTN: Paul Molmud, M.S. R1-1196
ATTN: Richard H. Kingland, M.S. R1-2154
ATTN: Robert M. Webb, M.S. R1-1150
ATTN: Tech. Info. Center, S-1090
ATTN: William H. Robinette, Jr.
ATTN: Benjamin Susskind
ATTN: Aaron H. Narevsky, M.S. R1-2144
ATTN: A. M. Liebschutz, M.S. R1-1152

TRW Systems Group
ATTN: John E. Dahake
ATTN: H. S. Jensen
ATTN: H. Rathjen

TRW Systems Group
ATTN: Tech. Lib.

United Technologies Corp.
Norden Division
ATTN: Tech. Lib.

DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

United Technologies Corporation
Hamilton Standard Division
ATTN: Raymond G. Ciguere
ATTN: Tech. Lib.

Victor A. J. Van Lint, Consultant
Mission Research Corporation
ATTN: V. A. J. Van Lint

Varian Associates
ATTN: A-109, Howard R. Jory
ATTN: Tech. Lib.

Westinghouse Electric Corporation
Astronuclear Laboratory
ATTN: Tech. Lib.

Westinghouse Electric Corporation
Defense and Electronic Systems Center
ATTN: Tech. Lib.
ATTN: Henry P. Kalapaca

Westinghouse Electric Corporation
Research and Development Center
ATTN: Tech. Lib.