ESTIMATING EXTERNAL BLAST LOADS
FROM SUPPRESSIVE STRUCTURES

by
E. D. Esparza

November 1975

SOUTHWEST RESEARCH INSTITUTE
Post Office Drawer 28510, 8500 Culebra Road
San Antonio, Texas 78284

Contract No. DAAA15-75-C-0083
Disclaimer

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Disposition

Destroy this report when it is no longer needed. Do not return it to the originator.
This report describes methods for predicting blast overpressure outside suppressive structures. Prediction curves are in scaled form. Data are compared to free-field data for large high-explosive detonations on the ground.
SUMMARY

This report describes methods for predicting blast overpressures outside suppressive structures of various sizes with a variety of vented panel configurations. The prediction curves are presented in scaled form, based on a previously developed model law. Free-field data are compared to scaled data from large high explosive detonations on the ground. Results are tentative because of continuing experimental work which may modify the curve fits given in the report.

PREFACE

The investigation described in this report was authorized under PA, A 4932, Project 5751264. The work was performed at Southwest Research Institute under Contract DAAA15-75-C-0083.

The use of trade names in this report does not constitute an official endorsement or approval of the use of such commercial hardware or software. This report may not be cited for the purposes of advertisement.

The information in this document has been cleared for release to the general public.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF ILLUSTRATIONS</td>
<td>6</td>
</tr>
<tr>
<td>I. INTRODUCTION</td>
<td>7</td>
</tr>
<tr>
<td>II. ANALYSIS</td>
<td>7</td>
</tr>
<tr>
<td>III. RESULTS</td>
<td>11</td>
</tr>
<tr>
<td>IV. DISCUSSION AND CONCLUSIONS</td>
<td>14</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>16</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>Definition of α for a Layer of Angles</td>
</tr>
<tr>
<td>2</td>
<td>Definition of α for Louvres</td>
</tr>
<tr>
<td>3</td>
<td>Curve Fit to Blast Pressures Outside NSTL Structures</td>
</tr>
<tr>
<td>4</td>
<td>Curve Fit to NSTL Free Field Blast Pressures</td>
</tr>
<tr>
<td>5</td>
<td>Curve Fit to NSTL, Snowball and Flat Top Free Field Blast Pressures</td>
</tr>
</tbody>
</table>
ESTIMATING EXTERNAL BLAST LOADS FROM SUPPRESSIVE STRUCTURES

I. INTRODUCTION

Suppressive structures are intended to attenuate the blast waves transmitted through their walls to levels which will minimize damage to other nearby structures or injury to nearby personnel. Accordingly, most of the past and planned tests of suppressive structures include measurements of the blast fields over a range of distances from their outer surfaces. Such data have usually been compared to blast pressures measured from the same blast sources without the suppressive structure, or to compiled data on air blast. The data from many different experiments can be scaled, however, and placed on a common basis to extend the range of prediction of blast attenuation for structures of different size, attenuating panel design, or explosive charge weight. In this report, we develop prediction equations for side-on blast overpressures outside suppressive structures with a variety of panel designs, based on a blast scaling law.

The work reported here was conducted for Edgewood Arsenal under Contract DAAA15-75-C-0083 as a part of the suppressive structures program.

II. ANALYSIS

The methodology for developing equations to estimate the side-on overpressure at a location outside of a suppressive structure is presented in Reference 1. However, since some of the parameters used to determine an expression for side-on pressure have subsequently been slightly redefined, an abbreviated analysis will be presented here.

The free-field relationship for side-on overpressure P_s is given by the Hopkinson-Cranz scaling law for geometrically similar sources at sea-level ambient atmospheric conditions as

$$P_s = f\left(\frac{R}{W^{1/3}}\right) \quad \text{(free field)} \quad (1)$$

Using a similar analysis to derive a functional expression for the side-on overpressures outside of a suppressive structure, we have

$$P_s = f\left(\frac{R}{W^{1/3}}, \frac{X}{R}, \alpha_e\right) \quad (2)$$

where

- P_s – side-on pressure (psi)
- $Z = \frac{R}{W^{1/3}}$ (ft/lb$^{1/3}$)
R — distance from charge (ft)
W — charge weight (lb)
X — characteristic length of structure (ft)

For square walls, X = side dimension

For rectangular walls, X = square root of wall area

α_e — effective vent area ratio (-)

$L = R/X$ (-)

To compute α_e for N-layered, multiwalled structures, we have assumed that

$$\frac{1}{\alpha_e} = \sum_{i=1}^{N} \frac{1}{\alpha_i} \quad (3)$$

This relationship has at the moment no theoretical proof. However, it does reach the appropriate limits for small and large number of plates, and provides a relative measure of venting for a variety of panel configurations. For each vented member in a panel, α is defined as

$$\alpha_i = \left(\frac{\text{Vent Area}}{\text{Wall Area}} \right)_{i}, \frac{A_{V_i}}{A_{W}}, \ldots \quad (4)$$

For perforated plates, the meaning of Equation (4) is obvious; however, for angles and louvres, the definition is less obvious. Figures 1 and 2 show the present definition of α for these two members.

Now that all the parameters in Equation (2) have been defined, this equation is assumed to have the form

$$P_s = A (Z)^N \left(\frac{X}{R} \right)^{N_2} (\alpha_e)^{N_3} \quad (5)$$

which will allow least-squares fitting to experimental data. Taking logarithms of both sides, a least-squares curve fit can be developed using the experimental data and stating that

$$\begin{bmatrix} 1.0, \ln Z, \ln \frac{X}{R}, \ln \alpha_e \end{bmatrix} \begin{bmatrix} \ln A \\ N_1 \\ N_2 \\ N_3 \end{bmatrix} = \begin{bmatrix} \ln P_s \end{bmatrix} \quad (6)$$
SECTION A-A

\[A_{vent} = J \lambda g, \quad J = \text{NUMBER OF OPENINGS} \]
\[A_{wall} = LM \]
\[\alpha = \frac{A_{vent}}{A_{wall}} \]

FIGURE 1. DEFINITION OF \(\alpha \) FOR A LAYER OF ANGLES
\[A_{\text{vent}} = K a_v, \quad K = \text{NUMBER OF LOUVRES} \]

\[A_{\text{wall}} = LM \]

\[\alpha = \frac{A_{\text{vent}}}{2 A_{\text{wall}}} \]

FIGURE 2. DEFINITION OF \(\alpha \) FOR LOUVRES
or, substituting matrix notation,

\[
[L] [N] = [P] \tag{7}
\]

A least-squares curve fit results for the \(N\) matrix (\(A, N1, N2, \text{and } N3\)) when

\[
[N] = (L^T L)^{-1} L^T [P] \tag{8}
\]

III. RESULTS

Before any curve fitting was done, all the original NSTL data used to derive the previous expression \(P_s\) (see Reference 1) was rechecked to make sure that it was on a common base. Particular attention was given to computing \(\alpha_e\) and \(X\). However, because in several cases panel drawings were not available, the vent areas for each panel member were taken to be those which were stated in the texts of References 2, 3, and 4. The resulting equation from curve fitting the experimental data from these reports is

\[
P_s = 677.5 \frac{L^{0.485} \alpha_e^{0.537}}{Z^{1.84}} \tag{9}
\]

Figure 3 is a plot of Equation (9) versus the experimental data points used to compose this plot. This equation appears to curve fit the test results very well. The estimate of the standard deviation, \(S\), for the experimental data about the line equals \(\pm 20\%\) which is only slightly worse than the spread obtained for similar free-field data. Because this is a curve fit to test data, Equation (9) should only be used when input conditions fall within variations in the individual \(pi\) terms. The variations in the test results were:

\[
\begin{align*}
0.55 & \leq L \leq 3.09 \\
0.025 & \leq \alpha_e \leq 0.60 \\
4.29 \text{ ft} / \text{lb}^{1/3} & \leq Z \leq 15.5 \text{ ft} / \text{lb}^{1/3}
\end{align*}
\]

Taking the free-field side-on pressure data from the same three references and curve-fitting using the same procedure over a similar range of \(Z\) as for the suppressive structure pressure data, the resulting equation is

\[
P_s = \frac{962.3}{Z^{2.057}} \tag{10}
\]

Figure 4 compares Equation (10) and the data points. This equation appears to curve fit the test results excellently with an \(S\) of \(\pm 13\%\) which, as would be expected, is slightly better than the fit for the suppressive structure blast field. Naturally, Equation (10) should only be applied whenever \(Z\) varies as follows:

\[
4.29 \text{ ft} / \text{lb}^{1/3} \leq Z \leq 15.9 \text{ ft} / \text{lb}^{1/3}
\]
FIGURE 3. CURVE FIT TO BLAST PRESSURES OUTSIDE NSTL STRUCTURES

\[P_s = \frac{677.5 \cdot L^{0.485} \cdot a_e^{0.537}}{Z^{1.84}} \]

\[S = \pm 20\% \]
FIGURE 4. CURVE FIT TO NSTL FREE FIELD BLAST PRESSURES

\[P_s = \frac{962.3}{Z^{2.057}} \]

\[S = \pm 13\% \]
It is interesting to see how additional free-field data points from tests using charge weights which are orders of magnitude larger than those used to generate the NSTL data, will affect the curve fit. Using data from four different large-scale field tests $^5, ^6$ which fall within the same range of Z used previously results in

$$P_s = \frac{1089.2}{Z^{2.098}} \quad (11)$$

Figure 5 compares this equation with all the data points used and shows an excellent fit with an S of $\pm 13\%$.

Comparing Equations (10) and (11), one can see that they are almost identical. As a matter of fact the side-on pressure predicted by these equations would differ by a maximum of only 6.2% at a Z of $4.29 \text{ ft/lb}^{1/3}$. This difference decreases to an insignificant 1% at the upper limit of Z ($15.9 \text{ ft/lb}^{1/3}$).

IV. DISCUSSION AND CONCLUSIONS

It must be emphasized again that in using the empirical equations in this report, the limits given for the individual p_i terms must be satisfied. *If large extrapolations are attempted beyond these limits, gross errors will certainly occur in estimating P_s.* For example, as a blast wave propagates to great distances from its source, it travels at essentially the speed of sound and, assuming homogeneous, still air, the pressure in the front would decrease as the inverse of the distance R (or as a function of $1/Z$).7 However, for the data range used here to obtain the free-field equations, the pressure is decreasing approximately as the inverse of the distance squared.

Work in measurement of blast pressures outside suppressive structures is continuing apace, and the results presented here will certainly be updated and extended in coming months. In particular, sufficient data for side-on impulse should soon be available to establish fits similar to those given here for side-on overpressure, and data will be available for other panel configurations such as interlocked I-beams. The equations and curves presented here must therefore be considered as interim ones, to be supplemented or supplanted as later data becomes available.

REFERENCES

FIGURE 5. CURVE FIT TO NSTL, SNOWBALL AND FLAT TOP
FREE FIELD BLAST PRESSURES

\[P_s = \frac{1089.2}{Z^{2.098}} \]

\[S = \pm 13\% \]

<table>
<thead>
<tr>
<th>Addressee</th>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commander</td>
<td>1</td>
</tr>
<tr>
<td>Rocket Propulsion Laboratory</td>
<td></td>
</tr>
<tr>
<td>Attn: Mr. M. Raleigh</td>
<td></td>
</tr>
<tr>
<td>Edwards Air Force Base, CA 93523</td>
<td></td>
</tr>
<tr>
<td>Commander</td>
<td>1</td>
</tr>
<tr>
<td>HQ, Armament Development Test Center</td>
<td></td>
</tr>
<tr>
<td>Attn: DOM/Mr. S. Reither</td>
<td></td>
</tr>
<tr>
<td>Eglin Air Force Base, FL 32542</td>
<td></td>
</tr>
<tr>
<td>Commander</td>
<td>1</td>
</tr>
<tr>
<td>Hill Air Force Base</td>
<td></td>
</tr>
<tr>
<td>Attn: MMNTR/Mr. Cummings</td>
<td></td>
</tr>
<tr>
<td>Clearfield, UT 84406</td>
<td></td>
</tr>
<tr>
<td>Commander</td>
<td>1</td>
</tr>
<tr>
<td>Norton Air Force Base</td>
<td></td>
</tr>
<tr>
<td>Attn: AFISC-SEV/Mr. K. Collinsworth</td>
<td></td>
</tr>
<tr>
<td>San Bernardino, CA 92409</td>
<td></td>
</tr>
<tr>
<td>Commander</td>
<td>1</td>
</tr>
<tr>
<td>Air Force Civil Engineering Center</td>
<td></td>
</tr>
<tr>
<td>Attn: AFCEC-DE/LTC Walkup</td>
<td></td>
</tr>
<tr>
<td>Tyndall Air Force Base</td>
<td></td>
</tr>
<tr>
<td>Panama City, FL 32401</td>
<td></td>
</tr>
<tr>
<td>Commander</td>
<td>1 ea</td>
</tr>
<tr>
<td>HQ Air Force Logistics Command</td>
<td></td>
</tr>
<tr>
<td>Attn: MMWM/CPT D. Rideout</td>
<td></td>
</tr>
<tr>
<td>IGYE/Mr. K. Shopher</td>
<td></td>
</tr>
<tr>
<td>Wright-Patterson Air Force Base</td>
<td></td>
</tr>
<tr>
<td>Dayton, OH 45433</td>
<td></td>
</tr>
<tr>
<td>Commander</td>
<td>1</td>
</tr>
<tr>
<td>Naval Ordnance Systems Command</td>
<td></td>
</tr>
<tr>
<td>Attn: Code ORD 43B/Mr. A. Fernandes</td>
<td></td>
</tr>
<tr>
<td>Washington, DC 20360</td>
<td></td>
</tr>
<tr>
<td>Commander</td>
<td>1</td>
</tr>
<tr>
<td>Explosives Safety</td>
<td></td>
</tr>
<tr>
<td>Attn: ADTC/SEV (Mr. Ron Allen)</td>
<td></td>
</tr>
<tr>
<td>Eglin Air Force Base, FL 32542</td>
<td></td>
</tr>
</tbody>
</table>
Commander
US Army Materiel Command
Attn: AMCCG
 AMCRD/Dr. Kaufman
 AMCSF/Mr. W. Queen
 AMCPM-CS/COL Morris
5001 Eisenhower Ave.
Alexandria, VA 22333

Office of the Project Manager for Munition Production Base Modernization and Expansion
Attn: AMCPM-PBM-E/Mr. Dybacki
USA Materiel Command
Dover, NJ 07801

Commander
US Army Armament Command
Attn: AMSAR-EN/Mr. Ambrosini
 AMSAR-SC/Dr. C. Hudson
 AMSAR-SF/Mr. J. Varcho
 AMSAR-TM/Mr. Serlin, Mr. T. Fetter, Mr. S. Porter
 AMSAR-MT/Mr. A. Madsen, Mr. G. Cowan, CPT Burnsteel
Rock Island Arsenal
Rock Island, IL 61201

Commander
USAMC Ammunition Center
Attn: Mr. J. Byrd
 AMXAC-DEM/Mr. Huddleston
 Mr. Sumpterer
Savanna, IL 61074

Commander
Frankford Arsenal
Attn: Mr. F. Fidel, Mr. E. Rempler
 Bridge and Tacony Sts.
 Philadelphia, PA 19137

Commander
Picatinny Arsenal
Attn: Mr. Saffian
 Mr. J. Cannovan
 Mr. Hickerson
 Mr. I. Forsten
 Dover, NJ 07801
Commander
USA Test and Evaluation Command
Attn: AMSTE-NB
Aberdeen Proving Ground, MD 21005

Commander
Dugway Proving Ground
Attn: Dr. Rothenburg
 Mr. P. Miller
Dugway, UT 84022

Commander
Cornhusker Army Ammunition Plant
Grand Island, NE 68801

Commander
Indiana Army Ammunition Plant
Charleston, IN 47111

Commander
Iowa Army Ammunition Plant
Burlington, IA 52502

Commander
Joliet Army Ammunition Plant
Joliet, IL 60436

Commander
Kansas Army Ammunition Plant
Parsons, KS 67357

Commander
Longhorn Army Ammunition Plant
Marshall, TX 75671

Commander
Lone Star Army Ammunition Plant
Texarkana, TX 75502

Commander
Louisiana Army Ammunition Plant
Shreveport, LA 71102

Commander
Milan Army Ammunition Plant
Milan, TN 38358

Commander
Radford Army Ammunition Plant
Radford, VA 24141
Commander
Sunflower Army Ammunition Plant
Lawrence, KS 66044

Commander
Lake City Army Ammunition Plant
Attn: Mr. John Jacobi
Independence, MO 64056

Commander
Ravenna Army Ammunition Plant
Ravenna, OH 44266

Commander
Pine Bluff Arsenal
Pine Bluff, AR 71601

Director
US Army Materiel Systems Analysis Activity
Aberdeen Proving Ground, MD 21005

Director
US Army Ballistics Research Laboratories
Attn: Mr. R. Vitali
Aberdeen Proving Ground, MD 21005

Division Engineer
US Army Engineer Division, Huntsville
Attn: HNDED-R/Mr. Dembo
Mr. W. Char
P.O. Box 1600, West Station
Huntsville, AL 35807

US Army Engineer Division
Waterways Experimental Station
P.O. Box 631
Vicksburg, MS 39180

Director
USAMC Intern Training Center
Attn: Dr. G. Chiang
Red River Depot
Texarkana, TX 75502

Dr. Robert D. Siewert
NASA Lewis Laboratory
21000 Brook Park Rd
Cleveland, OH 44135
Mr. George Pinkas
Code 21-4
NASA Lewis Laboratory
21000 Brook Park Rd
Cleveland, OH 44135

Mr. W. H. Jackson
Deputy Manager for Engineering
Atomic Energy Commission
P.O. Box E
Oak Ridge, TN 37830

Mr. Erskine Harton
US Department of Transportation
Washington, DC 20315

Dr. Jean Foster
US Department of Transportation
Washington, DC 20315

Mr. Frank Neff
Mound Laboratory
Monsanto Research Corp.
Miamisburg, OH 45342

Ms. Trudy Prugh
Mound Laboratory
Monsanto Research Corp.
Miamisburg, OH 45342

Commander
Naval Weapons Laboratory
Attn: Mr. F. Sanches
Dahlgren, VA 22448

Dr. W. E. Baker
Southwest Research Institute
San Antonio, TX 78284

Division Engineer
US Army Engineer Division, Fort Belvoir
Fort Belvoir, VA 22060

Commander
Naval Sea Systems Command
Washington, DC 20315
Mr. Billings Brown
Hercules, Inc.
Box 98
Magna, UT 84044

Mr. John Komos
Defense Supply Agency
Cameron Station
Alexandria, VA 22030

Office of the Project Manager for Chemical
Demilitarization and Installation Restoration
Edgewood Arsenal
Aberdeen Proving Ground, MD 21010

Edgewood Arsenal
Technical Director
Attn: SAREA-TD-E
Foreign Intelligence Officer
Chief, Legal Office
Chief, Safety Office
CDR, US Army Technical Escort Center
Author's Copy, Manufacturing Technology Directorate
Aberdeen Proving Ground, MD 21010

Edgewood Arsenal
Director of Biomedical Laboratory
Attn: SAREA-BL-M
 SAREA-BL-B
 SAREA-BL-E
 SAREA-BL-H
 SAREA-BL-R
 SAREA-BL-T
Aberdeen Proving Ground, MD 21010

Edgewood Arsenal
Director of Chemical Laboratory
Attn: SAREA-CL-C
 SAREA-CL-P
Aberdeen Proving Ground, MD 21010

Edgewood Arsenal
Director of Development & Engineering
Attn: SAREA-DE-S
Aberdeen Proving Ground, MD 21010
Edgewood Arsenal
Director of Manufacturing Technology
Attn: SAREA-MT-TS 2
 SAREA-MT-M 1
Aberdeen Proving Ground, MD 21010

Edgewood Arsenal
Director of Product Assurance
Attn: SAREA-PA-A 1
 SAREA-PA-P 1
 SAREA-PA-Q 1
Aberdeen Proving Ground, MD 21010

Edgewood Arsenal
Director of Technical Support
Attn: SAREA-TS-R 2
 SAREA-TS-L 3
 SAREA-TS-E 1
Aberdeen Proving Ground, MD 21010

Aberdeen Proving Ground
Record Copy
Attn: STEAP-AD-R/RHA
CDR, APG
APG-Edgewood Area, BLDG E5179
Aberdeen Proving Ground, MD 21005

Aberdeen Proving Ground
CDR, APG
Attn: STEAP-TL
APG, Aberdeen Area
Aberdeen Proving Ground, MD 21005

DEPARTMENT OF DEFENSE
Administrator
Defense Documentation Center
Attn: Accessions Division
Cameron Station
Alexandria, VA 22314

Commander
Edgewood Arsenal
Attn: SAREA-DM 1
Aberdeen Proving Ground, MD 21010