TECHNICAL REPORT: NAVTRAEEUICEN IH-257

INSTRUCTIONAL SYSTEMS DEVELOPMENT: CONCEPTUAL ANALYSIS AND COMPREHENSIVE BIBLIOGRAPHY

HUMAN FACTORS LABORATORY
NAVAL TRAINING EQUIPMENT CENTER
ORLANDO, FLORIDA 32813

February 1976

DoD Distribution Statement
Approved for public release; distribution unlimited.
INSTRUCTIONAL SYSTEMS DEVELOPMENT:
CONCEPTUAL ANALYSIS AND COMPREHENSIVE BIBLIOGRAPHY

MELVIN D. MONTEMELO, Ph.D.
and
MICHAEL E. TENNYSON

February 1976

GOVERNMENT RIGHTS IN DATA STATEMENT

Reproduction of this publication in whole or in part is permitted for any purpose of the United States Government.

Reviewed by
James S. Duva
Head, Human Factors Laboratory

Approved by
Hugh Halpin
Deputy Director
Research and Technology Department

NAVAL TRAINING EQUIPMENT CENTER
ORLANDO, FLORIDA 32813
ERRATA NOTICE NO. 1
11 May 1976

The following corrections should be made to TR: IH-257 dated February 1976.

INSTRUCTIONAL SYSTEMS DEVELOPMENT:
CONCEPTUAL ANALYSIS AND COMPREHENSIVE
BIBLIOGRAPHY

NAVTRAEGIPEN IH-257 February 1976

Remove pages 7, 8, 9, and 10, and insert the attached pages 7, 8, 9, and 10.

After corrections are made, this notice is to be inserted at the front of the report for record purposes.

NAVAL TRAINING EQUIPMENT CENTER
ORLANDO, FLORIDA 32813
Title: Instructional Systems Development: Conceptual Analysis and Comprehensive Bibliography

Authors:
- Melvin D. Montemerlo, Ph.D.
- Michael E. Tiennyson

Performing Organization Name and Address:
Naval Training Equipment Center
Code N215
Orlando, FL 32813

Contract or Grant Number:

Program Element, Project, Area & Work Unit Numbers:

Report Date:
February 1976

Distribution Statement: Approved for public release, distribution unlimited.

Supplementary Notes:

Key Words:
- Instructional Systems Development
- Systems Approach to Training
- Evaluation
- Methodology Selection
- Media Selection
- Programmed Instruction
- Computer Assisted Instruction
- Task Analysis
- Job Analysis
- Task Taxonomy
- Specific Behavioral Objectives
- Sequencing
- Instructor Training
- Educational Management
- Cost Effectiveness
- Innovation
- Educational Technology
- Human Engineering

Abstract:
This report constitutes a first step in improving the state-of-the-art of instructional systems development (ISD). It contains a bibliography of about 4,000 entries divided into the following sections: instructional systems development/systems approach to training, evaluation, methodology selection, media selection, programmed instruction/computer assisted instruction, task analysis, job analysis, task taxonomy, specific behavioral objectives, sequencing, instructor training, educational management, cost effectiveness, innovation, educational technology, human engineering, simulation, and systems.
This report also presents a conceptual analysis of ISD, a process which is also known as: the systems approach to training (SAT), systems engineering of training (SET), training situation analysis (TSA), and the design of instructional systems (DIS). The related literature, dating from 1951 to the present, indicates the state-of-the-art to be unsettled. Over 100 ISD manuals are available which contain fundamental disagreement on the most basic aspects of course design. None of the manuals have been empirically validated. In an effort to understand the present state of affairs with respect to ISD, its history was researched. Its evolution was traced from its beginnings in systems analysis, to the systems analytic approach to training, to the proceduralized systems approach to training, which is now known as ISP. The factors which affected this evolution, the current state-of-the-art, and the major questions which remain unanswered are discussed.
The authors would like to express heartfelt gratitude to: Dr. Alfred F. Smode and Mr. Eugene R. Hall of the Training Analysis and Evaluation Group (TAEG) for historical information on the Systems Approach to Training and for their insights on what really happens during training program design; Dr. Richard Braby and Ms. Karen Lam of TAEG for lending their expertise and libraries on media selection and instructor training; Dr. Robert Sugarman of the Calspan Corporation for bringing to our attention numerous sources of information; Lieutenant Colonel Charles Brown, Lieutenant Colonel Thomas Rush and Major Roy Baker of the United States Air Force for making available the wealth of practical knowledge and experience in instructional systems development of the Air Force; and Dr. Gilbert Ricard of the Naval Training Equipment Center for helping refine our conceptual analysis of ISD (Section 1).

Special thanks are also due to Ms. Billie Campbell of the Naval Training Equipment Center’s Technical Library for locating and obtaining numerous hard-to-find volumes, and to Ms. Joyce DeNatale and Mrs. Mickey Shore for typing this report.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>5</td>
</tr>
<tr>
<td>Instructional Systems Development: A Conceptual Analysis.</td>
<td>5</td>
</tr>
<tr>
<td>Background</td>
<td></td>
</tr>
<tr>
<td>The Problem of Definition</td>
<td>5</td>
</tr>
<tr>
<td>(1) Lack of terminological standardization</td>
<td>6</td>
</tr>
<tr>
<td>(2) Problems of educational innovations</td>
<td>7</td>
</tr>
<tr>
<td>(3) Evolutionary nature of the SAT process</td>
<td>8</td>
</tr>
<tr>
<td>(a) Systems Analysis</td>
<td>8</td>
</tr>
<tr>
<td>(b) Systems Analysis Applied to Training</td>
<td>8</td>
</tr>
<tr>
<td>(c) The Bifurcation</td>
<td>10</td>
</tr>
<tr>
<td>(d) The Proceduralized SAT Manuals</td>
<td>11</td>
</tr>
<tr>
<td>(e) Revival of the Original SAT Concept</td>
<td>12</td>
</tr>
<tr>
<td>Summary and Conclusions</td>
<td>13</td>
</tr>
<tr>
<td>Organization of the Bibliography</td>
<td>14</td>
</tr>
<tr>
<td>BIBLIOGRAPHIES</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>19</td>
</tr>
<tr>
<td>Instructional Systems Development/Systems Approach to Training</td>
<td>19</td>
</tr>
<tr>
<td>III</td>
<td>57</td>
</tr>
<tr>
<td>Evaluation</td>
<td>57</td>
</tr>
<tr>
<td>IV</td>
<td>101</td>
</tr>
<tr>
<td>Methodology Selection</td>
<td>101</td>
</tr>
<tr>
<td>V</td>
<td>129</td>
</tr>
<tr>
<td>Media Selection</td>
<td>129</td>
</tr>
<tr>
<td>VI</td>
<td>145</td>
</tr>
<tr>
<td>Programmed Instruction/Computer Assisted Instruction</td>
<td>145</td>
</tr>
<tr>
<td>VII</td>
<td>161</td>
</tr>
<tr>
<td>Task Analysis</td>
<td>161</td>
</tr>
<tr>
<td>VIII</td>
<td>175</td>
</tr>
<tr>
<td>Job Analysis</td>
<td>175</td>
</tr>
<tr>
<td>IX</td>
<td>181</td>
</tr>
<tr>
<td>Task Taxonomy</td>
<td>181</td>
</tr>
<tr>
<td>X</td>
<td>185</td>
</tr>
<tr>
<td>Specific Behavioral Objectives</td>
<td>185</td>
</tr>
<tr>
<td>XI</td>
<td>197</td>
</tr>
<tr>
<td>Sequencing</td>
<td>197</td>
</tr>
<tr>
<td>XII</td>
<td>201</td>
</tr>
<tr>
<td>Instructor Training</td>
<td>201</td>
</tr>
<tr>
<td>XIII</td>
<td>209</td>
</tr>
<tr>
<td>Educational Management</td>
<td>209</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------</td>
</tr>
<tr>
<td>XIV Cost</td>
<td>217</td>
</tr>
<tr>
<td>XV Innovation</td>
<td>223</td>
</tr>
<tr>
<td>XVI Educational Technology</td>
<td>229</td>
</tr>
<tr>
<td>XVII Human Engineering</td>
<td>251</td>
</tr>
<tr>
<td>XVIII Simulation</td>
<td>255</td>
</tr>
<tr>
<td>XIX Systems Analysis/Operations Research</td>
<td>273</td>
</tr>
</tbody>
</table>
SECTION I

INSTRUCTIONAL SYSTEMS DEVELOPMENT: A CONCEPTUAL ANALYSIS
INSTRUCTIONAL SYSTEMS DEVELOPMENT: A CONCEPTUAL ANALYSIS

Background

In late 1974, an attempt was undertaken to define the state-of-the-art of the Systems Approach to Training (SAT). This task, which was originally envisioned as a straightforward literature review, was to serve as the design basis for a research program aimed at expanding available SAT technology. However, preliminary work indicated that the size and complexity of the relevant literature, and therefore the scope of the planned project were considerably larger than anticipated. It was found for example, that over 100 SAT manuals had been published between 1960 and 1975. The problem of analyzing the literature was exacerbated by an abundance of idiosyncratic, loosely defined terminology which proved to be the source of a great deal of confusion. SAT, for instance, is referred to by a variety of alternative appellations including: the Systems Engineering of Training (SET), Training Situation Analysis (TSA), the Developmental Approach to Training (DAT), the Design of Instructional Systems (DIS), and most recently, Instructional Systems Development (ISD).

Differences among available formulations of the SAT concept range from superficial variations in terminology to fundamental variations in philosophy. The basic issue on which disagreement exists is the degree to which the instructional design process can be reduced to a linear sequence of generally applicable, prescriptive procedures. The positions that have been espoused range from Eckstrand's (1964) statement that the design of instruction is primarily an art, to the hypothesis that course design can be reduced to a series of well defined procedures which can be carried out by untrained personnel.

The size of the SAT literature, the complexity of the concept, and the controversy which surrounds it, serve to emphasize the need for adequately assessing the state-of-the-art of SAT before embarking on further attempts to expand it. Heeding Santayana's warning that those who are not aware of the past are condemned to repeat it, this bibliography was compiled as a first step in assessing the state-of-the-art. The bibliography was designed to allow researchers, developers and appliers of SAT to enhance the effectiveness of their future efforts by taking greater advantage of the work that has already been accomplished.

The Problem of Definition

The central issue in selecting the content and organization of the bibliography was to define the "systems approach to training" or equivalently "instructional systems development." Of the dozens of definitions contained in the SAT manuals and in the related literature, none have attained widespread acceptance. Campbell (1971) points out that a major problem with the available definitions is that they do not indicate how their particular methodology differs from other SAT methodologies or from traditional ways of
developing training programs. The present state of affairs is characterized by general acceptance of the terms "SAT" and "ISD" together with widespread disagreement as to what the terms mean. This confusion over the nature of SAT is primarily a result of three factors: lack of terminological standardization, problems associated with educational innovations, and the evolutionary nature of the SAT concept. Each of these will now be discussed in detail.

(1) Lack of terminological standardization

Analysis of similarities among existing SAT manuals indicates a high degree of overlap in the terminology used. Almost all of the manuals use the terms: task analysis, behavioral objectives, methodology, media selection, sequencing, objective performance measurement, criterion referenced testing, individualized instruction, and quality control. The use of a common terminology creates the initial impression of high content similarity among the manuals. However, closer inspection of the operational definitions given to these terms shows this impression to be mistaken. The following example is illustrative.

Virtually all of the SAT manuals use the term "task analysis", but the operational definitions of task analysis provided by the manuals differ both in content and in degree of detail. While some manuals leave much to the discretion of the analysts, others are so specific as to provide a form which need only be completed by the analyst. Some require all skills to be broken down into hierarchical categories such as role, duty and activity, or job, task, and element; others provide little or no structure as to the number or the types of categories to be used. Some require each task to be classified as psychomotor, cognitive or affective; others rate each task on each of these categories; still others ignore this breakdown. The task information called for varies among manuals but usually includes some of the following: criticality, frequency, initiation and completion cues, degree of judgment required, preceding and subsequent tasks, etc.

SAT manuals generally provide only one procedure for task analysis. When alternative procedures are not provided, the assumption is made that the method given is universally applicable. This assumption is not warranted by the literature on task analysis. The Gilbreths, in their pioneering, turn-of-the-century work on improving industrial efficiency, developed the first formalized task analytic methodology. Their procedures were useful in time and motion studies on production line tasks. However, in the 1950's, R. B. Miller found that the Gilbreths' procedures did not allow for the identification of human attributes used in complex tasks (Swain, 1962). Miller developed a methodology entitled "task-demands analysis" because he believed that existing methods did not provide adequate data concerning the demands which tasks make on the operator. Since 1960, the number of available task analytic methodologies has risen dramatically. A number of theorists, after reviewing this state of affairs, have concluded that no single method of task analysis can be generated which is valid in all circumstances (Gustafson, Honsberger, and Michelson, 1960; Folley, 1964; DeGreen, 1970; Rankin, 1974).

The degree to which task analysis can or should be proceduralized is controversial. The trade-off is that although higher degrees of proceduralization result in narrower ranges of application, they may permit the use of
less qualified, less costly analysts. DeGreen's (1970) analysis of this problem led him to conclude that: (a) reduction of task analysis to a routine checklist procedure results in "a deluge of useless data"; (b) task analysis must always be viewed as a means and not as an end; and (c) the usefulness of task analytic data is a function of the degree of expertise of the analyst.

Most SAT manuals have failed to inform the user: of the controversies that have been described above, of the existence of alternative methodologies, of the need to modify given techniques to fit specific circumstances, or of the experience, training and skills necessary to perform valid task analysis. The failure to provide this information has prevented users from the benefit of the experience of others as described in the literature, and may have caused them to acquire a naively simple understanding of task analysis.

Although the example used here is "task analysis," a similar presentation could be made concerning each of the terms shared by the majority of SAT manuals: behavioral objectives, media selection, methodology selection, criterion referenced testing, objective performance measurement, sequencing, quality control, etc. Research and analysis are needed to determine for each of these concepts, the degree to which proceduralization can be achieved, the generality of those procedures, and the skills necessary to apply them.

(2) The problems of educational innovations

The second factor contributing to the confusion concerning the nature of SAT has been its emergence as an educational innovation. Students of the history of education have long been aware that the courses which educational innovations take are shaped by factors other than their inherent advantages and limitations. Campbell (1971) stated that educational innovations have historically followed a predictable life cycle, and constructed a three-stage model of that process. In the first stage, a new technique appears and develops a large following of advocates who claim to have successfully applied the technique. The second stage consists of numerous modifications of the basic technique. The third and final stage in the life cycle of educational innovations is the appearance of criticism by a few vocal opponents, which grows into an inevitable backlash. According to the model, this criticism does not serve to stimulate improvement of the technique, but to stimulate the development of a new technique. At that time, the cycle starts anew.

Although Campbell's model is primarily descriptive, Milsum (1968) presents a phenomenon called the "bandwagon effect" which helps explain the model. The bandwagon effect serves to transform researchable hypotheses (educational innovations) into political entities, thereby triggering the mechanism which leads to the innovation's downfall. The mechanism works as follows. As the number of researchers, developers, theorists, administrators, laboratories, schools, etc., who have vested interest in the innovation grows, the resistance to critical examination of the innovation and to the consideration of alternatives also grows. In addition, claims are made for
the innovation by those with vested interest which are unreasonably optimistic. In this way, the innovation attains the reputation as a "panacea", that is, as a widely applicable technique which promises extremely high pay-offs for relatively small inputs. One reason for this occurrence is that timidity concerning possible R&D pay-offs is not conducive to success in the competition for research and development funds. A second reason is that it is more prestigious, more conducive to advancement, and more fun to be associated with the development of a highly visible technique which has the possibility of revolutionizing the educational community.

The process by which the innovation attains the reputation of a panacea has an unwanted side effect. The greater the number of people who attempt to use innovation based on unfulfillable promises, the greater the number of people will be who are disappointed by it. As this number grows, the criticism and backlash predicted by Campbell's model occur and eventually result in the downfall of the innovation.

The history of education is replete with examples of innovations which have fallen victim to these problems: the teaching machine, programmed instruction, adaptive training, team teaching, microteaching, accountability, the voucher system, behavior modification in the classroom, performance contracting, the "free" school, the "open" classroom, Project Headstart, and others. According to Campbell (1971), SAT is the current innovation, and it too is following the life cycle predicted by his model.

The fact that SAT has been touted as a panacea and has fallen victim to the bandwagon effect was first documented in 1968 by Hartley. He concluded that the SAT literature is "long on persuasion and short on critical self appraisal". He believed this to be the result of overzealousness in attempts to use the new methodology without a clear understanding of what it was supposed to produce. Carter's 1969 article, "The Systems Approach to Education: Mystique and reality" provides not only a review of the problems created by the bandwagon effect but also a realistic assessment of what can be expected from SAT. Sugarman, Johnson and Hinton (1975) and Montemerlo (1975) provide further data and analysis in these two areas.

Campbell's model and Milsum's description of the bandwagon effect have enhanced our understanding of the state-of-the-art of SAT. The studies referenced in the preceding paragraph have documented the problems accrued by SAT which were predictable from Campbell's and Milsum's work, namely: its transformation into a political entity, the resistance to constructive critical assessment of SAT, and its attainment of an oversold reputation. These studies have also indicated the courses of action necessary to ameliorate the conditions caused by those problems. The first is to prevent the backlash predicted by Campbell's model which is caused by the growing realization that an innovation cannot live up to an oversold reputation. This can only be accomplished by reducing those expectations to realistic proportions. The second course of action is to remove SAT from its status as a political entity, and thereby facilitate constructive criticism and the consideration of alternatives. In order to do this, high-level SAT advocates must be fully advised of both the advantages and the limitations of the concept, and of what has historically happened to educational innovations which
have become entrapped in the political arena. The third and final strategy is to subject SAT to rigorous analytical and empirical investigation in order to further delineate and validate its advantages and limitations. These three courses of action will minimize the political factors which have hindered real progress in advancing the state-of-the-art of SAT.

(3) The evolutionary nature of the SAT process

The third and final factor clouding the definitional issue has been the evolutionary process which SAT has undergone. Historical data collected during the compilation of this bibliography, which can aid in resolving this issue, will now be presented.

(a) Systems analysis

The systems approach to training, SAT, evolved from "systems analysis" (alternatively called "the systems approach") a methodology developed during World War II, to solve problems created by rapidly advancing weapons systems technology. After the war, the methodology was found useful in the solution of problems in a variety of fields. The problems for which systems analysis was found to be appropriate are those which are not solvable using existing procedures, and whose complexity strains human comprehension when initially viewed in their entirety. Systems analysis possesses three main features which make it uniquely powerful tool in solving such problems. The first is the use of an interdisciplinary team of experts to ensure that as much relevant information as possible is brought to bear in solving the problem, and that all aspects of the problem are: (1) identified, (2) considered in terms of their relative importance, and (3) considered from different points of view. The second feature is the use of "models", that is, simplifications of the problem which aid in initially understanding highly complex problems by reducing them to analyzable proportions. The third feature is the design of a unique method for solving the problem which is as systematic as the problem will allow. The interdisciplinary team of experts, which creates and implements this design, retains the right to replace or modify it at any point during the analysis.

Systems analysis does not necessarily result in the "best" solution to a problem. It merely insures that the best qualified people have gathered as much relevant information as possible, and have recommended a solution, which in their judgment, is better than the alternatives. In short, systems analysis produces a "best educated guess." The alternatives to systems analysis in solving problems of the type described above, are: the use of personnel with less than the best qualifications, and/or the consideration of less information than is available. Since systems analysis is the most costly of the alternatives, it is employed only when failure to solve the problem involves sufficient potential danger or loss to warrant the added expense.

(b) Systems analysis applied to training

In the late 1950's, the first attempts to apply systems analysis to the design of training programs were undertaken by the Rand
Corporation (Kershaw and McKean, 1958; Kershaw, 1959) which was responsible for much of the development of systems analysis itself, and by the Human Resources Research Organization (Hoehn, 1960) The HumRRO work was summarized by Crawford at the Naval Training Device Center's Seminar on Human Factors in Military Training (16 March 1961). His presentation included a flow chart describing the systems approach to training as a seven stage process. This flow chart has served as a prototype, both in format and in content, for those which appear in virtually all of the SAT literature which followed.

The early SAT literature drew heavily on the techniques of systems analysis. The design of large scale training programs was viewed by early SAT developers as a highly complex task which could not be accomplished procedurally. SAT provided an alternative to the traditional approach to training program design which relied solely on subject matter experts. Although the training programs developed by such personnel are effective in teaching the desired skills, they are generally not as efficient as they could be if the training program design team had possessed expertise in educational psychology, training technology, and systems analysis. The increased cost incurred in the use of systems analytic techniques by experienced training program designers will be more than offset by the increased efficiency of the programs they produced.

The goal of early SAT developers was to generate tools which could aid training program design experts in their day-to-day work. These tools consisted of models, that is, formalized simplifications of methods and techniques which other experts found useful. These models were intended to be used, modified or ignored, in any particular situation, based on the discretion of the user. They were not intended to relieve him of his responsibility as a decision maker.

(c) The bifurcation

The early 1960's witnessed the emergence of a new technology which greatly affected the evolution of SAT. This new technology was based on the hypothesis that if training program design experts could formalize models of the methods and techniques that made them successful, then laymen could follow these models and produce the same result at lower cost. The main thrust of developmental efforts under this technology has been the production of manuals which attempt to reduce the design of training programs to a linear sequence of procedures which can be carried out by personnel inexperienced in training program design.

This new technology was quite different from SAT. According to SAT, training program development is a complex problem which cannot be solved procedurally, and therefore requires the techniques of systems analysis. According to the new technology, training program development can be accomplished by laymen using a proceduralized manual, thus rendering systems analysis inappropriate. The new technology and SAT are fundamentally at odds both in philosophy and in practice. A great deal of confusion was caused when the new technology, which held that systems analysis (i.e., the systems approach) is inappropriate to training program development, adopted:
the name of SAT, its flow charts, and much of its terminology. To ensure clarity during the remainder of this paper, the original, generic concept of SAT will continue to be referred to as SAT, where the new technology will be referred to as "proceduralized SAT."

(d) The proceduralized SAT manuals

During the mid and late 1960's, the concept of proceduralized SAT attained widespread popularity in both the military and civilian communities. Over one hundred proceduralized SAT manuals were published between 1960 and 1975, mostly by the military. The Navy first entered this field with the development of the Training Situation Analysis (TSA) methodology (Bertin, 1963; Van Albert et al, 1964; Chenzoff and Folley, 1965). The Army began with Project Minerva, an Army Security Agency study which resulted in the Design of Instructional Systems (DIS) manual in 1966. An excellent overview of this project is provided by Tracey, Flynn and Legere (1967). Two other influential manuals of this period were Butler's (1967) Instructional Systems Development (ISD) manual, which was written under Job Corps auspices, and Rindquist's course design manual (1966, 1967, 1970) which was developed at the Navy Personnel Research and Development Center.

These proceduralized SAT manuals subdivide training program development into a number of linear steps which generally include: task analysis, specific behavioral objectives, selection and sequencing of tasks for training, media and methodology selection, development of objective tests, initial course implementation and refinement, and quality control. It is interesting to note that a methodology, similar to the proceduralized SAT manuals of the 1960-1975 era, was in use by the Air Force in the 1940's. The Report of the Training Analysis and Development Conference held at Scott AFB on 22-24 October 1951 describes that methodology, which was called the Developmental Approach to Training (DAT). DAT specifically entailed task and training analyses, specific objectives, sequencing, objective measurement, quality control, and selection of optimal training methods. It emphasized the "mission approach to training," and the measurement of performance rather than of verbalization. This methodology which predated SAT by over a decade was not tied to systems analysis. The report does not state when DAT was developed, but LtCoi Ferguson said at the 1951 conference that he had been using it for 34 years. The report noted that DAT management personnel faced a problem in 1951 which plagues their ISD counterparts in 1975, the lack of uniformity with which their methodology was interpreted and applied. The DAT concept, while similar in many respects to TSA, SAT, ISD, DIS, and SET was not formalized to as great a degree.

The development of proceduralized SAT manuals has continued from the early 1960's to the present. However, little is known concerning the degree
to which these attempts have been successful. The only large scale empirical
evaluation of such a manual was carried out by the Human Resources Research
Organization at the request of the Army. Ricketson, Shulz and Wright (1970)
evaluated the capability of personnel inexperienced in training program develop-
ment to implement CONARC REG 350-100-1, Systems Engineering of Training.
They found that the manual told the user what to do, but not how to do it.
As a result, little use was made of current training technology, and the
users tended to develop training courses resembling those with which they
had been taught. The manual required a great deal of paperwork, 19 major
products and 81 subproducts. However, the users often did not know the pur-
pose of much of this documentation and, as a result, often ignored the paper-
work after completing it.

The general finding of the evaluation was that the manual, when used by
inexperienced training program developers, did not result in efficient train-
ing programs utilizing state-of-the-art training technology. In other words,
they found that in the case of the CONARC REG 350-100-1, the goal of develop-
ing a model of the expert course developer, which would allow a layman to
imitate his methods and thus produce similar results at a lower cost, had not
been achieved. Of course, the results of this investigation do not imply
that all of the proceduralized SAT manuals are ineffective or that they can
not be made effective. They do emphasize, however, the need to validate
future manuals before implementing them on a large scale. They also indicate
the need for further investigation into the question of which portions of
training program development lend themselves to proceduralization, the degree
of proceduralization which can be realistically expected, and the degree to
which the procedures are generalizable across types of training problems.

(e) Revival of the original SAT concept

During the middle and late 1960's, the proceduralized SAT
concept generated a great deal of literature. The original, generic concept
of SAT, which remained relatively dormant during that period, has been the
subject of renewed interest during the 1970's. This is, at least partially,
a result of a re-evaluation of the state-of-the-art of educational psychology
(Campbell, 1971; Glaser and Resnick, 1972; McKeachie, 1974), which has con-
cluded that the available theory and empirical evidence on the process of
learning and teaching do not support the proceduralization of the training
program development process. As McKeachie (1974) points out, psychologists
are much less sure of the "laws of learning" than they were a few years ago.

Recent research under the original SAT conceptualization, which is in
agreement with these conclusions, is again attempting to develop methods,
models, and techniques which training experts can use, modify or ignore.
This reflects a re-emergence of the 1950's belief that development of train-
ing is a complex problem, not solvable by proceduralized methods, but
requiring the techniques of systems analysis. One area in which this type of
work is being carried out is that of the selection of training media. Braby,
et al (1975), and Boucher, Gottlieb and Morganlander (1973) have produced
media selection models which specifically state that their goal is to assist
rather than to replace the experienced specialist. Braby, et al (1975) state:
"The choosing of an optimal instructional delivery system for various types
of military training objectives remains a subtle and complex decision making task; something that can not be fully proceduralized. Training systems designers who use the TECEP technique must possess expert knowledge of media. The technique will serve as a performance aid in carefully exploring the probable cost and effectiveness of various alternatives, including innovations. With this statement, they have captured the essence of the original and the generic meaning of the systems approach to training.

At present, both the original and the proceduralized concepts of SAT are active. However, since both use the same terminology, each particular piece of literature must be read to determine the conceptualization of SAT under which it falls. The SAT literature has been a prime source of confusion concerning the nature of SAT. The history of the SAT concept, as it comes to light, should aid in reducing this confusion.
Summary and Conclusions

The voluminous SAT literature produced over the past two decades reveals an underlying confusion concerning the nature of SAT. The same terms are used to refer to different methodologies, thereby yielding the illusion of a greater degree of agreement than actually exists. The empirical studies needed to validate the various methodologies and to evaluate the real differences among them, have not been accomplished. Educational historians have noted that this is a typical occurrence in the life-cycle of educational innovations. A bandwagon effect takes hold and transforms the innovation into a political entity, suppressing empirical validations, constructive criticism, and the consideration of alternatives. To further complicate matters, two opposing schools of thought as to the nature of SAT have evolved, coexisted, and gone under the same name. The three issues, terminology, political problems, and the evolution of the concept, which have caused much of the existing confusion, have been identified and discussed here as a first step toward defining the state-of-the-art of SAT.

A great deal of research is needed to further refine and articulate the SAT concept. To be effective, it must include empirical investigations. Failure to do so in the past has resulted in the development of over one hundred proceduralized SAT methodologies, none of which has been determined to be more effective than any of the others. Empirical validations of SAT methodologies are expensive, time consuming and difficult to control. Therefore, the necessary experimentation must be preceded by analysis to insure that the methodologies to be evaluated are as complete, as internally consistent, as continuous with existing knowledge, and as potentially useful as possible. This bibliography was compiled to aid in these analytic endeavors. Through comprehensive literature surveys, SAT developers can insure that fullest advantage has been taken of existing technology, that previous mistakes are not being repeated, and that existing wheels are not being reinvented.

The fundamental issue requiring resolution is the nature of SAT. The original concept holds that training program development cannot be proceduralized, and that it is therefore the proper domain of the expert training program designer. The second SAT concept is that training program design is proceduralizable, and that manuals can be developed which are usable by personnel less competent and less costly than the expert to produce equally effective training programs. The resolution of this issue created by these two conflicting concepts, probably lies in their synthesis. The fully proceduralized SAT concept has no basis in existing psychological theory and research. Yet experience with it has shown that laymen can be productive in some aspects of training program design. The original SAT concept, which relies on the expert, provides no information on the particular skills necessary to qualify someone as an expert. Hard data is needed to determine what skills are necessary and the degree of proficiency to which each is required for the accomplishment of the various steps of training program development.

The original concept of SAT has resulted in the development of models of these steps, but the question of generalizability is left to the expert.
The proceduralized SAT concept has also resulted in models (manuals) but with no stated limits of generalizability. The former is not desirable; the latter is unacceptable. Hard data is needed to determine which aspects of training program development can be proceduralized, the degree to which they are generalizable. When these questions are answered, training programs can be developed to bring individuals to the necessary degree of competence in the skills needed to use the models correctly. The ambiguities within each of the two SAT conceptualizations must be resolved in order to allow SAT research to proceed more rapidly.

SECTION I - Organization of the Bibliography

Documents falling into more than one category are referenced in each of the relevant sections. Unauthored military documents are found at the end of each section. The bibliography has been divided into eighteen sections, each covering a topic important to training program development. The topics include those which are considered by the proceduralized SAT manuals, such as: task analysis, specific behavioral objectives, sequencing, media selection, methodology selection, and evaluation. Also included are other topics which must be considered in the design of efficient training programs but which are neglected by the proceduralized SAT manuals: instructor training, instructional management, cost, human engineering, simulation, innovation and educational technology. The remaining sections are: ISD/SAT, PI/CAI, job analysis, task taxonomy and systems analysis/operations research. A brief description of each section follows:

SECTION II - Instructional Systems Development (Systems Approach to Training)

The general references, manuals, articles, etc., on SAT under all of its names (ISD, DIS, DAT, TSA, SET, SAT) are listed together with: subject-matter specific SAT manuals, SAT final reports, analytic evaluations of the SAT concept, and the single empirical evaluation of a SAT manual. All SAT references which could be found are included. They date from 1951 to 1975. Perusing this section will aid the reader in obtaining a perspective on the SAT literature, its size, its chronology, its authorship and its content.

SECTION III - Evaluation

Evaluation permeates every aspect of training program design. The training technologist is called upon to evaluate schools, programs, teachers, students, materials, media, and concepts. The various types of evaluation including quality control and the factors which affect them are referenced in Section III. Although statistics is an integral part of evaluation, it would have been unwieldy to include the entire statistical literature in this section. Thus only a few standard texts have been included. Statistical questions arising during training program design which are not covered in a basic text such as Hays (1963) should be referred to a competent statistician.

SECTION IV - Methodology Selection

Traditionally, course developers have relied on three methods, the lecture, the conventional textbook and practice with the operational device,
for all of training. Although such programs are usually effective, they are probably not as efficient as they could be. One focus of SAT developmental efforts has been to increase training efficiency by tailoring the teaching methods used in a course to the subject matter and to the specific objectives of the course. Although most of the proceduralized SAT manuals include a "model", that is, a set of rules for accomplishing this, none have been validated.

SECTION V - Media Selection

Efforts to increase training efficiency have also included the selection of media to be used based on the content and objectives of a course. As with methodology selection, the ultimate media selection device would be a catalogue which specifies the optimal media, given the parameters of the training task. Although most proceduralized SAT manuals have included such catalogues, none have been validated and none have been widely accepted. Sugarman, Buckenmeier and Johnson (1975) state that such catalogues cannot be made workable at this time, because the necessary information is not available. Eckstrand (1964) DeGreen (1970), Braby et al, (1975) and Montemerlo (1975) arrived at the same conclusion.

SECTION VI - Programmed Instruction and Computer Assisted Instruction

Although programmed instruction and computer assisted instruction are instructional methods, a separate section was allocated to them because of the vast literature they have produced. The most comprehensive bibliography on programmed instruction and computer assisted instruction is that of the Entelek Corporation. However, since it is a subscription service and may not be readily available to the reader, Section VI is included.

SECTION VII - Task Analysis

There is universal agreement in the SAT literature that task analysis is necessary. However, there is little agreement as to what a task analysis is. No satisfactory answers exist to the following questions. Can task analysis be proceduralized? If so, to what degree? How generalizable would those procedures be? What skills must a good task analyst have? How can one differentiate between a "good" task analysis and a poor one? If two well qualified task analysts independently analyze the same task, what degree of commonality would their output have? How does one transition from task analytic data to the development of the training materials? Section VI contains the references on all aspects of task analysis except for task taxonomy (Section IV) and job analysis (Section VIII).

SECTION VIII - Job Analysis

The difference between job and task analysis is a frequent source of confusion among newcomers to the training community. The two differ in purpose, process, and product. Job analysis is a managerial tool for allocating tasks to slots (positions, billets), and results in a job description. Such documents contain information irrelevant to training and do not contain sufficient information on which to base a training program. Task analysis
is concerned with the detailed description of the subtasks of a given task area with the hierarchical relationships among them. The areas of job and task analysis are closely intertwined and the reader interested in either will benefit from both Sections VII and VIII.

SECTION IX - Task Taxonomy

Having determined the content of a training program, the job of the course designer is to determine how to teach it most efficiently. In other words, methods, media and sequences which are most appropriate to the course content must be chosen. The characteristics used to describe course content are known as the "task taxonomy." Eckstrand (1964) stated that until a viable task taxonomy which relates types of course content to media and methods becomes available, course design will be more of an art than a science. To date, no such taxonomy is available. In spite of the central role of task taxonomy in training technology, very little research effort has been expended to further the state-of-the-art. The high risk associated with the development of generally applicable taxonomies has caused researchers to concentrate their efforts in the generation of taxonomies specific to certain fields, such as leadership and maintenance.

SECTION X - Specific Behavioral Objectives (SBO's)

The state-of-the-art of SBO's is similar to that of task analysis. There is widespread agreement that SBO's are important, yet, most of the important questions concerning them remain unanswered. For instance, although writing SBO's adds to the cost of course design, no empirical evidence could be found concerning the circumstances under which this added cost is counterbalanced by savings accrued through greater training efficiency. Two facts serve to emphasize the importance of answering this question. One is that a great number of effective training programs exist for which explicit SBO's were never written. The other is that SBO writers often become "bogged down" in detail. Empirical evidence is needed concerning the point past which increased detail causes more problems than it solves. This would help answer other key questions such as: How can the SBO writer determine when his work is "good enough" (that is, sufficiently complete and in a useful form)? How can a contract monitor, or any one other than the SBO writer, make the same determination? What training and experience qualify a person to write SBO's? Given two qualified SBO writers working independently on the same course, how different will their outputs be? Will it make any difference in the efficiency of the course to be developed?

SECTION XI - Sequencing

The training program designer attempts to sequence instructional events to obtain maximal transfer of training. Perhaps less is known about this process than about any other stage of instructional design. The most obvious and most often used strategy is to base the sequence on the hierarchy of task subtasks developed during task analysis. The fallacies inherent in this approach and the reasons why it should not be adopted as a general rule are discussed in detail by Glaser and Resnick (1972). Unfortunately, neither they nor anyone else provides a viable alternative for general usage.
SECTION XII - Instructor Training

Proceduralized SAT manuals have generally paid little attention to the problems of how to select, train and evaluate instructors. Yet, the most carefully designed training program, especially an innovative program, can not succeed without the support of the instructors who will implement it. With the advent of modern techniques which may run counter to the experience and beliefs of instructors, the adequate preparation of instructors for these innovations is even more important. Unlike other areas of instructional design where design strategies are being used which have no theoretical or empirical basis, more is known about instructor training than is being implemented.

SECTION XIII - Educational Management

The careful preparation of a training program provides the potential for effective and efficient training. The degree to which that potential is achieved depends on how the program is managed.

Careful attention must be paid to student flow, instructor flow, scheduling, maintenance, supplies, and ancillary services. In general, the larger the instructional program, the more important is the management plan. For instance, a pilot training program could not exist without a management plan, while the effectiveness of a short programmed text would not be significantly changed if it was not accompanied by a management plan. The lack of attention to management problems by the procedural SAT manuals indicates that they are intended only for developing instructional programs of the latter type. As can be seen in Section XIII, interest in educational management is increasing.

SECTION XIV - Cost

The primary goal of training designers is to ensure cost-effectiveness, that is, the meeting of all training objectives in the least costly manner. Yet, the determination of training program costs, and the allocation of those costs to specific portions of the program is a difficult task. The generation of meaningful cost estimates is hampered by the fragmentation of monetary responsibility, the variety of accounting procedures used, and political problems. A further deterrent to objective determination of cost savings is the pressure which is often brought to bear on SAT teams to show cost savings. When an existing training program is re-developed (ISD-ed, SAT-ed) its objectives often change, further complicating the measurement of relative costs. Section XIV can provide help to personnel faced with such problems.

SECTION XV - Innovation

The selection of appropriate training methods and media can have side-effects for which the training program designer should be prepared. If the selection includes methods and/or media unfamiliar to the instructors and administrators who will implement the new training program, problems associated with innovation will arise. The requirement to change from
practices which are familiar and comfortable inevitably arouses anxieties. The addition of vested interests complicates the problem. The innovative course designer must be a skilled politician if his programs are to be implemented, and more importantly, if his programs will be continued after his involvement ceases. While the bibliography in Section XV does not provide solutions to all of the problems associated with innovation, it can make the reader aware of many of those problems and can indicate how others have attempted to solve them in specific instances.

SECTION XVI - Educational Technology

The professional training program developer is called on to make judgments concerning the relative efficacy of various methods, media, sequences, etc. To do this he draws upon his experience, his training and the experience of others as described in the professional journals. In essence, it is this collective experience which defines the field of educational technology. A static entity such as this bibliography or a SAT manual is not capable of adequately describing the constantly expanding field of educational technology. Section XVI of this bibliography can direct the reader to summaries of the field published up to now and can lead him to the periodicals which will keep him up-to-date.

SECTION XVII - Human Engineering and

SECTION XVIII - Simulation

The training program developer often faces decisions concerning the use and design of simulators and training devices. In order to do this, he must have a working knowledge of human engineering, the state-of-the-art of simulation hardware, and the translation of training requirements into hardware design. The majority of the inputs of the training program developer will be in this last area. Although there is little theory available to help there is a wealth of empirical data based on past experience which can prove valuable. Sections XVII and XVIII can aid in locating it.

SECTION XIX - Systems Analysis and Operations Research

The field of "operations research" gave rise to "systems analysis" which in turn led to the original conception of the "systems approach to training." The final step in this evolution has been the proceduralized systems approach to training which is also known as instructional systems development (ISD). A knowledge of the precursors of ISD can greatly increase one's understanding of the present state-of-the-art. Section XIX provides the relevant references.
SECTION II
INSTRUCTIONAL SYSTEMS DEVELOPMENT/
SYSTEMS APPROACH TO TRAINING

Parton, H. R. A queuing model for determining systems manning and related support requirements. AMRL Technical Documentary Report 54-21, January 1964. (AD 434 803)

Bell, T. H. A proposed framework for developing a new instructional system. Salt Lake City: Utah State Board of Education, July 1967. (ED 033 890)

Bertin, M. A., et al. Experimental training situation analysis (TSA) and application of training analysis procedures (TAP) to two military systems. NAVTRADEVCEN 342-6, U. S. Naval Training Device Center, November 1963, 83 pp. (AD 378 180) (The report is confidential)

Brock, J. F. A preliminary investigation into shipboard training problems. Final report. SRR 72-1, Naval Personnel and Training Research Laboratory, San Diego, CA, July 1971. (AD 726 689)

Churchman, C. W. On the design of educational systems. Audiovisual Instruction, Volume 10, No. 4, May 1965, 361-365.
Clark, E. W., Long, A. W., Noack, L. A. A systems approach to the development of selected portions of a graduate logistics research principles and technique course in a media-assisted instructional mode. Air Force Institute of Technology, Wright-Patterson AFB, OH, School of Systems and Logistics, August 1969. (AD 863 847)

Eckstrand, G. A. Current status of the technology of training. USAF Medical Research Laboratory, Technical Report 64-86, September 1964. (AD 608 216)

Egbert, R. L., Cogswell, J. F. System design for a continuous progress school: Part II surveillance and detection system. TM-1493/104/00, System Development Corporation, Santa Monica, March 1964.

Federal Aviation Administration. An instructional systems approach for FAA student-centered training. 8 August 1969. (ED 066 879)

Friesen, P. A. Designing instruction: A systematic or "systems" approach using programmed instruction as a model. Miller Publishing Company, Educulture, Inc., 1220 5th Street, Santa Monica, CA 90406.

Gibino, D. J. B-1 aircrew member training equipment systems analysis study, Phase 1. Wright-Patterson AFB, OH. Report 72-1, January 31, 1972.

Gilpin, J. Design and evaluation of instructional systems. AV Communication Review, March-April 1962, 10(2), 75-84)

Goodwin, W. R. The system development corporation and system training. Amer. Psychologist, 1957, 12, 524-527.

Haggart, S. A. Increasing the effective use of analysis through program-oriented management. RAND P-4814, April 1972.

Hansen, D. N. Development processes in CAI: Problems, techniques, and implications. Tallahassee: The Florida State University, Computer Assisted Instruction Center, October 1969. (ED 034 400) (AD 696 533)

IBM Federal Systems Division. General Training System-GENTRAS. Gaithersburg, MD, February 1971. (AD 754 142)

Larson, M. E. Review and synthesis of research: Analysis for curriculum development in vocational education. Information Series, ERIC Clearinghouse on Vocational and Technical Education, The Ohio State University, Columbus, OH, October 1969. (ED 035 746)

Merrill, M. D. Components of a cybernetic instructional system. Educational Technology, 1968, 8(7), 5-10.

Micheli, G. Training situation analysis report for the marine tactical data system. NAVTRADEVCEN IH-18, U. S. Naval Training Device Center. July 1964, 42 wp. (AD 376 639)

Miller, R. B. Some working concepts of systems analysis. American Institute for Research, Pittsburgh, PA. February 1954. (AD 115 651)

Oxhandler, E. K. *Bringing the 'Dons' up-to-date.* In *A new look at an old educational system.* Syracuse: Audiovisual Center, Syracuse University, 1963. Paper delivered at the Department of AV Instruction, NEA Convention, Denver, April 1964.

Price, J. L. Keynote address-systems approach to training/ training equipment. Where we are, where we are going. In Second Worldwide Aerospace Training Equipment Seminar, Salt Lake City, UT, Hill AFB, February 1972.

Sherrill, J. L. Analysis approaches in instructional design. Educational Technology, 1972, 12(8), 42-44.

Sisson, R. L. Can we model the educational process? In proceedings of the Symposium on Operations Analysis of Education. Socio-Economic Planning Sciences, 1969, 2, 105-520.

Stackfleth, E. D. *Test and evaluation of qualitative personnel requirements information*. AMRL Technical Documentary Report 64-65, September 1964. (AD 607 781)

Stewart, D. K. A learning systems concept as applied to course, in education and training. College Station, TX: Center for the Creative Application of Technology to Education, undated, 74 pp.

Swain, A. D. System and task analysis, a major tool for designing the personnel subsystem. Sandia Corporation, SCR-457, Technical Information Division, Albuquerque, NM, January 1962.

Zaccaria, M. A., Driskill, W. E., Ceely, W. D. *A technology for training design*. Programs Control Division, Training Evaluation Branch Operations, Lackland Military Training Center, Lackland AFB, August 1962. (AD 662 639)

UNAUTHORED MILITARY DOCUMENTS

AIR FORCE

Air Training Command. *Determining training requirements*. Randolph AFB, TX, September 1964. (AD 722 260)
Air Training Command. Instructional systems engineering. ATC manual 52-10, Randolph AFB, TX, March 1967.

Tactical Air Command. Instructional systems development, curriculum review, training standards, and grading criteria. Regulation 53-3, 6 August 1974.

NAVTRAEQUIPCEN IH-257

NAVY

Atlantic Fleet Training Command. Development and processing of curricula. COMTRALANTINST 1550.1F, Norfolk, VA, 4 October 1965.

Naval Air Basic Command. Introduction to the systems approach to Naval air basic training. CNABT P-802, Naval Air Station, Pensacola, FL, 1968.

Naval Training Device Center. Military characteristics: Instructions and responsibilities for. NAVTRADEVCEN INSTRUCTION 3910.4, Orlando, FL, 1 July 1969.

ARMY

SECTION III
EVALUATION
NAVTRADEQUIPCEN IH-257

Bennett, P. S. Examinations--Their use and abuse. Paper prepared for the American Association of Teachers of Slavic and East European Languages, Princeton, N. J., October 1966. (ED 013 019)

References

Buckhout, R. A selected bibliography on aircrew proficiency measurement. Wright-Patterson AFB, Ohio, February 1961.

Butler, J. A. Toward a new cognitive effects battery for project Head Start. RAND R-1556-HEW, November 1974.

Carpenter, P. Analysis of educational programs. The Rand Corporation, Santa Monica, California, March 1971.

Carver, R. P. Procedures for constructing a variety of information processing measures appropriate for production materials. Revrac Publications, Silver Spring, Maryland, 1971.

Case, C. M. The application of PERT to large-scale educational and evaluation studies. Educational Technology, October 1969.

Civil Aeronautics Administration: A report of progress on the first stage in the development of a procedure for measuring the proficiency of private pilots. 1950.

Coleman, J. S. The evaluation of equality of educational opportunity. RAND P-3911, August 1968.

Creelman, J. A. Evaluation of a proposed instrument sequence. Part I: Acrobatic stage criteria. Part II: Basic non-instrument proficiency. Part III: Basic instrument and night primary proficiency. Part IV: Advanced instrument proficiency. U. S. Naval School of Aviation Medicine, Pensacola, Florida, 1955. (Special Reports Nos. 55-5; 55-16; 55-18; 56-12)

Cronbach, L. J. Course improvement through evaluation. *Teacher's College Record*, 1962, 64, 672-683.

Dieterly, D. L. *The evaluation of training with specific emphasis on criteria.* Air Force Institute of Technology, Dayton, Ohio, October 1973. (AD 771 009)

Dunn, T. F., Goldstein, L. G. *Test difficulty, validity, and reliability as functions of selected multiple-choice item construction principles.* *Educational and Psychological Measurement,* 1959, 19, 171-179.

Dyer, H. S. *Toward objective criteria for professional accountability in the schools of New York City.* *Phi Delta Kappan,* 1970, 52, 206-211.

Echternacht, G. J. Use of confidence testing in objective tests. AFHRL-TR-71-32, Technical Training Division, Air Force Human Resources Laboratory, Lowry AFB, CO, July 1971. (AD 734 031)

Ferguson, R. L. *Computer-assisted criterion-referenced measurement.* Pittsburgh: The University of Pittsburgh, Learning Research and Development Center, March 1970. (AD 704 824)

Gilpin, J. Design and evaluation of instructional systems. AV Communication Review, April 1962, 10 (2), 75-84.

Greenhill, L. P. The evaluation of instructional films by a trained panel using a film analysis form. Port Washington, New York: Special Devices Center, September 1955. SPECDEVCECN 269-7-57. (AD 654 584)

Hampton, J. D. The objective of training should determine the philosophy of measurement. Instructor's Journal, 1964, January, 9-12.

Hanushek, E. Developing local educational indicators--The priorities. RAND P-4434, August 1970.

Harrocks, J. E. Assessment of behavior. Columbus, Ohio: Charles E. Merrill, 1964.

Harsanyi, C. A., White, C. E. An analysis of the effectiveness of the weapons mechanic training programs. Air Force Institute of Technology, Wright-Patterson AFB, Ohio, School of Systems and Logistics, August 1967. (AD 825 136)

Klitgaard, R. E. Going beyond the mean in educational evaluation. RAND P-5184, March 1974.

Klitgaard, R. E. Improving educational evaluation in a political setting. RAND P-5327, December 1974.

Kropp, R. P., Stoker, H. W., Bashaw, W. L. The construction and validation of tests of the cognitive processes as described in the taxonomy of educational objectives. Tallahassee: The Florida State University, Department of Educational Research and Testing and Institute of Human Learning, February 1966. (ED 010 044)

Laird, D. Notes from a training director: Tests are for students, not for trainers who play grading games. Training in business and industry, 1966, 3(6), 38-40.

Lipe, J. G. The design and implementation of a model for the development of individualized instruction at the university level. Tallahassee: The Florida State University, Computer-assisted Instruction Center, October 1970. Technical Report No. 15. (AD 716 953)

Little, J. K. Review and synthesis of research on the placement and follow-up of vocational education students. Information Series, ERIC Clearinghouse on Vocational and Technical Education, The Center for Vocational and Technical Education, The Ohio State University, Columbus, Ohio, February 1970. (ED 037 543)

Macy, D. J. The role of process evaluation in program development and implementation. Educational Technology, April 1975, 42-47.

Moxley, R. A. The source of disorder in the schools and a way to reduce it: Two kinds of tests. Teacher and Technology Supplement, 1970, 1(1), S3-S6. (In Educational Technology, 1970, 10(3).)

Mullins, C. J., Cox, J. A. Evaluation of the AFROTC flight instruction program. WADD-TN 60-44, Wright Air Development Division, Personnel Laboratory, Lackland AFB, TX, 1960.

Rapp, M. L. Evaluation as feedback in the program development cycle. RAND P-4066, April 1969.

Rapp, M. L. The analytical aspects of evaluating on-going programs. RAND P-4183, April 1972.

Richardson, Bellows, Henry and Co., Inc. Interim report on educational research project. The training survey - a method of evaluating training with the 1948 annual survey as an example. SDC 383-1-8, Contract N7onr-383, August 1948, 146 pp. (AD 641 599)

Richardson, Bellows, Henry and Co., Inc. Evaluation procedure for training aids and devices, 1953 form. NAVEXOS P-1090. 1953, 10 pp. (AD 119 980)

Ryack, B. L., Krendel, E. S. Experimental study of the natural pilot flight proficiency evaluation model. United States Naval Training Center, Orlando, FL. Report NAVTRADEVCEN 323-2, April 1963.

NAVTRAEEQPCEN IH-257

Southwest Educational Development Laboratory. Calipers: Planning the systems approach to field testing educational products. Austin, TX, 1969.

Stake, R. E. The countenance of educational evaluation. Teachers College Record, 1967, 68, 523-540.

Swain, A. D. Guide for the design and evaluation of the instructor's station in training equipment. WADC Technical Report 54-564, December 1954. (AD 72103)

Swanson, A. M. Notes on simulator instrumentation for measurement of pilot proficiency. AFPTC-IM 57-3, Air Force Personnel and Training Research Center, Lackland, AFB, TX, May 1957. (AD 159 938)

Welde, W. L. Pilot performance measurement system; Phase IV program plan. Training Research Division, Wright-Patterson AFB, June 1970.

Wilcoxon, H. C., Johnson, W., Gulán, D. L. The development and tryout of objective check flights in pre-solo and basic instrument stages of naval air training. U. S. Naval School of Aviation Medicine, Pensacola, FL, 1952.

UNAUTHORED MILITARY DOCUMENTS

AIR FORCE

Aerospace Medical Research Laboratories. Considerations in the design of automatic proficiency measurement equipment in simulators. AMRL Memorandum P-40, Wright-Patterson AFB, Ohio, June 1963.

AFR 50-10. Field evaluation of ATC, AFSC (Aerospace Medical Division), and TAC graduates. Washington, D. C., December 1971.

ARMY

Navy

SECTION IV
METHODOLOGY SELECTION

Bligh, D. A. The case for a variety of teaching methods in each lesson. British Journal of Medical Education, 1970, 4, 202-209.

Childs, G. B. Supervised correspondence instruction. In Wedemeyer, C. A. (Ed.), The Brandenburg memorial essays on correspondence instruction: I, University of Wisconsin, University Extension Division, Correspondence Instruction Program, Madison, WI, 1963. 22-23.

Craig, R. C. Directed versus independent discovery of established relations. Journal of Educational Psychology, 1956, 47, 223-234.

Craig, R. C., Berkun, M. M. Appendix - An example of the derivation of part-task training supports. In Miller, R. B., Task and part-task trainers and training. WADD TR 60-469, June 1960, 67-86. (AD 245 652)

Foley, J. P., Jr. Job performance aids research, summary and recommendations. Air Force Human Resources Laboratory, Wright-Patterson AFB, OH, April 1969. (AD 697 034)

Frase, L. T. Effect of question location, pacing, and mode upon retention of prose material. Journal of Educational Psychology, 1968, 59, 244-249.

Gerry, R. Harnessing computers to teaching. USAF Instructors Journal, 1968, 6(1), 14-17.

Hansen, D. N., et al. The analysis and development of an adaptive instructional model(s) for individualized technical training-phase I. Florida State University, Tallahassee, FL, for Air Force Human Resources Laboratory. Report AFHRL-TR-72-50(1), August 1973. (AD 781 042)

Hooprich, E. A., Matlock, E. W. Printed-circuit-board soldering training for group IV personnel. SRR 71-11, Naval Personnel and Training Research Laboratory, San Diego, CA, October 1970. (AD 713 639)

Kelley, C. R., Wargo, M. J. Adaptive techniques for synthetic flight training systems. NAVTRADEVCEN 68-C-0136-1, Naval Training Device Center, Orlando, FL, October 1968.

Klaus, D. J., Glaser, R. Increasing team proficiency through training. AIR-E1-67/68-FR, Team Training Laboratory, American Institutes for Research, Pittsburgh, PA, May 1968.

Koran, M. L. Varying instructional methods to fit trainee characteristics. AV Communication Review, 1972, 20, 135-146.

Lecznar, W. B. The road to work: Technical school training or directed duty assignment? AFHRL-TR-72-29, Personnel Research Division, Air Force Human Resources Laboratory, Lackland AFB, TX, April 1972. (AD 754 845)
Lerda, L. W., Cross, L. W. Performance-oriented training--
training experimentation and improvement. Training Directors

Levine, D. M. (Ed.) Performance contracting in education-
an appraisal: Toward a balanced perspective. Educational
Technology Publications, Englewood Cliffs, NJ.

Lewis, J. W. A study of the effectiveness of three methods
of teaching one segment of elementary political science.

Lewis, B. N., Pask, G. The theory and practice of adaptive
teaching systems. Teaching machines and programmed learning,
II: Data and directions, Robert Glaser (Ed.), National
Education Association, 1965. 213-266.

Lipson, J. Transfer and generalization in individually
prescribed instruction. Pittsburgh: The University of
Pittsburgh, Learning Research and Development Center,
February 1966. (ED 010 521)

Long, B. A theoretical model for method selection. Industrial

Locke, E. A. A closer look at level of aspiration as a
training procedure. A reanalysis of Fryer's data. Journal

Lumsden, K. G. The promises and problems of games and
simulation. The Journal of Economic Education, Spring 1970,
1(2), 85-90.

Lysaught, J. P. Enhanced capacity for self-instruction.

Machiraju, R. The technique of group programming. Audio
cassette recorded at the 1972 National Educational Technology
Conference, Educational Technology Publications, Englewood

Mager, R. F. A method for preparing auto-instructional
programs. IRE Transactions on Education, December 1961, E-4

Mager, R. F., Clark, C. Explorations in student-controlled
instruction. In G. D. Ofiesh and W. C. Meierhenry (Eds.),
Department of Audiovisual Instruction, National Education
Association and The National Society for Programmed Instruction, 1964. 235-238.

Main, R. E. The effectiveness of flash cards in a mathematics self-study course for group IV personnel. SRM 70-20, Naval Personnel and Training Research Laboratory, San Diego, CA, June 1970. (AD 707 718)

Ripple, R. E., Millman, J., Glock, M. D. Learner characteristics and instructional mode: A search for disordinal interactions. Journal of Educational Psychology, 1969, 60(2), 113-120.

Spangenberg, R. W. Selecting methods and media to achieve training goals. HumRRO TR (Draft), 1970.

St. Michel, K. A., Swanson, C. L. A microfilm system for improving the dissemination of Navy occupational information to recruits: A feasibility study. SPR 69-18, Naval Personnel and Training Research Laboratory, San Diego, CA, March 1969. (AD 687 430)

Standlee, L. S., Matlock, E. W., Harrigan, R. J. Development of methods and materials for soldering training. SRR 71-19, Naval Personnel and Training Research Laboratory, San Diego, CA, February 1971. (AD 720 308)

122

Svara, R. Elements of individualized instruction. Paper presented at the Association for Educational Communications Annual Convention, Minneapolis, MN, April 16-22, 1972. (ED 062 817)

Teel, D. A. A comparison of methods utilizing the contract approach in teaching beginning electricity-electronics fundamentals to college students (Doctoral thesis). Texas A&M University, College Station, TX, 1967.

Underwood, B. J. Personnel technology: Defining the conditions which control how well text material is learned and how long it is remembered. In Work Unit Summaries, Defense Documentation Center, DSA, Alexandria, VA. DDC Report No. CT9150, 22 August 1972, 121.

Wedemeyer, C. A. (Ed.) The Brandenburg memorial essays on correspondence instruction--I. University Extension Division, Correspondence Instruction Program, Madison, WI, 1963. 77 pp.

West, L. J. *Recommendations for typewriting training.* Lackland AFB, TX: Air Force Personnel and Training Research Center, AFPTRC-57-68, 1957. (AD 126 399)

Whitmore, P. G. *Results of exploratory investigations conducted for the purpose of planning a research program on instructional methods.* Human Resources Research Memorandum, 1961. (AD 253 395)

UNAUTHORED MILITARY DOCUMENT

AIR FORCE

AIR NATIONAL GUARD

ARMY

NAVY

SECTION V
MEDIA SELECTION

Crowder, G. A. Visual slices and assembly models compared with conventional methods in teaching industrial arts (Doctoral thesis). Texas A&M University, College Station, TX, 1968.

Demaree, R. G. Development of training equipment planning information. Aeronautical Systems Division, TR-61-533, Wright-Patterson AFB, Ohio, 1961. (AD 267 326)

Finn, J. D. AV development and the concept of systems. Teaching Tools, Fall 1956.

Gagne, R. M. Media and the learning process. Paper presented to the First General Session DAVI Conference, Houston, TX, March 1968. (ED 022 368)

Gerlach, V. S. Selecting an instructional medium. In W. C. Meierhenry, Media competencies for teachers. A project to identify competencies needed by teachers in the use of the newer media and various approaches to achieving them. Lincoln: Nebraska University, March 1968. (ED 012 713), Pp. 70-100.

MacLinker, J. Designing instructional visuals: Theory: Composition: Implementation. Austin, TX: The University of Texas, Instructional Media Center, Division of Extension, 1968.

McIntyre, C. J., McCoy, E. P. The application of sound motion pictures for recording oillet analysis information. SPECDEVCEN 269-7-41, Contract N6onr-269, Pennsylvania State University, March 1954, 11 pp. (AD 63935)

Meierhenry, W. C. Media competencies for teachers. A project to identify competencies needed by teachers in the use of the newer media and various approaches to achieving them. Lincoln: Nebraska University, March 1966. (ED 012 713).

137

Purifoy, G. R. Instructional methodology and experimental design for evaluating audio-video support to undergraduate pilot training. USAF: AFHRL-TR-68-5, October 1968. (AD 680 408)

Rock, R. T., Jr., Duva, J. S , Murray, J. E. Training by television. The comparative effectiveness of instruction by television, television recordings, and conventional classroom procedures. SDC 476-02-2 or NAVEXOS P-850-2, Contract N7onr-47602, Fordham University, April 1951, 24 pp. (AD 642 396)

Smith, E. A. Use of portable video recorders as an instructional media requirements analysis system. General Programmed Teaching, San Rafael, undated.

Spangenberg, R. W. Selecting methods and media to achieve training goals. HumRRO TR (Draft), 1970.

SECTION VI

PROGRAMMED INSTRUCTION/COMPUTER

ASSISTED INSTRUCTION

Abma, J. S. Theory and research in programmed instruction. AMRL Memorandum P-74, June 1964. (AD 602 056)

Abramson, T., Weiner, M. Some detours and alternate routes leading to large-scale exemplary uses of CAI. Educational Technology, 1972, 12(7), 14-16.

Anastasio, E. J., Morgan, J. S. Study of factors that have inhibited a more widespread use of computers in the instructional process (final report). EDUCOM, 1972.

Braunfeld, P. G. Problems and prospects of teaching with a computer. *Journal of Educational Psychology*, 1964, 55, 201-211.

Bunderson, C. V. Current issues in the United States regarding CAI. Austin, TX: The University of Texas, Computer-assisted Instruction Laboratory. Technical Memo No. 3, February 1970. (ED 052 600)

Bunderson, C. V. Justifying CAI in mainline instruction. Austin, TX: The University of Texas, Computer-assisted Instruction Laboratory. Technical Memo No. 4, June 1970. (ED 052 601)

Cooley, W. W., Glaser, R. The computer and individualized instruction: An automated information system now support the development of individually prescribed instruction. Science, October 1969, 166, 574-582.

147

Eigen, L. D. The implication for research methodology of some behavioral studies in programmed instruction. Psychology in the Schools, 1964, 1, 140-147.

149
Hansen, D. N. Development processes in CAI problems, techniques, and implications. Tallahassee: The Florida State University, Computer-assisted Instruction Center, October 1969. (ED 034 400)

Hansen, D. N., Johnson, B. CAI myths that need to be destroyed and CAI myths that we ought to create. Tallahassee: The Florida State University, Computer-assisted Instruction Center. Tech. Memo No. 38, May 1970. (AD 728 988)

Levien, R. E. Instructional uses of the computer in higher education. RAND P-4600, March 1971.

Lumsdaine, A. A. Some critical issues in the improvement of instruction through programmed learning. AV Communication Review, 1962, 10, 61-64.

Post, D. Up the programmer: How to stop PI from boring learners and strangling results. Educational Technology, 1972, 12(8), 14-17.

Rodgers, W. A., Gariglio, L. M. Toward a computer-based instructional system. Saginaw, MI: Township Community Schools. (ED 016 405)

Schramm, W. The research on programmed instruction, an annotated bibliography. Institute for Communication Research, Stanford University, 1962.

Smith, R. G., Jr. Teaching machines and programmed instruction--Some factors to consider in implementation. Fort Bliss, TX: Human Research Unit, August 1961. (AD 632 188)

Stolurow, L. M. Project Socrates: A flexible research facility to be used in studies of Preprogrammed Self-Instruction (PSI) and Self-Programmed Individualized Education (SPIE). Final report. Urbana, IL: The University of Illinois, Training Research Laboratory, September 1966. (AD 633 676)

Warren, A. D. To program or not to program: A multiple choice. Journal of Programmed Instruction, 1966, 3(3), 41-44.

Williams, R. H., et al. Overall application of computer technology to the education and research programs of Air University. System Development Corporation, Santa Monica, CA, for Air Force Human Resources Laboratory. Report AFHRL-TR-69-8, December 1969. (703 730)

NAVTRAEREQUIPCEN IH-257

SECTION VII

TASK ANALYSIS

Brecke, F., Reiser, R. Critical components of flight instruction as perceived by instructor pilots and student pilots. Arizona State University, Tempe, AZ. Report AFOSR-TR-73-0521, November 1972. (AD 758 227)

Calspan Corporation (formerly CAL) Systems engineering technology for determining task performance requirements for pilot training programs. Prepared for Aerospace Medical Research Laboratory, Wright-Patterson AFB. CAL Proposal 352-58, February 1968.

Campbell, D. S., Schwen, T. M. Beyond the remedial loop: Toward the integration of task and learner analysis for a process approach to instructional development. Paper presented at the Association for Educational Communications and Technology Annual Convention, Philadelphia, PA, March 21-26, 1971. (ED 049 599)

Gael, S., Stackfleth, E. D. A data reduction technique applied to the development of qualitative personnel requirements information (QPRI)--key sort system. USAF WADD TN 60-133, 1960.

Gustafson, H. W., Honsberger, W. D., Michelson, S. Determination of task analysis content. In WADD TR 60-593. Uses of task analysis in deriving training and training equipment requirements. Wright-Patterson AFB, OH: Wright Air Development Center, December 1960. 5-10.

Horrocks, J. E., Bowlus, D. R., Krug, R. G. Light antiaircraft tracer observation and fire control with specific reference to the training problem. SPECDEVGEN 495-01-3, Contract 495(01), Ohio State University, August 1952, 58 pp. (AD 642 527)

Kleinin, A. Simplifying the pilot's task. Scientific American, December 1938, 159(6), 308.

Laney, G. F. Automating the operational sequence diagram (OSD). Bureau of Naval Personnel, SRM 71-8, 1970.

Lecznar, W. B. Three methods for estimating difficulty of job tasks. AFHRL-TR-71-30, Personnel Division, Air Force Human Resources Laboratory, Lackland, AFB, TX, July 1971. (AD 730 594)

Merrill, P. F. Task analysis: An information processing approach. Tallahassee: The University of Florida, Computer Assisted Instruction Center, Technical Memo No. 27, April 1971. (ED 050 554)

Miller, R. B. Some working concepts of systems analysis. American Institute for Research, Pittsburgh, PA, February 1954. (AD 115 651)

Miller, R. B. A suggested guide to position structure.

Miller, R. B. A suggested guide to position-task description.

Rankin, W. C. Task description and analysis for training system design. TAEG Technical Memorandum 74-2, January 1975, Training Analysis and Evaluation Group, Orlando, FL.

Reed, L. E. Advances in the use of computers for handling human factors task data. AMRL-TR-67-16, April 1967. (AD 656 701)

Snyder, M. B. Methods of recording and reporting task analysis information. In Uses of task analysis in deriving training and training equipments requirements. WADD TR 66-592, Wright Air Development Division, Wright-Patterson AFB, OH, December 1960. 11-14.

Stewart, J. D. The usefulness of task analysis in the evaluation of military training. Monterey, CA: United States Naval Postgraduate School, September 1970. (AD 713 051)

Swain, A. D. System and task analysis, a major tool for designing the personnel subsystem. Sandia Corporation, SCR-457, Technical Information Division, Albuquerque, NM, January 1962.

Valverde, H. H., Hicks, C. F., Kearns, N. H. Development of an RF-4C refueling training program from computer-based systems data. Brooks AFB, TX, Air Force Human Resources Laboratory, AFHRL TR-71-25, June 1971.

Wright Aeronautical Development Division. *Uses of task analysis in deriving training and training equipment requirements.* WADD Technical Report 60-593, Wright-Patterson AFB, OH, December 1960. (AD 252 946)

UNAUTHORED MILITARY DOCUMENTS

AIR FORCE

Training Psychology Branch, Behavioral Sciences Laboratory, Aerospace Medical Laboratory. Uses of task analysis in deriving training and training equipment requirements. Technical Report WADD-TR-60-593, Wright Air Development Division, Air Research and Development Command, Wright-Patterson AFB, OH, December 1960. (AD 252 946)

NAVY

Chief of Naval Air Training. Undergraduate pilot training task analysis. Phase I report. CNATRA, Corpus Christi, TX, April 1974.

Department of the Navy. Handbook skill description system. 4 April 1967.

Service School Command. Training task analysis. Naval Training Center, San Diego, CA, TIC C-012-2010, P1-1, 2, 2. Undated.

SECTION VIII
JOB ANALYSIS

Kern, R. P. Analyses of WIN team functioning and job requirements, final report--duties performed and style of functioning, in relation to team effectiveness.

Mead, D. F. Development of an equation for evaluating job difficulty. AFHRL-TR-70-42, Personnel Division, Air Force Human Resources Laboratory, Lackland AFB, TX, November 1970. (AD-720 253)

Mead, D. F. Continuation study on development of a method for evaluating job difficulty. AFHRL-TR-70-43, Personnel Division, Air Force Human Resources Laboratory, Lackland AFB, TX, November 1970. (AD-720 254)

Morsh, J. E., Madden, J. M., Christal, R. E. Job analysis in the United States Air Force (Technical Report) Lackland Air Base, TX: Personnel Laboratory, Wright Air Development Division September 1963. (AD 259 389)

Rundquist, E. A. Job training course design and improvement (Second Edition). Navy Personnel Research and Development Center, San Diego, CA, SRR 71-4, September 1970. (AD 875 204)

UNAUTHORED MILITARY DOCUMENTS

AIR FORCE

NAVY

SECTION IX
TASK TAXONOMY

Bamford, H. E. Cluster analysis of pilot proficiency measures: II. Logical foundation. Basic Pilot Research Laboratory, AF Personnel and Training Research Center, Goodfellow AFB, San Angelo, TX, February 1954. (AD 102 229)

Bennett, C. A. Toward empirical practicable, comprehensive task taxonomy, Human Factors, 1971, 13(3), 229-235.

Haggard, D. F. The feasibility of developing a task classification structure for ordering training principles and training content. *HumRRU: Research Memorandum*, January 1963. (AD 628 162)

Stolzrow, L. M. *A taxonomy of learning task characteristics.* AMRL Technical Documentary Report 64-2, January 1964. (AD 433 199)

NAVTRAEEQUIPCEN IH-257

SECTION X

SPECIFIC BEHAVIORAL OBJECTIVES
Air Transportation of America. Boeing 747 behavioral objectives for flight officer training and evaluation. Standardization Volume 1. (Pamphlet)

Cohen, A. M. *Technology: Thee or me? Behavioral objectives and the college teacher.* Educational Technology, 1970, 10(11), 57-60.

Esbenson, T. Performance objectives. Duluth, MN: Duluth Public Schools, August 1967. (ED 016 002)

Hite, H., Rousseau, L. A competency-based field-centered systems approach to elementary teacher education; Final report, Vol. II. Appendix I. An experimental model for preparing teachers to develop behavioral objectives. Portland: Northwest Regional Educational Laboratory, October 1968. (ED 026 314)

Hoehn, A. J. The development of training programs for first enlistment personnel in electronics maintenance MOS's: II. How to analyze performance objectives to determine training content. HumRRO Research Memorandum, January 1960. (AD 623 944)

Morse, J. A., Tillman, M. H. Effects on achievement of possession of behavioral objectives and training concerning their use. Athens: Georgia University, 1972. (ED 061 531)

Lerda, L. W., Cross, L. W. Performance oriented training--Results measurement and follow-up. Training Directors Journal, 1962, 16(8), 12-19.

Rundquist, E. A. Job training course design and improvement (2nd Ed.). Research Report SRR 71-4, Naval Personnel and Training Research Laboratory, San Diego, CA, September 1970. (AD 876 204)

Rundquist, E. A. Extension, facilitation, and validation of a course design procedure and its basic concepts. (Project No. F39522, Work Unit-0162), Naval Personnel and Training Research Laboratory, San Diego, CA.

Simpson, E. J. The classification of educational objectives, psychomotor domain. Urbana, IL: The University of Illinois, 1966. (ED 010 368)

UNAUTHORED MILITARY DOCUMENTS

AIR FORCE

Instructor Training Branch. Instructional system development. Preparation of learning objectives and criterion tests. 2TPT-9750-01, Sheppard AFB, TX, December 1970.

ARMY

U. S. Continental Army Command. Student performance objectives. Training Pamphlet No. 350-14, Fort Monroe, VA.

NAVTRADEQUIPCEN IN-257

SECTION XI

SEQUENCING

Breaux, R. Effects of induction versus deduction and discovery versus utilization on transfer of information. *Journal of Educational Psychology, (accepted for publication).*

Eckstrand, G. A. Current status of the technology of training. Army Medical Resources Laboratory, TR-64-86, September 1964. (AD 608 216)

Jolley, O. B. A summary of prior research on integrated contact/instrument flight training. Staff memorandum, project INTACT, Human Resources Research Office, Alexandria, VA, 1958.

Mager, R. F. On the sequencing of instructional content. Psychological Reports, 1961, 9, 405-413.

Miller, H. R. Sequencing and prior information in linear programmed instruction. AV Communication Review, 1969, 17, 63-76.

Tennyson, R. D., Boutwell, R. C. A quality control design of validating hierarchical sequencing of programmed instruction. Provo, UT: The Brigham Young University, Division of Instructional Services, Working Paper No. 12, October 1970. (AD 050 548)

NAVTRAEEUIPCEN IH-257

SECTION XII

INSTRUCTOR TRAINING

Eddins, H. A. To serve is the instructor's job. USAF Instructors Journal, 1968-69, 6(3), 53-54.

Heinich, R. The teacher in an instructional system. In W. C. Meierhenry, Media competencies for teachers. A project to identify competencies needed by teachers in the use of the newer media and various approaches to achieving them. Lincoln: Nebraska University, March 1966. 7-30 (ED 012 713).

Hite, H. A systematic approach to the analysis of a non-systematic process. Paper delivered at the National Symposium on Evaluation of Teaching, Buffalo, NY, June 1968. (ED 026 300)

Hulland, H. H. Developing understanding--The instructor's goal. USAF Instructors Journal, 1969, 7(1), 42-44.

King, A. D. An application of simulation techniques to an innovative teacher training program. Florida State University, Tallahassee, CAI Center TR 16, 1970. (AD 716 952)

Meierhenry, W. C. Media competencies for teachers. In W. C. Meierhenry, Media competencies for teachers. A project to identify competencies needed by teachers in the use of the newer media and various approaches to achieving them. Lincoln: Nebraska Univ., March 1966. 212-222. (ED 012 713)

Stolurow, L. D. Model the master teacher or master the teaching model. In J. D. Krumboltz (Ed.), *Learning and the educational process*. Chicago: Rand-McNally, 1965.

Torkelson, G. M. Competencies needed by teachers in the use of newer media and various approaches to achieving them. In W. C. Meierhenry, *Media competencies for teachers*. A project to identify competencies needed by teachers in the use of the newer media and various approaches to achieving them. Lincoln: Nebraska University, March 1966. 169-211. (ED 012 713)

Veri, C. C., Vonder Haar, T. A. Training the trainer. St. Louis: The University of Missouri, Extension Division, Undated. (ED 048 574)

UNAUTHORED MILITARY DOCUMENTS

AIR FORCE

NAVY

Bushnell, D., Borko, H. *Information retrieval systems and education.* Presented at the American Psychological Associated Convention, St. Louis, MO, September 1962.

ERIC. Total information for educational systems. ERIC number ES-001-447, project number DPSC-67-3967, St. Louis Park, MN, January 13, 1967.

McKnight, A. Work Unit Stock: Development of Training Management Procedures for Heterogeneous Ability Groups. In Use of job and task analysis in training, the George Washington University, Human Resources Research Office, HumRRO Professional Paper I-69, January 1969, 4-11.

Nowrasteh, D. M. Planning and management systems for state programs of vocational and technical education: An application of research. ERIC Clearinghouse on Vocational and Technical Education, Information Series No. 48 (VT 013 638), the Ohio State University, Columbus, Ohio, November 1971.

Snyder, H. H., Luchsinger, F. P. A systems analysis basis for allocation of resources in educational institutions. Presented at the third annual meeting of American Institute for Decision Sciences, October 1971.

Stephenson, P. W. A taxonomic base for future management information and decision systems: A common language for resources and requirement planning. Technical Research Note 244, prepared for U.S. Army Behavior and Systems Research Laboratory, Office of Chief of Research and Development, Department of the Army, October 1972. (AD 757 794)

Weinrich, R. C. Review and synthesis of research on the administration of Vocational and Technical Education. Information Series, ERIC Clearinghouse on Vocational and Technical Education, The Ohio State University, Columbus, Ohio, March 1970 (ED 037 542)

UNAUTHORED MILITARY DOCUMENTS

AIR FORCE

ARMY

U. S. Army Training and Doctrine Command. Education and training. TRADOC schools curriculum administration and training policies.

U. S. NAVY

SECTION XIV
COST

Carpenter, M. B., Haggart, S. A. Analysis of educational programs within a program budgeting system. The Rand Corporation, P-4195, September 1969.

Carpenter, M. B. Program budgeting as a way to focus on objectives in education. RAND P-4162, September 1969.

Carpenter, M. B. Analysis of educational programs. RAND P-4576, March 1971.

Clary, J. N. Training time and costs for Navy ratings and NECs. WRM 68-13, Personnel Research Laboratory, Naval Personnel Program Support Activity, Washington, D.C., January 1968. (AD 667 578)

DonVito, P. A. Annotated bibliography on systems cost analysis. The Rand Corporation, RM-4848-1-PR, March 1967. (AD 810910)

Dunham, A. D. Estimated cost of on-the-job training to the 3-skill level in the communications center operations specialty. Technical report AFHRL-TR-72-56, Personnel Research Division, Air Force Human Resources Laboratory, Lackland AFB, TX, June 1972. (AD 753 093)

Haggart, S. A. Developing a program budgeting system as an aid in planning higher education. RAND P-4252, December 1969.

Haggart, S. A. The program structuring aspect of PPB for education. RAND P-4456, February 1971.

Hoag, M. W. The relevance of costs. In E. S. Quade (Ed.), Analysis for military decisions, the Rand Corporation, R-387-PR, November 1964. (Chapter 6) (AD 453 887)

Quade, E. S. The limitations of a cost-effectiveness approach to military decision-making. The Rand Corporation, P-2798, September 1963. (AJ 425 786)

Reinhart, B., and Blomgren, G. H. Cost-benefit analysis--trade and technical education. (Final report). Division of Vocational Education, University of California at Los Angeles, and Bureau of Industrial Education, California State Department of Education, Sacramento, CA, August 1969. 82 pp. (ED 034 056)

Seccatore, L. A. Course scheduling to find the minimum cost set of facilities required (Master's thesis). Naval Postgraduate School, Monterey, CA, September 1972. (AD 154 345)

Warmbrod, J. R. Review and synthesis of research on the economics of vocational education. Information Series, The Center for Vocational and Technical Education, ERIC Clearinghouse on Vocational and Technical Education, The Ohio State University, Columbus, OH, November 1968. (ED 023 937)

Wood, W. D., Campbell, H. P. Cost-benefit analysis and the economics of investment in human resources: An annotated bibliography. Bibliography Series No. 5, Industrial Relations Centre, Queen's University, Kingston, Ontario, Canada, 1970, 17 pp. (ED 045 848)
SECTION XV

INNOVATION

Haggart, S. A., Rapp, M. L. Increasing the effectiveness of educational demonstration programs. RAND R-712C-SJS, December 1972.

Haggart, S. A. The contribution of demonstration programs to educational policy-making. RAND P-5333, December 1974.

Head, L. W., Jr., Ahlers, T. F. *To change or not to change*. USAF Instructors Journal, 1970, 8(2), 19-23.

Lyons, J. D. *Factors influencing utilization of research findings in institutional change*. Paper given at Southeastern Psychological Association, New Orleans, issued as Professional Paper 2-66, April 1966. (AD 634 839)

Mackie, R. R., et al. Factors leading to the acceptance or rejection of training devices. NAVTRADEVCEN 70-C-0726-1, August 1972.

McClelland, W. A. The process of effecting change in medical education. Invited address at the 11th Annual Conference on Research in Medical Colleges, Miami Beach, FL, November 1972.

Pincus, J. Policy studies at Rand: Education and human resources. RAND P-4721, October 1971.

NAVTRAECEN IH-257

SECTION XVI

EDUCATIONAL TECHNOLOGY

Bjerstedt, A. Recent trends in educational technology: Notes from Munich, Nice, and Amsterdam (a bibliography). Didakometry, October 1968, 21, 1-9.

Clark, M. C. Aspects of transfer that relate to the development and design of instructional materials. Instructional Research Laboratory, Tempe, AZ, for the United States Air Force. Report AF-AFOSR-2128-71, February 1972. (AD 754 980)

Deterline, W. A. A curriculum is a set of specifications of which of the following: A. stimuli; B. responses; C. both A and B; D. Neither A nor B. Educational Technology, 1970, 10(4), 405-411.

233

Frick, F. C. Educational technology program. Lexington, MA: Massachusetts Institute of Technology, Lincoln Laboratory, December 1971. (AD 736 030)

Heinich, R. Education technology as technology. Educational Technology, January 1968.

Horrocks, J. E., Goyer, R. Human factor analysis of team training. NAVTRADEVCEN 198-1, Ohio State University, October 1959, 50 pp. (AD 315 350) (The report is confidential.)

Lawson, B. R., Sharer, F. E. United States Military Academy instructional technology training programs for new and present faculty. Audiovisual Instruction, 1971, 16(6), 63-65.

Lewis, W. B. Review and analysis of curricula for occupations in health. Information Series No. 27, ERIC Clearinghouse on Vocational and Technical Education, The Center for Vocational and Technical Education, The Ohio State University, Columbus, OH, November 1970. (ED 044 507)

Lewis, W. B. Review and analysis of curricula for occupations in public services. Information Series No. 27, ERIC Clearinghouse on Vocational and Technical Education, The Center for Vocational and Technical Education, The Ohio State University, Columbus, OH, November 1970. (ED 045 813)

Lewis, W. B. Review and analysis of curricula for occupations in transportation. Information Series No. 28, ERIC Clearinghouse on Vocational and Technical Education, The Center for Vocational and Technical Education, The Ohio State University, Columbus, OH, December 1970. (ED 045 814)
Lewis, W. B. Review and analysis of curricula for occupations in food processing and distribution. Information Series No. 32, ERIC Clearinghouse on Vocational and Technical Education, The Center for Vocational and Technical Education, The Ohio State University, Columbus, OH, December 1970. (ED 045 820)

Morgan, R. L. Implications of training research for CAI. Brooks Air Force Base, TX: Air Force Human Resources Laboratory, 1970. (AD 733 339)

National Research Council Committee on Selection and Training of Aircraft Pilots. A historical introduction to aviation psychology. Civil Aeronautics Administration, Division of Research, Report No. 4, Washington, D. C., October 1942.

Provus, M. Educational technology research--Evaluation or research, research or evaluation. *Educational Technology*, 1970, 10(8), 50-54.

Regan, J. J. The role of the monitor in federal research. Paper read at the American Psychological Association Convention, Chicago, IL, 1960.

Smode, A. F., Yarnold, K. W. Recent innovations in methodology for training and training research. Dunlap, Stamford, CT, March 1960. (AD 235 806)

Stolurow, L. M. Psychological and educational factors in transfer of training. Phase I. Final report. Urbana, IL: The University of Illinois, Training Research Laboratory, June 1964. (ED 012 821)

247
Willis, M. P., Peterson, R. O. Deriving training device implications from learning theory principles. Volume I: Guidelines for training device design, development and use. NAVTRADEVCEN 784-1, American Institute for Research, July 1961, 81 pp. (AD 264 364)

Young, D. A. The trouble with training today. Educational Technology, 1970, 10(1).

UNAUTHORED MILITARY DOCUMENTS

AIR FORCE

Air Training Command. Patterns of technical training. ATC Pamphlet 52-1, November 1969.

NAVY

NAVTRAECUICEN IH-257

MARINE CORPS

ARMY

SECTION XVII
HUMAN ENGINEERING

Bickerstaff, T. R., et al. *Human engineering test specification for aircraft systems.* Hageman Associates, Fort Worth, TX, for Naval Air Development Center, October 9, 1970. (AD 773 421)

Miller, R. B. Psychological considerations in the design of training equipment. WADC Technical Report 54-563, December 1954. (AD 71 202)

Sandberg, K. J. W., Lipschultz, H. L. A survey of the importance and use of controls and displays on radar console panels. TR 166-1-7, Contract N5or7-166, Johns Hopkins University. July 1947. 21 pp. (AD 639 376)

Schohan, B. Human factors recommendations for the design of cockpit procedures trainers. WADC Technical Report 56-527, September 1958. (AD 110 654)

253

VanCott, H. P., Altman, J. W. Procedures for including human engineering factors in the development of weapon systems. WADC TR 56-488. Wright-Patterson AFB, OH: Wright Air Development Center, October 1956.

American Airlines. Total flight simulation study copilot upgrade/ATPC. "Operating experience". Fort Worth, TX, Flight Training Academy, March 1971.

Blaiwes, A. S., Regan, J. J. An integrated approach to the study of learning, retention, and transfer--A key issue in training device research and development. Orlando, FL: Naval Training Device Center, NAVTRADEVCEN IH-178, August 1970. (AD 712 096)

Brown, D. A. Simulator aids aircraft design. Aviation Week and Space Technology, Volume 96, No. 6, 7 February 1972.

Caro, P. W., Jr. Reduction of helicopter pilot attrition through synthetic contact flight training. Paper for American Psychological Association Convention, Chicago, September 1965.

Demaree, R. G. Development of training equipment planning information. ASD Technical Report 61-533, October 1961 (AD 267 326)

Dougherty, D. J., Houston, R. C., Nicklas, D. R. Transfer of training in flight procedures from selected ground training devices to the aircraft. NAVTRADEVCEN 71-16-16. J. S. Naval Training Device Center, Port Washington, NY, September 1957.

Edgerton, H. A., Heinemann, R. F., Barrett, R. S. Human engineering considerations in the design of the instructor's station of trailerized operational flight trainers. NAVTRADEVCECN 1042-00-1 or NAVEXOS P-2764, Contract Nonr-1042(00), Richardson, Bellows, Henry & Company, Inc., August 1953, 50 pp. (AD 116 027)

Goldman, A., Woss, S. A. Use of the operational flight trainer. Naval Training Device Center, Port Washington, NY, NAVTRADEVCEQ-1734-00-1, 1956. (AD 643 198)

Jacobs, R. S., Williges, R. C., Roscoe, S. N. Simulator motion as a factor in flight-director display evaluation. Human Factors, Volume 15, No. 6, December 1973. 569.

Koonce, J. M. Effects of ground-based aircraft simulator motion conditions upon prediction of pilot proficiency. Illinois University, Urbana, IL, for Air Force Office of Scientific Research, April 1974. (AD 783 256)

Kusewitt, J. B. Development of criteria and methods for evaluating trainer aircraft effectiveness. TV Aerospace Corporation, Dallas, TX, for Vought Aeronautics Division. Report R2-55100, March 3, 1967. (AD 651 421)

Lamont, J. N. Annotated bibliography on flight simulators. HR-REP No. 68, Directorate of Biosciences Research, Human Resources Research Section, Ottawa, Canada, 1960.

Lanier, H. M., Butler, E. D. An experimental assessment of a ground pilot trainer in general aviation. Middle Tennessee State University, Murfreesboro, TN, for Federal Aviation Administration. Report FAA-ADS-64, February 1966. (AD 653 733)

Miller, R. B. Human engineering design schedule for training equipment. WADC Technical Report 53-138, June 1953 (AD 14 768)

Miller, R. B. Psychological considerations in the design of training equipment. WADC Technical Report 54-563, December 1954. (AD 71 202)

Miller, R. B. Task and part-task trainers and training. WADC TR 56-41 Wright-Patterson AFB, OH: Wright Air Development Center, January 1956.

Miller, R. B. Task and part-task trainers and training. Wright-Patterson AFB, OH, WADD-TR 60-469, June 1960. (AD 245 652)

Office of Management and Budget. Department of Defense aviation program savings possibilities through increased emphasis on flight training simulation. Staff study, 26 July 1973.

Pfeiffer, M., Clark, W., Danaher, J. The pilot's visual task: A study of visual display requirements. NAVTRADEVcen Technical Report 783-1, March 1963.

Schohan, B. Human factors recommendations for the design of cockpit procedures trainers. WADC Technical Report 56-527, September 1958. (AD 110 654)

Smode, A. F. Human factors inputs to the training device design process. NAVTRADEVCEN 69-C-0298-1, U. S. Naval Training Device Center, Orlando, FL, 1971.

Smode, A. F. Recent developments in instructor station design and utilization for flight simulators. Human Factors, December 1973, No. 6, Volume 15, pp. 598.

Swain, A. D. Guide for the design and evaluation of the instructor's station in training equipment. WADC Technical Report 54-564, December 1954. (AD 71 203)

UNAUTHORED MILITARY DOCUMENTS

AIR FORCE

Tactical Air Command. Tactical Air Command fighter replacement training unit and combat crew training simulator study group. Shaw AFB, SC, 1970.
NAVTRAEEQPCEH IH-257

ARMY

NAVY

Naval Training Device Center. Use of the operational flight trainer. Report NAVTRADEVCECEN-1734-00-1, Orlando, FL, 1966. (AD 643 498)

SECTION XIX
SYSTEMS ANALYSIS/OPERATIONS RESEARCH

Basil, D. C., Cone, P. R., Fleming, J. A. Executive decision making through simulation. Columbus, OH: Charles E. Merrill, 1965.

Berman, E. B. Toward a new weapon system analysis. The Rand Corporation, P-1493, September 23, 1953. (AD 224 124)

Brown, B., Helmer, O. Improving the reliability of estimates obtained from a consensus of experts. The Rand Corporation. P-2986, September 1964. (AD 606 970)

Fort, D. M. Systems analysis as an aid in air transportation planning. The Rand Corporation, P-3293-1, March 1966. (AD 629 769)

Goodwin, W. R. The system development corporation and system training. The American Psychologist, August 1957, 12(8), 524-528.

Helmer, O. The systematic use of expert judgment in operations research. RAND P-2795, September 1963. 8 pp.

Hoag, M. W. What is a system? RAND P-1035, Rand Corporation, Santa Monica, CA, 5 March 1957.

Jordan, N. Some thinking about "system". The Rand Corporation, Santa Monica, CA, 1960. (AD 656 679)

Kahn, H., Mann, I. Ten common pitfalls. RAND RM-1937-PR, June 1957. 64 pp. (AD 133 035)

Klein, B. H., Meckling, W. H. Applications of operations research to development decisions. The Rand Corporation, P-1054, March 3, 1958. (AD 422 570)

Koopman, B. O. Fallacies in operations research. Operations Research, Volume 4, No. 4, August 1956. 422-426

O'Toole, J. F. Systems analysis and decision-making in education. (SP-2020/000/01), Santa Monica: System Development Corporation, June 1965.

Quade, E. S. Pitfall: in military systems analysis. The Rand Corporation, P-2676, November 1962. (AD 291 247)

Quade, E. S. Military systems analysis. The Rand Corporation, RM-3452-PR, January 1963. (AD 292 026)

Quade, E. S. Some problems associated with systems analysis. Santa Monica, CA: The Rand Corporation Paper, P-3391, June 1966. (AD 634 375)

Quade, E. S. Systems analysis techniques for planning-programming-budgeting. The Rand Corporation, P-3322, March 1965. (AD 629 564)

Ramo, S. The new emphasis on systems engineering. Aeronautical Engineering Review, April 1957, 16(4), 40-44.

Strauch, R. E. Squishy problems and quantitative methods. RAND P-5303, October 1974.

Summer, C. F. Simulation system programming design manual. NTEC Orlando, FL, April 1973. (AD 760 309)

Wright, G. O. A general procedure for systems study. Wright-Patterson AFB, OH: Wright Air Development Division, January 1960. WADD Technical Note 60-18. (AD 236 040)

NAVTRAEPICEN IH-257

DISTRIBUTION LIST

Chief of Naval Operations
Attn: H. K. Malehorn
OP-14C Navy Department
Washington, D. C. 20350

Chief of Naval Research
Psychological Sciences
Code 450, Navy Department
Arlington, VA 22217

Dr. F. W. Scanland
Chief of Naval Education and
Training (N5A)
NAS Pensacola, Fl 32508

Dr. Marshall J. Farr, Assoc.Dir.,
Personnel and Training Research Program
Office of Naval Research
Arlington, VA 22217

LCDR Charles Theissen
Naval Air Development Center
Warminster, PA 18974

Naval Air Systems Command
Attn: Darryl B. Adams, Code 344 JP1
Washington, D. C. 20361

Chief of Naval Training Support
Code N-2, Bldg 45
(Dr. Charles Havens)
NAS Pensacola, Fl 32508

Commander, Naval Air Forces, Pac Flt
Attn: Code 316
NAS, North Island
San Diego, CA 92135

Commanding Officer
Naval Air Technical Training
Attn: Dr. G. D. Mayo
NAS Memphis
Millington, TN 38054

Assistant Secretary of the Navy (R&D)
Attn: Dr. Samuel Koslov, 4E741
Navy Department
Washington, D. C. 20350

LCDR Paul R. Chatelier
Naval Air Systems Command Hq(AIR-413)
Washington, D. C. 20361

Chief of Naval Technical Training(0161)
Attn: Dr. N.Kerr and Cdr J.H.Murphy
NAS, Memphis
Millington, TN 38054

Commanding Officer
Naval Air Maintenance Tng Gp
NAS, Memphis
Millington, TN 38054

Captain H. J. Connery
Department of the Navy
OPNAV (OP-987P7)
Washington, D. C. 20361

Naval Personnel Research and
Development Center (Code 306)
Attn: Dr. James Regan, Mr. Joe Mc-
Lachian and Mr. John F. Brock
San Diego, CA 92152

K naval Aerospace Psychology Department
Naval Aerospace Medical Research Lab
Attn: Lt. Jerry Owens, Ph.D., USN MSC
Pensacola, Fl 32512

Mr. William G. Muller
Naval Air Systems Command (Code 04A4)
700 Robbins Avenue
Philadelphia, PA 19111

Chief of Naval Training
Attn: Capt A.E. McMichael, N-3
NAS, Pensacola, Fl 32508

Commander
Naval Air Systems Command
Code 03
Washington, D. C. 20360

Chief of Naval Operations
Attn: Dr. R. Smith (OP-987F)
Navy Department
Washington, D. C. 20361
NAVTRAEEQPCEN IH-257

Chief of Naval Research
Psychological Sciences
Code 450, Navy Department
Arlington, VA 22217

Chief of Naval Education and Training
Attn: Capt Bruce Stone
NAS, Pensacola, Fl 32508

Chief of Naval Technical Training
Attn: Mr. E.M.Evans (Code 01622)
NAS, Memphis (75)
Millington, TN 38054

Chief of Naval Air Training
Attn: Mr. F. Shufletoski
NAS, Corpus Christi, TX 78419

Commanding Officer
Naval Education & Tng Supp Cen, PAC
Attn: Mr. H. Stevenson
Fleet Station Post Office Building
San Diego, CA 92132

Commanding Officer
Naval Education & Tng Supp Cen, Atl
Attn: Mr. J. Haslett
Bldg. Z-28, Naval Station
Norfolk, VA 23511

Commanding Officer
Naval Ed & Tng Prog Dev Cen
Attn: Mr. J. Weiner
Ellison (Code ET)
Pensacola, Fl 32509

Chief of Naval Training
Attn: Dr. W. Maloy, Code 01A
NAS Pensacola, Fl 32508

Chief of Naval Material
Attn: Mr. A.L.Rubinstein,MAT-03424
Navy Department
Washington, D. C. 20360

Commanding Officer
Naval Submarine Base, New London
Attn: Psychology Section, Box 00
Groton, CT 06340

COMDT of Marine Corps
Code A03C
Washington, D. C. 20380

Chief of Naval Air Training
Attn: Joseph L. Ulatoski
NAS Corpus Christi, TX 78419

Commander, Training Command
Attn: Educational Advisor
U. S. Pacific Fleet
San Diego, CA 92147

Chief of Naval Research
Attn: Code 458, Navy Department
Arlington, VA 22217

Commander
Naval Air Development Center
Attn: Human Engineering Branch
Warminster, PA 18974

Commander
Naval Electronics Systems Command
Code 03
Washington, D. C. 20360

Naval Aerospace Medicine Institute
Naval Aerospace Regional Medicine Cen.
Attn: Chief, Aviation Psychology Div.
NAS Pensacola, Fl 32512

Naval Education & Tng Supp Center, Pac.
Code NL, Attn: Mr. Rothenberg
San Diego, CA 92132

Commanding General
Quantico, VA 22134

Director, Development Center
Marine Corps Development & Edu_Cmd
Quantico, VA 22134

Director, Education Center
Marine Corps Development & Edu_Cmd
Quantico, VA 22134

Director, Communication Officers' Sch.
Education Center, MCDEC
Quantico, VA 22134

Director, Command & Staff College
Education Center, MCDEC
Quantico, VA 22134

2 of 6
NAVTRAQPCEN IH-257

Director
James Carson Breckenridge Library
Education Center, MCDEC
Quantico, VA 22134

Commanding Officer
Instructor Training School
MCDEC
Quantico, VA 22134

Commanding General
Marine Corps Recruit Depot
San Diego, CA 92140

Commanding General
Marine Corps Recruit Depot
Parris Island, S.C. 29905

CINC/SAC/DOTP
Attn: LtCol William Frady
Offutt AFB, NE 68113

ATC/XPQW
Attn: LtCol Hornbarger
Randolph AFB, TX 78148

TAC/DOXS
Attn: LtCol Mike Griffin
Langley AFB, VA 23665

ADC/DOTT
Attn: Mr. Bob Coward
Ent AFB, CO 80912

MAC/DOTO
Attn: Major Carlton Philbrick
Scott AFB, IL 62225

TAWC/TES
Attn: LtCol J. A. Locht
Eglin AFB, FL 32542

MAC/DOT
Attn: LtCol A. T. Johnson
Scott AFB, IL 62225

AFHRL/TTT
Attn: Mr. Gary Miller
Lowry AFB, CO 80230

AFHRL
Attn: Mr. Bertram W. Cream
Wright Patterson AFB, OH 45433

CSAF/XOOFB
Attn: LtCol T. R. Rush
Washington, D. C. 20330

ATC/XPT
Attn: LtCol C. Wolden
Randolph AFB, TX 78148

MAC/DOT
Attn: Major R. Baker
Scott AFB, IL 62225

SAC/DOT
Attn: Major H. Heinrich
Offutt AFB, NE 68113

TAC/DOX
Attn: LtCol G. Butler
Langley AFB, VA 23665

AFHRL/FT
Attn: Dr. E. Eddowes
Williams AFB, AZ 85224

963d Airborne Early Warning and
Control Sq (ADC)
Attn: OTTN, LtCol P. J. McDonough
McLeian AFB, CA 95652

USAF Human Research Lab, AFHRL/OR
Occupational & Manpower Research Div
Lackland AFB, TX 78236

Hq's AF Systems Command DSL
Office of Scientific Research
Andrews AFB
Washington, D. C. 20331

Air Force Human Resources Lab/DOJZ
Brooks AFB, TX 78235

USAF Human Res Lab, AFHRL/AS
Advanced Systems Div
Wright-Patterson AFB, OH 45433.

U. S. Army Research Institute
Commonwealth Bldg. (Rm 239)
Attn: Drs. Jos. Zeidner & Ralph Dusek
1320 Wilson Blvd
Arlington, VA 22209

Major General Gorman, DCG, Tng
Hq, U. S. Army TRADOC
Ft. Monroe, VA 23651
U. S Army Agency for Aviation Safety
Attn: Darwin S. Ricketson
Ft. Rucker, AL 36360

Colonel Franklin A. Hart
President, U. S. Army Combat Arms
Training Board
Fort Benning, GA 31905

Dr. Owen Jacobs
P. O. Box 241
Leavenworth, Kansas, 66048

Mr. Ellis B. Page
University of Connecticut
Bureau of Ed. Research, U-4
Storrs, CT 06268

Mr. Robert F. Mager
13245 Rhoda Lane
Los Altos Hills, CA 94022

Mr. Robert Glaser
University of Pittsburg
205 Mineral Industry Blvd.
Pittsburg, PA 15213

Mr. John Campbell
University of Minnesota
Elliot Hall
Minneapolis, Minnesota 55455

The RAND Corporation
Attn: Messrs. Rudy Bretz, E.S. Quade,
M.B. Carpenter
1700 Main Street
Santa Monica, CA 90406

Dr. Robert M. Gagne
Florida State University
Dept. of Educational Research
Tallahassee, FL 32306

Mr. Lee J. Cronbach
16 Laburnum Road
Atherton, CA 94025

Mr. B. F. Skinner
Harvard Univ., Dept of Psychology
33 Kirkland Street
Cambridge, MA 02138

Mr. B. J. Underwood
Northwestern University
Evanston, IL 60201

Mr. Wilbert J. McKeachie
Univ. of Mich., Dept of Psychology
Ann Arbor, Michigan 48104

Dr. Arnold Kanarick
Honeywell, Inc.
2600 Ridgway Parkway
Minneapolis, Minnesota 55413

Dr. John A. Modrick
Honeywell, Inc.
2600 Ridgway Parkway
Minneapolis, Minnesota 55413

Mr. K. C. Hageman
Hageman Consulting Services
P. O. Box 11409
Ft. Worth, TX 76109

Dr. J. W. Rigney, Director
Behavioral Technology Laboratory
University of Southern California
University Park
Los Angeles, CA 90007

Dr. Edgar Shriver
Kinton, Inc.
100 Prince Street
Alexandria, VA 23314

Mr. Joseph Breslin
Educational Computer Corporation
175 Strafford Avenue
Strafford, PA 19087

Mr. Joseph Breslin
Educational Computer Corporation
175 Strafford Avenue
Strafford, PA 19087

Essex Corporation
Attn: Mr. Alan Hundt
201 W. Fairfax
Alexandria, VA 22314

Allen Corporation
Attn: Carl Von Sternberg
128 Pitt Street
Alexandria, VA 22314
Dr. John K. Lauber
Man-Machine Integration Branch
NASA Ames Research Center (239-3)
Moffett Field, CA 94035

Mr. Alen D. Swain
Systems Reliability, Div.1222
Scandia Labs
Albuquerque, NM 87115

Logicon, Inc.
Attn: Dr. Jay Swink
1075 Camino del Rio, So.
San Diego, CA 92108

McDonnell Douglas Astronautics Co.
East St. Louis, Missouri 63166

Singer Simulation Products
Attn: Victor Faconti
Binghamton, NY 13902

Robert B. Miller Services
Colonial House
South Road
Poughkeepsie, NY 12601

Attn: Dr. Reid Joyce
Box 158
Valencia, PA 16059

Courseware, Inc.
Attn: Dr. Gerald Faust
P. O. Box 811
Provo, Utah 84601

Grumman Aerospace Corporation
Attn: Martin Morganlander
Training System Department
Great River, NY 11739

Mr. Kenyon B. DeGreene
4345 Chaumont Road
Woodland Hills, CA 91364

Mr. Ralph E. Flexman, Director
Institute of Aviation, Univ. of Il.
Willard Airport
Savoy, IL 61874

Rowland & Co.,Inc.
Mr. George E. Rowland
P. O. Box 61
Haddonfield, NJ 08033

Education and Training Consultants Co.
Mr. Leonard C. Selvern
P. O. Box 49899
Los Angeles, CA 90049

Human Resources Research Organization
Attn: Dr. Wallace Prophet
400 Plaza Building
Pensacola, Fl 32505

Human Resources Research Organization
Attn: Dr. Meredith Crawford
300 North Washington Street
Alexandria, VA 22314

Mr. James J. McGrath
Anacapa Sciences, Inc.
2034 DeLaVina
Santa Barbara, CA 93102

Dr. Robert C. Sugarman, Head
Human Factors Section
Calspan Corporation
P. O. Box 235
Buffalo, NY 14221

Mr. Mike Bruns
OSD (I&L)
Pentagon (Rm 2B323)
Washington, D. C. 20330

Defense Documentation Center
Cameron Station (12 copies)
Alexandria, VA 22314

Director, Defense Research-Engr.
ARPA, Behavioral Science Div.
Attn: LtCol A. W. Kibler
Washington, D. C. 20301

Executive Editor, Psych Abstracts
American Psychological Association
1200 - 17th Street, N. W.
Washington, D. C. 20036
Mr. Raymond G. Fox, President
740 - 15th St., N.W.
Washington, D. C. 20005

Dr. Francis DiVesta
Department of Educational Psychology
Pennsylvania State University
University Park, PA 16802

Dr. C. H. Halcomb
Box 4100
Lubbock, TX 79409

ERIC Clearinghouse UN
EDUCAT MEDIA -- TECH
Stanford University
Stanford, CA 94305

Director of Defense Research
and Engineering
Attn: LtCol Henry Taylor, OAD(R&D)
Washington, D. C. 20301

National Science Foundation
Attn: Dr. Henry S. Odbert
1800 G St., N.W.,
Washington, D. C. 20550

LOCAL
Code N2211 (Bob Burkett)
Code N23 (Jack Armstrong)
Code N231 (Thomas McNaney)
TAEG (R.Braby, A.Smode,G.Hall)
NAVTRAEQUIPCEN Tech.Library
N-00AF (LtCol Brown)
ATDA (R.Lilly, J.Cronholm,B.Rashis, K.Lam)
Code N215
N-OUM (Col Tate)