A TRIDENT SCHOLAR PROJECT REPORT

NO. 72

"THE ZENITH-ANGLE DISTRIBUTION OF STOPPING MUONS AT SEA LEVEL, AND THE RESPONSE OF A STOPPING-MUON COSMIC-RAY DETECTOR

UNITED STATES NAVAL ACADEMY
ANNAPOLIS, MARYLAND
1975
Best Available Copy
The Zenith-angle distribution of stopping muons at sea level, and the response of a stopping muon cosmic-ray detector were investigated in this research report.

In order to determine the angular response of a wide-angle stopping muon telescope, smaller detectors were placed in coincidence with it to provide a correlation of count rate with zenith-angle of particle arrival. Using numerical integration techniques, computer solutions were employed to predict the zenith-angle-selective count rates for various descriptions of the incident flux. A least-squares analysis yielded a cosine power $n = 4.7 \pm 0.5$ in the flux expression $I(\theta, \phi) = I_0 \cos^n \theta$.

Employing this flux expression in predictive computer programs provided an accurate model of the wide angle telescope response from which the telescope half-angle was determined. Considerations of overburden effects and data corrections are discussed.
"The Zenith-Angle Distribution of Stopping Muons at Sea Level, and the Response of a Stopping-Muon Cosmic-Ray Detector"

A Trident Scholar Project Report

by

Midshipman Gordon M. Roesler, Jr., Class of 1975

U. S. Naval Academy

Annapolis, Maryland

Advisor: Assc. Prof. H. L. Johnston, Physics Dept.

Accepted for Trident Scholar Committee

Chairman

22 MAY 1975

Date
ABSTRACT

In order to determine the angular response of a wide-angle stopping-muon telescope, smaller detectors were placed in coincidence with it, providing a correlation of count rate with zenith angle of particle arrival. Using numerical integration techniques, computer solutions were employed to predict the zenith-angle-selective count rates for various descriptions of the incident flux. A least-squares-analysis yielded a cosine power of $n = 4.7 \pm 0.5$ in the flux expression $I(\theta, \phi) = I_0 \cos^n \theta$. Employing this flux expression in predictive computer programs provided an accurate model of the wide angle telescope response from which the telescope half-angle was determined. Considerations of verburden effects and data corrections are discussed.
ACKNOWLEDGMENTS

The author wishes to express his sincere thanks for the friendship and guidance of Drs. Richard Johnston, Frank Miller, and Robert Shelby of the Physics Department, United States Naval Academy. Their ability to convey vast quantities of information in short periods of time, coupled with their understanding and amiability made this project the most profitable and enjoyable experience of his academic career. Also, the talents and patience of Mrs. Jan Harney are warmly appreciated. Her expert typing and her understanding greatly facilitated the production of this work.

G.M.R
Annapolis, Maryland
12 May, 1975
Table of Contents

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table of Contents</td>
<td>1</td>
</tr>
<tr>
<td>I. INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>A. Nature of the Cosmic Radiation Being Investigated</td>
<td>6</td>
</tr>
<tr>
<td>B. Detection of Cosmic Rays in General, and of Stopping Muons</td>
<td>6</td>
</tr>
<tr>
<td>C. Nature and Purpose of the Experiment</td>
<td>1</td>
</tr>
<tr>
<td>II. APPARATUS</td>
<td></td>
</tr>
<tr>
<td>A. Wide-Angle Stopping-Muon Telescope</td>
<td>14</td>
</tr>
<tr>
<td>B. Zenith-Angle Detectors and Mount</td>
<td>16</td>
</tr>
<tr>
<td>C. Detectors Used in Efficiency Measurements</td>
<td>22</td>
</tr>
<tr>
<td>III. PREDICTION OF STOPPING-MUON TELESCOPE RESPONSE</td>
<td></td>
</tr>
<tr>
<td>A. The Prediction Problem</td>
<td>23</td>
</tr>
<tr>
<td>B. Detector Response by Numerical Integration</td>
<td>24</td>
</tr>
<tr>
<td>C. Detector Response by the Trajectory Method</td>
<td>33</td>
</tr>
<tr>
<td>IV. EXPERIMENTAL DETERMINATION OF ZENITH-ANGLE DISTRIBUTION</td>
<td></td>
</tr>
<tr>
<td>A. Collection of Data</td>
<td>37</td>
</tr>
<tr>
<td>B. Detection Efficiency of Zenith-Angle Detectors</td>
<td>38</td>
</tr>
<tr>
<td>C. Statistical Error Calculation</td>
<td>40</td>
</tr>
<tr>
<td>D. Shower Corrections</td>
<td>42</td>
</tr>
<tr>
<td>E. Correlated-Pulsing Corrections</td>
<td>45</td>
</tr>
<tr>
<td>F. Compensation for Counting Efficiency of Muon Telescope Components</td>
<td>48</td>
</tr>
<tr>
<td>G. Positional Error of Zenith-Angle Detectors</td>
<td>52</td>
</tr>
<tr>
<td>V. COMPARISON OF MEASURED DATA AND PREDICTED RESPONSE</td>
<td></td>
</tr>
<tr>
<td>A. The Chi-Square Fit</td>
<td>53</td>
</tr>
<tr>
<td>B. Analysis of Data</td>
<td>56</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (Cont'd)

VI. DISCUSSION OF RESULTS
 A. Mathematical Description of Detector System 61
 B. Description of the Stopping-Mum Flux at Sea Level 63
 C. Energy Considerations 64
 D. Suggestions for Further Research 67

TABLE 1 .. 70
TABLE 2 .. 71
TABLE 3 .. 72
TABLE 4 .. 73
TABLE 5 .. 74
LITERATURE CITED ... 75
APPENDIX A ... 77
APPENDIX B ... 81
APPENDIX C ... 89
APPENDIX D ... 94
1. INTRODUCTION

A. Nature of the Cosmic Radiation Being Investigated

Ever since the discovery of cosmic radiation at the beginning of this century, men have attempted to answer several questions concerning it. The significant problems in cosmic-ray astronomy require the disciplines of astronomy, astrophysics, particle physics, and even meteorology, in order to answer them. Such questions as these are asked:

Where do cosmic rays originate?
What mechanisms produce and accelerate them?
What happens to cosmic rays in their transit of deep space?
How do they interact with the earth's atmosphere?
Of what particles are they composed?
How may cosmic rays be detected and counted accurately?

If these questions are examined in reverse order, it becomes apparent that a good deal of extrapolation is required to utilize data collected at the earth's surface if events in deep space are to be analyzed. This extrapolation is complicated by the interactions of cosmic rays with the earth's atmosphere, and with the geomagnetic and heliomagnetic fields.

A diagrammatic description of cosmic radiation is shown in Figure 1. Measurements taken directly in the primary region indicate that the primaries are basically isotropic above the horizon\(^{(1)}\), and are composed mainly of highly energetic nucleons, especially protons. A more complete description of the primary atomic abundances is contained in Table I\(^{(2)}\). In addition to these fast nuclei, the primary radiation contains some neutrinos and energetic gamma rays.
Figure 1. Examples of cosmic ray interactions with the atmosphere.
Of the secondary cosmic rays surviving at the earth's surface, by far the most plentiful constituents are photons, electrons, and muons. The photons and electrons comprise the "soft" component, which is separable from the "hard" component by shielding with approximately six inches of lead. The hard component is almost exclusively muons, with protons and pions comprising only one-half percent of the hard radiation.

The nature and properties of the muon are rather well-known. It is an unstable particle with a half-life of about 1.6 microseconds, and has a mass of about 105.6 MeV. It is born in the decay of two unstable fragments of a nuclear explosion in the upper atmosphere, caused by the impact of a primary particle upon a nucleus of the atmosphere. These two fragments, the charged pion and the kaon, decay as follows:

\[\pi^\pm + \mu^\pm + \nu \]

with a half-life of 26 nanoseconds, and

\[K^\pm + \mu^\pm + \nu \]

with a half-life of about 12 nanoseconds. \(K^\pm \) and \(\pi^\pm \) represent charged kaons and pions, respectively, the parent particles of virtually all muons in cosmic radiation. The pion decay scheme is virtually one hundred percent probable, and the kaon scheme, about sixty percent.

The majority of muon production takes place in the region of the atmosphere ten to fifteen kilometers above the earth's surface.
The extremely short-lived pions and kaons decay in flight, but muons have some probability of reaching the earth's surface, aided greatly by the relativistic time dilation for fast particles. The survival probability of the muon is dependent not only on this decay probability, but also on the amount of energy it has, which is decreased by ionization loss in its transit through the atmosphere.

Should the muon be brought to rest before it decays, it will remain virtually noninteracting until its decay. Whether this event occurs in air, rock, or inside a detector, the decay follows the reaction

\[\mu^+ \rightarrow e^+ + \nu \]

with a half-life of about 1.6 microseconds. As shall be seen later, this decay can be useful in identifying a particle as a muon. Figure 2 diagrams the flight of two muons, one of which has so much energy that it penetrates deep into the earth's crust, and the other having just enough energy to penetrate and stop within a "detector" at the earth's surface.

The stopping muon is the particle with which this experiment is uniquely concerned.

B. Detection of Cosmic Rays in General, and of Stopping Muons

The first detections of cosmic rays were made with electroscopes, which were found to lose charge anomalously to the atmosphere. The identification of the cause of charge loss as ionizing radiation was first accomplished with cloud chambers; later, photographic
Figure 1. Two muon-producing cosmic ray interactions.
emulsions, spark chambers, and bubble chambers were used to make visible their flights and their interactions with matter. Once they were positively identified as charged particles of various kinds, the detection problem became one of detecting them efficiently, cheaply, and in large numbers without excessive random error. The first detector used for this purpose was the well-known Geiger counter.

Another detection method, the only one employed in this experiment, employs scintillating materials. The same ionization which triggers a Geiger tube causes a scintillator to emit a small flash of light, the amplitude of the light pulse being proportional to the amount of energy lost by the particle through ionization. This light pulse is detected by a photomultiplier tube, whose output is an electrical pulse caused by the photoelectric effect with subsequent amplification. Scintillating materials are of many types, but the scintillator used exclusively in this experiment is a transparent plastic, much like plexiglas, which has been doped with a chemical scintillator.

Electronic coincidence circuitry provides the means whereby different combinations of detectors may be used in cosmic ray detection and selectivity. The principle of coincidence logic is illustrated in Figure 3, a diagram of a hypothetical cosmic-ray telescope. P_1, P_2, P_3, and P_4 could be trays of Geiger tubes, or they could be sheets of scintillating plastic with attached photomultiplier tubes. A coincidence between any two of them could indicate that a cosmic ray had transited them, or it could have been a randomly-generated coincidence, called an accidental. Two separate cosmic rays arriving simultaneously, or noise pulses appearing as cosmic rays, can cause accidentals; the
Figure 3. Detector arrangement illustrating the principle of coincidence counting.
more coincidences that are required for the event signature, however, the less likely such accidentals should be, since the upper bound on accidental counts is given

\[R_{acc} = T_r N^{-1} R_1 R_2 \cdots R_n \]

where \(T_r \) is the resolving time of the coincidence circuitry (typically a fraction of a microsecond), and the \(R_i \)'s are the count rates for each detector by itself. The event \(P_1 P_2 P_3 P_4 \) has very little probability of being an accidental, and would be interpreted as a through cosmic ray.

Anticoincidence measurements can be equally valuable. The event \(P_1 P_2 P_3 \overline{P}_4 \), where the bar indicates the absence of a coinciding pulse, signifies a cosmic ray which has transited the top three plates, but which stopped before reaching the lowest plate. \(S \) could be a spark chamber, a cloud chamber, a mass of scintillating plastic for analyzing muon decay, or simply a mass of lead. \(L \), a slab of lead, is often used to eliminate the soft component of radiation from a telescope of this sort.

Two properties of muons are useful in detecting them uniquely in the cosmic ray flux. First, all muons interact only weakly with nuclei, and thus can transmit large thicknesses of shielding without being stopped. As a matter of fact, much cosmic-ray research is carried out deep underground, in order to insure the purity of the muon component. Also, the muon decay into an electron may be employed to give the muon a unique signature. The latter method is of importance in this experiment. When a muon is stopped by ionization loss within a mass
of scintillator, two pulses will be observed by the viewing phototubes: the first pulse from the muon itself, the second pulse from its decay electron. As an added benefit, the time differences between a large number of these pulse pairs should correspond to the muon decay curve, i.e., should represent a radio-active decay with a half-life of 1.6 microseconds.

Thus one signature of a stopping muon could be the observation of a stopping particle via coincidence and anticoincidence techniques, followed by a delayed pulse seen only in the stopping region.

C. Nature and Purpose of the Experiment

A wide-angle stopping-muon telescope has been maintained under the auspices of the Physics Department of the United States Naval Academy, and as of this writing has been collecting data for approximately two and one-half years. Figure 4 indicates the major components of the telescope. It consists of a coincidence scintillator plate, a scintillating stop tank, and an anticoincidence plate to fulfill the stopping signature. The purposes of this experiment were to determine the angular response of this detector, and to determine an expression for the stopping-muon flux within and outside the surrounding building.

Knowing the detector response as a function of zenith angle would provide knowledge of the number of particles arriving from the north and south of zenith, a measure of the segment of the celestial sphere actually being observed. It would, in addition, be an exact measure of the expected time-width of a narrow unfocused source on the
Figure 4. Major scintillator components of stopping-muon telescope.
celestial sphere, since the telescope is rotated by the earth in
a west-east direction. Knowing the actual distribution of stopping
muons at sea level would be an excellent test of the weaknesses of
various muon-production models that have been developed elsewhere.

The measured response of the detector at various zenith and
azimuth angles, obtained by using narrow-angle detectors as additional
coincidence units to define the arrival directions of the muons, was
to be compared to computer programs which predicted this response.
Since different predictions of the measured response would be generated
for different assumed fluxes, curve-fitting techniques were employed
to determine the best descriptions, both of the flux and of the
detector response.

Secondarily, the stopping-muon distribution obtained was to be
compared with differential fluxes measured by other authors. This was
to give an indication of detector efficiency, of the correctness of the
flux expression, and of the effects of the building upon the measure-
ments.
II. APPARATUS

A. Wide-Angle Stopping-Muon Telescope

Figure 5 shows a more detailed schematic view of the wide-angle stopping-muon telescope, the angular response of which was to be determined. Each of the 48" x 48" scintillator plates was viewed by four RCA 56 AVP 2" photomultiplier tubes, operated independently of one another. The light-tightness of these plates was maintained by aluminum sheets on their top and bottom faces, and black polyethylene around the edges. The muon stop tank consisted of fifteen 1" thick scintillator plates, each 16 3/4" x 16 3/4", stacked sideways, with one 3/4" thick light pipe on each end. The light-tight box surrounding the scintillator was constructed of black-painted 3/4" plywood. The stop tank was viewed by two Amperex XP 1040 5" photomultiplier tubes operated in coincidence.

The signature required to classify an event as a stopping muon was a TS0 coincidence, followed by an ST0 coincidence between 0.3 usec and 5.0 usec later. The TS0 pulse was also used as the start pulse for an LRS time-to-pulse amplitude converter, and the ST0 as the stop pulse. The time-to-amplitude converter provided time-scaled output pulses to a Kicksort multichannel analyzer. The distribution of pulse pairs with respect to time interval was expected to correspond to the muon decay distribution. The multichannel analyzer accumulation was also used as a check on the ability of the system to separate true muon counts from noise-generated counts.

The 2" photomultiplier tubes were operated at 2200 V. The 5" tubes were operated at 2300 V for part of the experiment, and at 2200 V
Figure 5. Detail of stopping-muon telescope, looking east (structural details excluded).
thereafter (see Section IV E.) The top and bottom plates' tubes were supplied from a high-voltage supply separate from that for the stop-tank tubes, effecting electrical isolation. Appendix A contains the complete block-diagram circuitry for the stopping-muon counting system.

B. Zenith-Angle Detectors and Mount

Figure 6 shows a disassembled view of one of six zenith-angle detectors, three of which were used in the measurement of the response of the wide-angle detector. The two scintillator discs were separated from the photomultiplier tube by a non-scintillating plastic disc in order to reduce ringing in the tube from large-amplitude light flashes. The scintillator was wrapped in aluminum foil to enhance light collection efficiency. The single Amperex XP 1000 2" photomultiplier was operated at 1600 V, the power supply being separate from the stop tank supply and the top and bottom plate supply.

The basic probes themselves had been constructed previously, for use in another experiment. When this experiment was commenced, each phototube was optically recoupled to the light pipe using Dow-Corning 20-057 Optical Coupling Compound. The masonite-aluminum joints were sealed with electrical tape, and the probes were tested for light-tightness and correct amplitude-response curve. A wooden "key", measuring 4" x 8" x 3/4", was added to the scintillator end of each probe, for mating with the radial zenith-angle mount.

The zenith-angle mount was designed and built subject to the following considerations: that the detectors it supported should be
Figure 6. Exploded view of zenith-angle detector.
equidistant from the stop tank center; that they should be able to be positioned anywhere up to the limits of the muon telescope's viewing angle; and that measurements should be available in the north-south plane, the east-west plane, and selected diagonal planes. The main structural elements of the mount are four plywood arcs, of radius 60.0", which are fastened together in pairs at maple slot boards every ten degrees of arc. These maple slot boards also support the zenith-angle detectors. The two arc pairs are slotted in order to mate into four perpendicular arms. A fifth arm, also of radius 60" but of only half the length, was designed for positioning in planes along a diagonal azimuth. Figure 7 shows an orthogonal view of one mount arc, and Figure 8 is a perspective view of the assembled mount with diagonal arm.

The original design of the mount called for resting it directly on the top coincidence plate of the muon telescope. However, in order to clear the phototubes on the edges of the top plate, part of the bottom of each arm was removed, causing the depth of recess to be only 6", and the assembled mount was rested on four cement blocks turned edgewise, placing the recess approximately 7.5" above the top plate.

Figure 9 is a schematic representation of the entire detection system. The automatic data readout system printed out five separate counts every thirty minutes, namely:

- TB, the through cosmic ray rate;
- $TSB \cdot STB$, the stopping muon rate;
- $TTSB \cdot STB$, $TgTSB \cdot STB$, and $T15TSB \cdot STB$, the three zenith-angle-selective stopping muon rates. The asterisk represents the delayed coincidence requirement. The subscripts 4, 9, and 15
Figure 7. 60-inch zenith-tilt mount, orthogonal projection.
Figure 8. Assembled zenith-angle mount with single arm installed, foreshortened view. (Slots not shown.)
Figure 9. Schematic representation of zenith-angle-selective stopping-muon counting system. (looking east)
are merely labels which identify particular zenith-angle detectors and their associated electronics.

The dimensions of the detector system are listed in Table 2. The predictive computer programs explained in Sections III A and III B are based on these dimensions. One of the first discoveries made during this experiment was the offset of the top tank of 0.5" from the center of the detection system defined by the top and bottom plates. This turns out to have a significant effect on the count rate of a zenith-angle detector at the 40° N and 40° S positions.

C. Detectors used in Efficiency Measurements

Two small detectors were employed to measure the efficiency of various system components. One was a 4" x 4" x 3/4" single scintillator, viewed on its face by an XP 1000 phototube. The other consisted of two stacked 6" x 6" x 3/4" scintillator plates, viewed on edge by one XP 1000 phototube. Each tube was separated from the scintillator by a 1/4" thick non-scintillating Lucite light pipe. Light-tightness was provided by electrical tape and black polyethylene sheet. Springs were used on the 6" detector to maintain pressure on the optical joint, and its scintillating plates were wrapped in aluminum foil to enhance light collection efficiency.
III. PREDICTION OF STOPPING-MUON TELESCOPE RESPONSE

A. The Prediction Problem

One may make an analogy between the problem of predicting a detector's response to an unknown flux, and a boy shooting marbles into a rink. The unknown quantities are the number and rate of marbles which the boy shoots in each direction, and the number that arrive in the rink. One could place cups within the rink for a uniform length of time, retrieve them, and count the marbles within them, obtaining a rate distribution over the area of the rink. This data could be used in summation to yield the number of marbles falling within the rink. In a second approach, knowing the boy's distance from the rink, some sample paths of marbles could be examined to see if they fall within the rink, and to see how long the allowed stopping distance is for each. This approach may seem less direct compared to the former; but its results predict the marbles landing in the rink for each path individually, without dependence on the width of a cup's mouth.

In the analogy, a very complicated rink represents the wide-angle stopping-muon telescope; the marbles are muons; and the cups model the zenith-angle detectors. The correlation of stopping-muon flux to angular response was to be accomplished using the zenith-angle detectors in coincidence with the muon telescope as a whole. The mobility of the zenith-angle detectors would allow them to cover, over a period of several months, the entire viewing aperture of the muon telescope. The expected count rate from such an arrangement was to be predicted by a numerical integration scheme by computer. The rate predictions
of this scheme depended upon the mathematical description of the
detector geometry, just as an estimate of the number of marbles
each cup would collect would depend upon its position within the rink.

The rate predictions for the zenith-angle detectors were to be
obtained for several flux distributions. By curve-fitting, the flux
distribution yielding the closest match of predicted and observed
count rates was deemed to be the extant distribution within the
surrounding building. An analysis of the wide-angle telescope's
response could then be performed either by numerical integration or
by the "trajectory" method. The latter method is actually a pseudo-
Monte Carlo technique, which determines for many particle trajectories
whether or not each meets the geometrical criteria for detection.

All of these predictive processes involved iterative schemes,
which were programmed on the Honeywell 635/Dartmouth Time-Sharing
System at the United States Naval Academy, in programs using the
BASIC language.

B. Detector Response by Numerical Integration

Figure 10 depicts the two-detector problem variables. For two
elemental detector areas \(dA_1\) and \(dA_2\), which are separated by the
vector \(r_{12}\), and whose normals \(N_1\) and \(N_2\) make angles \(\theta_1\) and \(\theta_2\) with
\(r_{12}\), the absolute count rate seen by these detectors in coincidence
will be:

\[
dR = 1 \times \frac{dA_1 \cos \theta_1}{r_{12}^2} \times \frac{dA_2 \cos \theta_2}{r_{12}^2} \times \frac{dA_1 \cos \theta_1}{r_{12}^2},
\]
Figure 10. Variables in the through-particle problem.

Figure 11. Variables in the stopping-particle problem.
where c_1 and c_2 are the detection efficiencies of dA_1 and dA_2, which shall be assumed to be unity for the present. I is the intensity of penetrating radiation in the direction \vec{r}_{12}. It normally has the units

$$\text{particles } \text{cm}^2 \text{sr}^{-1} \text{sec}^{-1}.$$

The term $\frac{dA_1 \cos \theta_1}{r_{12}^2}$ is just the solid angle $d\Omega$ determined by dA_1 and \vec{r}_{12}. Thus, the exact count rate of a two-detector system is given by

$$R = \iint I(\vec{r}) dA_1 \frac{1}{\Omega}, \quad (2)$$

where $I(\vec{r})$ is the intensity function of incoming particles, A is the area of one detector, and Ω is the solid angle the second detector subtends.

The counted rate of stopping particles, however, is influenced by the energy spectrum of the incoming particles as well as by the flux intensity. A given particle must remove all of its momentum via some process (in the case of a muon, by ionization) in order to stop, and thus must transit a given thickness of material. For an elemental detector area dA_1 and an elemental stopping thickness $dA_2 dZ$, the stopping particle problem is diagrammed in Figure 11. Assuming 100% rejection of through particles, the stopping-particle count rate is

$$dR = I(\vec{r}_{12}) \frac{dA_1 \cos \theta_1}{r_{12}^2} d\Omega, \quad (3)$$
where \(d_\sigma = \frac{dz}{\cos \theta_2} \), and \(\sigma \) is the stopping power of the detector material, expressed as momentum loss per unit length. The intensity \(I \) is now the differential flux, expressed as

\[
\frac{\text{particles}}{\text{cm}^2 \cdot \text{sr} \cdot \text{sec} \cdot \text{momentum unit}}
\]

For the particular situation of counting stopping muons at sea level, the intensity \(I \) is a slowly-varying function of energy, and a value of \(I \) is selected which corresponds to the mean value of energy deposited by a stopping particle.

The count rate of a stopping-muon detector may thus be expressed as

\[
R = \sigma \iiint I(\vec{r}, \vec{E}) \, dA \, d\sigma \, d\rho, \quad (4)
\]

or, knowing the Cartesian form of the differentials, as

\[
R = \sigma \iiint I(\vec{r}, \vec{E}) \, dx \, dy \, dz \, \cos \theta_2 \, \frac{dx_1 \, dy_1 \, dz_1}{r_{12}^2} \, \frac{dz_2}{\cos \theta_2}, \quad (5)
\]

The term \(\cos \theta_2 \) cancel, and the term \(r_{12} \) may be found if the area \(dA_1 \) and the volume \(dA_2 dZ \) are given Cartesian coordinates:

\[
r_{12} = |\vec{r}_{12}| = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2 + (z_2-z_1)^2}. \quad (6)
\]

Additionally, \(\cos \theta_1 \) may be found if the orientation of \(dA_1 \) is known with respect to \(dA_2 \). In this experiment, \(dA_1 \) is parallel to \(dA_2 \) for
the wide-angle muon telescope. (The x-y plane is chosen parallel to the plates and the stop tank's top face), making

$$\cos \theta_1 = \frac{z_1 - z_2}{r_{12}}.$$ \hspace{1cm} (7)

For the zenith-angle detectors, conversely, due to their radial positioning, $d\lambda_1$ is nearly perpendicular to r_{12} for all positions, hence

$$\cos \theta_1 = 1.$$

The integration may now be performed as soon as the expression for $I(\mathbf{r})$ is specified.

Traditionally, the integral cosmic-ray distribution has been expressed as a power of the cosine of the zenith angle, that is, as

$$I(\theta, \phi) = I_0 \cos^n \theta,$$ \hspace{1cm} (8)

where I_0 is the intensity of particles arriving vertically, and θ and ϕ are the zenith and azimuth angles of the particle's path.\(^{(1, 6, 9)}\) An exponent of zero corresponds to an isotropic flux, as is essentially the case with the primary radiation.\(^{(15)}\) At sea level, an exponent greater than zero is generated by attenuation through the greater atmospheric thickness traversed along larger zenith angles, and in the case of muons, by the greater decay probability along the longer paths of larger zenith angles.

A differential flux distribution $I(\theta, \phi, E)$ may be expressed as a
cosine-power law for any specific energy or energy band. The exponent \(n \) may vary from energy to energy within the measured range; however, as stated previously, the slowly-varying magnitude of the flux with energy, in the particles involved in this experiment, allowed the substitution of a single flux expression where the vertical flux value was averaged over the range of energies involved.

The approach of the cosine-power law was adopted in this experiment. The employment of this function has not always yielded a fit of high accuracy, but it does reflect its usage in the literature.

Employing the mean cosine-power expression for the flux, equation (5) becomes

\[
R = \sigma I_0 \iiint \frac{(Z_1 - Z_2)^{n+1}}{r_1^{n+1}} dx_1 dy_1 dx_2 dy_2 dz_2
\]

(9)

for the case of parallel detectors, and hence for the wide-angle muon telescope. In the case of a zenith-angle detector, for which \(\cos^{-1} = 1 \), equation (9) becomes

\[
R = \gamma I_0 \iiint \frac{(Z_1 - Z_2)^n}{r^{n+2}} dx_1 dy_1 dx_2 dy_2 dz_2.
\]

(10)

Appendix B contains a listing and a sample run of each of 3 BASIC-language programs designed to predict the zenith-angle detector coincidence rates using equation (10). For consistency, a grid spacing of 2" x 2" x 2" was used in all programs.

Program ZADRESP is predicated on the assumption that each zenith-
angle detector (hereafter called a ZAD) is sufficiently small that it may be treated as an elemental area; in terms of equation (5), dA_1 is equal to the entire ZAD scintillator area. For programs ZADRESP2 and ZADRESP3, the ZAD is divided into sixteen smaller dA_1 s. For the latter two programs, the coordinates of each dA_1 was first written into a file by the program ZADWRITE, from which file it was extracted in the course of the numerical integration.

The radial distance from the stop tank center to the ZADs being fixed at 63.0", the position of each ZAD may be specified by ξ and ξ, the spherical coordinates of its center relative to the stop tank center. These coordinates are different from θ and ϕ, the parameters of particle arrival path, since each ZAD counts particles with a range of directions. Figure 12 shows the variety of particle paths which a single ZAD counts, in coincidence with the wide-angle telescope.

Predictions made by program ZADRESP3 for various flux descriptions, i.e., for various values of the cosine-power n, are shown in Figure 13. The chi-square technique to be described in Section V compared these predictions to the actual data obtained from the ZADs. Assuming that an acceptable confidence level is obtained from the chi-square analysis, it is then valid to use the detector description of the ZADRESP programs in another program which predicts the response of the wide-angle telescope as a whole. Program MURESP, in Appendix C, predicts the angular response for the wide-angle telescope, as well as the half-angle in the north-south and east-west planes. Its output is in units of $I_0 \sigma$, where σ is the scintillator stopping power. These results allow the comparison of the measured rate with the
Figure 12. Variety of particle trajectories accepted by ZADs at θ = 20° and 40° in the north-south or east-west planes.
Figure 13. Normalized rates for ZADs in the north-south plane, for various flux descriptions, predicted by program ZADRESP3. [Note slight asymmetry due to stop tank offset from center of telescope.]
vertical flux measurements published by other authors, giving a value for detector efficiency of the stopping-muon system.

MURESP will, in addition, calculate the count rate expected within a given zenith-angle aperture. In this manner, the aperture within which half of the detected particles fall, the so-called half-angle, may be found directly. In the north-south plane, the half-angle indicates the expected influence of cosmic-ray sources to the north and south of the zenith circle on the celestial sphere. In the east-west plane, the half-angle indicates the expected time-width of an anisotropy in cosmic-ray rate, in either sidereal or solar time. Figure 14 shows the count rate as a function of zenith-angle aperture for various flux distributions. The half-angle, it may be seen, is a weakly-varying function of the flux cosine-power.

C. Detector Response by the Trajectory Method

Assume that a muon stopped at some point within the stop tank, and arrived along some path specified by θ and ϕ. One can determine whether or not the particle would have been counted according to whether the path passed inside or outside the boundaries of the top coincidence plate. Performing this operation for every point within the stop tank (or for the uniform matrix of points used in the ZADRESP programs) will yield the fraction of particles of each arrival direction (θ,ϕ) that are counted. If the results are summed in azimuth, the summation yields the relative ability of the muon telescope to count particles arriving from various zenith angles. This relative ability is, of course, independent of the flux distribution. The process was
Figure 14. Number of counts seen by wide-angle muon telescope within various detection zones, as predicted by program MÜANIT.
performed only for the wide-angle telescope and not for the zenith-angle detectors, due to the small solid angle that each ZAD subtends.

Program DETECTOR, listed in Appendix C, performs this process, assuming a symmetrical detector. Program DETECTOR2 uses more accurate detector dimensions, but yields the same zenith-angle response data. Figure 15 plots the relative counting rate of the wide-angle telescope as a function of particle zenith angle of arrival.

Multiplying the relative counting ability by the flux distribution for each angle, then multiplying again by the zenith-angle sine curve, yields the same aperture curve that program MURESP does. The DETECTOR programs are valuable because they isolate effects of the detector geometry from effects of the flux distribution.
Figure 15. Relative detection ability of wide-angle telescope, generated by program DETESTR2.
IV. EXPERIMENTAL DETERMINATION OF ZENITH-ANGLE DISTRIBUTION

A. Collection of Data

Initially, a wide-angle muon rate of 800 counts per hour, and a ZAD solid angle of 0.5% of the total telescope solid angle, were assumed. A statistical accuracy of 5% was desired, requiring 400 counts, which should then have been available in 100 hours. To allow for variation, counts were made for one week in each ZAD configuration. Later, it was observed that the 100-hour figure was an under-estimate. The statistical error values will be stated along with the measurements.

For each count, due to limitations in the number of coincidence and discriminator units available, only three ZADs could be operated. Of the six ZADs available, three were chosen for their uniformity of response, and were not replaced during the course of the experiment. These ZADs were numbered 4, 9, and 15. ZAD number 4 was optically recoupled once during the course of the experiment, but neither its gain nor its response were affected.

Taking of data commenced on 22 October 1974, and was completed on 28 April 1975, with data being retrieved approximately weekly from the automatic data output system. No data was taken during the periods 17-26 December and 14-25 January. All data was in the form of typed and paper tape teletype outputs.

Normalized count rates were used rather than absolute rates in the data analysis. Normalization was done relative to the ZAD rate in the vertical position; thus, for each weekly count, one of the three ZADs was required to be in the vertical slot. Normalized
rates were used for the following reasons:

-- cosmic rays, especially low-energy ones, are susceptible to varying attenuation with atmospheric temperature and pressure variation; assuming that these variations would affect the flux equally at all angles, the normalization could eliminate pressure- and temperature-linked variations;

-- the flux description \(I = I_0 \cos \theta \) is suited to a normalized description, since normalization eliminates dependence on the exact value of \(I_0 \); and

-- gain variations between tubes could be compensated for in normalizing, but not for absolute count rates.

Section B describes the compensation for ZAD efficiency, and Section C describes the calculation of statistical error. The sections following Section C explain the experimentally-determined corrections for various errors.

B. Detection Efficiency of Zenith-Angle Detectors

It was initially assumed that each ZAD was so constructed that its efficiency was, if not 100%, very nearly equal to that of each other ZAD. Preliminary examination of the data, however, showed the inaccuracy of this assumption. The method of reciprocity was applied to compensate for the differing efficiencies.

Consider a zenith-angle detector A, which has the position \((r, \xi)\), and a second detector B, in the vertical position. The rate counted by each detector is equal to the true rate (that
determined by detector geometry alone) multiplied by the
efficiencies of each detector component; that is,

\[R_A(\zeta, \xi) = \varepsilon_A \varepsilon_T \varepsilon_S R(\zeta, \xi) \] \hspace{1cm} (11)

and

\[R_B(0) = \varepsilon_B \varepsilon_T \varepsilon_S R_0 \] \hspace{1cm} (12)

where \(R(\zeta) \) and \(R_0 \) are the true muon rates through the angled and
vertical positions, respectively. Assuming that the top plate and
stop tank efficiencies are independent of zenith angle (see Section
IV F), the apparent normalized rate becomes

\[\frac{R_A(\zeta, \xi)}{R_B(0)} = \frac{\varepsilon_A}{\varepsilon_B} \frac{R(\zeta, \xi)}{R_0} \] \hspace{1cm} (13)

Suppose that these detectors are now reversed, and a second
count is taken, with \(B \) at \((\zeta, \xi)\), and \(A \) at the vertical. This apparent
normalized rate is then

\[\frac{R_B(\zeta, \xi)}{R_A(0)} = \frac{\varepsilon_B}{\varepsilon_A} \frac{R(\zeta, \xi)}{R_0} \] \hspace{1cm} (14)

Taking the product of the apparent normalized rates, the efficiencies
cancel, and

\[\frac{R(\zeta, \xi)}{R_0} = \sqrt{\frac{R_A(\zeta, \xi)}{R_B(0)}} \times \frac{R_B(\zeta, \xi)}{R_A(0)} \] \hspace{1cm} (15)
Thus, the efficiency difference may be compensated for without knowing the individual efficiencies, by taking two counts with two detectors in reversed locations. The quantity \(\frac{R(\zeta, \xi)}{R_0} \) will be referred to as a reciprocity-normalized count rate.

Table 4 lists the reciprocity-normalized rates for all of the mount positions at which measurements were taken. The second column contains the raw number of counts in each detector, the vertical count being the bottom number in each case. Each ratio was conducted with the same set of tubes as its reciprocal, that is, tubes 4 and 9, 9 and 15, or 15 and 4, with the exception of the data at \((\zeta, \xi) = 20^\circ\) north, where all three tubes were used, and reciprocity was obtained at that point with the relation

\[
\frac{R(20^\circ N)}{R_0} = \left[\frac{R_9(20)}{R_4(0)} \times \frac{R_{15}(20)}{R_9(0)} \times \frac{R_4(20)}{R_{15}(0)} \right]^{1/3}
\]

(16)

The third column of the table contains the reciprocity-normalized rates.

C. Statistical Error Calculation

The arrival times of cosmic ray particles may generally be treated as random occurrences. If a rate is indeed generated by randomly-distributed counts, the standard deviation of a number of counts may be conservatively estimated as the square root of that number; that is,

\[
R(\zeta, \xi) = \frac{N \pm \sqrt{N}}{\Delta T}
\]

(17)
A measured normalized rate may be expressed as

\[
\frac{R(t, t')}{R(0)} = \frac{A \pm \sqrt{A}}{B \pm \sqrt{B}},
\]

(18)

where \(A\) and \(B\) counts are obtained by two detectors in the same time period. If this fraction is expanded, the deviation generated is probably somewhat larger than the standard deviation, a result of the propagation of errors. The expansion is

\[
\frac{A \pm \sqrt{A}}{B \pm \sqrt{B}} = \frac{A \pm \sqrt{A}}{B \pm \sqrt{B}} \left(1 \pm \frac{\sqrt{B}}{B} \right)^{-1}
\]

\[
\pm \frac{A}{B} \left(1 \pm \frac{\sqrt{A}}{A} + \frac{\sqrt{B}}{B} \right)
\]

\[
\pm \frac{A}{B} \left(1 \pm \frac{\sqrt{A}}{A} \pm \frac{\sqrt{B}}{B} \right),
\]

(19)

where second-order terms have been dropped. A conservative statement of the standard deviation of a normalized rate is then

\[
\sigma_N = \frac{A}{B} \left(\frac{1}{\sqrt{A}} \pm \frac{1}{\sqrt{B}} \right).
\]

(20)

For a reciprocity-normalized rate, given that \(A\) and \(C\) are the numbers of particles counted at a particular mount position, and \(B\) and \(D\) are the vertical counts for the corresponding time interval,
the randomness error gives

\[\frac{R(L,L)}{R(0)} = \sqrt{\frac{A}{B} \left(1 + \frac{1}{\sqrt{A}} \pm \frac{1}{\sqrt{B}} \right) \sqrt{\frac{C}{D} \left(1 + \frac{1}{\sqrt{C}} \mp \frac{1}{\sqrt{D}} \right) \sqrt{1 + \frac{1}{\sqrt{A}} + \frac{1}{\sqrt{B}} + \frac{1}{\sqrt{C}} + \frac{1}{\sqrt{D}}}} } \]

(21)

again neglecting second-order terms. An exaggerated estimate of one standard deviation is given when all error terms in equation (21) are either positive or negative, i.e.,

\[\sigma_{RN} = \sqrt{\frac{AC}{BD} \left(\sqrt{1 + \frac{1}{\sqrt{A}} + \frac{1}{\sqrt{B}} + \frac{1}{\sqrt{C}} + \frac{1}{\sqrt{D}} - 1} \right) } \]

(22)

This is actually the unbiased estimate of \(\sigma_{RN} \), rather than the \(\gamma_{RN} \) generated by data distribution. The last column of Table 4 contains the \(\sigma_{RN} \) for each data point.

All mathematical eliminations and error predictions have now been performed. Experimental determination of certain systematic errors is explained in the following sections.

D. Shower Corrections

Often, following a primary particle's interaction with an atmospheric nucleus, the reaction products have sufficient energy to cause further nuclear interactions. The propagation of such a shower of secondary cosmic rays is such that many particles may
arrive at the earth's surface simultaneously. Should a stopping
muon be associated with other particles in a shower, a zenith-angle
detector may be erroneously triggered by an associated particle,
the resulting event signature mimicking that of a muon passing
through the ZAD. Figure 16 demonstrates the generation of a shower-
produced count.

Because the arrival directions of showers are strongly concentra-
ted about the vertical, ZADs at mount positions nearer the
vertical were not expected to accrue shower-generated counts, since
many of the associated particles should pass through the bottom anti-
coincidence plate, negating the entire event. Detectors with \(\gamma = 40^\circ \)
in any plane, and with \(\gamma = 30^\circ \) in the north-south and east-west
planes, however, did not project onto the bottom plate, and were
thus deemed to be susceptible to shower-generated counts.

A means of correcting the data from these points was created by
mounting a detector vertically beneath the scintillator of a 30° or
40° detector. In this position, shown in Figure 17, the lower
detector is susceptible to approximately the same number of shower-
generated counts as the ZAD above it; however, because it is mounted
below the plane of the top coincidence plate, it can register no true
counts. The reciprocity-normalized rates of these shower detectors
were applied as negative corrections to the corresponding ZAD rates.
The shower correction was found to be \((-0.024 \pm 0.006)R_0\) at \(\gamma = 40^\circ \),
and \((-0.064 \pm 0.01)R_0\) at \(\gamma = 30^\circ \).
Figure 16. Shower-generated ZAD count (not to scale.)

Figure 17. Location of detector for experimental determination of shower correction, $\beta = 50^\circ$ (not to scale.)
E. Correlated-Pulsing Corrections

Due to the geometry of the wide-angle muon telescope, it is possible for some through particle trajectories to trigger a TSB count by missing the bottom plate, as shown in Figure 18. Further, some of these trajectories may intersect the boundaries of a ZA(f) in the $(\xi, \zeta) = 40^\circ$ north, east, south, and west positions. Should any S pulse be generated in the acceptance interval thereafter, that is, between 0.3 and 5.3 usec later, an erroneous count will be generated. The S pulses following a false TSB count may come either from the random impact of cosmic rays, from random noise, or from a correlated second pulse generated within the system.

A multichannel analyzer accumulation of the "stopping-muon" decay times was available for all data taken between 22 October 1974, the beginning of this experiment, and 1 February 1975. Comparison of this time-domain data with the theoretical muon decay curve indicated that approximately 20% of all muon counts accumulated to that time were generated by either correlated pulsing or accidental coincidences. To test the possibility that accidental coincidences were responsible, the TSB and S-F rates were measured, and the accidental rate was calculated. The results were:

$$R_{\text{TSB}} = 175 \frac{\text{counts}}{\text{min}} = 2.92 \text{ cps}$$

$$R_{\text{SF}} = 2100 \frac{\text{counts}}{\text{min}} = 35 \text{ cps}$$

$$T_r = \text{decay pulse acceptance window} = 5.0 \times 10^{-6} \text{ sec}$$
Through particles may intersect ZAD at \(\phi = 40^\circ \) in N-S or E-W plane.

Figure 18. Generation of TSB pulses by through particles, leading to acceptance of false muon signatures.
These figures yield an accidental rate of 5.11×10^{-4} cps. The raw muon rate at that time was approximately 900 counts/hour, or 0.25 cps, indicating that the 20% excess in counts could not have been generated by purely random coincidences.

At least one known phenomenon can explain second pulses in the stop tank that are coupled to those produced by cosmic rays. Should a gas, such as air, leak into one or both of the 5" photomultiplier tubes, its ionization by the accelerated photoelectrons from a scintillator flash would make it a charge carrier. Sufficient quantities of such charged particles dislodging more electrons from the photo-cathode could cause one or many correlated pulses.

Correlated pulsing was observed on an oscilloscope when the 5" tubes were decoupled from the stop tank and triggered by a pulsed light source. The correlated pulsing was at all times less than 150 millivolts in amplitude, and was concentrated about a 0.8 μsec lag behind the initiating pulse. This lag corresponded to a prominent peak in the time-domain spectrum.

Approximately 80% of the correlated pulsing was eliminated upon reducing the 5" phototube voltage from 2300v to 2200v. After recoupling the 5" tubes to the stop tank, the correlated pulsing was further reduced by increasing the stop tank discriminator thresholds from 20 mv to 100 mv. A variety of discriminator thresholds was examined, 100 mv being the lowest possible setting which coincidences between through cosmic rays (TBS) and stop tank second pulses (STB).
Following this correction, the average stopping muon count rate decreased from about 900 counts per hour to about 540 counts per hour. This 40% decrease was somewhat greater than the drop expected from the elimination of correlated-pulse counts, implying that the detection efficiency of the system had decreased. However, the time-domain data now showed no noise-generated peaks or other anomalies, and the half-life obtained from it was within 2% of the published muon half-life in organic compounds.\(^{(11)}\)

However, a time-domain accumulation of "muons" detected by the \(40^0 S\) detector only showed that approximately 20% of these counts were still caused by multiple pulsing. This is not inconsistent with a correlated-pulsing rate of 0.3% or less from the wide-angle telescope as a whole. The requirement was set that no data from the \(40^0 N\) or \(40^0 S\) positions be accepted from the time period before the reduction of the stop tank tube gain. To the accepted data was applied a correction of \((-0.20 \pm 0.05)_{40N,S}\), or \((-0.020 \pm 0.005)_{0}\).

F. Compensation for Counting Efficiency of Muon Telescope Components

As has been shown in Section IV A, the detection efficiency of the zenith angle detectors can be corrected for by switching two detectors between an angled position and the vertical. However, no such simple means exists for correcting for variations in efficiency within the large components of the muon telescope, although these efficiency variations are measureable.

The efficiencies at various positions on the top and bottom plates
were measured by the "sandwich" method, using the detectors
described in Section II C. Figure 19 is a schematic representation
of two small detectors being used to measure a local efficiency of
a larger planar detector P. Sn₁ and Sn₂ represent the smaller
"sandwich" detectors. The count rate of Sn₁ and Sn₂ in coincidence is

\[R_{12} = \epsilon_1 \epsilon_2 G I_0 \]

(23)

where \(\epsilon_1 \) and \(\epsilon_2 \) are the sandwich detector efficiencies, G is a
geometrical factor due to the areas and arrangement of Sn₁ and Sn₂,
and \(I_0 \) is the vertical flux. It can be seen from the figure that
every particle that passes through both Sn₁ and Sn₂ must also pass
through P; the count rate of Sn₁, P, and Sn₂ in coincidence is then
given by

\[R_{1P2} = \epsilon_1 \epsilon_1 \epsilon_2 G I_0 \]

(24)

therefore,

\[\epsilon_P = \frac{R_{1P2}}{R_{12}} \]

(25)

Measurements of this sort were conducted in various regions of the
top and bottom plates, and the results are recorded in Figures 20 and
21. These measured efficiencies are accurate to ±10%.

Figure 20 indicates that the corner areas of the top plate are
significantly less than 100% efficient. Particles detected by ZADs
in the 40° NE and 40° SE positions must pass through these regions
Figure 19. Measurement of the efficiency of a planar detector by means of the "sandwich" method. All particles passing through both \(S_{m_1} \) and \(S_{m_2} \) are constrained to pass through \(F \) as well.
Figures 20 and 21. Efficiency measurements of top and bottom plates, respectively, by "sandwich" method. Dotted areas of local efficiencies are drawn to scale.
enroute to the stop tank. Thus the apparent rates seen by ZADs in these positions are lower than the true rates. The exact amount of enhancement required is uncertain, but is probably between zero and 15%. The correction due to low corner efficiency was, then,

\[(+0.08 \pm 0.08)R_{40\text{NE,SE}}, \text{or } (+0.02 \pm 0.02)R_0. \]

It is also apparent, from Figure 21, that the low efficiency regions of the bottom plate allow some false muon counts to be generated. The correction for this effect is inherent in the correlated pulsing corrections to the 40° N and 40° S positions (see Section IV E), and no additional correction is required.

Because of the difficulty of measuring local efficiencies within the stop tank, and because the small stop tank volume was viewed by two high-efficiency, high-gain photomultiplier tubes, the stop tank counting efficiency was assumed to be 100% throughout the course of the experiment.

G. Positional Error of Zenith-Angle Detectors

It was felt that the position of each ZAD was known to ±0.5" in any direction. This error is insignificant for all except the 40° N and 40° S locations; as may be seen in Figure 13, a small change in the real position of a 40° N or 40° S detector causes a large fractional change in count rate. Accordingly, after all other corrections were made to these points, \(\gamma_{40\text{N}} \) and \(\gamma_{40\text{S}} \) were scaled up by a factor of 2.5, due to rate variations with position.
V. COMPARISON OF MEASURED DATA AND PREDICTED RESPONSE

A. The Chi-Square Fit

A standard method of determining which of several theoretical expressions best fits a set of experimental data is the "chi-square" test." In this process, the quantity

\[s = \sum_{i=1}^{k} \frac{(Q_i - N_i)^2}{N_i} \]

(26)

is to be minimized, where the \(Q_i \) are observed data points, and the \(N_i \) are the corresponding theoretical values, selected from any of several predictions. In addition to yielding the best-fitting theoretical curve, the process can measure, although subjectively, the goodness of fit of any theoretical curve. The number of points \(k \), assuming that the \(Q_i \) are independent of one another, is known as the number of degrees of freedom.

The magnitude of \(s \), as expressed in equation (26), is applicable only when the \(Q_i \) and \(N_i \) are total numbers of counts, whereas this experiment deals with normalized rates. To relate the two, assume that an observed rate \(R_i \) is equal to \(\frac{Q_i}{T_i} \), and similarly that a theoretical rate \(P_i \) is equal to \(\frac{N_i}{T_i} \). Then

\[s = \sum_{i=1}^{k} \frac{(R_i - P_i)^2}{P_i} \]

(27)

For a normalized rate, \(R_i \) must be divided by the normalizing rate \(R_i^0 \), and \(P_i \) by the theoretical rate \(P_i^0 \), which cannot be expressed exactly
in terms of equation (27). An approximation may be made by dividing
both the R_i and P_i by R_i^0, which gives

$$S = \sum_{i=1}^{k} T_i R_i^0 \left(\frac{R_i}{R_i^0} - \frac{P_i}{P_i^0} \right)^2.$$ \hspace{1cm} (28)

The products $T_i R_i^0$ are simply the number of counts in the vertical
detector over the time periods T_i. Equation (28) is also applicable
to reciprocity-normalized rates, if the substitutions

$$\frac{R_i}{R_i^0} = \sqrt{\frac{A_i C_i}{B_i D_i}},$$ \hspace{1cm} (29)

$$T_i R_i^0 = \sqrt{B_i D_i},$$ \hspace{1cm} (30)

and

$$\frac{P_i}{P_i^0} = P_i'$$ \hspace{1cm} (31)

are made, where the A_i and C_i are the raw numbers of ZAD events at
(z_i, ξ_i), and the B_i and D_i are the events in the vertical ZADs, for
each time T_i. The P_i' are simply the predictions of normalized rates
of a program such as ZADRESSP3. S is now used in this form,

$$S = \sum_{i=1}^{k} \sqrt{B_i D_i} \left[\frac{R_i(\cdot)}{R_i(0)} - \frac{P_i'}{P_i} \right]^2.$$ \hspace{1cm} (32)
in the program RESULTS, listed in Appendix D. This value of S is labeled "FLAT S" in the output of RESULTS, for reasons which will be apparent later.

The drawbacks of the formula for S developed in equations (26) through (32) are that it is an approximation, improperly normalized as of equation (28), and gives equal weight to each data point. Equation (26) is actually valid only when \(N_i = c_i \), i.e., when the \(Q_i \) are Gaussian-distributed about the \(N_i \). Should some of the measured rates have large known systematic errors, S would become unreasonably large.

A more universally applicable expression for S is given by

\[
S = \sum_{i=1}^{k} \frac{(Q_i - N_i)^2}{\sigma_i^2},
\]

where the \(\sigma_i \) are the standard deviations corresponding to the \(Q_i \) (after Wolberg.\(^{17}\)) The reasons for preferring equation (33) may be stated briefly. Using this expression, the statistically poorer points receive less weight in the calculation of S. Further, any known errors which are systematic in nature, but which cannot be made an exact correction to the data (e.g., the low efficiency of the top plate corner regions), may be stated as an increase in the value of the uncertainty \(\sigma_i \). Finally, equation (33) is not limited in its applicability to numbers of counts; rather, the \(Q_i \) and \(N_i \) may be used directly as normalized rates and reciprocity-normalized rates. Program RESULTS outputs the value of equation (33) as "WEIGHTED S".
The actual use of the variable χ^2 is as a reference; that is, values of χ^2 are tabulated, as a function of certain "confidence levels," the measure of goodness of fit mentioned earlier, and of k, the number of degrees of freedom. S is compared to these tabulated values.

B. Analysis of Data

Table 5 is a summary of all of the corrections in Section IV, along with the net results upon each normalized rate and σ. These were the corrections employed in program RESULTS, which performed the S-minimization process by evaluating S for various values of the cosine-power n. In Figure 22, the weighted S values generated by equation (33) are given for various values of the cosine-power. The upper curve was generated using uncorrected values for the reciprocity-normalized data points, and is shown for comparison only. The lower curve, when all corrections have been applied, clearly shows that S is minimized when the cosine-power is about 4.7. Further, published tables (13, p.4) may be used to find the relative probability that the data came from each set of predicted values. From these relative probabilities, the "confidence levels" described previously, it may be seen that n probably deviates from the value 4.7 by no more than ±0.5:

<table>
<thead>
<tr>
<th>n</th>
<th>weighted S</th>
<th>Relative Closeness of Fit</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>25.5</td>
<td><0.01</td>
</tr>
<tr>
<td>4</td>
<td>13.1</td>
<td>0.2</td>
</tr>
<tr>
<td>4.5</td>
<td>7.64</td>
<td>0.7</td>
</tr>
<tr>
<td>5</td>
<td>7.77</td>
<td>0.7</td>
</tr>
<tr>
<td>5.5</td>
<td>12.0</td>
<td>0.3</td>
</tr>
</tbody>
</table>
Figure 22. Weighted S curves for all data ($k = 10$ degrees of freedom), generated by uncorrected and corrected data. Computations by program RESULTS.
In order to show the influence of the marginal data points on the value of S, the curves in Figure 23 were generated by data excluding that at the marginal points 40° N and 40° S. Compare the dotted curve to the uncorrected 10-point curve at the top of the figure. The dotted curve, which excludes the marginal points but employs no other corrections, shows that the error in the uncorrected data is due mainly to the 40° N and 40° S data. Adding the corrections to the 8-point curve generates the solid curve which, it may be seen, is very similar to the 10-point curve in Figure 22.

The flat-S values generated by equation (32) are plotted in Figure 24. They were not employed in the data analysis, because equation (32) is not considered to weight the data points properly.

The confidence levels quoted in this section should not be interpreted as a measure of confidence of the observer. Rather, they represent a relative measure of the closeness of fit of each set of predicted to the measured data.
Figure 23. Comparison of S for data exclusive of 40 k and 40 S data ($k = 8$ degrees of freedom), with S curve generated by 10 uncorrected data points ($k = 10$). Computations by program RESULTS.
Figure 24. Flat (unweighted) curves for all data (k = 10 degrees of freedom), generated by uncorrected and corrected data. Computations by program RESULTS.
VI. DISCUSSION OF RESULTS

A. Mathematical Description of Detector System

The program MURESP is an example of inductive logic -- it springs from the description of the zenith-angle detection system in the ZADRESP programs. Its validity, therefore, depends upon two criteria of induction: the accuracy with which the ZADRESP program predicted the response of the wide-angle telescope in coincidence with the zenith-angle detectors; and the validity of replacing the zenith-angle detectors with the top coincidence plate as a whole.

Figure 25 shows the corrected data in the north half-plane and at the 40° northeast position, superimposed upon the ZADRESP3-generated rate predictions for $n = 4.5$ and $n = 5$. The error bars are of the values computed by program RESULTS. All corrected data points are within one standard deviation of the predicted curve, indicating that ZADRESP3 indeed provides an accurate description of the ZAD-coupled wide-angle telescope response, satisfying the first criterion for induction.

It is assumed that the second criterion is satisfied, since the area elements of the top plate may be made arbitrarily small. The resulting detector description is then identical to that for a ZAD except for a factor of $\cos \theta$. The predictions of MURESP may then be said to be accurate within the limits of this experiment. These predictions are:

- a wide-angle telescope half-angle (zenith-angle within which half of all particles are detected) of $23.0^\circ \pm .25^\circ$, or a full width
Figure 25. Comparison of predictions from program to measured rates in north half-plane (curve extrapolated to 40° NE), for n = 4.5 and n = 5. Calculations of rates from raw data by program RESULTS.
at half-maximum of $46.0^\circ \pm 0.5^\circ$, taking the value of n to be
4.7 ± 0.5; and

--- an average zenith-angle secant for the particles detected
of 1.19, which is important in energy computations.

B. Description of the Stopping-Muon Flux at Sea Level

The value of the cosine-power n for stopping muons, as obtained
in this experiment, is significantly higher than the cosine-powers
of the differential muon energy spectra observed by other experimen-
ters. For example, Kraushaar, in 1949, measured the muon differ-
tential range spectrum for $R > 71 \, \text{gm cm}^{-2}$ of air (corresponding to a
kinetic energy of about 350 MeV), and found n to be approximately
3.3.\(^{(1)}\) Zar, in 1951, measured the differential range spectrum for
through particles in approximately the same energy band, and found n
to be 2.97.\(^{(1)}\) Moroney and Parry, in 1954, also obtained an n of
about 3.3 for the differential spectrum at 0.3 BeV/C.\(^{(1)}\) By contrast,
the cosine-power of stopping muons as determined in this work was
4.7 ± 0.5.

Several factors contribute to this difference. First, all of
the other observers cited above used data as far away from the zenith
as $0 = 60^\circ$, whereas in this experiment no measurements beyond $n = 40^\circ$
were taken. The spectra in each of the cited works tends to dip until
the zenith angle exceeds $n = 30^\circ$, when a leveling-off occurs; the
average cosine-power over the entire range of zenith-angles is about
3 to 3.3, but the n in the regions nearer the zenith appears to be
somewhat greater. Second, the angular apertures of all of the telescopes in the cited works were somewhat wider than those of the ZADs in this experiment. Third, all of the telescopes used in the cited works were, to some degree, susceptible to enhancement by vertical showers as the telescopes were inclined to larger zenith angles. The latter consideration may be shown to be insignificant, however. When shower corrections were applied to the experimental data herein, the value of n at which S was minimized changed by less than 0.2; also, the cited experiments were consistent in their values of n independent of their shower susceptibility.

A fourth consideration in comparing the zenith-angle distributions is the energy band of the particles being counted. It is known that the cosine-power increases with decreasing energy, and that a stopping muon is of the minimum detectable energy at the earth's surface. The surrounding overburden also has an effect upon the energy distribution at the detector. More will be said about energy effects in the next section.

It is reasonable to state, however, that the flux description determined by this experiment,

$$I(\theta) = I_0 \cos^{4.7} \theta,$$

is the relevant flux to employ in calculations concerning the wide-angle muon telescope described herein.

C. Energy Considerations

For a particle to stop in the detection system, it must pass
through three major contributors to ionization energy loss: the building roof and structure; the lead soft-component shield; and the scintillator of the stop tank. Figure 26 shows a cross-section of the building in which the detection system was maintained. For each of the paths shown, the average particle energy was calculated, using the following assumptions:

-- the muon specific energy losses in scintillating plastic and in carbon, expressed as MeV·cm²/gm, are approximately the same;

-- the muon specific energy losses in concrete and in copper are approximately the same; and

-- no scattering is assumed.

The results of these energy estimates were:

<table>
<thead>
<tr>
<th>Path Zenith Angle</th>
<th>Energy Loss Contribution</th>
<th>(\bar{E})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>20 g/cm² plastic</td>
<td>70 MeV</td>
</tr>
<tr>
<td></td>
<td>55 g/cm² lead</td>
<td>60 MeV</td>
</tr>
<tr>
<td></td>
<td>90 g/cm² concrete</td>
<td>130 MeV</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>260 MeV</td>
</tr>
<tr>
<td>30°</td>
<td>23 g/cm² plastic</td>
<td>80 MeV</td>
</tr>
<tr>
<td></td>
<td>63 g/cm² lead</td>
<td>70 MeV</td>
</tr>
<tr>
<td></td>
<td>104 g/cm² concrete</td>
<td>150 MeV</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>300 MeV</td>
</tr>
<tr>
<td>40°</td>
<td>28 g/cm² plastic</td>
<td>100 MeV</td>
</tr>
<tr>
<td></td>
<td>71 g/cm² lead</td>
<td>80 MeV</td>
</tr>
<tr>
<td></td>
<td>450 g/cm² concrete</td>
<td>670 MeV</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>850 MeV</td>
</tr>
</tbody>
</table>

The high energy-loss values in plastic are due to the sharp increase
Figure 26. Stopping-muon telescope location within surrounding building (CWR building, Greenbury Point, U.S. Naval Radio Transmitter Station, Annapolis, Maryland.) A plywood-and-shingle roof covered the area between the two beveled columns shown, which are actually cross-sections through an octagonal structure 3.0 feet thick. Stopping power of concrete blocks through which vertical cosmic rays must pass may have been somewhat overestimated, since they are porous blocks, as opposed to the dense structural concrete elsewhere. Trajectories of 40° N and 40° S actually transit different amounts of concrete.
in $\frac{dE}{dx}$ as the muon stops. Range and energy-loss values were taken from High-Energy Particle Data, published by Lawrence Radiation Laboratory.

At first glance, the much higher energy required to produce a stopping muon with a zenith angle of 40° seems to imply that the surrounding building produces significant attenuation in the muon rate at $\theta = 40°$. This would have artificially lowered the apparent cosine-power n. However, upon examining the differential sea-level muon spectra of Moroney and Parry (1), Kraushaar (11), and Alkofar et al. (13), there is no consistent difference in the differential intensities of muons of energy 260 MeV and those of 850 MeV. The spectra are very flat in this region, the greatest difference in the two intensities being about five percent. Thus, the effect of the building as shielding is merely to shift the energies of stopping muons to another portion of the energy spectrum, but not to decrease their number significantly.

D. Suggestions for Further Research

The following possibilities for further research were suggested by the results of this experiment and the problems associated therewith. First, it is suggested that the zenith-angle distribution of stopping muons be measured at larger zenith angles. The only distribution of interest in this experiment was that which produced counts in the wide-angle muon telescope. However, any shallowing of the distribution at larger angles would be of great interest theoretically.
Second, an expression for the zenith-angle distribution should be developed which is a result of theoretical considerations. As stated previously, the use of the expression \(I = I_0 \cos \theta \) is a customary, rather than a theory-based, procedure. A prediction of zenith-angle distribution should be associated with each muon production-attenuation model.

Third, a more extensive study of the incidence of shower-associated stopping muons should be undertaken. Most showers in this apparatus should have been eliminated by the anticoincidence plate; however, their persistence (due at least in part to the low efficiency of the bottom plate) may permit a study to be made of them. It is possible, also, that showers have distorted the apparent zenith-angle distribution in some way other than that assumed herein.

Fourth, a Monte Carlo calculation of scattering effects in the building and lead shielding should be undertaken. Muons of the energies being measured here are at least as susceptible to scattering as the through particles measured in other experiments, for which scattering corrections are often significant.

Finally, two areas of research have suggested themselves and are, although not directly related to zenith-angle distribution, infinitely related to the meaning and importance of stopping-muon cosmic rays at sea level. The first is the performance of a time-correlation of stopping-muon arrivals over an acceptance time of about one second. The ramifications of any non-random time peaks which might appear are manifold. Second, and lastly, a collection of shower-associated stopping-muon data should also be undertaken,
In solar and sidereal time. An ambiguity exists in the primary energy spectrum between $10^{13}\,\text{eV}$ and $10^{15}\,\text{eV}$, and shower-associated stopping muons are in the ideal range for studying this ambiguity.
TABLE 1

Nuclear Abundances in the Primary Cosmic Radiation (2)

<table>
<thead>
<tr>
<th>Element</th>
<th>Relative Abundance</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>100</td>
</tr>
<tr>
<td>He</td>
<td>15</td>
</tr>
<tr>
<td>Be</td>
<td>0 to 0.4</td>
</tr>
<tr>
<td>C,N,O,F</td>
<td>1.2 ± 0.4</td>
</tr>
<tr>
<td>Ne</td>
<td>0.2</td>
</tr>
<tr>
<td>Mg</td>
<td>0.09</td>
</tr>
<tr>
<td>Si</td>
<td>0.07</td>
</tr>
<tr>
<td>Fe,Co,Ni</td>
<td>0.06</td>
</tr>
<tr>
<td>beyond Ni</td>
<td><10^{-5}</td>
</tr>
<tr>
<td>Table 2</td>
<td>Major Dimensions of Detector System</td>
</tr>
<tr>
<td>---------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>Wide-Angle Stopping Muon Telescope</td>
<td></td>
</tr>
<tr>
<td>Size of top and bottom plates</td>
<td>48.0" x 48.0"</td>
</tr>
<tr>
<td>Separation of plates</td>
<td>48.0"</td>
</tr>
<tr>
<td>Scintillator size in stop tank</td>
<td>16 3/4" x 16 3/4" x 15" (N-S)</td>
</tr>
<tr>
<td>Height of stop tank center from bottom plate upper surface</td>
<td>15.75"</td>
</tr>
<tr>
<td>Offset of stop tank center from centerline of plates</td>
<td>0.5" to the south</td>
</tr>
<tr>
<td>Zenith-Angle Detectors and Mount</td>
<td></td>
</tr>
<tr>
<td>Size of ZAD scintillator</td>
<td>2.0" x 5.0" dia.</td>
</tr>
<tr>
<td>Radius of mount</td>
<td>60.0"</td>
</tr>
<tr>
<td>Radius of travel of ZAD scintillator centers</td>
<td>63.0"</td>
</tr>
<tr>
<td>Center of mount arc from center of stop tank</td>
<td>0 ± 0.5" vertical, 0 ± 0.5" E-W, 0.5" ± 0.5" to the south</td>
</tr>
<tr>
<td>Height of vertical ZAD scintillator from top plate upper surface</td>
<td>30.5"</td>
</tr>
</tbody>
</table>
TABLE 3

ZADRESP3 Predictions of Normalized ZAD Stopping-Muon Count Rates*

\[
I = I_0 \cos^n \theta
\]

<table>
<thead>
<tr>
<th>ZAD Position</th>
<th>2.5</th>
<th>3.0</th>
<th>3.5</th>
<th>4.0</th>
<th>4.5</th>
<th>5.0</th>
<th>5.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>10° N</td>
<td>0.9597</td>
<td>0.9519</td>
<td>0.9441</td>
<td>0.9365</td>
<td>0.9290</td>
<td>0.9216</td>
<td>0.9143</td>
</tr>
<tr>
<td>10° S</td>
<td>0.9597</td>
<td>0.9519</td>
<td>0.9441</td>
<td>0.9365</td>
<td>0.9290</td>
<td>0.9216</td>
<td>0.9143</td>
</tr>
<tr>
<td>20° N</td>
<td>0.8498</td>
<td>0.8231</td>
<td>0.7974</td>
<td>0.7726</td>
<td>0.7488</td>
<td>0.7258</td>
<td>0.7037</td>
</tr>
<tr>
<td>30° N</td>
<td>0.6891</td>
<td>0.6407</td>
<td>0.5960</td>
<td>0.5547</td>
<td>0.5165</td>
<td>0.4812</td>
<td>0.4485</td>
</tr>
<tr>
<td>30° E</td>
<td>0.6857</td>
<td>0.6380</td>
<td>0.5940</td>
<td>0.5533</td>
<td>0.5157</td>
<td>0.4809</td>
<td>0.4488</td>
</tr>
<tr>
<td>30° S</td>
<td>0.6764</td>
<td>0.6286</td>
<td>0.5844</td>
<td>0.5436</td>
<td>0.5059</td>
<td>0.4710</td>
<td>0.4388</td>
</tr>
<tr>
<td>40° N</td>
<td>0.0456</td>
<td>0.0379</td>
<td>0.0315</td>
<td>0.0262</td>
<td>0.0218</td>
<td>0.0181</td>
<td>0.0151</td>
</tr>
<tr>
<td>40° NE</td>
<td>0.5008</td>
<td>0.4384</td>
<td>0.3842</td>
<td>0.3371</td>
<td>0.2961</td>
<td>0.2604</td>
<td>0.2292</td>
</tr>
<tr>
<td>40° SE</td>
<td>0.4929</td>
<td>0.4313</td>
<td>0.3778</td>
<td>0.3313</td>
<td>0.2908</td>
<td>0.2556</td>
<td>0.2249</td>
</tr>
<tr>
<td>40° S</td>
<td>0.0232</td>
<td>0.0191</td>
<td>0.0158</td>
<td>0.0131</td>
<td>0.0108</td>
<td>0.0090</td>
<td>0.0074</td>
</tr>
</tbody>
</table>

* The program ZADRESP3 actually calculated absolute count rates, in terms of \(I_0 \). The absolute rates were then normalized by division by the predicted rate of a tube at \((0^\circ,0^\circ)\).
TABLE 4

Measured ZAD Counts, Normalized Rates, and Unbiased Estimates of Error

<table>
<thead>
<tr>
<th>ZAD Position</th>
<th>Raw Data, N</th>
<th>N</th>
<th>Reciprocity</th>
<th>R(i)</th>
<th>Estimated Error, j</th>
</tr>
</thead>
<tbody>
<tr>
<td>10° N</td>
<td>906</td>
<td>1013</td>
<td>1185</td>
<td>.971</td>
<td>+ .059</td>
</tr>
<tr>
<td>10° S</td>
<td>1112</td>
<td>734</td>
<td>714</td>
<td>.982</td>
<td>+ .063</td>
</tr>
<tr>
<td>20° N</td>
<td>1071</td>
<td>571</td>
<td>831</td>
<td>.804</td>
<td>+ .051</td>
</tr>
<tr>
<td>30° N</td>
<td>534</td>
<td>301</td>
<td>595</td>
<td>.550</td>
<td>+ .046</td>
</tr>
<tr>
<td>30° E</td>
<td>292</td>
<td>333</td>
<td>612</td>
<td>.505</td>
<td>+ .047</td>
</tr>
<tr>
<td>30° S</td>
<td>698</td>
<td>208</td>
<td>356</td>
<td>.565</td>
<td>+ .051</td>
</tr>
<tr>
<td>40° N</td>
<td>48</td>
<td>35</td>
<td>356</td>
<td>.109</td>
<td>+ .021</td>
</tr>
<tr>
<td>40° NE</td>
<td>178</td>
<td>200</td>
<td>599</td>
<td>.289</td>
<td>+ .031</td>
</tr>
<tr>
<td>40° SE</td>
<td>169</td>
<td>155</td>
<td>610</td>
<td>.265</td>
<td>+ .030</td>
</tr>
<tr>
<td>40° S</td>
<td>62</td>
<td>50</td>
<td>624</td>
<td>.091</td>
<td>+ .015</td>
</tr>
</tbody>
</table>

None of the corrections discussed in Sections IV D through IV G have been applied to either the rates or the error estimates.
<table>
<thead>
<tr>
<th>ZAD Position</th>
<th>Additive Correction to Rate</th>
<th>Multiplicative Correction to Q</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>30° N</td>
<td>-0.064</td>
<td>1.2</td>
<td>Showers rate uncertainty</td>
</tr>
<tr>
<td>30° E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30° S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40° N</td>
<td>-0.024</td>
<td>3.9</td>
<td>Showers, false count, and position uncertainties</td>
</tr>
<tr>
<td></td>
<td>-0.022</td>
<td></td>
<td>Correlated pulsing</td>
</tr>
<tr>
<td></td>
<td>-0.046</td>
<td></td>
<td>NET</td>
</tr>
<tr>
<td>40° NE</td>
<td>-0.024</td>
<td>2.0</td>
<td>Shower and top plate efficiency uncertainties</td>
</tr>
<tr>
<td></td>
<td>+0.022</td>
<td></td>
<td>Showers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+0.025</td>
<td>Top plate eff.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+0.001</td>
<td>NET</td>
</tr>
<tr>
<td>40° SE</td>
<td>-0.024</td>
<td>2.0</td>
<td>Shower and top plate efficiency uncertainties</td>
</tr>
<tr>
<td></td>
<td>+0.025</td>
<td></td>
<td>Showers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+0.001</td>
<td>Top plate eff.</td>
</tr>
<tr>
<td>40° S</td>
<td>-0.024</td>
<td>3.9</td>
<td>Showers, false count, and position uncertainties</td>
</tr>
<tr>
<td></td>
<td>-0.018</td>
<td></td>
<td>Correlated pulsing</td>
</tr>
<tr>
<td></td>
<td>-0.042</td>
<td></td>
<td>NET</td>
</tr>
</tbody>
</table>
Literature Cited

Literature Cited (Cont'd)

11 W. L. Kraushaar, Phys. Rev. 76, 1045. (1949)

14 J. L. Zar, Phys. Rev. 83, 761. (1951)

APPENDIX A

Muon Telescope and ZAD Circuitry

The following three pages contain the block diagrams of the electronic components of the wide-angle muon telescope and the zenith-angle detectors, exclusive of the circuitry for the automatic data output system. The high-voltage supplies are omitted from the plate circuitry and ZAD circuitry. Separate high-voltage supplies are used for the stop tank tubes (2200 v or 2400 v), top and bottom plate tubes (2200 v), and zenith-angle detector tubes (1600 v).
Circuitry of stop tank, and of muon identification. Note:

1. High voltage supply to stop tank tubes separate from that of top and bottom plates.
2. Cliplines cause a pulse-shortening by reflection, giving an effective resolving time of 5 nsec between 5" tubes.
3. Limiters do not function as such, remain in circuit only to preserve timing (after 1 February 1975).
4. 300 nsec delay causes all "muons" decaying between 2.3 and 5.4 sec to register a count. The time-integral of the muon decay curve over this interval yields an automatic efficiency of 7%.

Diagram:
- 5" tubes
- High V. Supply
- #1 DISC LIMITER
- 5 nsec clipline
- #2 DISC LIMITER
- 5 nsec clipline

Diagram:
- TSE coinc 300 nsec delay
- 30 nsec delay
- TSE coinc 30 nsec delay
- DISC 5 nsec width
- μ coinc
- STOP to scaler & multiple coincidence unit
- START 5 μsec window
- Multichannel Analyzer
Top and Bottom Plate Circuitry

![Diagram of circuitry showing connections between components like DISC, FAN-IN, B, T, TB, coinc, TE, TSE, and TSB. The diagram indicates the flow of signals through the circuit with specific labels and directions.]
APPENDIX B

Zenith-Angle Detector Rate-Predictive Programs

The following pages list the predictive computer programs described in Section III B, and contain some sample runs of these programs. The programs ZADRESP, ZADRESP2 and ZADRESP3 represent a developmental sequence, and are presented in chronological order. ZADWRITE is used to feed the coordinates of the subdivisions of a ZAD into a file, named ZACoord, from which they may be read by ZADRESP2 or ZADRESP3.
80 PRINT "INPUT N...";
90 INPUT N
110 PRINT "INPUT ZETA,X...";
120 INPUT E,A
130 LET D=1
131 LET T=2
140 LET X(D)=60*SIN(E/57.29)*COS(A/57.29)
150 LET Y(D)=60*SIN(E/57.29)*SIN(A/57.29)
160 LET Z(D)=60*COS(E/57.29)
170 LET R(D)=60
180 FOR X=-7.5 TO 7.5
190 FOR Y=-7.5 TO 7.5
200 FOR Z=-7.5 TO 7.5
210 LET X(T)=X+(X(D)-X)*(33.5-Z)/(Z(D)-Z)
220 LET Y(T)=Y+(Y(D)-Y)*(33.5-Z)/(Z(D)-Z)
230 IF X(T)>24 THEN 260
240 IF X(T)<-24 THEN 260
250 IF Y(T)>24 THEN 260
260 IF Y(T)<-24 THEN 260
270 LET R=SQR((X(D)-X)^2+(Y(D)-Y)^2+(Z(D)-Z)^2)
280 LET U=X(D)*(X(D)-X)+Y(D)*(Y(D)-Y)+Z(D)*(Z(D)-Z)
290 LET Q=(Z(D)-Z)/R
300 LET P=U/((R^3)*R(D))
310 LET C=C+(Q*N)*P
320 LET C=(Q*N)*P
330 LET C=K+(Q*N)*P
340 NEXT Z
350 NEXT Y
360 NEXT X
290 PRINT "RATE =";C;"\times I(0)\times\SigmaA."
/OLD ZADRESP./RUN

2) ZADRESP 12 MAY 75 23:00

INPUT N...? 4.7
INPUT ZETA,XI...? 0.0

RATE = 1.105 TIMES 1(0)*SIGMA.

9.233 SEC. 26 I/O
2)READY

RUN

ZADRESP 12 MAY 75 23:01

INPUT N...? 4.7
INPUT ZETA,XI...? 40.45

RATE = 0.327894 TIMES 1(0)*SIGMA.

9.275 SEC. 26 I/O
READY

* * * * *

GENERATION OF A NORMALIZED COUNT AT 40 DEGREES NORTH-EAST USING PROGRAM "ZADRESP", THE ACTUAL NORMALIZATION TAKES PLACE BY DIVIDING THE TWO ABSOLUTE RATES, NOT THE DIFFERENCE OF A CONSTANT BETWEEN THESE ABSOLUTE RATES AND THOSE OF "ZADRESP3". THE "ZADRESP3" VALUES ARE CORRECT.
130 LET U=1
135 LET V=2
137 LET R=0.56
139 PRINT "INPUT EXPONENT OF COS(THETA) ;"
139 INPUT N
200 FOR L=1 TO 16
210 READ #1: X(D)
220 FOR X=-7 TO 7 STEP 2
230 FOR Y=-8 TO 8 STEP 2
240 FOR Z=-6 TO 6 STEP 2
241 LET X(T)=X+(X(D)-X)*(35.*Z)/(Z(D)-Z)
242 LET Y(T)=Y+(Y(D)-Y)*(35.*Z)/(Z(D)-Z)
243 IF X(T)<-25 THEN 300
244 IF X(T)>25 THEN 300
246 IF Y(T)<-24 THEN 300
247 IF Y(T)>24 THEN 300
248 LET X=3.4*(X(D)-X)*Z+(Y(D)-Y)*Z+(Z(D)-Z)*Z
250 LET U=X(D)*(X(D)-X)+Y(D)*(Y(D)-Y)+Z(D)*(Z(D)-Z)
270 LET P=U/(X(D)-Y)
280 LET P=j(X)*h(Y)
290 LET C=1+((X*N)*P/16
300 NEXT Z
310 NEXT Y
320 NEXT X
330 NEXT L
340 PRINT C
350 END
NOTE: THE PROCEDURE FOR OBTAINING NORMALIZED COUNTS FROM "ZADRESP2" AND "ZADRESP3" ARE IDENTICAL. THEREFORE, A SEPARATE SAMPLE RUN OF "ZADRESP2" AND "ZADWRITE" IS NOT INCLUDED. "ZADRESP2" USES THE SAME DETECTOR MEASUREMENTS AS DOES "ZADRESP3", BUT DOES NOT PROVIDE AS MUCH INFORMATION.
1 LET J = 0.1
2 LET M = 0.046
3 fill #1 "ZADCO".
4 PRINT "INPUT NORMALIZING FACTOR":
5 INPUT A
6 LET M = M / A
7 IF M <= 0.01 THEN PRINT "INPUT ZADCO LIMIT":
8 PRINT "INPUT PHOTOMETER ZENITH, AZIMUTH...":
9 INPUT X, Y
10 PRINT "INPUT EXPONENT OF ZENITH-AZIMUTH DIST...":
11 PRINT "INPUT "
12 LET X = 100.0, Y = 90.0
13 FOR A = 7 TO 7 STEP 0.1
14 FOR Y = 8.5 TO 8.5 STEP 0.1
15 LET X1 = X, Y1 = Y
16 LET X2 = X, Y2 = Y
17 LET X3 = X, Y3 = Y
18 LET X4 = X, Y4 = Y
19 IF X1 < X2 THEN 110
20 IF X2 < X3 THEN 110
21 IF X3 < X4 THEN 110
22 IF X4 < X1 THEN 110
23 LET X = X1
24 LET Y = Y1
25 LET X = X2
26 LET Y = Y2
27 LET X = X3
28 LET Y = Y3
29 LET X = X4
30 LET Y = Y4
31 PRINT " "
32 END
/OLD ZADWRITE/RUN/OLD ZADRES3/RUN

2) ZADWRITE 12 MAY 75 22:32

INPUT DETECTOR ZENITH, AZIMUTH ANGLES...? 0, 0

4) ZADRES3 12 MAY 75 22:32

INPUT NORMALIZING FACTOR? 1
INPUT DETECTOR ZENITH, AZIMUTH...? 0, 0
INPUT EXPONENT OF ZENITH-ANGLE DIST...? 4.7

AVERAGE RANGE TRAVERSED = 8.42407 INCHES.
COUNT RATE = 25.0236 TIMES I(0)*SIGMA.
 25.0236 = NORMALIZED RATE.

27.976 SEC. 60 I/O
4) READY

/OLD ZADWRITE/RUN/OLD ZADRES3/RUN

2) ZADWRITE 12 MAY 75 22:37

INPUT DETECTOR ZENITH, AZIMUTH ANGLES...? 40, 45

4) ZADRES3 12 MAY 75 22:37

INPUT NORMALIZING FACTOR? 25.0236
INPUT DETECTOR ZENITH, AZIMUTH...? 40, 45
INPUT EXPONENT OF ZENITH-ANGLE DIST...? 4.7

AVERAGE RANGE TRAVERSED = 10.7775 INCHES.
COUNT RATE = 7.03727 TIMES I(0)*SIGMA.
 7.03727 = NORMALIZED RATE.

27.504 SEC. 60 I/O
4) READY

* * * * *

GENERATION OF A NORMALIZED COUNT AT 40 DEGREES NORTH-EAST USING PROGRAM "ZADRES3".
FILE #1: "ZACOORD"
10 LET R(D)=65.0
15 PRINT "INPUT DETECTOR ZENITH, AZIMUTH ANGLES..."
20 INPUT E
25 IF Z=0 THEN 200
30 LET E=E/57.29
40 LET A=A/57.29
50 LET X0=R(C)*SIN(E)
51 LET X0=X0+C
80 LET D1=1.1*COS(E)
85 LET D2=1.1
130 FOR X1=X0-1.5*D1 TO X0+1.5*D1 STEP D1
140 FOR Y1=-1.5*D2 TO 1.5*D2 STEP D2
150 LET Z = SQRT(R(D)^2 - X1^2 - Y1^2)
152 LET W=ATN(Y1/X1)
154 LET R1=SQRT(X1^2+Y1^2)
156 LET Y=R1*SIN(W+A)
158 LET X=R1*COS(W+A)
160 WRITE #1:X
170 NEXT Y1
180 NEXT X1
190 ST0P
200 LET Z=65.0
210 FOR X=-1.15 TO 2.15 STEP 1.1
220 FOR Y=-1.65 TO 1.65 STEP 1.1
230 WRITE #1:X
240 NEXT Y
250 NEXT X
999 END
APPENDIX C

Muon Telescope Analysis Programs

Program MURESP is a direct offshoot of the ZADRESP3 program. The only change in detector description is the replacement of the ZAD area and solid angle with the subdivisions of the top plate. A factor of $\cos \theta$ is required due to the top plate's oblique angle with respect to the incoming flux away from the vertical.

Programs DETECTOR, whose detector dimensions are only approximate, and DETECTR2, where the dimensions are considered accurate to $\pm 0.5^\circ$, are the products of the "trajectory" method of predicting detector response. They are not suitable for verification by zenith-angle detectors, as is MURESP. However, they employ the same detector description as does MURESP; further, multiplying the curve in Figure 15 by $I(\theta,\phi)\sin \theta$ and integrating over the wide-angle telescope aperture should give the same results that MURESP gives.
10 PRINT "INIT EXPONENT OF "#G123:5.67"..."
15 INPUT n
17 PRINT "SOUTH HALF(1) OR NORTH HALF...?"
20 INPUT m
22 IF m=2 THEN L7
23 LET A=-20.5
24 LET B=-2.5
25 GOTO 30
27 LET A=3.5
28 LET B=21.5
30 LET Z1=0.5
40 FOR X1=-n TO 0 STEP 6
50 FOR Y1=-1 TO 1 STEP 5
60 FOR X2=7 TO 7 STEP 2
70 FOR Y2=-8 TO 8 STEP 2
80 FOR Z2=-8 TO 8 STEP 2
90 LET R=SQR((X2-X1)^2+(Y2-Y1)^2+(Z2-0)^2)
100 LET C=(Z1-Z2)/R
110 LET D=6*360*(C^(N+1))/(R^2)
120 LET T=T+D
130 IF C<=COS(10/57,29) THEN 160
140 LET F(1)=F(1)+D
150 GOTO 300
160 IF C<=COS(30/57,29) THEN 190
170 LET F(2)=F(2)+D
180 GOTO 300
190 IF C<=COS(30/57,29) THEN 220
200 LET F(3)=F(3)+D
210 GOTO 300
220 IF C<=COS(40/57,29) THEN 250
230 LET F(4)=F(4)+D
240 GOTO 300
250 LET F(5)=F(5)+D
300 LET w1=1+1/C
310 LET S=S+1
320 NEXT Z2
330 NEXT Y2
340 NEXT X2
350 NEXT Y1
360 NEXT X1
380 PRINT
390 LET P1=P1+1
400 NEXT X1
410 NEXT Y1
420 NEXT Z1
430 NEXT X2
440 NEXT Z2
450 PRINT
460 LET P2=P2+1
470 NEXT X2
480 NEXT Z2
490 NEXT X1
500 NEXT Y1
510 NEXT Z1
520 NEXT Y2
530 NEXT X2
MJRESP (CONTINUED)

570 PRINT "TOTAL COUNT RATE = "; 10*TIMES I(C)*SIGMA*
580 PRINT
585 PRINT "LOWER BOUND", "UPPER BOUND", "COUNTS WITHIN"
590 FOR L=1 TO D
600 PRINT 10*(L-1), 10*L, F(L)
610 NEXT L
620 PRINT
630 PRINT "AVERAGE SECANT = "; S1/S
699 END
5 PRINT "INPUT VOLUME ELEMENT SIZE...";
6 INPUT n
10 LET m(n)
15 PRINT "INPUT MAXTA...";
16 INPUT T
18 LET a: T + 1
19 FOR i = 0 TO m STEP 1
20 FOR a = 0 TO a-1 STEP 1
30 FOR x = 0 TO a-1 STEP 1
70 LET A(x, 0, n) = 4.76 - (x/2)*TAN(T/7.6)/COS(P/7.6)
80 LET Y = 0 + S/2 + (4.76 - (x/2)*TAN(T/7.6))/SIN(P/7.6)
50 IF x < -0.4 THEN 200
110 IF x > 0.4 THEN 200
120 IF Y < -24 THEN 200
130 IF Y > 24 THEN 200
140 LET A(x, 0, n) = 1
200 NEXT Z
230 NEXT Y
240 NEXT X
250 NEXT P
260 PRINT A(x, 0, n) = 16/((16/2) - 3)
299 END
DETECTING.

10 PRINT "WHICH ZENITH ANGLE?";
20 INPUT E
30 FOR A=0 TO 360 STEP 20
40 FOR X2=-7 TO 7 STEP 2
50 FOR Y2=-8 TO 8 STEP 2
60 FOR Z2=-8 TO 8 STEP 2
70 LET X1=X2+(3.265-Z2)*TAN(E/97.29)*COS(A/57.29)
80 LET Y1=Y2+(3.265-Z2)*TAN(E/57.29)*SIN(A/57.29)
90 IF X1<23.5 THEN 140
100 IF X1>24.5 THEN 140
110 IF Y1<24 THEN 140
120 IF Y1>24 THEN 140
130 LET C=C+1
140 NEXT Z2
150 NEXT Y2
160 NEXT X2
17 NEXT A
18 PRINT "RELATIVE DETECTION ABILITY:";C
99 END
APPENDIX D

Statistical Analysis Program

Program RESULTS, listed in the following pages, has two output forms. First, it may be used to print out a table of reciprocity-normalized data points, corrected or uncorrected, along with the estimated errors and the raw numbers of counts. Second, it can evaluate the flat and weighted S values for the predicted data listed in lines 400-410, for either corrected or uncorrected data. The S values generated by excluding the points at 40° N and 40° S may be obtained by the following modification:

```
320 DATA 8
560
590
410 DATA (predictions for 40° NE, 40° SE only)
```
RESULTS

10 LET n = 0
20 PRINT "CONNECTED": ON UNCONNECTED " :";
30 INPUT "
40 READ L
50 IF L = 1 THEN 10
60 IF G = 2 THEN 15
70 LET E(L) = Y
80 LET E(Z) = X
90 GOTO 15
100 FOR L = 1 TO N
110 READ P(L)
120 NEXT L
130 FOR L = 1 TO N
140 IF L = 0 THEN 1100
150 READ A(L), B(L), C(L), D(L)
160 LET A(L) = L
170 LET B(L) = L
180 LET C(L) = L
190 LET D(L) = L
200 LET E(L) = SQR(A(L) * B(L) + C(L) * D(L))
210 LET E(L) = SQR(E(L) * E(L) + F(L) * F(L))
220 LET W = W + (E(L) - P(L)) * 1/(B(L) * C(L))
230 LET G = G + E(L) * D(L)
240 NEXT L
250 PRINT "DO YOU WANT: INDEX: OR OPTION:"
260 INPUT "
270 IF L = 2 THEN 300
280 PRINT "REDESCRIPTION"
290 PRINT "HOW DATA: "
300 PRINT "POSITION:"
310 PRINT "SORM: "
320 PRINT "SIGMA:"
330 PRINT "
340 FOR L = 1 TO N
350 READ L
360 LET A(L) = L
370 END IF L = 3 THEN 1250

(CONTINUED)
RESULTS (CONTINUED)

100 PRINT L, "NAME " " " " " " "
200 PRINT L, (L)
300 PRINT L
400 PRINT L
500 PRINT L
600 PRINT L
700 PRINT L
800 PRINT L
900 PRINT L
1000 PRINT L
1100 PRINT L
1100 LET N = ((n+2*n)/(n+2)+1)*(1.3)
1200 LET E1 = 1 + 1/Sin(A)+1/Sin(B)+1/Sin(C)
1210 LET E1 = 1 + 1/Sin(A)+1/Sin(B)+1/Sin(C)
1220 LET E1 = 1 - (1/3) - 1
1230 LET N = N
1240 LET A = A
1250 LET B = B
1260 LET C = C
1270 LET D = D
1280 GOTO 110
1290 PRINT L, ""
1300 GOTO 230
1310 END