EVALUATION OF AN INTEGRATED ELECTRONIC INSTRUMENT DISPLAY FOR HELICOPTER HOVER OPERATIONS USING A SIX-DEGREE-OF-FREEDOM FIXED-BASE SIMULATION

Larry Richard Ammerman

Naval Postgraduate School
Monterey, California

March 1975
THESIS

EVALUATION OF AN INFRARED ELECTRONIC INSTRUMENT DISPLAY FOR HELICOPTER HOVER OPERATIONS USING A SIX-DEGREE-OF-FREEDOM FIXED-BASE SIMULATION

by

Jerry Richard Ammerman

Thesis Advisor: D. M. Layton

Approved for public release; distribution unlimited.

March 1975

Naval Postgraduate School
Monterey, California
**Title:** Evaluation of an Integrated Electronic Instrument Display for Helicopter Hover Operations using a Six-Degree-of-Freedom Fixed-Base Simulation

**Author(s):** Larry Richard Ammerman

**Performing Organization Name and Address:** Naval Postgraduate School, Monterey, California 93940

**Controlling Office Name and Address:** Naval Postgraduate School, Monterey, California 93940

**Monitoring Agency Name and Address:** Naval Postgraduate School, Monterey, California 93940

**Distribution Statement:** Approved for public release; distribution unlimited.

**Abstract:**

This report discusses the development and evaluation of an integrated electronic instrument display designed to help alleviate pilot work load and improve aircraft control during the precision hover task while flying solo by reference to instruments. The evaluation utilizes a hybrid computer system to implement a six-degree-of-freedom fixed-base simulation of the UH-1 helicopter and a graphics processor to generate the integrated instrument display. Evaluation pilots were asked to rate the integrated display against...
conventional flight instruments after flying a simulated night over-water rescue mission. The evaluation revealed that the simulated aircraft dynamics were susceptible to pilot induced oscillations in a hover and, therefore, unsatisfactory for use as an evaluation tool. In general, the evaluation pilots considered the integrated display preferable to conventional cockpit instruments; however, further study is recommended since meaningful quantitative data were not obtained.
Evaluation of an Integrated Electronic Instrument Display for Helicopter Hover Operations using a Six-Degree-of-Freedom Fixed-Base Simulation

by

Larry Richard Ammerman
Lieutenant, United States Navy
B.S., The Pennsylvania State University, 1968

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
March 1975

Author

Approved by:

Thesis Advisor

Chairman, Department of Aeronautics

Academic Dean
This report discusses the development and evaluation of an integrated electronic instrument display designed to help alleviate pilot work load and improve aircraft control during the precision hover task while flying solely by reference to instruments. The evaluation utilizes a hybrid computer system to implement a six-degree-of-freedom fixed-base simulation of the SH-2F helicopter and a graphics processor to generate the integrated instrument display. Evaluation pilots were asked to rate the integrated display against conventional flight instruments after flying a simulated night over-water rescue mission. The evaluation revealed that the simulated aircraft dynamics were susceptible to pilot induced oscillations in a hover and, therefore, unsatisfactory for use as an evaluation tool. In general, the evaluation pilots considered the integrated display preferable to conventional cockpit instruments; however, further study is recommended since meaningful quantitative data were not obtained.
# TABLE OF CONTENTS

I. INTRODUCTION .................................................. 10

II. SIMULATION ....................................................... 12
   A. MAJOR EQUIPMENT ........................................... 12
   B. AIRCRAFT DYNAMICS ....................................... 12
   C. DIGITAL COMPUTER PROGRAM ............................... 17
   D. ANALOG COMPUTER PROGRAM ............................... 18
   E. GRAPHICS COMPUTER ....................................... 19
   F. COCKPIT ....................................................... 19

III. INTEGRATED ELECTRONIC INSTRUMENT DISPLAY ............... 21

IV. EVALUATION ..................................................... 25

V. CONCLUSIONS .................................................... 29

APPENDIX A DIGITAL COMPUTER PROGRAM .......................... 34
APPENDIX B DIGITAL COMPUTER PROGRAM FORTRAN VARIABLES .... 68
APPENDIX C ANALOG COMPUTER PROGRAM .......................... 79
APPENDIX D PILOT QUALIFICATIONS AND RATINGS ............... 93
LIST OF REFERENCES ............................................... 94
INITIAL DISTRIBUTION LIST ...................................... 95
LIST OF FIGURES

1. Schematic Diagram of Major Equipment ------------------------ 13
2. Integrated Electronic Instrument Display ---------------------- 22
3. Cooper-Harper Rating Scale ----------------------------------- 27
4. Pilot B Collective Stick Control Inputs ------------------------ 32
I. Stability Derivatives

II. Pilot B Performance Indicators

C1. Use of Trunk Lines

CII. Analog Computer Potentiometer Settings

LIST OF TABLES

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>Stability Derivatives</td>
<td>16</td>
</tr>
<tr>
<td>II.</td>
<td>Pilot B Performance Indicators</td>
<td>31</td>
</tr>
<tr>
<td>C1.</td>
<td>Use of Trunk Lines</td>
<td>80</td>
</tr>
<tr>
<td>CII.</td>
<td>Analog Computer Potentiometer Settings</td>
<td>81</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

**g**
Acceleration of gravity, ft/sec^2

**I_{xx}, I_{yy}, I_{zz}**
Moment of inertia about the x, y, z body-fixed axes respectively, slug-ft^2

**I_{xz}**
Product of inertia, jxz dm, slug-ft^2

**L, M, N**
Aerodynamic moments about the x, y, z body-fixed axes respectively, ft-lbs

**m**
Mass of the helicopter, slugs

**p, q, r**
Angular rates about the x, y, z body-fixed axes respectively, radians/sec

**u, v, w**
Velocities along the x, y, z body-fixed axes respectively, ft/sec

**V_x, V_y, V_z**
Velocities along the X, Y, Z axes of the inertial reference frame, ft/sec

**X_A, Y_A, Z_A**
Aerodynamic forces along the x, y, z body-fixed axes respectively, lbs

**X_E, Y_E, Z_E**
Coordinate position of helicopter in the inertial reference frame, ft

**\Delta A_{1c}, \Delta B_{1c}**
Change in lateral and longitudinal cyclic pitch respectively from reference values, radians

**\Delta \theta_c**
Change in main rotor collective pitch from reference value, radians

**\Delta \theta_r**
Change in tail rotor collective pitch from reference value, radians

Subscripts

**p, q, r, u, v, w**
Used with X, Y, Z, L, M, N to indicate the partial derivative of an aerodynamic force or moment with respect to p, q, r, u, v, w, A_{1c}, B_{1c}, \theta_c, \theta_r respectively
ACKNOWLEDGEMENTS

The author wishes to express his sincere appreciation to Mr. Robert Lines, Mr. William Thomas, and Mr. Al Wong of the Computer Science Laboratory staff for their patient and helpful assistance in programming the simulation, and to Associate Professor Donald M. Layton for his advice and also his technical assistance on the flight trainer. The author adds a special thanks to his wife, Karen, for her assistance and understanding during the project.
I. INTRODUCTION

Almost without exception, knowledgeable helicopter pilots will agree that a lengthy precision hover conducted solely by reference to instruments is one of the most demanding of all helicopter piloting skills. The term "knowledgeable" is used because the vast majority of helicopter pilots are not sufficiently familiar with the instrument hover task to appreciate its difficulty. Most missions of which the helicopter is capable, including both civil and military, do not require a lengthy precision hover under instrument flight conditions. Two principle exceptions to this situation are the Navy anti-submarine warfare (ASW) mission and the Navy and Coast Guard requirement for all-weather, day-night, over-water rescue capability. At a recent Helicopter Instrument Flight Conference hosted by the U.S. Army Aviation Systems Command [Ref. 1] only the U.S. Navy identified the need for increased capability to conduct precision hover operations under instrument flight conditions. A Navy representative to the conference described night over-water flight conditions as an "ink bottle" flight environment requiring the pilot to be on the gages 100% of the time.

Although the Navy has attempted to reduce the pilot work load required for the precision hover task by the use of automatic flight control systems (AFCS), it has been the author's experience that present generation AFCS reliability leaves much to be desired. Mission completion has often been the result of skillful piloting requiring the use of conventional flight instruments. Future generation AFCS reliability will probably improve but the availability of a good
secondary capability should not be ignored in view of the critical requirements for both flight safety and mission completion. It is felt that such a capability can be achieved by providing the pilot with an improved flight instrument display. Such a display should provide the pilot with conventional flight instrument information in a compact, easily recognizable form. The compactness should reduce scan time and improve control and the easily recognizable form should allow a smooth transition from conventional flight instruments to the improved display. It was proposed that such a display in the form of an integrated electronic instrument display would satisfy the above requirements.

An integrated instrument display was developed using the Scientific Data Systems model 9300 digital computer and the Adage AGT-10 graphics processor. The display was then evaluated and compared against conventional flight instruments utilizing a six-degrees-of-freedom fixed-base simulation. The simulation modeled the Kaman Aerospace Corporation SH-2F "Seasprite" helicopter using a modified Link Aviation Corporation instrument flight trainer and a CONCOR CI-5000 analog computer. Various models of the H-2 helicopter have been used extensively by the U.S. Navy for the all-weather rescue mission. Test subjects used for the evaluation were fleet-experienced Navy helicopter pilots who were familiar with the all-weather rescue mission. They were asked to rate the normal flight instruments and the integrated display systems using the Cooper-Harper Rating System and to offer subjective comments on the systems.
II. SIMULATION

A. MAJOR EQUIPMENT

The major equipment used for the simulation was a Scientific Data Systems model 9300 digital computer, a COMCOR CI-5000 analog computer, an Adage AGT-10 graphics processor and a modified Link Aviation Corporation AC-11B Instrument Flight Trainer. In addition a closed circuit television system was used to transmit the graphics display from the AGT-10 output terminal to a small monitor located in the cockpit of the instrument flight trainer. A schematic drawing of the equipment which was tied together through trunk lines is shown in Figure 1.

B. AIRCRAFT DYNAMICS

The simulated aircraft was the Kaman Aerospace Corporation SH-2F "Seasprite" helicopter which is currently operated by the U.S. Navy in its anti-submarine warfare mission. The flight dynamics of the SH-2F were achieved by solving the aircraft equations of motion in six degrees of freedom using the analog and digital computers. A full development of the equations of motion is contained in Ref. 2 but it will be briefly reviewed here in order to correct some printing errors that exist in the final equations.

Euler's equations of motion of an aircraft subject to aerodynamic and gravity forces are
Figure 1. Schematic Diagram of Major Equipment
\begin{align*}
\dot{u} &= \frac{X_A}{m} - g \sin \theta + rv - qw \\
\dot{v} &= \frac{Y_A}{m} + g \sin \phi \cos \theta + pw - ru \\
\dot{w} &= \frac{Z_A}{m} + g \cos \phi \cos \theta + qu - pv \\
\dot{\phi} &= \frac{I_A}{L_{xx}} + \frac{I_{xx}}{L_{xx}} \dot{\phi} \\
\dot{\theta} &= \frac{M_A}{I_{yy}} \\
\dot{\psi} &= \frac{N_A}{I_{zz}} + \frac{I_{xx}}{I_{zz}} \dot{\psi}
\end{align*}

By applying classical small disturbance theory, assuming no coupling between longitudinal and lateral motions and assuming speed effects on some stability derivatives to be negligible the equations become

\begin{align*}
\dot{u} &= X_A(u) + X_A(0) + X_w(0) v + X_{B_{1c}}(0) \Delta B_{1c} \\
&\quad + X_{\theta_c}(u) \Delta \theta_c - g \sin \theta + rv - qw \\
\dot{v} &= Y_v(0) v + Y_p(0) p + Y_r(0) r + Y_{A_{1c}}(0) \Delta A_{1c} \\
&\quad + Y_{\theta R}(0) \Delta \theta_R + pw - ru + g \sin \phi \cos \theta \\
\dot{w} &= Z_A(u) + Z_A(0) + Z_q(0) q + Z_w(0) v + Z_{B_{1c}}(0) \Delta B_{1c} \\
&\quad + Z_{\theta_c}(0) \Delta \theta_c + qu - pv + g \cos \phi \cos \theta
\end{align*}
\[
\dot{\theta} = q \cos \phi - r \sin \phi \\
\dot{\psi} = q \frac{\sin \phi}{\cos \theta} + r \frac{\cos \phi}{\cos \theta} \\
\dot{\phi} = p + \dot{\psi} \sin \theta
\]

Inertial velocities were calculated by resolving the body-fixed axes velocities through the Euler angles using the following equations [Ref. 77]
<table>
<thead>
<tr>
<th></th>
<th>0 KTS.</th>
<th>30 KTS.</th>
<th>50 KTS.</th>
<th>70 KTS.</th>
<th>91 KTS.</th>
<th>112 KTS.</th>
<th>136 KTS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X_A(u)$</td>
<td>0</td>
<td>.2328</td>
<td>-1.501</td>
<td>-3.814</td>
<td>-6.847</td>
<td>-10.62</td>
<td>-15.51</td>
</tr>
<tr>
<td>$X_B(u)$</td>
<td>25.06</td>
<td>22.88</td>
<td>29.96</td>
<td>19.94</td>
<td>17.55</td>
<td>17.62</td>
<td>20.45</td>
</tr>
<tr>
<td>$Z_A(u)$</td>
<td>0</td>
<td>-9.272</td>
<td>-5.854</td>
<td>.6023</td>
<td>6.554</td>
<td>18.76</td>
<td>34.34</td>
</tr>
<tr>
<td>$Z_B(u)$</td>
<td>-.4045</td>
<td>-.5092</td>
<td>-.5843</td>
<td>-.6368</td>
<td>-.6682</td>
<td>-.6875</td>
<td>-.6928</td>
</tr>
<tr>
<td>$Z_{B_1c}(u)$</td>
<td>4.567</td>
<td>35.35</td>
<td>64.79</td>
<td>97.41</td>
<td>131.1</td>
<td>164.4</td>
<td>197.4</td>
</tr>
<tr>
<td>$L_A(u)$</td>
<td>0</td>
<td>.1417</td>
<td>.1940</td>
<td>.2244</td>
<td>.2610</td>
<td>.2456</td>
<td>.1835</td>
</tr>
<tr>
<td>$M_A(u)$</td>
<td>0</td>
<td>.0215</td>
<td>.0261</td>
<td>.0298</td>
<td>.0352</td>
<td>.0409</td>
<td>.0464</td>
</tr>
<tr>
<td>$M_{B_1c}(u)$</td>
<td>-12.17</td>
<td>-12.22</td>
<td>-12.34</td>
<td>-12.54</td>
<td>-12.82</td>
<td>-13.04</td>
<td>-12.15</td>
</tr>
<tr>
<td>$N_A(u)$</td>
<td>0</td>
<td>-.5871</td>
<td>-.7410</td>
<td>-.8881</td>
<td>-1.080</td>
<td>-1.269</td>
<td>-1.447</td>
</tr>
<tr>
<td>$N_{A}(u)$</td>
<td>.0172</td>
<td>.0202</td>
<td>.0227</td>
<td>.0272</td>
<td>.0312</td>
<td>.0352</td>
<td>.0399</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>2.806</th>
<th>.8689</th>
<th>.0491</th>
<th>40.13</th>
<th>-32.08</th>
<th>.5228</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Y_p(0)$</td>
<td>-1.139</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Y_r(0)$</td>
<td>.9627</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Y_{A1e}(0)$</td>
<td>42.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Y_\theta_r(0)$</td>
<td>18.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$L_p(0)$</td>
<td>-2.425</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$L_r(0)$</td>
<td>.4082</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$L_{A1e}(0)$</td>
<td>36.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$M_q(0)$</td>
<td>-.7853</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$M_w(0)$</td>
<td>-.0002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$M_{\theta_c}(0)$</td>
<td>.7789</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$N_q(0)$</td>
<td>-.0338</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**TABLE 1. -- STABILITY DERIVATIVES**
\[ V_x = u \cos \theta \cos \psi + v (\sin \phi \sin \theta \cos \psi - \cos \phi \sin \psi) \]
\[ + w (\cos \phi \sin \theta \cos \psi + \sin \phi \sin \psi) \]
\[ V_y = u \cos \theta \sin \psi + v (\sin \phi \sin \theta \sin \psi + \cos \phi \cos \psi) \]
\[ + w (\cos \phi \sin \theta \sin \psi - \sin \phi \cos \psi) \]
\[ V_z = -u \sin \theta + v \sin \phi \cos \theta + w \cos \phi \cos \theta \]

Inertial position which was an important part of the simulation was calculated by numerical integration of the inertial velocities.

C. DIGITAL COMPUTER PROGRAM

The digital computer was the brain of the simulation. It was used for control of the simulation, data storage and access, initialization of the analog and graphics computers, and performance parameter calculations. It provided inputs to the analog computer for solution of the equations of motion and generated the data required for the graphics processor to produce the instrument display. In addition, it was used to calculate inputs for two cockpit instruments, the airspeed indicator and the radar altimeter, which had piece-wise linear scales that precluded a direct connection to an analog output.

A significant problem which developed during initial testing of the integrated display using the analog simulation was stability. Many of the analog inputs are generated in the digital computer by mathematical operations, or using information derived from, analog outputs. This procedure is cyclic and is termed the dynamic loop. The time required to generate the data for the moving portions of the integrated instrument display, and for the crew directions, caused the total time for the
dynamic loop to exceed the stability limits for the simulation. This resulted in divergent pitch and roll oscillations. A major clean up effort was made in the program to shorten the time required for the FLY, INST and CREW subprograms. This resulted in a significant reduction of the time required to cycle through the dynamic loop which restored stability to the simulation.

A listing of the digital computer program is provided in Appendix A. In addition, a listing of the FORTRAN variables used in the program together with their definitions is provided in Appendix B.

D. ANALOG COMPUTER PROGRAM

The analog computer was used mainly to solve the aircraft equations of motion which were discussed previously. Additionally, it provided a logic interface between cockpit control switches and the digital computer and a direct interface for signals from the digital computer to the cockpit airspeed indicator and radar altimeter. The analog program was essentially the one developed by Hoxie and reported in Ref. 2. Some minor changes were made to the program and are included in Appendix C.

Inputs were provided to the analog computer from the cockpit and from the digital computer through digital to analog converters. Signals from the cockpit were in the form of D.C. voltage signals from simulation control switches and from potentiometers attached to the flight controls. Output signals from the analog computer were used as inputs to cockpit flight instruments and to provide the digital computer with necessary information.
The analog computer patching diagrams and potentiometer settings are contained in Appendix C. Table CI in the Appendix lists the trunk lines running between the analog computer and the cockpit together with the signals carried.

E. GRAPHICS COMPUTER

The graphics computer was used to generate the integrated electronic instrument display which was evaluated. Existing software [Ref. 4] permitted easy interface between the graphics processor and the FORTRAN program used for the digital computer. The instrument display was generated in two steps from data supplied by the digital computer. The static portions (scale marks, numbers, etc.) were generated during the initialization phase of the simulation from data generated by the digital program subroutine DSPLY. Then during the simulation the dynamic portions of the display (pointers, horizon line, etc.) were generated from data provided by the digital program subroutine INST. In addition, simulated directions from the rescue aircrewman were provided to the graphics processor by the digital program subroutine CREW.

F. COCKPIT

The cockpit used was a Link Aviation Corporation AC-11B Instrument Flight Trainer which has undergone extensive modifications. Modifications to allow interfacing with the analog computer used for this evaluation are reported in Refs. 5 and 6. Additional minor modifications to permit the trainer to be used as a helicopter simulator are reported in Ref. 2. One cockpit flight instrument, the direction velocity indicator (DVI), was not available for use in the simulation. This instrument which is similar in appearance to an instrument landing...
system (ILS) indicator with the addition of a vertical scale on the left side is used to provide the pilot with velocity information derived from the helicopter's doppler radar. It was easy to simulate this instrument graphically, however, with very little loss of realism so, a graphical DVI was used in conjunction with the normal cockpit instrument display. Its location on the TV monitor placed it outside the optimal scan pattern when using the normal flight instruments, however, this was thought to be a minor inconvenience which would not appreciably affect the results of the evaluation.

Simulation control switches utilized by Hoxie [Ref. 27] were also used for this evaluation with the exception that the NORMAL-AUTOMATIC switch which was used to control the type of instrument display generated by the graphics processor was changed to NORMAL-INTEGRATED. Its function was to select the type of instrument display desired. The NORMAL position selected the cockpit flight instruments and the INTEGRATED position selected the integrated display in addition to the cockpit flight instruments.

Signals carried by the trunk lines between the cockpit and the analog computer are shown in Table C1.
III. INTEGRATED ELECTRONIC INSTRUMENT DISPLAY

The integrated electronic display which was evaluated was developed with two basic ideas in mind. First, was to design a display which would be compact. This would reduce pilot scan time and hopefully increase the accuracy of aircraft control which would result in a more precise hover. Second, was to keep the display format as close as possible to that of conventional flight instruments. This would reduce or eliminate any pilot learning or adjustment time and permit easy transition from conventional flight instruments to the integrated display.

The display which was developed is shown in Figure 2 for two flight conditions. The top photograph shows the helicopter in a level cruise condition at 500 feet and 70 knots. The bottom photograph depicts the helicopter in a stable hover at an altitude of 40 feet. Figure 2 shows the display at approximately one-half actual size.

The reasoning behind the display design was simple but hopefully straightforward. Radar height information was depicted at a vertical scale with a sliding pointer. This was to provide a clearer analog correspondence to the actual physical situation -- height above the ground -- than that provided by conventional circular instruments. It is located on the left side of the display to provide direct correspondence with the flight control which is primarily used to control altitude -- the collective pitch lever. The airspeed scale, likewise, is located on the right side of the display to correspond to the right-hand flight control -- cyclic pitch.
Figure 2. Integrated Electronic Instrument Display
Velocity information derived from the helicopter's doppler radar was displayed in a format almost identical to that of the conventional DVI instrument. Normal cockpit flight instrument arrangements have the DVI located above the attitude gyro indicator; however, in the integrated display it was located below the attitude gyro next to the radar altimeter scale. The reason for this can be understood by examining Figure 2. Note that in the situation shown in the bottom photograph, which is the desired condition for a precision hover, the radar altimeter pointer, the doppler vertical speed pointer and the doppler fore-aft ground speed line are in a horizontal line across the bottom of the display. Any deviation from the desired hover condition should immediately be noticed by the pilot as a deviation of this "line". This should decrease reaction time in correcting for deviation of these parameters and, therefore, result in a more precise hover.

Pitch and roll attitude information was portrayed in a conventional format and since a central position was desired it was located at the top center of the display. Turn rate and slip information which is almost useless in a precision hover was depicted in nearly conventional format in the upper right area of the display. The turn needle slides horizontally under the standard rate turn scale marks rather than rotating about its lower end as in a conventional turn indicator. Turn and slip information is, however, important for the instrument approach flight condition which is discussed later.

Heading information was displayed as a horizontal tape sliding past an index pointer which indicated actual heading. The tape moved as one would expect (i.e. right to left for a right turn) instead of backwards which is the characteristic of the old-style horizontal directional
gyros found in older aircraft. Most pilots prefer the circular vertical card display for heading, however, limitations in the graphics processor precluded displaying a circular compass rose which could rotate. This situation could probably be solved if a special purpose integrated electronic display were to be developed. Since heading information is of minor importance during the precision hover task due to good heading hold features of helicopter automatic stabilization equipment this limitation was considered to be a very minor drawback to the evaluation.

During development of the display the digital computer program which generates the graphics data for the display was intentionally kept as general as possible. This permitted such parameters as location, size, and spacing of the individual instruments to be changed with a minimum of program changes. Many combinations of the above parameters were tried before arriving at the final display shown in Figure 2. The basic display is the author's idea of how it should look; however, suggestions concerning the display were solicited from experienced Navy helicopter pilots during its development. These suggestions resulted in some rearrangement of the individual instruments which, hopefully, led to a practical, well-designed display.
IV. EVALUATION

A. TASK

The final approach and precision hover phases of a night over-water rescue mission were simulated for the evaluation. The aircraft was situated two nautical miles from the target at an altitude of 500 feet, heading toward the target at a speed of 70 knots. This permitted time for the test subject to become comfortable flying the simulator and to descend to 150 feet before reaching the one nautical mile "gate" position. At the gate position the pilot commenced a descent and a deceleration to arrive over the survivor in a hover at an altitude of 40 feet. Since a rescue aircrewman was not available, appropriate directions to the pilot were supplied via the integrated display in the form of standard movement commands [Ref. 3] to position the aircraft over the survivor. The pilot was required to maintain a hover position within an area of ± 30 feet of the survivor for two continuous minutes to effect the pick-up. An additional 30 seconds were then required to hoist the survivor aboard. Timing was not started until the aircraft was initially maneuvered to within ± 9 feet of the survivor. If the helicopter drifted outside the ± 30 feet area timing was stopped and then restarted at zero whenever the aircraft was again maneuvered to within ± 9 feet of the survivor. After retrieving the survivor the pilot departed straight ahead climbing to 500 feet. This completed the task.

B. PILOTS

Five fleet-experienced Navy helicopter pilots were used for the evaluation. All of them were familiar with the over-water rescue
mission and all of them had flown either or both of the U.S. Navy model H-2 or H-3 helicopters operationally. Both of these helicopters are used for over-water rescue missions and both have similar cockpit flight instrument displays. Pilot experience is listed in Appendix D together with the ratings they assigned to the two instrument displays.

C. FAMILIARIZATION

Each evaluation pilot was given a short briefing on the simulation and the equipment. He was told basically how it worked and how it could be controlled from the cockpit. He was advised of the peculiarities of the trainer and how it would differ from a real helicopter. He was told what the evaluation task would be and what would be expected of him. The Cooper-Harper rating scale (Figure 3) was explained and he was asked to keep this scale in mind while flying the simulation.

Each pilot was then given the opportunity to fly the helicopter until he was comfortable with its handling qualities and familiar with the instrumentation. During this time he made several practice approaches to a hover using both instrument systems.

D. EVALUATION FLIGHTS

After sufficient familiarization the pilots each made two flights for the record during which they completed the evaluation task. During one flight conventional cockpit flight instruments were used and during the other the integrated display was used. During the flights, "performance indicators" in the form of root mean square values of inertial velocities and inertial position were computed by numerical integration using the digital computer. Computation of these values was started whenever the helicopter was first within 1/4 foot of the survivor and
HANDLING QUALITIES RATING SCALE

**ADEQUACY FOR SELECTED TASK OR REQUIRED OPERATION**

**PILOT RATING**

**Excellent**
- Pilot compensation not a factor for desired performance

**Highly desirable**
- Pilot compensation not a factor for desired performance

**Good**
- Minimal pilot compensation required for desired performance

**Negligible deficiencies**

**Fair — Some mildly unpleasant deficiencies**

**Major deficiencies**

**Definition of required operation involves designation of flight phase and/or subphases with accompanying conditions.**
continued until the rescue was effected. Computation did not restart if the helicopter drifted outside the pick-up area.

At the end of the flights each pilot was asked to rate the conventional cockpit flight instrument display using the Cooper-Harper rating scale. Then using this rating as a base line he was asked to assign a rating to the integrated display. He was also asked to give any subjective comments concerning the integrated display that he cared to make. The ratings are listed in Appendix D.
V. CONCLUSIONS

The primary conclusion of the evaluation was that the aircraft dynamics portion of the simulation was unsatisfactory and did not adequately represent a real helicopter in the hover flight condition. Four of the five evaluation pilots were not able to complete the evaluation task within a reasonable time period. The simulated aircraft was particularly susceptible to pilot induced oscillations in pitch and roll while in a hover. These oscillations tended to be slightly divergent which resulted in the pilot being unable to maintain the required hover position for the required time. In a few instances complete loss of control resulted. Maintaining control required intense pilot concentration on pitch and roll attitude which often resulted in large altitude excursions and the frequent display of the "PULL UP -- YOU ARE LOW" crew command. Although Hoxie [Ref. 2] reported the aircraft simulation to be satisfactory, examination of the pilot task used in that evaluation showed that the pilot was required to maintain a position within ± 40 feet of the target and to maintain it for only 45 seconds. Timing was started as soon as the aircraft was within the prescribed area. The target area dimensions used by Hoxie were more than 30% larger than those used in this evaluation. In addition, the 45 second time period required to complete the task is unrealistically low. It is felt that even the two minutes used in this evaluation is very low compared with that which is encountered in an actual night over-water rescue. The aircraft simulation is, therefore, unsatisfactory for evaluations of this type if realistic parameters for hover time and position are specified.
All of the evaluation pilots preferred the integrated display over the normal cockpit instruments, but some were more enthusiastic toward it than others. Areas receiving the most comments were the radar altitude scale and the relative locations of the radar altitude scale and the doppler vertical speed scale. The evaluation pilots preferred the vertical style scale used for radar altitude over conventional circular instruments. They felt it was a more meaningful representation of altitude. Four of the five pilots commented on the relative location of the radar altimeter pointer and the doppler vertical speed pointer in the hover flight condition. They liked the fact that in a hover the pointers were close and lined up so that deviations could easily be noted. Several pilots commented that these scales were particularly easy to interpret.

The area of the display which received the most negative comment was the attitude gyro. Three pilots thought that it should be larger so that small attitude changes could more easily be made and that small deviations could more easily be noticed. It should be noted that helicopter pilots are particularly aware and concerned with attitude changes especially in a hover. In fact most helicopters are equipped with attitude gyro indicators which are much larger than those used in most fixed wing aircraft. One pilot commented on the lack of three-dimensional depth for the integrated display attitude indicator. This was probably due to his familiarity with the conventional attitude indicator which displays attitude as the rotation of a sphere about two perpendicular horizontal axes. Two pilots suggested the incorporation of additional pitch scale lines on the indicator to indicate divisions of five degrees.
As was mentioned earlier only one of the pilots, Pilot B, was able to complete the task in a reasonable time period of practice. Table II shows the performance indicators which were calculated for Pilot B.

<table>
<thead>
<tr>
<th></th>
<th>$V_x$(fps)</th>
<th>$V_y$(fps)</th>
<th>$V_z$(fps)</th>
<th>$X_E$(ft)</th>
<th>$Y_E$(ft)</th>
<th>$Z_E$(ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Instruments</td>
<td>1.38</td>
<td>.43</td>
<td>7.03</td>
<td>10.4</td>
<td>8.4</td>
<td>76.4</td>
</tr>
<tr>
<td>Integrated Display</td>
<td>1.91</td>
<td>1.48</td>
<td>3.23</td>
<td>16.4</td>
<td>20.4</td>
<td>47.4</td>
</tr>
<tr>
<td>Ideal</td>
<td>~0.</td>
<td>~0.</td>
<td>~0.</td>
<td>~0.</td>
<td>~0.</td>
<td>40.0</td>
</tr>
</tbody>
</table>

**TABLE II. PILOT B PERFORMANCE INDICATORS**

Note that when Pilot B was flying using the normal instruments his attention was evidently concentrated on maintaining minimum horizontal velocities. This resulted in small horizontal position deviations but large altitude variations. When flying while using the integrated display his altitude control was significantly better but horizontal control was less. Closer control of altitude deviations is also evident in strip chart recordings which were made of Pilot B's collective stick control inputs. These recordings which have identical scales are shown in Figure 4. Note that the frequency of significant control inputs is much higher for the integrated display than for the normal display. Pilot B commented that when flying while using the integrated display he was forced to pay more attention to altitude control because his peripheral vision picked up the movement of the radar altitude and doppler vertical speed pointers. He mentioned that his vision tended to break down when using either display and that he would fixate on the DVI because of the intense control required to accomplish the task.
Figure 4. Pilot B Collective Stick Control Inputs
It was concluded that an integrated electronic instrument display such as the one evaluated would probably be an asset to safer, more precise helicopter hover operations. However, due to the difficulties experienced with the aircraft dynamics used in the simulation, additional study should be undertaken with this or similar integrated displays before any accurate conclusions are drawn.

The display which was developed for this evaluation could easily be modified for other uses in a helicopter. The DVI could easily be converted for use as an instrument landing system (ILS) indicator or as a TACAN course deviation indicator (CDI). The radar altitude scale could also be changed and used to display barometric altitude when the aircraft is flying at higher altitudes.

It was suggested by one pilot that since a display of this type would probably be generated by a special purpose micro-computer its potential was almost limitless. He suggested displaying a target indicator, which would be set upon first passing over the target, whose position relative to the center of the DVI would indicate the target’s actual position relative to the aircraft. Target position would be generated from the initial position and the integrated doppler velocities. This would virtually eliminate the need for continuous crew-to-pilot communications now necessary for an efficient rescue operation.

Most military helicopter pilots are aware of the advances which have been made in the areas of integrated electronic and "heads-up" instrument displays for fixed wing aircraft and they are concerned that little is being done to help alleviate their work load using similar technology. An area ripe for application of this technology is the precision hover conducted while flying solely by reference to instruments.
APPENDIX A

DIGITAL COMPUTER PROGRAM

This appendix contains a listing of the digital computer program which is written in the Scientific Data Systems FORTRAN IV language.
EVALUATION OF AN INTEGRATED ELECTRONIC INSTRUMENT DISPLAY FOR
HELCOPTER HOVER OPERATIONS USING A SIX-DEGREE-OF-FREEDOM
FIXED-BASE SIMULATION OF THE SH-2F HELICOPTER

```
INTEGER CRXDIR, DRVNAME, ALTNUM, AIRNUM, CMPNUM
DIMENSION DRVNAME(20)
COMMON DRVTAB(10,7), CRXDIR(7,17),B
COMMON /GRAPH/ IDEV, SCALE, ITD(25), INT(25), NBLK, NULL, IBLANK(2),  
1 ALTNUM(12), AIRNUM(20), CMPNUM(90), ASCALE  
COMMON /STATE/ U, VX, UKTS, VX, VY, VZ, THEA, PHI, PSI, THETAB,  
1 PHIDT, PSIDT, XE, YE, ZE, CT, FLTM, VXRMS, VYRMS, VZRMS,  
2 XERMS, YERMS, ZERMS, JFLAG, XFLAG,  
COMMON /GDATA/ YOVS, OVS, XPVS, XDPVS, YDVS, YDPVS, XALT, XALT, XPALT,  
1 XCHG3, XR, YR, XCENT, YCENT, XROT, XROT, XOSLP, YOSLP,  
2 YOSPD, XOSPD, YOSPD, XOSPD, XOSPD, XOSPD, XOSPD, XOSPD, XOSPD, XOSPD,  
3 XLEFT, XRIGHT, YTOP, YBOT, DCMP, YOVS, OVS, EPS, INDY(83)
DATA NULL/-1/, ALTNUM/12/-1/, AIRNUM/20/-1/, CMPNUM/90/-1/,  
1 IBLANK/0/-1/, HGT/*07*/BASE/+06/, SCALE/+20*/ASCALE/+40/,  
2 DCMP/-15/, YOVS/15/, EPS/140/, INDY(1)/37773/, INDY(83)/0/  
NAMELIST IDEV, U, VX, UKTS, VX, VY, VZ, THEA, PHI, PSI, THETAB,  
```

READ STABILITY DERIVATIVES - PRINT TABULAR LISTING

```
READ(5,100) DRVNAME
100 FORMAT(20A4)
READ(5,1C1)((DRVTAB(I,J), J=1,7), I=1,10)
1C1 FORMAT(7F10.4)
WRITE(6,102)
102 FORMAT('(STABILITY DERIVATIVES')//)
WRITE(6,103)
```
103 FORMAT('0',20X,'0 KTS',5X,'30 KTS',5X,'50 KTS',5X,'70 KTS',5X,
       '91 KTS',4X,'112 KTS',4X,'136 KTS',/
       WRITE(6,104)(DRYRAM(2*I-1),DRYRAM(2*I),(DRVTAB(I,J),J=1,7),I=1,10)
104 FORMAT('0',8X,2A4,F9.4,F6=11.4)
* READ CREW DIRECTIONS - PRINT LISTING
   READ(5,105)((CRWDIR(I,J),I=1,6),J=1,17)
105 FORMAT(6A4)
   WRITE(6,106)
106 FORMAT('1',///,41X,'CREW DIRECTIONS'/)
   WRITE(6,107)((CRWDIR(I,J),I=1,6),J=1,17)
107 FORMAT('0',17X,18A4)
* READ RADAR ALTIMETER SCALE NUMBERS - ECHO CHECK
   READ(5,108)(ALTNUM(J),J=1,17,2)
108 FORMAT(20A4)
   WRITE(6,109)
109 FORMAT('/0',17X,'ALTITUDE SCALE NUMBERS')
   WRITE(6,110)(ALTNUM(J),J=1,17,2)
110 FORMAT('0',14X,2CA4//)
* READ AIRSPEED SCALE NUMBERS - ECHO CHECK
   READ(5,108)(AIRNUM(J),J=1,19,2)
   WRITE(6,111)
111 FORMAT('0',17X,'Airspeed Scale Numbers')
   WRITE(6,112)(AIRNUM(J),J=1,19,2)
112 FORMAT('0',17X,2CA4//)
* READ COMPASS NUMBERS - ECHO CHECK
   READ(5,113)(CMPNUM(J),J=1,90)
113 FORMAT(48A1)
WRITE(6,114)
114 FORMAT('0',17X,'COMPASS NUMBERS!')
WRITE(6,115)(C*PNUM(J),J=1,90)
115 FORMAT('0',16X,48A1,,/',16X,48A1)

* SET Potentializers *

CALL SETPOT (4*PC00,0890, 4*PO01,4724, 4*PO02,1320, 4*PO03,2060,
1 4*PC04,0869, 4*PO05,1952, 4*PC06,2800, 4*PO07,0000,
2 4*PC10,0200, 4*PC11,1224, 4*PC12,2500, 4*PO13,1250,
3 4*PC14,0100, 4*PC15,0533, 4*PC16,5250, 4*PO17,7075,
4 4*PC20,7853, 4*PC21,0389, 4*PC22,1066, 4*PO23,2400,
5 4*PC24,2000, 4*PC25,5000, 4*PC26,0285, 4*PO27,0850,
6 4*PO30,4000, 4*PC31,1416, 4*PC32,9127, 4*PO33,1021,
7 4*PC34,6042, 4*PC35,2393, 4*PC36,4000, 4*PO37,2500,
8 4*PC40,1039, 4*PC41,0018, 4*PC42,4692, 4*PC43,1186,
9 4*PC44,4000, 4*PC45,1250, 4*PC46,6250, 4*PC47,2500,
A 4*PC50,3200, 4*PC51,1041, 4*PC52,2000, 4*PC53,1046,
B 4*PC54,1052, 4*PC55,1259, 4*PC56,5000, 4*PC57,1188)

* SELECT GRAPHICS COMPUTER *

OUTPUT(101) 'SELECT GRAPHICS COMPUTER - TYPE: IDEV= *
INPUT(101)

* SET INITIAL FLIGHT CONDITIONS *

200 CALL RESET(1000)
  U*TS=70
  U=U*TS*1.587
  V=C
  W=5.26
  P=30
  C=C
  R=C
VXRMS = SQRT(VXRMS/RMSTIM)
VYRMS = SQRT(VYRMS/RMSTIM)
VZRMS = SQRT(VZRMS/RMSTIM)
XERM = SQRT(XERM/RMSTIM)
YERM = SQRT(YERM/RMSTIM)
ZERM = SQRT(ZERM/RMSTIM)
OUTPUT(6) 'VXRMS,VYRMS,VZRMS,XERM,YERM,ZERM,RMSTIM,FLTIM

CHECK FOR QUIT OR RERUN

210 IF(TEST(5)*LT.0) GO TO 200
   IF(TEST(4)*LT.0) GO TO 220
   GO TO 210
220 CALL PUTSET
   STOP
   END
SUBROUTINE DSPLY

* GENERATES STATIC PORTION OF INSTRUMENT DISPLAY *

INTEGER CR,DIR,DRVNUM,ALTNUM,AINRNUM,CMPNUM
COMMON /GRAPH/ IDEV,SCALE,ITD(25),ISO(25),NBLK,NULL,IBLANK(2),
1 ALTNUM(18),AINRNUM(20),CMPNUM(90),ASCLE
COMMON /GDATA/ YCVSI,DCVSI,XPVSI,XOOTTI,YOOTTI,DOOTTI,YOALT,DAALT,XPALT,
1 XCHG,RP,XCEN,YCEN,YOTURN,XOTURN,XOSLIP,YOSLIP,
2 YOSPD,DSPD,XSPDP,DTURN,SYNPHI,CSPHI,HGT,BASE,
3 XLEFT,XRIGHT,YTOP,YBET,CMPS,YOHDG,RB,EPS,INDYM(83)
DIMENSION IVSI(2C),DVI(38),IALT(53),IVSI(20),IMAP(9),ITURN(17),
1 ISLIP(6),ISPD(38)
NBLK=1

* VERTICAL SPEED INDICATOR - SCALE DIVISIONS *

XCVSI=-2.5*SCALE
YCVSI=-1.95*SCALE
DS=-10*SCALE
DL=-22*SCALE
CVSI=-35*SCALE
Y=YCVSI+4*DVSI
IVSI(1)=IHEAD(G,10)
IVSI(2)=IPACK(XCVSI,Y,0)
DO 110 J=3,10,4
   X=XCVSI+DL
   IVSI(J)=IPACK(X,Y,1)
   X=X+DS
   Y=Y+CVSI
   IVSI(J+1)=IPACK(X,Y,0)
   X=X+DS
   IVSI(J+2)=IPACK(X,Y,1)
110 CONTINUE
X=X+CL
Y=Y+DVSI
IVSI(J+3)=IPACK(X,Y,0)

CONTINUE
X=X+CL
IVSI(19)=IPACK(X,Y,1)
IVSI(20)=0
CALL GROPH9(IDEV,IVSI,20,NBLK,IER)
NBLK=NBLK+1
IF(IER.NE.0) OUTPUT(6) 'ERROR--IVSI',IER*
X=IVSI=X+10*SCALE

* DIRECTION VELOCITY INDICATOR - SCALE DIVISIONS *

XCDVI=0.
YCDVI=YCVDI
CL=20*20*SCALE
CDVI=20*35*SCALE
X=XCDVI-4*CDVI
Y=YCDVI-CL/2.
IDVI(1)=1EAD(0,10)
IDVI(2)=IPACK(X,Y,0)
DO 115 J=2,19,2
  Y=Y+CL
  IDVI(J)=IPACK(X,Y,1)
  X=X+CDVI
  Y=Y+CL
  IDVI(J+1)=IPACK(X,Y,0)
115 CONTINUE
X=XCDVI-CL/2.
Y=YCDVI-4*CDVI
IDVI(20)=IPACK(X,Y,0)
DO 120 J=21,37,2
  X=X+CL
  IDVI(J)=IPACK(X,Y,1)
120 CONTINUE
X=X+DL
Y=Y+DDVI
IDVI(J+1)=IPACK(X,Y,0)
CONTINUE
IDVI(35)=0
CALL 3=APPH(IODEV,10,38,NBLK,IER)
NBLK=NBLK+1
IF(IER.NE.0) OUTPUT(6),'ERROR--IDVI',IER,
! XLEFT=XCDVI-4*DDVI
XRIGHT=XCDVI+4*DDVI
YTOP=YCDVI+4*DDVI
YBOT=YCDVI-4*DDVI
* CHECK FOR DESIRED DISPLAY
* IF(TST(6).GE.0) RETURN
* RADAR ALTIMETER = SCALE NUMBERS

LNO=36
LX=LNO
ICPS=6
DO 108 J=1,11,2
    CALL TEXTB(IODEV,ALTNUM(J),2,LX,ICPS,2,3,IER)
    IF(IER.NE.0) OUTPUT(6),'ERROR--ALTIMETER SCALE NUMBERS',J,IER,
    L=L+100
    CONTINUE
L=L+2
CALL TEXTB(IODEV,ALTNUM(4),2,LX,ICPS,2,3,IER)
IF(IER.NE.0) OUTPUT(6),'ERROR--ALTIMETER SCALE NUMBER 7',IER,
L=L-2
CALL TEXTB(IODEV,ALTNUM(5),2,LX,ICPS,2,3,IER)
IF(IER.NE.0) OUTPUT(6),'ERROR--ALTIMETER SCALE NUMBER 8',IER,
L=L+3
CALL TEXTB(IODEV,ALTNUM(17),2,LX,ICPS,2,3,IER)
IF(IER .NE. 0) OUTPUT(6) 'ERROR--ALTIMETER SCALE NUMBER 9', IER *

* RADAR ALTIMETER * SCALE

XOALT = 125*(IC1PS-40)*SCALE
YOALT = 3*(21.5-L/V0)*SCALE
DS = 10*SCALE
DL = 25*SCALE
CALO = 3*SCALE
Y=YOALT
IALT(1)=I*PACK(C,10)
IALT(2)=I*PACK(XOALT,YOALT,0)
102 J=3,51,4
   X=XOALT+DL
   IALT(J)=I*PACK(X,Y,1)
   X=X+DS
   Y=YOALT
   IALT(J+1)=I*PACK(X,Y,0)
   X=X+DS
   IALT(J+2)=I*PACK(X,Y,1)
   X=X+DL
   Y=YOALT
   IALT(J+3)=I*PACK(X,Y,0)
   CONTINUE
   X=X+DL-DS
   IALT(55)=I*PACK(X,Y,0)
   X=X+DS
   IALT(56)=I*PACK(X,Y,1)
   X=X-DS
   Y=YOALT
   IALT(57)=I*PACK(X,Y,0)
   X=X+DL
   IALT(58)=I*PACK(X,Y,1)
   IALT(59)=0
   CALL GRAPH2(IDEV,IALT,59,NBLK,IER)
BLK=BLK+1
IF (IER>=E+0) OUTPUT(6) 'ERROR--IALT',IER,*
XPALT=XP+12*SCALE

* VERTICAL GYRO INDICATOR - ANGLE OF BANK SCALE

Xcen=0.
Ycen=1.5*SCALE
F=2.0*SCALE
IVGI(1)=IMFAD(0,10)
J=2
REPEAT 122, FOR ROLL=-60,-30,-20,-10,0,10,20,30,60.
RL=2.35*SCALE
AROLL=ABS(ROLL)
IF (AROLL<ES*10.0 OR AROLL>EQ*20.0) RL=2.20*SCALE
Y=Ycen*R*COS(ROLL/57.3)
X=Xcen*R*SIN(ROLL/57.3)
IVGI(J)=IPACK(X,Y,0)
Y=Ycen*RL*SIN(ROLL/57.3)
Y=Ycen*RL*COS(ROLL/57.3)
IVGI(J+1)=IPACK(X,Y,1)
J=J+2
122 CONTINUE
IVGI(22)=0
CALL GRAPH(IDEV,IVGI,20,3BLK,IER)
NBLK=NBLK+1
IF (IER>=E+0) OUTPUT(6) 'ERROR--IVGI',IER,*
RP=R*15*SCALE
RB=RP-HGT
EPS=ATAN(BASE/(2*R3))

* VERTICAL GYRO INDICATOR - MINIATURE AIRPLANE

DL=1.0*SCALE
DS=0.2*SCALE
I'MAP(1)=IHEAD(0,10)
X=XCEN-DL
I'MAP(2)=IPACK(X,YCEN,0)
X=XCEN-2*DS
I'MAP(3)=IPACK(X,YCEN,1)
X=XCEN-DS
Y=YCEN-DS
I'MAP(4)=IPACK(X,Y,1)
I'MAP(5)=IPACK(XCEN,YCEN,1)
I'MAP(6)=IPACK(-X,Y,1)
X=XCEN+2*DS
I'MAP(7)=IPACK(X,YCEN,1)
X=XCEN+DL
I'MAP(8)=IPACK(X,YCEN,1)
I'MAP(9)=0
CALL GRAPH8(IDEV,I'MAP,9,NBLK,IER)
\$LX=NBLK+1
IF (IER.NE.0) OUTPUT(6) 'ERROR='I'MAP',IER,"

* SLIP INDICATOR = SCALE

XSLIP = 3+60*SCALE
YSLIP = 2+10*SCALE
CS = .25*SCALE
X=XSLIP+DS/2.
Y=YSLIP+DS/2.
ISLIP(1)=IHEAD(0,10)
ISLIP(2)=I'PACK(X,Y,0)
Y=Y+DS
ISLIP(3)=I'PACK(X,Y,1)
Y=Y+DS
ISLIP(4)=I'PACK(X,Y,0)
Y=Y+DS
ISLIP(5)=I'PACK(X,Y,1)
ISLIP(6)=0
CALL GRAPHS(IDEX,ISLIP,6,NBLK,IER)
NBLK=NBLK+1
IF(IER.NE.0) OUTPUT(6) 'ERROR--ISLIP',IER

* RATE OF TURN - SCALE *

XTURN=XOSLIP
YTURN=YOSLIP+0.90*SCALE
BS=10*SCALE
DL=20*SCALE
DTURN=70*SCALE
ITURN(1)=1*G40(0,10)
X=XTURN+2*TURN+DL/2*
Y=YTURN*
ITURN(2)=IPACK(X,Y,0)
DO 135 J=3,13,3
X=X+DL
ITURN(J)=IPACK(X,Y,1)
Y=Y+BS
ITURN(J+1)=IPACK(X,Y,1)
X=X+DL
ITURN(J+2)=IPACK(X,Y,1)
Y=Y+BS
ITURN(J+3)=IPACK(X,Y,1)
X=X+TURN
ITURN(J+4)=IPACK(X,Y,0)
135 CONTINUE
ITURN(17)=0
CALL SNAP9(IDEX,ITURN,17,NBLK,IER)
NBLK=NBLK+1
IF(IER.NE.0) OUTPUT(6) 'ERROR--ITURN',IER

* AIRSPEED - SCALE NUMBERS *

LNO=36
LN=LNO
ICOPS=80
DO 130 J=1,20,2
   CALL TEXTB(1DEV,AINNUM(J),2,LN,ICOPS,2,3,IER)
   IF(IER.EQ.0) OUTPUT(6),ERROR='AIRSPEED SCALE NUMBERS',J,IER
LNL=LNL-2
130 CONTINUE

* AIRSPEED - SCALE DIVISIONS *

XOSPĐ=125*(ICOPS-52)*SCALE
YOSPĐ=3*(21.5-LNO)*SCALE
DS=10*SCALE
DL=25*SCALE
DSPĐ=30*SCALE
ISPĐ(1)=I=IPACK(C,10)
ISPĐ(2)=IPACK(XOSPĐ,YOSPĐ,0)
Y=XOSPĐ+DL
ISPĐ(3)=IPACK(X,YOSPĐ,1)
X=X+DL
Y=YOSPĐ+2*DSPĐ
ISPĐ(4)=IPACK(X,Y,0)
DO 125 J=5,33,4
   X=X+DL
   ISPĐ(J)=IPACK(X,Y,1)
   X=X+DL
   Y=Y+DSPĐ
   ISPĐ(J+1)=IPACK(X,Y,0)
   X=X+DS
   ISPĐ(J+2)=IPACK(X,Y,1)
   X=X+DS
   Y=Y+DSPĐ
   ISPĐ(J+3)=IPACK(X,Y,0)
125 CONTINUE
X=X+DL
SUBROUTINE FLY

* DYNAMIC SIMULATION

REAL MAU,M31CU,LUVRVRJ,NVJ
INTEGER CRDIR,DRVMAM,ALTNUM,AIRNUM,CMPLNUM
COMMON DRVTAB(10,7),CRDIR(7,17)
COMMON /GRAPH/ IODE,SCALE,ITD(25),I33(25),NBK,NULX,IBLANK(2)
1 ALTNUM(18),AIRNUM(20),CMPLNUM(90),ASCA
COMMON /STATE/ U,V,W,JKTS,PSR,VX,VY,VZ,THERA,PHI,PSI,THEDET,
1 PHIDT,PSIDT,XE,YE,ZE,DT,FLTIM,VXRM,VRMS,VZRM,
2 XERM,YERM,ZERM,FLAG,FYSTM,KSAV
COMMON /GDATA/ YOVI,DDSI,DPVI,XODVI,YODVI,DDVI,DDVI,DOALT,DOALT,DPALT,
1 XODCG,RE,ECN,YCEN,YOTURN,YOTURN,EXSLIP,YOSLIP,
2 YOSPD,SPDP,XPSPD,DP,SPH,SSPH,SGPH,SHL,BASE,
3 XLEFT,RIGHT,YP,PX,CMPS,XYOG,PR,EP,INDYM(83)

DIMENSION DRV(10)
EQUIVALENCE (MAU,DRV(1)),(LUVRVRJ,DRV(2)),(M31CU,DRV(3)),(LUVRVRJ,DRV(4))
1 (M31CU,DRV(5)),(DRVMAM,DRV(6)),(CRDIR,DRV(7)),(AIRNUM,DRV(8))
2 (XTHCU,DRV(9)),(ZTHCU,DRV(10))

* SET INITIAL CONDITIONS - SAVE INITIAL VALUES

CALL WRITECLK(0)
IFLAG=0
JFLAG=0
KFLAG=0
FLTIM=0
RSTIM=0
VXRM=0
VRMS=0
VZRM=0
XERM=0
VENS=0*
ZEVS=0*
SLED=0*
THETIC=THETA
CAIC=0*
DTHR=0*
KSAV=0*

100 IF(IFLAG.EQ.1) G9 T9 110
G9 T9 115
110 CALL COMPUTE
CALL STARTCLOCK

PRNT AER
MNFTR STATE VARIABLES IF DESIRED

115 IF(SENS S\$WITCH 1) 120,130
120 WRITE(6,125) UKTS,V,W,P,Q,PHI,THETA,PSI,XE,YE,ZE,FLTIM
125 FORMAT('D,F5.1,F5.2')

CALCULATE VALUES OF AIRSPEED DEPENDENT STABILITY DERIVATIVES

130 DO 137 I=1,10
IF(UKTS.LE.0.) DRV(I)=CRVTAB(I,1) ; G9 T9 137
J=1
U1=0.
IF(UKTS.GE.U2) G8 T9 132
DRV(I)=DRVTAB(I,J)+(DRVTAB(I,J+1)-DRVTAB(I,J))\*(UKTS-U1)/(U2-U1)
G9 T9 137
132 J=J+1
U1=U2
135 CONTINUE
DRV(I)=DRVTAB(I,7)
137 CONTINUE
IF(SENS S\$WITCH 2) 500,502
500 WRITE(6,501) UKTS,XAU,ZAU,LVU
501 FORMAT(10*4F12.4)
502 CONTINUE

* SCALE STABILITY DERIVATIVES *
* X1J=XAU**5
ZAU=ZAU**1
Y1U IS 5K
ZKU=ZKU**5
Y31CU=-Y31CU**0.01
LVU=LVU*19.23
YCU=YCU**25
YVJ=YVJ**25
XTHCU=XTHCU**0.25
Z31CU=Z31CU**0.01

* COMPUTE APPROPRIATE TRIG FUNCTIONS TO SAVE COMPUTER TIME *
SINPHI=SIN(PHI)
COSPHI=COS(PHI)
SINTHE=SIN(THETA)
COSTHE=COS(THETA)
SINPSI=SIN(PSI)
COSPSPSI=COS(PSI)

* COMPUTE REQUIRED FUNCTIONS OF EULER ANGLES - SCALE *
* -53 SIN(THETA) *
GSINTH=1.61*SINTHE
* 5 COS(PHI) COS(THETA) *
GCSPHI=322*COSPHI*COSTHE
* 5G SIN(PHI) COS(THETA) *
GSINPHI=1.61*SINPHI*COSTHE
COORDINATED TURN SYSTEM - DETERMINE TAIL ROTOR INPUT TO ANALOG

DA1C=DA1C+.5

CHECK COORDINATED TURN SWITCH
IF( TEST(3) .LT. 0 ) G9 T9 150
DTHR=ABS(DTHR)
IF( DTHR .GT. .003 ) CALL SETLINES(1,1) ; G9 T9 140
CALL SETLINES(1,-1)
140 DTHRC=0
G9 T9 155
150 CALL SETLINES(1,-1)
BETA=ATAN(V/J)
DTHRC=16.*DA1C+10.*BETA-.PSID9T

COMPUTE EULER ANGLE RATES - SCALE FOR ANALOG INPUT

155 THED9T=Q*COSPHI*RSINPHI
PSID9T=(Q*SINPHI+R*COSPHI)/COSTHE
PHI9DT=P+PSID9T*SINTHE
THE9T=THED9T/.1862
PSID9T=PSID9T*.65
PHI9DT=PHI9DT*.91

COMPUTE INERTIAL VELOCITIES - SCALE VZ FOR ANALOG INPUT

V1=V*COSTHE+(V*SINPHI+W*COSPHI)*SINTHE
V2=V*COSPHI-W*SINPHI
VX=V1*COSP9I-V2*SINPSI
VY=V1*SINPSI+V2*COSP9I
VZ=J*SINTHE+V*SINPHI*COSTHE+W*COSP9I*COSTHE
VZS=VZ**.05

ARISPEED INDICATOR - COMPUTE SIGNAL FOR COCKPIT INSTRUMENT
IF(IKTS* GT. 60.) GO TO 160
ASI- =01*(59.-.4765*UKTS)
GO To 180
160 IF(IKTS* GT. 90.) GO TO 170
ASI- =01*(100.--(100.*/9.)*UKTS)
GO To 180
170 ASI- =01*(163.6-(100.*/55.)*UKTS)

* RADAR ALTIMETER - COMPUTE SIGNAL FOR COCKPIT INSTRUMENT

180 IF(ZE< ST. 200.) RADALT=-65
IF(ZE< ST. 100.) RADALT=-40-.001983*(ZE-100.) ; G9 .T9 190
IF(ZE< ST. 70.) RADALT=-345-.00183*(ZE-70.) ; G9 .T9 190
IF(ZE< ST. 50.) RADALT=-300-.00225*(ZE-50.) ; G9 .T9 190
IF(ZE< ST. 40.) RADALT=-2893-.00107*(ZE-40.) ; G9 .T9 190
IF(ZE< ST. 30.) RADALT=-2429-.00232*(ZE-30.) ; G9 .T9 190
IF(ZE< LE< 0.) RADALT=-2129-.0015*ZE ; G9 .T9 190
IF(ZE< LT< 0.) RADALT=-2189

* COMPUTE INERTIAL POSITION AND FLIGHT TIME

190 CALL READCLK(TNEW)
DT-=-0.001*(TNEW-TOLD)
TSLD=TNEW
XE AND YE IN YARDS, ZE IN FEET
XE=XE+ VX*DT/3
YE=YE+ VY*DT/3
ZE=ZE- VZ*DT
FLTINH=-0.001*TNEW

* ACCUMULATE DATA TO COMPUTE RMS INERTIAL VELOCITIES AND POSITIONS

IF(KFLAG. E3. 0.) GO TO 195
STEM=STM+DT
VXRS=VXRS+VX*DT
VYRMS*VYRMS+VY*VY*DT
VZRMS*VZRMS+VZ*VZ*DT
XERMS*XERMS+XE*XE*DT
YERMS*YERMS+YE*YE*DT
ZERMS*ZERMS+ZE*ZE*DT

* INSTRUMENT DISPLAY DYNAMICS

195 CALL INST

* CREW DIRECTIONS

IF(XE LE 2000 AND ZE LE 250) CALL CREW

* PERFORM D-A AND A-D CONVERSIONS

CALL DAC(1,VIS, 2,XAU, 3,ZAU, 4,MAU, 5,THEDTS, 6,PSIDTS, 7,PHIPTS, 1 8,GSINTS, 9,GSINPH, 10,GSINPH, 11,DTMRC, 12,ASI, 2 16,THCST, 17,THCST, 18,ZHST, 19,XTRCU, 20,ZBICU, 21,TVST, 3 22,TVST, 23,TVST)

CALL ADK(C,PHI, 2,U, 3,THEA, 4,Q, 5,P, 6,R, 7,V, 8,W, 9,DA1C, 1 10,DTMRC)

* SCALE VARIABLES AS REQUIRED

U=U*250*
UKIS=U/1.687
V=V*30*
X*X*50*
P=P*1.5
Q=Q*1.5
R=R*1.5
PHI=PHI/1.91
THEA=THEA/1.862+THEA
PHI=PSI+PSIDTS*DT
* CHECK FOR STOP OR CONTINUE SIGNAL

* IF STOP SWITCH ENERGIZED - EXIT DYNAMIC LOOP
  IF(TEST(2) .LT. 0) G9 T9 210

* IF FLY SWITCH ENERGIZED - CONTINUE DYNAMIC LOOP
  200 IF(TEST(1) .LT. 0) IFLAG=IFLAG+1 J G9 T9 100
  G9 T9 200
  210 CALL STOPCLOCK
     CALL HOLD
     RETURN
     END
SUBROUTINE INST

* GENERATES DYNAMIC PORTION OF INSTRUMENT DISPLAY *

INTEGER CR:DIR,DRVMAM,ALTNUM,AINNUM,CMPLNUM
COMMON DDRVA3(IO,7),CR:DIR(7,17),3
COMMON /GRAPH/ IDEV,SCALE,ITD(25),IOD(25),NBLK,NULL,IBLANK(2),
1 ALTNUM(18),AIRMAM(20),CMPLNUM(90),ASCAL
COMMON /STATE/ UV,XV,PS,LTS,PG,VX,VY,VZ,THET,PHI,FSI,THDS,1
2 PHIO,PSIO,XXE,YYE,ZZT,FLTIME,VRMS,VRMS,VZRM,
3 XERS,YERS,STERS,JFLG,FRSTIM,KSAV
COMMON /DATA/ YCVSI,XPSI,XCSVI,YCCVI,YCDSI,YCDSI,YCAL,T,CAL,T,XPALT,
1 XCHG,RP,ECN,ECN,YCTURN,YCTRNY,XOSLP,XOSLP,
2 YOSLP,OSLP,OSLP,CTURN,SINPHI,CSPHI,HGT,BASE,
3 XLEFT,XRIGHT,YTOP,YBOT,CMPS,YHDS,CHS,EPN,INDYM(83)
DIMENSION ICMP(5),IVSIP(5),IDIVIL(4),IALTP(5),ICMP(38),IBANK(5),
1 IBAR(2),IPBAR(2),ITURN(5),IBALL(5),ISPAD(5),IHC(5)
EQUIVALENCE (IVSIP(1),INDYM(1)), (IDIVIL(1),INDYM(7)), (IALTP(1),
1 INDYM(11)), (ICMP(1),INDYM(16)), (IHC(1),INDYM(54)),
2 (IBAR(1),INDYM(59)), (IPBAR(1),INDYM(64)), (IPBAR(1),
3 INDYM(60)), (ITURN(1),INDYM(62)), (IBALL(1),
4 INDY(73)), (ISPAD(1),INDYM(78))

* VERTICAL SPEED INDICATOR - POINTER *

Y=YCVSI-DVSI*(AMAX(AMIN(VZ,16.7),-16.7))/4.17
IVSIP(1)=IPACK(XPSI,Y,0)
X=XPSI+HGT
Y=Y-EASE/2
IVSIP(2)=IPACK(X,Y,1)
Y=Y+EASE
IVSIP(3)=IPACK(X,Y,1)
Y=Y-EASE/2
IVSIP(4)=IPACK(XPVS1,Y,1)
IVSIP(5)=IPACK(X,Y,1)

* DIRECTION VELOCITY INDICATOR - SPEED INDICATOR LINES
* Y=YODVI*DDVI*(AMAX(AMIN(VX,23.7),-23.7))/5.93
IDVIL(1)=IPACK(XLEFT,Y,C)
IDVIL(2)=IPACK(XRIGHT,Y,1)
X=XODVI*DDVI*(AMAX(AMIN(VY,23.7),-23.7))/5.93
IDVIL(3)=IPACK(X,YT9P,C)
IDVIL(4)=IPACK(X,Y9T,1)

* CHECK FOR DESIRED DISPLAY
* IF(TEST(6)*GE*0) NBK=3 ; GO TO 400
   NBK=9

* RADAR ALTIMETER - POINTER
* IF(ZE*GT*100) GO TO 200
   Y=YOALT+DALT*(AMAX(ZE,-10))/5.
   GO TO 210
200 IF(ZE*GT*200) GO TO 205
   Y=YOALT+DALT*(2*+*(ZE-100))/25.
   GO TO 210
205 Y=YOALT+DALT*(24+++*(AMIN(ZE,550)-200))/100.
210 IALTP(1)=IPACK(XPALT,Y,C)
   X=XPALT+HGT
   Y=Y-BASE/2.
   IALTP(2)=IPACK(X,Y,1)
   Y=Y+BASE
   IALTP(3)=IPACK(X,Y,1)
   Y=Y-RAST/2.
   IALTP(4)=IPACK(XPALT,Y,1)
   IALTP(5)=IPACK(X,Y,1)
COMPASS HEADING

PSIDEG=PSI*57.3
IF(PSIDEG.LE.0.) PSIDEG=PSIDEG+360.*
PSI=5.*(INT(PSIDEG/5.+5.))
K=(72.*PSI)/360.

IF HEADING REMAINS CONSTANT DO NOT REGENERATE TEXT
IF(K.EQ.KSAV) GO TO 250
KSAV=K
ENCOD(20,345,ICOMP)(CMPSUM(J),J=K,K+18)
345 FORMAT(19A1)
CALL TEXTB(1DEV,ICOMP,5,5,30,2,3,IER)

COMPASS - SCALE

L=2.*(K/2)
D1=.10*SCALE
D2=.25*SCALE
IF(K.NE.L) D1=.25*SCALE ; D2=.10*SCALE
X=+.45
Y=+.382
ICOMP(1)=IPACK(X,Y,0)
290 240 J=2,34,4
 Y=Y+D1
ICOMP(J)=IPACK(X,Y,1)
X=X+ICOMP
Y=Y+D1
ICOMP(J+1)=IPACK(X,Y,0)
Y=Y+D2
ICOMP(J+2)=IPACK(X,Y,1)
X=X+ICOMP
Y=Y+D2
ICOMP(J+3)=IPACK(X,Y,0)
240 CONTINUE
Y = Y + 0
ICMP$S(38) = IPACK(X, Y, 1)

COMPASS - HEADING POINTER

250 XOHDG = (PSIDES - IPSI) * DCOMP$ / 2.5
IHDG(1) = IPACK(XOHDG, YOHDG, 0)
X = XOHDG - BASE / 2
Y = YOHDG - HGT
IHDG(2) = IPACK(X, Y, 1)
X = X * BASE
IHDG(3) = IPACK(X, Y, 1)
IHDG(4) = IPACK(XOHDG, YOHDG, 1)
IHDG(5) = IPACK(XOHDG, Y, 1)

VERTICAL GYRO INDICATOR - ANGLE OF BANK POINTER

XP = XCE + RP * SINPHI
YP = XCE + RP * COSPHI
IBANK(1) = IPACK(XP, YP, 0)
X = XCE + RR * SIN(PHI + EPS)
Y = XCE + RR * COS(PHI + EPS)
IBANK(2) = IPACK(X, Y, 1)
X = XCE + RR * SIN(PHI + EPS)
Y = XCE + RR * COS(PHI + EPS)
IBANK(3) = IPACK(X, Y, 1)
IBANK(4) = IPACK(XP, YP, 1)
X = XCE + RR * SINPHI
Y = XCE + RR * COSPHI
IBANK(5) = IPACK(X, Y, 1)

VERTICAL GYRO INDICATOR - HORIZON BAR

PITCH = A * MAX(AMIN(THETA, 87), -87)
RC = PITCH * ASCALE
\begin{verbatim}
YD=YCEX+R0*COSPHI
R0=ABS(R0)
XR=XCEX+R0*SINPHI
CL=SIGT(R3*R3-R0*R0)
XR=XR+CL*COSPHI
Y=XR+CL*SINPHI
IUPA(1)=IPACK(X,Y,0)
XR=XR+CL*COSPHI
Y=XR+CL*SINPHI
IUPA(2)=IPACK(X,Y,1)
*
VERTICAL GYRO INDICATOR - PITCH BAR
*
R0=(PITCH+1745)*ASCALE
YD=YCEX+R0*COSPHI
R0=ABS(R0)
XR=XCEX+R0*SINPHI
CL=SIGT(R3*R3-R0*R0)
XR=XR+CL*COSPHI
Y=XR+CL*SINPHI
IUPA(1)=IPACK(X,Y,0)
XR=XR+CL*COSPHI
Y=XR+CL*SINPHI
IUPA(2)=IPACK(X,Y,1)
*
RATE OF TURN - INDICATOR
*
DS=0.04
CL=0.08
Y=YTJR*0.016
XR=XOTURN=DS/2+DTURN*(AMAX(AMIN(FS15T,0.105),-0.105)/0523
IUPA(1)=IPACK(X,Y,0)
XR=X+35
IUPA(2)=IPACK(X,Y,1)
Y=TERLL
\end{verbatim}
ITURN! (3) = IPACK (X, Y, 1)
X = X + CS
ITURN! (4) = IPACK (X, Y, 1)
Y = Y + DL
ITURN! (5) = IPACK (X, Y, 1)

- SLIP INDICATOR = BALL

DS = 18 * SCALE
X = XCSLIP + DS / 2 + 362 * (PHI = ATAN (U * PSID9T / 32.2))
Y = YCSLIP + DS / 2
IBALL (1) = IPACK (X, Y, 0)
X = X + DS
IBALL (2) = IPACK (X, Y, 1)
Y = Y + DS
IBALL (3) = IPACK (X, Y, 1)
X = X + DS
IBALL (4) = IPACK (X, Y, 1)
Y = Y + DS
IBALL (5) = IPACK (X, Y, 1)

- AIRSPEED = SCALE POINTER

UK = AMAX (AMIN (UKTS, 105.), 0.)
IF (UK < 50 + 20) GO TO 300
Y = YSPD + DSP * UK / 10
GO TO 305
300 IF (UK < 130) UK = 100.
Y = YSPD + DSP * (2 + (UK = 20.) / 5)
305 ISPDP (1) = IPACK (XSPDP, Y, 0)
X = XSPDP + HST
Y = Y + BASE / 2
ISPDP (2) = IPACK (X, Y, 1)
Y = Y + BASE
ISPDP (3) = IPACK (X, Y, 1)
Y=Y-BASE/2
ISPD(4)=IPACK(XPSD,Y,1)
ISPD(5)=IPACK(X,Y,1)
GO TO 420
400 DE 410 I=11,82
INDYM(I)=0
410 CONTINUE
420 CALL GRAVSHA(IDEV,INDYM,B3,NBLK,IER)
IF(IER.EQ.0) OUTPUT(6) 'ERROR - INDM', IER
RETURN
END
SUBROUTINE CREW

*******************************************************************************

* GENERATE APPROPRIATE DIRECTIONS FROM CREW

*******************************************************************************

INTEGER CRDNUM,DRVMAN,ALTNUM,AIRNUM,CMPNUM
COMMON DRVTAB(10,7),CRDDIR(7,17),3
COMMON /GRAPH/ IDEV,SCALE,ITD(25),IGC(25),NBLK,NULL,IBLANK(2),
1 ALTNUM(18),AIRNAM(20),CMPPU(90)
COMMON /STATE/ UX,UX,XKTS,PG,VR,VX,VY,VZ,THETA,PHI,PSI,THEDST,
1 PHIDST,PSIDST,XE,YE,ZE,DT,FLTIM,VRMS,VYRMS,VZRMS,
2 XERMS,YERMS,ZERMS,JFLAG,KFLAG,STIM,KSAV

AXE=ABS(XE)
IF(XE•SE••1100•) G9 T9 705
I=17
J=1
IX=NJLL
IY=NULL
HEVTIM=.C.
G9 T9 765

705 IF(XE•SE••500•) G9 T9 710
I=1
J=16
AXE=200••INT(AXE/200••5)
CODE(4,730,IX) AXE
HEVTIM=.C.
G9 T9 765

710 IF(J•SE••13) G9 T9 755
IF(J•SE••14) G9 T9 765
IF(AXE•LE••3+) I=4 ; IX=NULL ; G9 T9 735
IF(XE•SL••3+) G9 T9 715
IF(XE•LT••20+) I=2 ; G9 T9 720
IF(VX•LT••4•AXE) I=2 ; G9 T9 720
I=3
IF (AXE GT 60) I=7; J=8; IF = NULL; IY = NULL; G9 T0 765
IF (AXE GT 20) I=6; G9 T0 720
IF (VX GT R AXE) I=6; G9 T0 720
I=5
IX = NULL
G9 T0 735
IF (AXE GE 100) AXE = 100 * INT(AXE/100 + 5); G9 T0 725
IF (AXE GT 10) AXE = 10 * INT(AXE/10 + 5); G9 T0 725
AXE = INT(AXE + 5)
725 ENCODE (*, 730, IX) AYE
730 FORMAT (I4)

* CHECK LATERAL POSITION *

735 AYE = ABS (YE)
IF (AYE LE 3) I=16; IY = NULL; G9 T0 752
IF (I=16)
I=16
IF (YE LT -3) G9 T0 740
IF (YE GT -25) J=9; G9 T0 745
IF (VY LT -3*AAYE) J=9; G9 T0 745
J=10
IY = NULL
G9 T0 752
740 IF (YD LT -25) J=11; G9 T0 74E
IF (VY LT 9*AAYE) J=11; G9 T0 745
J=12
IY = NULL
745 IF (AYE GT 10) AYE = 10 * INT (AYE/10 + 5); G9 T0 747
AYE = INT (AYE + 5)
747 ENCODE (*, 730, IY) AYE

* COMPUTE HOVER TIME *

IX = NULL
G9 T0 735
715 IF (X1 GT 60) I=7; J=8; IX = NULL; IY = NULL; G9 T0 765
IF (X1 GT 20) I=6; G9 T0 720
IF (VX GT R AXE) I=6; G9 T0 720
I=5
IX = NULL
G9 T0 735
720 IF (AXE GE 100) AXE = 100 * INT (AXE/100 + 5); G9 T0 725
IF (AXE GT 10) AXE = 10 * INT (AXE/10 + 5); G9 T0 725
AXE = INT (AXE + 5)
725 ENCODE (*, 730, IX) AYE
730 FORMAT (I4)

* CHECK LATERAL POSITION *

735 AYE = ABS (YE)
IF (AYE LE 3) I=16; IY = NULL; G9 T0 752
IF (I=16)
I=16
IF (YE LT -3) G9 T0 740
IF (YE GT -25) J=9; G9 T0 745
IF (VY LT -3*AAYE) J=9; G9 T0 745
J=10
IY = NULL
G9 T0 752
740 IF (YD LT -25) J=11; G9 T0 74E
IF (VY LT 9*AAYE) J=11; G9 T0 745
J=12
IY = NULL
745 IF (AYE GT 10) AYE = 10 * INT (AYE/10 + 5); G9 T0 747
AYE = INT (AYE + 5)
747 ENCODE (*, 730, IY) AYE

* COMPUTE HOVER TIME *
752 IF(JFLAG.EQ.1) GO TO 754
753 IF(I.EQ.4 .AND. J.EQ.16) JFLAG=1 ; KFLAG=1 ; GO TO 755
   H9VTIM=0
   GO TO 765
754 IF(AXE.GT.10 .OR. AYE.GT.10) JFLAG=0 ; H9VTIM=0 ; GO TO 765
755 H9VTIM=H9VTIM+DT
   IF(H9VTIM.GT.130) I=4 ; J=14 ; KFLAG=0 ; GO TO 765
   IF(H9VTIM.GT.120) I=4 ; J=13 ; GO TO 765

* CHECK ALTITUDE

765 IF(ZE.LE.15) I=15 ; J=15 ; GO TO 775

* OUTPUT CREW DIRECTIONS

770 CRDDIR(5,I)=IX
   CRDDIR(5, J)=IY
775 CALL TEXT8(IDEV,CRDDIR(1,I),6,35,29,2,3,IER)
    CALL TEXT8(IDEV,CRDDIR(1,J),6,37,23,2,3,IER)
    RETURN
    END
### STABILITY DERIVATIVES

<table>
<thead>
<tr>
<th></th>
<th>0 KTS</th>
<th>30 KTS</th>
<th>50 KTS</th>
<th>70 KTS</th>
<th>91 KTS</th>
<th>112 KTS</th>
<th>136 KTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>XAU</td>
<td>0.0000</td>
<td>0.2328</td>
<td>-1.5014</td>
<td>-3.8143</td>
<td>-6.8470</td>
<td>-10.6184</td>
<td>-15.5095</td>
</tr>
<tr>
<td>ZAU</td>
<td>0.0000</td>
<td>-9.2718</td>
<td>-5.8539</td>
<td>-6.023</td>
<td>6.5540</td>
<td>18.7617</td>
<td>34.3457</td>
</tr>
<tr>
<td>WAU</td>
<td>0.0000</td>
<td>1.417</td>
<td>1.940</td>
<td>2.244</td>
<td>2.610</td>
<td>2.456</td>
<td>1.835</td>
</tr>
<tr>
<td>ZAU</td>
<td>-4.045</td>
<td>-5.92</td>
<td>-5.843</td>
<td>-6.368</td>
<td>-6.682</td>
<td>-6.875</td>
<td>-6.928</td>
</tr>
<tr>
<td>LVU</td>
<td>-0.215</td>
<td>-0.261</td>
<td>-0.298</td>
<td>-0.352</td>
<td>-0.409</td>
<td>-0.464</td>
<td>-0.519</td>
</tr>
<tr>
<td>WU</td>
<td>-5.371</td>
<td>-7.413</td>
<td>-8.881</td>
<td>-1.0799</td>
<td>-1.2692</td>
<td>-1.4471</td>
<td>-1.6220</td>
</tr>
<tr>
<td>VU</td>
<td>0.172</td>
<td>0.202</td>
<td>0.227</td>
<td>0.272</td>
<td>0.312</td>
<td>0.352</td>
<td>0.399</td>
</tr>
<tr>
<td>ZB1CU</td>
<td>4.5674</td>
<td>35.3516</td>
<td>64.7892</td>
<td>97.4090</td>
<td>131.0581</td>
<td>164.4026</td>
<td>197.3886</td>
</tr>
</tbody>
</table>
CREW DIRECTIONS

STEADY FORWARD  EASY FORWARD  STOP FORWARD
STEADY HEVER   STEP BACK       EASY BACK
TARGET LOST     WAVE OFF       EASY LEFT
STOP LEFT       EASY RIGHT     STOP RIGHT
MAN ON HOIST    MAN IN AIRCRAFT PULL UP - YOU ARE LOW
TARGET IN SIGHT

ALTITUDE SCALE NUMBERS
C  20  40  60  80  100  150  200  500

AIRSPEED SCALE NUMBERS
C  20  30  40  50  60  70  80  90  100

COMPASS NUMBERS
330  360  030  060  090  120  150  180
210  240  270  300  330  360  030
## APPENDIX B

### DIGITAL COMPUTER PROGRAM FORTRAN VARIABLES

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS</td>
<td>Absolute value -- intrinsic subprogram.</td>
</tr>
<tr>
<td>ADK</td>
<td>External subprogram used to perform analog to digital conversion.</td>
</tr>
<tr>
<td>AIRNUM</td>
<td>Airspeed numbers -- array containing the numbers for the airspeed scale.</td>
</tr>
<tr>
<td>ALTHNUM</td>
<td>Altimeter numbers -- array containing the numbers for the radar altimeter scale.</td>
</tr>
<tr>
<td>AMAX</td>
<td>Maximum value of two arguments -- intrinsic subprogram.</td>
</tr>
<tr>
<td>AMIN</td>
<td>Minimum value of two arguments -- intrinsic subprogram.</td>
</tr>
<tr>
<td>AROLL</td>
<td>Absolute value of ROLL.</td>
</tr>
<tr>
<td>ASCALE</td>
<td>Angle scale -- scale factor for converting an angle to a linear displacement.</td>
</tr>
<tr>
<td>ASI</td>
<td>Airspeed indicator -- scaled value of airspeed sent to cockpit indicator.</td>
</tr>
<tr>
<td>ATAN</td>
<td>Arctangent -- intrinsic subprogram.</td>
</tr>
<tr>
<td>AXE</td>
<td>Absolute value of X.</td>
</tr>
<tr>
<td>AYE</td>
<td>Absolute value of Y.</td>
</tr>
<tr>
<td>BASE</td>
<td>Base -- length of the base of the triangular pointers used in the integrated display.</td>
</tr>
<tr>
<td>BETA</td>
<td>Sideslip angle.</td>
</tr>
<tr>
<td>CMPNUM</td>
<td>Compass numbers -- array containing the numbers for the compass scale.</td>
</tr>
<tr>
<td>COMPUTE</td>
<td>External subprogram used to place the analog computer in the &quot;compute&quot; mode.</td>
</tr>
<tr>
<td>COS</td>
<td>Cosine -- intrinsic subprogram.</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>COSPHI</td>
<td>Cosine of PHI.</td>
</tr>
<tr>
<td>COSPSI</td>
<td>Cosine of PSI.</td>
</tr>
<tr>
<td>COSTHE</td>
<td>Cosine of THETA.</td>
</tr>
<tr>
<td>CREW</td>
<td>Crew -- subprogram which generates directions from a simulated rescue aircrewman.</td>
</tr>
<tr>
<td>CRWDIR</td>
<td>Crew directions -- array containing crew directions.</td>
</tr>
<tr>
<td>D1</td>
<td>Length of a scale mark on the compass heading scale.</td>
</tr>
<tr>
<td>D2</td>
<td>Length of a scale mark on the compass heading scale.</td>
</tr>
<tr>
<td>DAIC</td>
<td>(\Delta A_{1c})</td>
</tr>
<tr>
<td>DAC</td>
<td>External subprogram used to perform digital to analog conversion.</td>
</tr>
<tr>
<td>DALT</td>
<td>Altimeter division -- distance between divisions of the radar altimeter scale.</td>
</tr>
<tr>
<td>DCMPs</td>
<td>Compass division -- distance between divisions of the compass heading scale.</td>
</tr>
<tr>
<td>DDVI</td>
<td>Direction velocity indicator division -- distance between divisions of the direction velocity indicator scale.</td>
</tr>
<tr>
<td>DGINIT</td>
<td>Graphics initialization subroutine.</td>
</tr>
<tr>
<td>DL</td>
<td>Long displacement -- length of a long scale mark.</td>
</tr>
<tr>
<td>DRVNAME</td>
<td>Derivative name -- array containing the names of the stability derivatives.</td>
</tr>
<tr>
<td>DRV</td>
<td>Derivative -- array containing the airspeed dependent stability derivatives for a specified airspeed.</td>
</tr>
<tr>
<td>DRVtab</td>
<td>Derivative table -- array containing the airspeed dependent stability derivatives for several airspeeds.</td>
</tr>
<tr>
<td>DS</td>
<td>Short displacement -- length of a short scale mark.</td>
</tr>
<tr>
<td>DSPD</td>
<td>Speed division -- distance between divisions of the airspeed scale.</td>
</tr>
<tr>
<td>DSPLY</td>
<td>Display -- subprogram which generates the static portions of the integrated instrument display.</td>
</tr>
<tr>
<td>DT</td>
<td>Time interval.</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>DTHR</td>
<td>$\Delta \theta_R$ required to maintain zero sideslip flight.</td>
</tr>
<tr>
<td>DTHRC</td>
<td>Value of $\Delta \theta_R$</td>
</tr>
<tr>
<td>DTINIT</td>
<td>Text initialization subroutine.</td>
</tr>
<tr>
<td>DTURN</td>
<td>Turn division -- distance between marks of the turn indicator.</td>
</tr>
<tr>
<td>DVSI</td>
<td>Vertical speed indicator division -- distance between divisions of the vertical speed indicator.</td>
</tr>
<tr>
<td>EPS</td>
<td>Small angle.</td>
</tr>
<tr>
<td>FLTIM</td>
<td>Flight time.</td>
</tr>
<tr>
<td>FLY</td>
<td>Fly -- subprogram which generates information for and controls the solution of the helicopter dynamics.</td>
</tr>
<tr>
<td>GCOGPH</td>
<td>Factor in Z-Force equation.</td>
</tr>
<tr>
<td>GRAPHO</td>
<td>Graphics output -- external subprogram, used to output a graphics array to the graphics processor.</td>
</tr>
<tr>
<td>GSNMPH</td>
<td>Factor in Y-Force equation.</td>
</tr>
<tr>
<td>GSNTH</td>
<td>Factor in X-Force equation.</td>
</tr>
<tr>
<td>H3T</td>
<td>Height -- height of the triangular pointers used in the integrated display.</td>
</tr>
<tr>
<td>HOLD</td>
<td>External subprogram used to place the analog computer in the &quot;hold&quot; mode.</td>
</tr>
<tr>
<td>HOVTIM</td>
<td>Hover time -- elapsed time within a specified distance from the target.</td>
</tr>
<tr>
<td>I</td>
<td>Integer counter.</td>
</tr>
<tr>
<td>IALT</td>
<td>Altimeter -- graphics data array for the radar altimeter scale.</td>
</tr>
<tr>
<td>IALT</td>
<td>Altimeter pointer -- graphics data array for the radar altimeter pointer.</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>IBALL</td>
<td>Ball -- graphics data array for the slip indicator ball.</td>
</tr>
<tr>
<td>IBANK</td>
<td>Bank angle -- graphics data array for the attitude gyro angle of bank pointer.</td>
</tr>
<tr>
<td>IBLANK</td>
<td>Blank -- graphics data array used to blank out another graphics data array.</td>
</tr>
<tr>
<td>ICMPS</td>
<td>Compass -- graphics data array for the compass heading scale.</td>
</tr>
<tr>
<td>ICOMP</td>
<td>Compass -- text array for the compass heading numbers.</td>
</tr>
<tr>
<td>ICOPS</td>
<td>Initial character position -- fixes the lateral position on the graphics display of the first character in a text array.</td>
</tr>
<tr>
<td>IDSV</td>
<td>Device number -- the number 1 or 2 which specifies the graphics processor to be used.</td>
</tr>
<tr>
<td>IDVI</td>
<td>Direction velocity indicator -- graphics data array for the direction velocity indicator scales.</td>
</tr>
<tr>
<td>IDVIL</td>
<td>Direction velocity indicator lines -- graphics data array for the direction velocity indicator speed lines.</td>
</tr>
<tr>
<td>IER</td>
<td>Error parameter returned after calls to DGINIT, DTINIT, GRAPHO or TEXTO.</td>
</tr>
<tr>
<td>IFLAG</td>
<td>Integer counter -- counts number of times through dynamic loop in FLY.</td>
</tr>
<tr>
<td>IGD</td>
<td>Graphics directory -- argument of DGINIT.</td>
</tr>
<tr>
<td>IHSAR</td>
<td>Horizon bar -- graphics data array for the attitude gyro artificial horizon line.</td>
</tr>
<tr>
<td>IHEAD</td>
<td>External subprogram used to generate the first word of a graphics array.</td>
</tr>
<tr>
<td>IHDG</td>
<td>Heading -- graphics data array for the compass heading pointer.</td>
</tr>
<tr>
<td>IMAP</td>
<td>Miniature airplane -- graphics data array for the attitude gyro miniature airplane reference.</td>
</tr>
<tr>
<td>INDYM</td>
<td>Instrument dynamics -- graphics data array for the moving (dynamic) portions of the instrument display.</td>
</tr>
<tr>
<td>INT</td>
<td>Converts a number to an integer -- intrinsic subprogram.</td>
</tr>
<tr>
<td>INST</td>
<td>Instrument -- subprogram which generates the dynamic portions of the integrated display.</td>
</tr>
</tbody>
</table>
IPACK: External subprogram used to generate words of a graphics array.

IPSI: PSI converted to integer value.

IPBAR: Pitch bar -- graphics data array for the attitude gyro pitch line.

ISLIP: Slip -- graphics data array for the slip indicator center marks.

ISPD: Speed -- graphics data array for the airspeed scale.

ISPD? Speed pointer -- graphics data array for the airspeed pointer.

ITD: Text directory -- argument of DTINIT.

ITURN: Turn -- graphics data array for the turn indicator scale.

ITURNI: Turn indicator -- graphics data array for the turn needle.

IVGI: Vertical gyro indicator -- graphics data array for the attitude gyro angle of bank scale.

IVSI: Vertical speed indicator -- graphics data array for the vertical speed indicator scale.

IVSIP: Vertical speed indicator pointer -- graphics data array for the vertical speed indicator pointer.

IX: Integer X -- integer value of XE.

IY: Integer Y -- integer value of YE.

J: Integer counter.

JFLAG: Integer flag used to control accumulation of hover time.

K: Integer counter.

K2: Integer value retained for later comparison.

KFLAG: Integer flag used to control accumulation of RMS performance parameters.

KSAV: K save -- saves value of K for later comparison.
L Integer counter.
LN Line number -- specifies line position of a text block.
LNO Same as LN except refers to initial line.
LVU \( L_v(u) \)

MAU \( M_A(u) \)
MB1CU \( M_{B_1c}(u) \)

NBLK Block number -- refers to graphics data blocks.
NGD Number of words in the graphics directory -- argument of DGINIT.
NRU \( N_R(u) \)
NTD Number of words in the text directory -- argument of DTINIT.
NULL Null -- text array of blank spaces.
NVU \( N_v(u) \)

P \( p \)
PHI \( \phi \)
PHIDOT \( \dot{\phi} \)
PHIDTS \( \dot{\phi} \) scaled for the analog computer.
PITCH \( \theta \) limited to \( \pm 50^\circ \).
POTSET Subprogram which places the analog computer in the ROTSET mode.
PSI \( \psi \)
PSIDEG \( \psi \) scaled to degrees.
PSIDOT \( \dot{\psi} \)
PSIDTS \( \dot{\psi} \) scaled for the analog computer.
<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Q</strong></td>
<td>q</td>
</tr>
<tr>
<td><strong>R</strong></td>
<td>r</td>
</tr>
<tr>
<td><strong>RO</strong></td>
<td>Initial radius -- radial distance from the center of the attitude gyro to the angle of bank scale marks.</td>
</tr>
<tr>
<td><strong>RADALT</strong></td>
<td>Radar altimeter -- scaled value of altitude sent to cockpit radar altimeter.</td>
</tr>
<tr>
<td><strong>RB</strong></td>
<td>Radius to base -- radial distance from the center of the attitude gyro to the base of the triangular angle of bank pointer.</td>
</tr>
<tr>
<td><strong>READCLOCK</strong></td>
<td>External subprogram used to read the present value of the analog computer clock.</td>
</tr>
<tr>
<td><strong>RESET</strong></td>
<td>Reset -- subprogram which places analog computer in Reset mode.</td>
</tr>
<tr>
<td><strong>RL</strong></td>
<td>Radial line -- length of the radial line segment used for the attitude gyro angle of bank scale marks.</td>
</tr>
<tr>
<td><strong>RMSTIM</strong></td>
<td>Root mean square time -- time interval used to compute performance parameters.</td>
</tr>
<tr>
<td><strong>ROLL</strong></td>
<td>Roll -- angular position of the attitude gyro angle of bank scale marks.</td>
</tr>
<tr>
<td><strong>RP</strong></td>
<td>Radius to point -- radial distance from the center of the attitude gyro to the point of the angle of bank pointer.</td>
</tr>
<tr>
<td><strong>SETLINES</strong></td>
<td>External subprogram used to set analog computer logic.</td>
</tr>
<tr>
<td><strong>SETPOT</strong></td>
<td>External subprogram used to set the analog computer potentiometers.</td>
</tr>
<tr>
<td><strong>SCALE</strong></td>
<td>Scale -- multiplying factor to convert ± 5 inches to ± 1 units for graphics processor.</td>
</tr>
<tr>
<td><strong>SIN</strong></td>
<td>Sine -- intrinsic subprogram.</td>
</tr>
<tr>
<td><strong>SINPHI</strong></td>
<td>Sine of PHI.</td>
</tr>
<tr>
<td><strong>SINPSI</strong></td>
<td>Sine of PSI.</td>
</tr>
<tr>
<td><strong>SINTHETA</strong></td>
<td>Sine of THETA.</td>
</tr>
<tr>
<td><strong>SQR</strong></td>
<td>Square root -- intrinsic subprogram.</td>
</tr>
</tbody>
</table>
STARTCLOCK: External subprogram used to start the analog computer clock.

STOPCLOCK: External subprogram used to stop the analog computer clock.

TEST: External subprogram used to test the logic of specified analog trunk lines.

TEXTO: External subprogram used to output a text array to the graphics processor.

THEDOT: \( \dot{\theta} \)

THEDTS: \( \dot{\theta} \) scaled for the analog computer.

THETA: \( \theta \)

THETIC: Initial condition on \( \theta \).

TNEW: New time.

TOLD: Old time.

U: \( u \)

U1: Value of airspeed used in the linear interpolation subroutine.

U2: Value of airspeed used in the linear interpolation subroutine.

UK: \( u \) scaled to knots.

UKTS: \( u \) scaled to knots.

V: \( v \)

V1: Intermediate calculation for \( VX \) and \( VY \).

V2: Intermediate calculation for \( VX \) and \( VY \).

VX: Inertial velocity along the x-axis.

VX RMS: Root mean square value of \( VX \). Used as a performance parameter.
VY  Inertial velocity along the y-axis.

VYRMS  Root mean square value of VY. Used as a performance parameter.

VZ  Inertial velocity along the z-axis.

VZRMS  Root mean square value of VZ. Used as a performance parameter.

VZS  VZ scaled for the analog computer.

W  w

WRITECLOCK  External subprogram used to set the analog computer clock to a specified value.

X  x coordinate position used for graphics construction.

XO  X initial -- initial x coordinate position used for graphics construction.

XOALT  X0 for the radar altimeter scale.

XODVI  X0 for the direction velocity indicator scale.

XOHDG  X0 for the compass heading pointer.

XOSLIP  X0 for the slip indicator scale.

XOSPD  X0 for the airspeed scale.

XOTURN  X0 for the turn rate scale.

XOVSI  X0 for the vertical speed scale.

XAU  $X_A(u)$

Xcen  x center -- x coordinate position for the center of the attitude gyro.

XE  x earth -- x coordinate position of the helicopter in the inertial reference axes.

XERMS  XE root mean square -- used as a performance parameter.

XLEFT  x left -- x coordinate position of the left end of the direction velocity indicator speed line.
XP  
\( x \) pointer -- \( x \) coordinate position for the point of a scale pointer.

XPALT  
XP for the radar altimeter scale pointer.

XPSPD  
XP for the airspeed scale pointer.

XVSI  
XP for the vertical speed scale pointer.

XRIGHT  
\( x \) right -- \( x \) coordinate position for the right end of the direction velocity indicator speed line.

XTHCU  
\( X_{\theta_c}(u) \)

Y  
\( y \) coordinate position used for graphics construction.

YO  
\( y \) initial -- initial \( x \) coordinate position used for graphics construction.

YOALT  
YO for the radar altimeter scale.

YODVI  
YO for the direction velocity indicator scale.

YOHDG  
YO for the compass heading pointer.

YOSLIP  
YO for the slip indicator scale.

YOSPD  
YO for the airspeed scale.

YOTURN  
YO for the turn rate scale.

YOVS1  
YO for the vertical speed scale.

YBOT  
\( y \) bottom -- \( y \) coordinate position for the bottom end of the direction velocity indicator speed line.

XCEEN  
\( y \) center -- \( y \) coordinate position for the center of the attitude gyro.

YE  
\( y \) earth -- \( y \) coordinate position of the helicopter in the inertial reference axes.

YERMS  
YE root mean square -- used as a performance parameter.

YP  
\( y \) pointer -- \( y \) coordinate position for the point of a scale pointer.

YTOP  
\( y \) top -- \( y \) coordinate position for the top end of the direction velocity indicator speed line.
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZAU</td>
<td>$Z_A(u)$</td>
</tr>
<tr>
<td>ZBICU</td>
<td>$Z_{B_{IC}}(u)$</td>
</tr>
<tr>
<td>ZE</td>
<td>z earth -- z coordinate position for the helicopter in the inertial reference axes (altitude).</td>
</tr>
<tr>
<td>ZEIC</td>
<td>ZE initial condition -- starting value of ZE.</td>
</tr>
<tr>
<td>ZERMS</td>
<td>ZE root mean square -- used as a performance parameter.</td>
</tr>
<tr>
<td>ZES</td>
<td>ZE scaled for the analog computer.</td>
</tr>
<tr>
<td>ZWU</td>
<td>$Z_w(u)$</td>
</tr>
</tbody>
</table>
APPENDIX C

ANALOG COMPUTER PROGRAM

This appendix contains a listing of the trunk lines between the analog computer and the cockpit together with the signal carried; a listing of the analog computer potentiometer settings; and the patching diagrams for the analog computer program.
<table>
<thead>
<tr>
<th>T000</th>
<th>200 Δθ_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>T001</td>
<td>200 ΔA_1c</td>
</tr>
<tr>
<td>T002</td>
<td>100 ΔB_1c</td>
</tr>
<tr>
<td>T003</td>
<td>+30 VDC</td>
</tr>
<tr>
<td>T004</td>
<td>-30 VDC</td>
</tr>
<tr>
<td>T005</td>
<td>AIRSPEED</td>
</tr>
<tr>
<td>T006</td>
<td>BALL</td>
</tr>
<tr>
<td>T007</td>
<td>TURN NEEDLE</td>
</tr>
<tr>
<td>T010</td>
<td>HEADING</td>
</tr>
<tr>
<td>T011</td>
<td>ALTIMETER</td>
</tr>
<tr>
<td>T014</td>
<td>RADAR ALTIMETER</td>
</tr>
<tr>
<td>T015</td>
<td>PITCH ATTITUDE</td>
</tr>
<tr>
<td>T016</td>
<td>ROLL ATTITUDE</td>
</tr>
<tr>
<td>T017</td>
<td>VERTICAL SPEED</td>
</tr>
<tr>
<td>T020</td>
<td>500 Δθ_R</td>
</tr>
<tr>
<td>T023</td>
<td>&quot;FLY&quot;</td>
</tr>
<tr>
<td>T024</td>
<td>&quot;STOP&quot;</td>
</tr>
<tr>
<td>T025</td>
<td>&quot;QUIT&quot;</td>
</tr>
<tr>
<td>T026</td>
<td>&quot;RERUN&quot;</td>
</tr>
<tr>
<td>T030</td>
<td>COORDINATED TURN</td>
</tr>
<tr>
<td>T041</td>
<td>&quot;DISPLAY TYPE&quot;</td>
</tr>
</tbody>
</table>

**TABLE CI. -- USE OF TRUNK LINES**

80
<table>
<thead>
<tr>
<th>POT NUMBER</th>
<th>SETTING</th>
<th>POT NUMBER</th>
<th>SETTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>.0890</td>
<td>032</td>
<td>.9127</td>
</tr>
<tr>
<td>001</td>
<td>.4724</td>
<td>033</td>
<td>.1021</td>
</tr>
<tr>
<td>002</td>
<td>.1320</td>
<td>034</td>
<td>.6062</td>
</tr>
<tr>
<td>003</td>
<td>.2006</td>
<td>035</td>
<td>.2598</td>
</tr>
<tr>
<td>004</td>
<td>.0869</td>
<td>036</td>
<td>.4000</td>
</tr>
<tr>
<td>005</td>
<td>.1962</td>
<td>037</td>
<td>.2500</td>
</tr>
<tr>
<td>006</td>
<td>.0800</td>
<td>040</td>
<td>.1093</td>
</tr>
<tr>
<td>010</td>
<td>.0100</td>
<td>041</td>
<td>.0018</td>
</tr>
<tr>
<td>011</td>
<td>.1224</td>
<td>042</td>
<td>.4692</td>
</tr>
<tr>
<td>012</td>
<td>.2500</td>
<td>043</td>
<td>.1186</td>
</tr>
<tr>
<td>013</td>
<td>.1250</td>
<td>044</td>
<td>.4000</td>
</tr>
<tr>
<td>014</td>
<td>.0100</td>
<td>045</td>
<td>.1250</td>
</tr>
<tr>
<td>015</td>
<td>.0838</td>
<td>046</td>
<td>.6250</td>
</tr>
<tr>
<td>016</td>
<td>.0250</td>
<td>047</td>
<td>.2500</td>
</tr>
<tr>
<td>017</td>
<td>.7075</td>
<td>050</td>
<td>.3200</td>
</tr>
<tr>
<td>020</td>
<td>.7853</td>
<td>051</td>
<td>.1041</td>
</tr>
<tr>
<td>021</td>
<td>.0389</td>
<td>052</td>
<td>.2000</td>
</tr>
<tr>
<td>022</td>
<td>.1066</td>
<td>053</td>
<td>.1052</td>
</tr>
<tr>
<td>023</td>
<td>.0241</td>
<td>054</td>
<td>.1052</td>
</tr>
<tr>
<td>024</td>
<td>.2000</td>
<td>055</td>
<td>.6282</td>
</tr>
<tr>
<td>025</td>
<td>.5000</td>
<td>056</td>
<td>.5000</td>
</tr>
<tr>
<td>026</td>
<td>.0235</td>
<td>400</td>
<td>.2000</td>
</tr>
<tr>
<td>027</td>
<td>.0845</td>
<td>401</td>
<td>.2000</td>
</tr>
<tr>
<td>030</td>
<td>.4000</td>
<td>436</td>
<td>.3000</td>
</tr>
<tr>
<td>031</td>
<td>.1816</td>
<td>437</td>
<td>.3000</td>
</tr>
</tbody>
</table>

**TABLE CII. -- ANALOG COMPUTER POTENTIONS FOR SETTINGS**
X FORCE EQUATION
Y FORCE EQUATION
Z FORCE EQUATION

\[ Z F O R C E = -200\Delta \theta_c \]

\[ T_{422} \rightarrow ZAU \]

\[ P_{53} \cdot 1046 \]

\[ P_{51} \cdot 1041 \]

\[ -100 \cdot 1052 \]

\[ P_{52} \cdot 2000 \]

\[ A_{053} \rightarrow 2W \]

\[ T_{402} \]

\[ ZWU (W) \]

\[ T_{430} \]

\[ 9 \cos \phi \cos \theta \]

\[ T_{404} \]

\[ \frac{100 \Delta B_{ICA}}{(\Delta B_{ICA})} \]

\[ P_{50} \cdot 3200 \]

\[ ZA0 \]

\[ A_{014} \]

\[ S_J \]

\[ T_{510} \]

\[ A_{201} \]

\[ -2W \]
ROLL MOMENT EQUATION
PITCH MOMENT EQUATION
YAW MOMENT EQUATION
ROLL AUGMENTATION

PITCH AUGMENTATION
YAW AUGMENTATION

COORDINATED TURN
ROLL ANGLE

PITCH ANGLE

RADAR ALTIMETER

AIRSPEED INDICATOR

VERTICAL SPEED INDICATOR
YAW ANGLE
APPENDIX D

PILOT QUALIFICATIONS AND RATINGS

<table>
<thead>
<tr>
<th>PILOT</th>
<th>FLIGHT HOURS</th>
<th>HELICOPTER HOURS</th>
<th>INSTRUMENT HOURS</th>
<th>CONVENTIONAL INSTRUMENTS</th>
<th>INTEGRATED DISPLAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1100</td>
<td>980</td>
<td>205</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>B</td>
<td>2512</td>
<td>2313</td>
<td>296</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>C</td>
<td>1000</td>
<td>800</td>
<td>150</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>D</td>
<td>1130</td>
<td>975</td>
<td>215</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>E</td>
<td>1450</td>
<td>1050</td>
<td>240</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>
LIST OF REFERENCES


