COVERAGE PREDICTIONS FOR THE NAVY'S FIXED VLF TRANSMITTERS

James P. Hauser, et al

Naval Research Laboratory
Washington, D. C.

September 1974
Coverage Predictions for the Navy’s Fixed VLF Transmitters

JAMES P. HAUSER AND FRANKLIN J. RHOADS

Electromagnetic Propagation Branch
Communications Sciences Division

September 1974
COVERAGE PREDICTIONS FOR THE NAVY'S FIXED VLF TRANSMITTERS

Authors: James P. Hauser and F. J. Rhoads

Performing Organization: Naval Research Laboratory, Washington, D.C. 20375

Controlling Office: Naval Electronic Systems Command, Washington, D.C.

Report Date: September 1974

Number of Pages: 15

Security Class: UNCLASSIFIED

Distribution Statement: Approved for public release; distribution unlimited.

Keywords: VLF, Communications Coverage Predictions, Fixed VLF Transmitters

Abstract: (U) This report is the eighth in a series which presents signal strength and signal-to-noise ratio predictions for the Navy's fixed very-low-frequency transmitters. Predictions given here are for all four seasons of the year. A new atmospheric noise prediction model used for these predictions is briefly discussed and the meaning of the predictions explained. This report supersedes all previous reports in this series.
<table>
<thead>
<tr>
<th>CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
</tr>
<tr>
<td>ATMOSPHERIC NOISE MODEL</td>
</tr>
<tr>
<td>PROPAGATION MODEL</td>
</tr>
<tr>
<td>PREDICTIONS</td>
</tr>
<tr>
<td>APPLICATION</td>
</tr>
<tr>
<td>TABLE 1</td>
</tr>
<tr>
<td>TABLE 2</td>
</tr>
<tr>
<td>REFERENCES</td>
</tr>
<tr>
<td>FIGURES</td>
</tr>
</tbody>
</table>
COVERAGE PREDICTIONS FOR THE NAVY'S FIXED VLF TRANSMITTEMRS

INTRODUCTION

The Navy, because of its need for accurate predictions of the reliability of its very-low-frequency (VLF) communications circuits, has tasked the Naval Research Laboratory (NRL) with the responsibility of maintaining a Long Wave Propagation Center and providing communications coverage predictions. NRL has published a series of reports, references (1-7), which provide communications coverage predictions for the Navy's fixed VLF transmitters. This report is a continuation of that series, being the eighth such report to be published.

This report differs from the previous reports in the series in three respects: (1) it contains predictions for all four seasons rather than a separate report for each season, (2) it is unclassified because it does not present coverage for specific systems, and (3) it makes use of a new atmospheric noise prediction model developed by Westinghouse Corporation, reference (8), and refined by NRL, reference (9). The new noise model replaces the CCIR noise model, reference (10), which was used in the previous reports. A classified appendix will be published giving coverage areas of the most strategic Navy systems, both operational and proposed.

The purpose of publishing a new prediction manual at this time is to show the effects of the new and improved atmospheric noise model in predicting communications coverage for the Navy's fixed VLF transmitters.

ATMOSPHERIC NOISE MODEL

Several inadequacies exist in the CCIR noise model. Three of these inadequacies are particularly relevant to the communications coverage predictions presented in this series of reports. (1) Using the CCIR model to generate worldwide contours of atmospheric noise in universal time leads to discontinuities between time zones and across the equator (Figure 1). (2) The CCIR model predicts the standard deviation and the voltage deviation, i.e., the difference in dB between the noise power and the voltage of the noise, as functions of time and frequency only, when it is known that these parameters are functions of location as well. (3) The validity of the CCIR model is especially questionable in areas far removed from atmospheric noise recording.

sites. During preparation of the CCIR model, thunderstorm day contour maps prepared by the World Meteorological Organization (WMO) were used as guidelines in extrapolating noise parameters into areas for which no atmospheric noise data existed; however, the extrapolation technique was not based on exact mathematical expressions relating thunderstorm activity to atmospheric noise and the WMO maps themselves were based on few data.

In order to eliminate these as well as other shortcomings, NRL initiated the development of a new atmospheric noise prediction model at Westinghouse Georesearch Laboratory (WGL) under the direction of E. L. Maxwell, reference (8). A major portion of this effort was concentrated on producing an improved set of thunderstorm day contour maps. The improved WGL maps (Figure 2) include data from many locations for which the WMO maps (Figure 3) have no data. The WGL noise model then uses mathematical expressions based on the physics of lightning discharges to convert the improved thunderstorm day data into electromagnetic energy radiated from each area of the earth's surface. Each area is treated as an effective transmitter of noise energy propagated to the receiver location. The propagation model used is taken from Wait, reference (11), and is based on the work of Wait and Spies. The combined energies of all transmitters at the receiver location constitutes the WGL prediction of mean atmospheric noise. The other noise parameters, standard deviation and voltage deviation, are calculated from the thunderstorm day data using empirically derived mathematical relationships.

The WGL model eliminates the discontinuities inherent in the CCIR model and also predicts the standard deviation and voltage deviation as functions of location as well as of time and frequency. Most important, however, is the fact that it predicts atmospheric noise parameters more accurately than does the CCIR model, as can be seen by comparing Figures 4 and 5. The data used for the histograms in Figures 4 and 5 were recorded by a worldwide network of ARN-2 atmospheric radio noise recorders run by the Environmental Science Services Administration (ESSA). Further refinement of the WGL model by NRL, reference (9), produced even better agreement with the ESSA noise data (Figure 6). Figures 7 thru 30 present contours of atmospheric radio noise generated by NRL's empirically refined version of the WGL model. The figures are grouped by season and ordered by Universal Time (UT).

PROPAGATION MODEL

The propagation model used for this report is identical to the model used in references (4-7). Although the propagation models are the same, the designation of the coverage prediction program, which includes both the noise and the propagation models, has been changed from NCPP 70 to NCPP 74 because of the new noise model. Additional references pertinent to the development of the propagation model are given in references (1-7).
PREDICTIONS

Tables 1 and 2 list the figure numbers for the signal strength and signal-to-atmospheric noise ratio predictions respectively. The figure numbers of the prediction contour maps are arranged to correspond directly to the figure numbers appearing in the previous reports of the series. This allows for ease in comparing these predictions with previous ones. For convenience, the figures have been grouped by season - Summer (June, July, August), Fall (September, October, November), Winter (December, January, February), and Spring (March, April, May) - and the figure numbers have been prefixed by the first two letters of the season which they are for.

The signal strength predictions are based on the frequencies and nominal, effective radiated powers (ERP) given in Table 1. The ERP's used here have been deduced from the most recent radiation resistance measurements and antenna current logs available for each transmitter, and therefore reflect the nominal operating power of each transmitter as of June 1978. These ERP's differ little from those used in previous reports with the exception of NPG/NLK, which is now operating at roughly 130 kW rather than 250 kW due to a reduction in antenna current.

The signal strength contour levels are in decibels relative to one microvolt per meter (dB > \(\mu \text{V/m} \)) and represent the expected values that the signal strength will equal or exceed for the stated percentage of all hours of the season. For example, if one were to measure the signal strength of NAA continuously day and night for the entire summer season at 5°N, 30°W, 90 percent of the measurements should equal or exceed 60 dB > \(\mu \text{V/m} \), the value determined from Figure SU 1. From Figure SU 2 at the same location, 99 percent of the measurements should equal or exceed 56 dB > \(\mu \text{V/m} \).

The signal-to-atmospheric noise ratio predictions are listed in Table 2 and are based on a 1 kHz bandwidth and the same transmitter frequencies and ERP's as the signal strength predictions. The contour levels are given in dB and are interpreted in the same fashion as the signal strength contours.

APPLICATION

Since the received signal strength and signal-to-noise ratio are both linearly proportional to the transmitter ERP in dB, the signal and signal-to-noise ratio contours directly show the effect of changing the transmitter ERP. The area between adjacent signal-to-noise ratio contours is the extended coverage area gained by increasing the transmitter ERP by increments of 3 dB. For example, the area within which the signal-to-noise ratio is -3 dB or better is extended out from the -3 dB contour to the -6 dB contour if the transmitter ERP is increased 3 dB, and so on.
Of prime importance to the communication engineer and the communicator are the signal-to-noise ratio contours. For a given communication system the reliability with which a true message may be deciphered from one containing errors is a function of the character error rate (CER). For a given receiving system, type of modulation, coding, and information rate, the CER is a function of the received signal-to-noise ratio. Thus, once a system is specified, a tolerable CER can be specified, and in turn, a required signal-to-noise ratio can be determined which will provide reliable communications. With the required signal-to-noise ratio established, the corresponding signal-to-noise contour bounds the area within which receiver terminals can be deployed for reliable communications. A classified appendix to this report will be published treating coverage of the most strategic Navy systems, both operational and proposed.
<table>
<thead>
<tr>
<th>Figure Number</th>
<th>Time Availability</th>
<th>Transmitter</th>
<th>Frequency (kHz)</th>
<th>ERP (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>90% 99%</td>
<td>NAA, Cutler</td>
<td>17.8</td>
<td>1000</td>
</tr>
<tr>
<td>2</td>
<td>99%</td>
<td>NWC, North West Cape</td>
<td>22.3</td>
<td>1000</td>
</tr>
<tr>
<td>3</td>
<td>90% 99%</td>
<td>NPG/NLK, Jim Creek</td>
<td>18.6</td>
<td>130</td>
</tr>
<tr>
<td>4</td>
<td>99%</td>
<td>NBA, Balboa</td>
<td>24.0</td>
<td>110</td>
</tr>
<tr>
<td>5</td>
<td>90% 99%</td>
<td>NDT, Yosami</td>
<td>17.4</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>99%</td>
<td>NSS, Annapolis</td>
<td>21.4</td>
<td>400</td>
</tr>
<tr>
<td>7</td>
<td>90% 99%</td>
<td>NPM, Lualualei</td>
<td>23.4</td>
<td>630</td>
</tr>
</tbody>
</table>

*Each figure number in the table represents four figures, one for each season, in the body of the report. In the body of the report, each figure number is prefixed by the first two letters of the season for which the prediction is given.
TABLE 2
SIGNAL-TO-ATMOSPHERIC NOISE RATIO PREDICTIONS

<table>
<thead>
<tr>
<th>Figure Number</th>
<th>Time Availability</th>
<th>Transmitter</th>
<th>Frequency (kHz)</th>
<th>ERP (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>90% 95%</td>
<td>NAA, Cutler</td>
<td>17.8</td>
<td>1000</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>90% 95%</td>
<td>NWC, North West Cape</td>
<td>22.3</td>
<td>1000</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>90% 95%</td>
<td>NPG/MLK, Jim Creek</td>
<td>18.6</td>
<td>130</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>90% 95%</td>
<td>NBA, Buluoa</td>
<td>24.0</td>
<td>110</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>90% 95%</td>
<td>NDT, Yosami</td>
<td>17.4</td>
<td>40</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>90% 95%</td>
<td>NSS, Annapolis</td>
<td>21.4</td>
<td>400</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>90% 95%</td>
<td>NPM, Lualualei</td>
<td>23.4</td>
<td>630</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Each figure number in the table represents four figures, one for each season, in the body of the report. In the body of the report, each figure number is prefixed by the first two letters of the season for which the prediction is given.
REFERENCES

4. J. P. Hauser and M. C. Lawrence, "Coverage Predictions for the Navy, Fixed, VLF Transmitter Facilities for June, July, and August," (U), NRL Confidential Memorandum Report 2134

5. J. P. Hauser, "Coverage Predictions for the Navy, Fixed, VLF Transmitter Facilities for September, October, and November," (U), NRL Confidential Memorandum Report 2157

7. J. P. Hauser, "Coverage Predictions for the Navy, Fixed, VLF Transmitter Facilities for March, April, and May," (U), NRL Confidential Memorandum Report 2211

7
Fig. 1 - Histogram of errors in predicting mean atmospheric noise power using the CCIR model.
Fig. 5 - Histogram of errors in predicting atmospheric noise power using the WGL model.
Fig. 6 - Histogram of errors in predicting mean atmospheric noise power using the NRL empirically refined version of the WGL model.
Fig. 7 - Atmospheric noise contours (dB rel v/m - 1 kHz BW) for 20 kHz (January, 0000 UT) using the NRL empirically refined version of the W3L model.
Fig. 3 - Atmospheric noise contours (dBμV/m - 1 kHz BW) for 20 kHz (January, 0300 UT) using the NRL empirically refined version of the WGL model
Fig. 1 - Atmospheric noise contours (dB/\mu V/m - 1 kHz FM) for 20 kHz (January, 1960 UT) using the IRL empirically refined version of the XCL model.
Fig. 12 - Atmospheric noise contours (dB>1μV/m - 1 kHz BW) for 20 kHz (January, 2000 UT) using the NRL empirically refined version of the WGL model.
Fig. 13 - Atmospheric noise contours (1E-12uV/m - 1 kHz BW) for 20 kHz (April, 0000UT) using the NRL empirically refined version of the WGL model.
FIG. 1 - Atmospheric noise contours ($10^{-1} \mu V/m - 1 \text{ kHz BW}$) for 20 kHz (April, 0400 UT) using the NRL empirically refined version of the WGL model
Fig. 17 - Atmospheric noise contours (1Hz/μV/m - 1 kHz BW) for 20 kHz (April, 1600 UT) using the NRL empirically refined version of the WGL model.
Fig. 15 - Atmospheric noise contours (dB-μV/m - 1 kHz EW) for 20 kHz (April, 2000 UT) using the NRL empirically refined version of the WGL model.
Fig. 19 - Atmospheric noise contours (dB/uv/m - 1 kHz EM) for 20 kHz (July, 0000 UT) using the NRL empirically refined version of the WGL model.
Fig. 20 - Atmospheric noise contours (dBμV/m - 1 kHz BW) for 20 kHz (July, 0400 UT) using the NRL empirically refined version of the WGL model.
Fig. 22 - Atmospheric noise contours (dB re: V/m - 1 Hz BW) for 20 kHz (July, 1993 UT) using the MHD empirically refined version of the ZDL model.
Fig. 24 - Atmospheric noise contours (dBμV/m - 1 kHz BW) for 20 kHz (July, 2000 UT) using the NRL empirically refined version of the WGL model.
Fig. 25 - Atmospheric noise contours (dBμV/m - 1 kHz BW) for 20 kHz (October, 0000 UT) using the NRL empirically refined version of the WGL model.
Fig. 26 - Atmospheric noise contours (dBμV/m - 1 kHz BW) for 20 kHz (October, 0400 UT) using the HFL empirically refined version of the W3L model.
Fig. 28 - Atmospheric noise contours (dBµV/m - 1 kHz BW) for 20 kHz (October, 1200 UT) using the NRL empirically refined version of the WGL model.
FIG. 29 - Atmospheric noise contours (dB-re/µV - 1 kHz BW) for 20 kHz (October, 1600 UT) using the NRL empirically refined version of the WPL model.
Fig. 30 - Atmospheric noise contours (10^14 μV/m - 1 kHz EM) for 20 kHz (October, 2000 UT) using the NRL empirically refined version of the WGL model.
FIG. SU 1 - SIGNAL LEVEL CONTOURS IN dB>1μV/M
NAR (178kHz) 1000KW; CUTLER
SUMMER 90% TIME AVAILABILITY
FIG. SU 3 - SIGNAL LEVEL Contours in dB>1μV/M
NWC (22KHz, 1000KW) at NORTHWEST CAPE
SUMMER 90% TIME AVAILABILITY
FIG. SU 4 - SIGNAL LEVEL CONTOURS IN dB >1μW/M
N6C (22 MHz, 1000kW) @ NORTHWEST CAPE
SUMMER 99% TIME AVAILABILITY
FIG. SU 5 - SIGNAL LEVEL CONTOURS IN dBμV/M
WPG (186 KHZ) 130KW JIM CREEK
SUMMER 90% TIME AVAILABILITY

LONG WAVE PROPAGATION CENTER
FIG. 70 7 - SIGNAL LEVEL CONTOURS IN $dB > 1mV/m$
NBA '240KHz, 110kW, BALBOA
SUMMER 90% TIME AVAILABILITY
Fig. SU 8 - Signal level contours in dBμV/m
NBA (24 kW + 110 kW) at BALBOA
Summer 99% time availability
Fig. 5U 1D - Signal Level Contours in dB above UV/M

NDF (17 MHz, 40 kW) - YOSAMI
Summer 99% TIME AVAILABILITY
FIG. SU 11 - SIGNAL LEVEL CONTOURS IN dB>1V/M
NSS (21.4KHz) 400kHz ANnapolis
Summer 90% Time Availability
FIG. SU 18 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
NHC (22°3KHZ+1000KHZ) & NORTHWEST CAPE
SUMMER 99% TIME AVAILABILITY 1KHZ BANDWIDTH
FIG. SU 19 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
NPG (18.6 KHZ, 130 KW) JIM CREEK
SUMMER 90% TIME AVAILABILITY 1 KHZ BANDWIDTH
FIG. SU 20 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
NPG (186KHZ; 130KW) 9 JIM CREEK
SUMMER 99% TIME AVAILABILITY 1KHZ BANDWIDTH
FIG. SU 21 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
NBA (240kHz, 110kW) BALBOA
SUMMER 90% TIME AVAILABILITY 1KHZ BANDWIDTH
Fig. SU 22 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
NBA (240 kHz, 110 kW), BALBOA
SUMMER 99% TIME AVAILABILITY 1 kHz BANDWIDTH
FIG. SU 23 -- SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
NOT (17.4KHz 40KW) YOSAMI
SUMMER 90% TIME AVAILABILITY 1KHz BANDWIDTH
Fig. Su 24 - Signal-to-atmospheric noise ratio contours in dB
NDC (17.4 kHz, 40 kW) - Yosami
Summer 99% time availability 1 kHz bandwidth
FIG. 27 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
NPM (23.4KHz, 630KHz) - LURLUAREI
SUMMER 90% TIME AVAILABILITY 1KHz BANDWIDTH
FIG. 5U 28 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
NPM (23.4kHz, 630kW) - LURLUALEI
SUMMER 99% TIME AVAILABILITY 1kHz BANDWIDTH
Fig. FA 4 - Signal Level Contours in μV/m
NWC (22.3 kHz, 1000 kW), Northwest Cape
Fall 99% Time Availability
FIG. FR 7 - SIGNAL LEVEL CONTOURS IN dB>1μV/M
NBA (240kHz, 110kW) & BALBOA
FALL 90% TIME AVAILABILITY

LONG WAVE PROPAGATION CENTER
(NCPP 74)
FIG. FA 8 - SIGNAL LEVEL CONTOURS IN dB>1μV/M
NBA (2400KHz, 110KW) - BALBOA
FALL 99% TIME AVAILABILITY
FIG. FA 9 - SIGNAL LEVEL CONTOURS IN dB > 1μV/M
NOC (17.4kHz, 40kW) TOSAMI
FALL 90% TIME AVAILABILITY
FIG. 1A - SIGNAL LEVEL CONTOURS IN dB > 1μV/M
NOT (17 kHz, 40 kW) YOSAMI
FALL 99% TIME AVAILABILITY
FIG. FA 13 - SIGNAL LEVEL CONTOURS IN dBμV/M
NPM (23.4 kHz, 630 kW), LURLUALEI
FALL 90% TIME AVAILABILITY
FIG. FA 15 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB

NAR (17.8KHz, 1000KHz) - CUTLER
FALL 90% TIME AVAILABILITY 1KHz BANDWIDTH
FIG. FA 14 - SIGNAL LEVEL CONTOURS IN dB>1μV/M
NPM (23.4kHz, 630kW, LUALUEI)
FALL 99% TIME AVAILABILITY
FIG. FA 17 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
NWC (22.3kHz, 1000kW) & NORTHWEST CAPE
FALL 90% TIME AVAILABILITY 1kHz BANDWIDTH
FIG. FA 18 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
NWC (22.3KHz, 1000KW) + NORTHWEST CAPE
FALL 99% TIME AVAILABILITY 1KHz BANDWIDTH
FIG. FA 19 - S/N ATOMIC-RATIO NOISE RATIO CONTOURS IN dB
NPG (18 kHz, 130 kW) JIM CREEK
FALL 90% TIME AVAILABILITY 1 KHz BANDWIDTH
FIG. FA 21 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB

NBA (24 kHz, 110 kW), BALBOA
FALL 90% TIME AVAILABILITY 1kHz BANDWIDTH
FIG. FA 22 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
NBA (240KHz, 110KW) at BALBOA
FALL 99% TIME AVAILABILITY 1KHZ BANDWIDTH
Fig. FA 24 - Signal-to-atmospheric noise ratio contours in dB

N DoT (17.4 KHz, 40KW) YOSAM

FALL 99% TIME AVAILABILITY 1 KHz BANDWIDTH
FIG. FA 25 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
NSS (21.4 KHz, 400 kW) @ ANNAPOLIS
FALL 90% TIME AVAILABILITY 1 KHz BANDWIDTH
FIG. FA 26 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
NSS (21.4kHz, 400kW) at ANNAPOLIS
FALL 99% TIME AVAILABILITY 1kHz BANDWIDTH
FIG. 28 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
NPM (23.4KHz, 630kW), LUALUALEI
FALL 99% TIME AVAILABILITY 1kHz BANDWIDTH
FIG. WI 1 - SIGNAL LEVEL CONTOURS IN dB>1μV/M
NRA (17.8KHZ, 1000KW), CUTLER
WINTER 90% TIME AVAILABILITY
FIG. WI 2 - SIGNAL LEVEL CONTOURS IN dB\text{JUV/M}
NRA (17.8KHz, 1000Kw) : CUTLER
WINTER 99\% TIME AVAILABILITY
FIG. WI 5 - SIGNAL LEVEL CONTOURS IN dB>1μV/M
NPG (18.6KHz, 130KW) ; JIM CREEK
WINTER 90% TIME AVAILABILITY
FIG. WJ 12 - SIGNAL LEVEL CONTOURS IN dB>100VM
NSS 21 kHz 400kW ANNAPOLIS
WINTER 99% TIME AVAILABILITY
FIG. WI 15 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
NAR (17.8kHz, 1000kW), CUTLER
WINTER 90% TIME AVAILABILITY 1KHz BANDWIDTH
Fig. W18 - Signal-to-Atmospheric Noise Ratio Contours in dB
NWC (22.3kHz, 1000kW) at Northwest Cape
Winter, 99% Time Availability, 1kHz Bandwidth
LONG WAVE PROPAGATION CENTER

FIG. W1 19 - SIGNAL-TO- ATMOSPHERIC NOISE RATIO CONTOURS IN dB
NPG (18.6KHz, 130kW), JIM CREEK
WINTER 90% TIME AVAILABILITY 1KHz BANDWIDTH
FIG. W1 21 - SIGNAL-TO- ATMOSPHERIC NOISE RATIO CONTOURS IN dB
NBA (24.0KHZ, 110KW) , BAL50A
WINTER 90% TIME AVAILABILITY 1KHZ BANDWIDTH
FIG. WI 22 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
NBA (240KHz, 110KW) - BALBOA
WINTER 99% TIME AVAILABILITY 1KHz BANDWIDTH
FIG. WI 25 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB

N5S (21.4 KHz, 400KW) , ANNAPOLIS
WINTER 90% TIME AVAILABILITY 1KHz BANDWIDTH
FIG. WI 26 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
NSS (21.4 kHz, 400 kW, ANNAPOLIS)
WINTER 99% TIME AVAILABILITY 1KHz BANDWIDTH
FIG. SP 1 - SIGNAL LEVEL CONTOURS IN dB > 1µV/M
NAA (17.8KHz, 1000KW) CUTLER
SPRING 90% TIME AVAILABILITY
FIG. SP 3 - SIGNAL LEVEL CONTOURS IN dBUV/M
NWC (22,3KHZ, 1000KW) - NORTHWEST CAPE
SPRING 90% TIME AVAILABILITY
FIG. SP 4 - SIGNAL LEVEL CONTOURS IN dB > 1 μV/M
NWC (22.3 KHZ, 1000 KW) , NORTHWEST CAPE
SPRING 99% TIME AVAILABILITY

LONG WAVE PROPAGATION CENTER
Fig. SP6 - Signal level contours in dB < 1 µV/M
NPG (18.6 kHz, 130 kW), JIM CREEK
Spring 99% Time Availability
FIG. SP 8 - SIGNAL LEVEL CONTOURS IN dB μV/M
NBA (240 KHz, 110KW) BALBOA
SPRING 99% TIME AVAILABILITY
FIG. SP 9 - SIGNAL LEVEL CONTOURS IN dB IU2/M
NDT (17 kHz, 40 kW) YOYAM
SPRING 90% TIME AVAILABILITY
FIG. SP 10 - SIGNAL LEVEL CONTOURS IN dB/1μV/M

NDT (17.4kHz, 40kW), YOSAM1
SPRING 99% TIME AVAILABILITY
FIG. SP 12 - SIGNAL LEVEL CONTOURS IN dB>1μV/M
NSS (21.4KHz, 400kW) + ANNAPOLIS
SPRING 99% TIME AVAILABILITY
FIG. SP 13 - SIGNAL LEVEL CONTOURS IN dB>1 UV/M
NPM (23.4 KHz, 630 kW) ; LUALURALI
SPRING 90% TIME AVAILABILITY
FIG. SP 14 - SIGNAL LEVEL CONTOURS IN dB>1μV/M
NPM (23.4KHz, 630kW) at LUALUALEI
SPRING 99% TIME AVAILABILITY
Fig. SP 15 - Signal-to-atmospheric noise ratio contours in dB
NAA (17.8 kHz, 1000 kW) to CUTLER
Spring 90% time availability 1 kHz bandwidth
FIG. SP 19 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
NPG (18.6kHz, 130kW) + JIM CREEK
SPRING 90% TIME AVAILABILITY 1KHZ BANDWIDTH
Fig. SP 23 - Signal-to-Atmospheric Noise Ratio Contours in dB
NDT (17.4 kHz, 40 kW), YOSAMI
Spring 90% Time Availability 1 kHz Bandwidth
FIG. SP 24 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
NDT (17.4KHz, 40kW), YOSAMI
SPRING 99% TIME AVAILABILITY 1KHz BANDWIDTH
FIG. SP 25 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
NSS (21.4KHZ: 400kW) @ ANNAPOLIS
SPRING 90% TIME AVAILABILITY 1KHZ BANDWIDTH