NEW LIMITATION CHANGE

TO
- Approved for public release, distribution unlimited

FROM
- Distribution authorized to U.S. Gov’t. agencies only; Administrative/Operational Use; Dec 1971. Other requests shall be referred to Air Force Armament Lab., Eglin AFB, FL.

AUTHORITY
- AFATL ltr, 24 Jun 1974
CLOSE AIR SUPPORT MISSILE
GUIDANCE AND CONTROL STUDY
VOLUME I SIX-DEGREE-OF-FREEDOM SIMULATION

DEPARTMENT OF MECHANICAL ENGINEERING
THE UNIVERSITY OF FLORIDA

TECHNICAL REPORT AFATL-TR-71-169, VOLUME I

DECEMBER 1971

Distribution limited to U. S. Government agencies only;
this report documents the close air support missile guid-
ance and control study, distribution limitation applied
December 1971. Other requests for this document must be
referred to the Air Force Armament Laboratory (DLWG),
Eglin Air Force Base, Florida 32542.

AIR FORCE ARMAMENT LABORATORY
AIR FORCE SYSTEMS COMMAND - UNITED STATES AIR FORCE

EGLIN AIR FORCE BASE, FLORIDA
Close Air Support Missile
Guidance And Control Study

Volume I. Six-Degree-Of-Freedom Simulation

J. Mahiy

Distribution limited to U.S. Government agencies only; this report documents the close air support missile guidance and control study. Distribution limitation applied December 1971. Other requests for this document must be referred to the Air Force Armament Laboratory (DLNG), Eglin Air Force Base, Florida 32542.
FOREWORD

This report was prepared by the Industrial and Experiment Station, Department of Mechanical Engineering, University of Florida, Gainesville, Florida, under Contract No. F08635-71-C-0073 with the Air Force Armament Laboratory, Eglin Air Force Base, Florida, during the period from 9 December 1970 to 9 December 1971. Lieutenant Robert J. Karner (DLWG) monitored the project for the Armament Laboratory.

The principal investigator for the contractor was Dr. J. Mahig.

This report consists of two volumes. Volume I is devoted to the Six-Degree-of-Freedom Simulation while Volume II is concerned with the Three-Degree-of-Freedom Simulation. This is Volume I.

This technical report has been reviewed and is approved.

[Signature]

HEYM AND H. STRONG
Acting Chief, Air-to-Surface Guided Weapons Div.
This report describes a six-degree-of-freedom program which can be used to determine the trajectory and miss distance of a missile system. The options for the program are such as to permit variation of the aerodynamics, seeker, autopilot, actuator, and missile motor performance for the purpose of accurately simulating a given missile design and evaluating the effects of any changes in system parameters. Sufficient detail has been included in the text in order to minimize the users' effort needed to know how to update or modify the program for his purposes.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II PROGRAM DESCRIPTION</td>
<td>2</td>
</tr>
<tr>
<td>Subroutines, Modules, and Tables</td>
<td>2</td>
</tr>
<tr>
<td>A2 - Aero Forces and Moments</td>
<td>5</td>
</tr>
<tr>
<td>D1, D2 Translational and Rotational Dynamics Module</td>
<td>9</td>
</tr>
<tr>
<td>List of Symbols</td>
<td>9</td>
</tr>
<tr>
<td>Equations of Motion</td>
<td>11</td>
</tr>
<tr>
<td>Subroutine G2</td>
<td>13</td>
</tr>
<tr>
<td>Subroutine Cl0</td>
<td>17</td>
</tr>
<tr>
<td>Subroutine QUADET</td>
<td>17</td>
</tr>
<tr>
<td>Subroutine Sl (Module)</td>
<td>19</td>
</tr>
<tr>
<td>C1 - Autopilot Module</td>
<td>22</td>
</tr>
<tr>
<td>C4 - Actuator Module</td>
<td>22</td>
</tr>
<tr>
<td>Fin Deflection</td>
<td>31</td>
</tr>
<tr>
<td>A3 - Engine Module</td>
<td>31</td>
</tr>
<tr>
<td>III VARIABLE LOCATIONS</td>
<td>34</td>
</tr>
<tr>
<td>Variable Names, Block Locations, Definitions</td>
<td>34</td>
</tr>
<tr>
<td>Subroutine Call Sequence</td>
<td>50</td>
</tr>
<tr>
<td>State Variables</td>
<td>50</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>IV</td>
<td>56</td>
</tr>
<tr>
<td>Initial Conditions</td>
<td>56</td>
</tr>
<tr>
<td>V</td>
<td>58</td>
</tr>
<tr>
<td>Complete Six-Degree-of-Freedom Program Listing with Example</td>
<td>58</td>
</tr>
<tr>
<td>Appendix</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>121</td>
</tr>
<tr>
<td>II</td>
<td>124</td>
</tr>
<tr>
<td>III</td>
<td>128</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

vi
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Flow Chart for State Variable Calculations</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>Wind Axis System</td>
<td>6</td>
</tr>
<tr>
<td>3.</td>
<td>Definitions of Angles and Coordinate Systems</td>
<td>12</td>
</tr>
<tr>
<td>4.</td>
<td>Euler Angles Between Body Axis and Inertial Axis</td>
<td>14</td>
</tr>
<tr>
<td>5.</td>
<td>Six-Degree-of-Freedom Equations of Motion</td>
<td>15</td>
</tr>
<tr>
<td>6.</td>
<td>Coordinate System Associated with Wind and Gust Module</td>
<td>16</td>
</tr>
<tr>
<td>7.</td>
<td>Quadrant Detector Geometry</td>
<td>18</td>
</tr>
<tr>
<td>8.</td>
<td>Coordinate Relations Between Body and Gimbal Axis System and the Line of Sight</td>
<td>20</td>
</tr>
<tr>
<td>9.</td>
<td>Schematic Diagram of Platform Gimbal Angles</td>
<td>21</td>
</tr>
<tr>
<td>10.</td>
<td>Autopilot High Frequency Model</td>
<td>23</td>
</tr>
<tr>
<td>11.</td>
<td>Pitch Rate Gyro</td>
<td>24</td>
</tr>
<tr>
<td>12.</td>
<td>Yaw Rate Gyro</td>
<td>25</td>
</tr>
<tr>
<td>13.</td>
<td>Autopilot Low Frequency Model</td>
<td>26</td>
</tr>
<tr>
<td>14.</td>
<td>High Frequency Actuator</td>
<td>27</td>
</tr>
<tr>
<td>15.</td>
<td>Actuator Torque Balance System</td>
<td>28</td>
</tr>
<tr>
<td>16.</td>
<td>Actuator Position Loop Block Diagram</td>
<td>29</td>
</tr>
<tr>
<td>17.</td>
<td>Fin Sign Conventions</td>
<td>32</td>
</tr>
<tr>
<td>Figure</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>18.</td>
<td>Offset Thrust Vector Coordinate System</td>
<td>33</td>
</tr>
<tr>
<td>19.</td>
<td>Data Card Formats and Deck Setup</td>
<td>57</td>
</tr>
<tr>
<td>I-1.</td>
<td>Angles Between Gimbal and Body Axes</td>
<td>122</td>
</tr>
<tr>
<td>Table</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>I</td>
<td>Subroutine and Module List</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Six-Degree-of-Freedom Digital Program</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>Correspondence Between Variable Names, Aero Symbols, and their</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Common Location</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Blank Common Assignments</td>
<td>35</td>
</tr>
<tr>
<td>IV</td>
<td>Common Location, Variable Name, and Definition</td>
<td>36</td>
</tr>
<tr>
<td>V</td>
<td>Initialization Subroutine Call Sequence</td>
<td>51</td>
</tr>
<tr>
<td>VI</td>
<td>State Variables and Derivatives</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>Names and Location Codes</td>
<td></td>
</tr>
</tbody>
</table>

(The reverse of this page is blank)
SECTION I
INTRODUCTION

The purpose of this report is to provide a reference which will enable ready access to the use of a six-degree-of-freedom program which is capable of accurately determining the trajectory and miss distance of a semi-active or passive guided missile. The program is divided into convenient blocks, called modules or subroutines, which do specific tasks: e.g., determine aerodynamic forces, seeker output, state of autopilot, current value of thrust, etc. As a result, the user will be able to easily locate the section of the program where specific calculations are performed and modify them or, if necessary, to add modules to achieve other purposes.

This program has been derived from a program in the library of the North American Rockwell Company, Columbus Division, and is described in NR 70H-232-1 and -2. The purpose of the program was to determine trajectory and miss distance of an air-to-air or air-to-surface missile. This manual goes into somewhat greater detail in identifying the variables and defining coordinate systems than heretofore. This has been possible because of the extensive work carried out with the program by the author in satisfying the requirements of this contract and information supplied by Mr. A. J. Ehrich and P. D. Capcara of the North American Rockwell (NAR) Corporation. The program described below has been modified from the original version supplied to USAF by North American Rockwell Corporation by personnel at the Air Force Armament Laboratory to permit the consideration of the effect of a random spot motion on the miss distance of a laser guided missile. Incorporated into the version presented in this report are additional capabilities which provide an accurate simulation of the quadrant detector, range closure, proportional lead guidance, simplified program reset mechanism for multiple runs, greater target maneuverability in air-to-air simulations, and a more general high frequency actuator routine which will accept either experimental or theoretically derived transfer functions.
SECTION II
PROGRAM DESCRIPTION

2.1 Subroutines, Modules, and Tables

A complete listing of this program appears in Section V. The program consists of three types of subprograms:

(a) Tables of aerodynamic coefficients in block data form.
(b) Modules describing missile subsystems.
(c) Executive subroutines and the main program.

The block data subroutines must be physically located at the front of the program deck after the main program for proper operation. Data is extracted from these tables in the module A1 which makes use of the table look-up subroutines TABLI, TABL2, and TABL3 which form a part of the executive routines.

For each module (e.g., A1, C4) the programmer has the option of using an associated initialization module (e.g., C41). These initialization modules may be used to compute initial conditions from input data or add to the list of state variables to be integrated. The initialization modules are executed only once at the start of each simulated mission. It is in the modules themselves (e.g., C4) that the derivatives of the state variables are computed. Time is incremented by a fixed amount (Δt) after every other pass since a predictor-corrector integration algorithm is used.

A large block common array, called C, allows the communication of certain variables between modules and subroutines for input/output, integration, and control purposes.

The mathematical relationship of various modules and subroutines are shown in Figure 1, and a corresponding list of the modules is given in Table I.
Figure 1. Flow Chart for State Variable Calculations
TABLE I. SUBROUTINE AND MODULE LIST SIX-DEGREE-OF-FREEDOM DIGITAL PROGRAM

I. GEOPHYSICAL AND EXTERNAL ENVIRONMENT

<table>
<thead>
<tr>
<th>Subroutine/Module</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G2</td>
<td>Steady winds</td>
</tr>
<tr>
<td>G3</td>
<td>Air data - including dynamic pressure, density, speed of sound</td>
</tr>
<tr>
<td>G4</td>
<td>Terminal geometry - computes miss distance</td>
</tr>
<tr>
<td>G5</td>
<td>Transformations of position and velocity between various coordinate systems</td>
</tr>
</tbody>
</table>

II. SENSORS

<table>
<thead>
<tr>
<th>Subroutine/Module</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C10</td>
<td>Spot motion - including boresight error, aiming error, hotspot motion, etc.</td>
</tr>
<tr>
<td>S1</td>
<td>Seeker - Seeker performance and platform motion</td>
</tr>
<tr>
<td>QUADET</td>
<td>Quadrant detector simulator</td>
</tr>
</tbody>
</table>

III. COMPUTERS

<table>
<thead>
<tr>
<th>Subroutine/Module</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>Autopilot - computes steering commands from seeker output</td>
</tr>
<tr>
<td>C4</td>
<td>Actuators - includes flap motion and limits</td>
</tr>
</tbody>
</table>

IV. AIRFRAME

<table>
<thead>
<tr>
<th>Subroutine/Module</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Aerodynamics coefficients - table look-up</td>
</tr>
<tr>
<td>A2</td>
<td>Aerodynamic forces and moments - in wind axis, includes forces and moments on lugs while missile is on rail</td>
</tr>
<tr>
<td>A3</td>
<td>Engine - computes thrust forces as well as c.g. shifts and mass changes</td>
</tr>
</tbody>
</table>

V. DYNAMICS

<table>
<thead>
<tr>
<th>Subroutine/Module</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>Translation dynamics of missile - accelerations in body axes are transformed into earth coordinates and integrated into velocities and positions</td>
</tr>
<tr>
<td>D2</td>
<td>Rotational dynamics of missile - computes rotational accelerations and velocities referred to missile body axes</td>
</tr>
</tbody>
</table>
2.2 A2 - Aero Forces and Moments

Figure 2 shows the relationship between the body axis and wind axis coordinate system. In addition, the coordinate directions are shown for the positive direction of the dimensionless aerodynamics' coefficients in both the body axis system and the wind or primed axis system. The body axis system and the wind axis system are related by the following system of equations:

\[
\begin{bmatrix}
X_B \\
Y_B \\
Z_B
\end{bmatrix} = \phi'
\begin{bmatrix}
X'_B \\
Y'_B \\
Z'_B
\end{bmatrix}
\]

The aerodynamic coefficients are functions of the aerodynamic roll angle (\(\phi'\)) and angle of attack \(\alpha'\). It can be seen that the angles \(\phi'\) and \(\alpha'\) locate the wind vector in much the same way that a magnitude \(r\) and angle \(\theta\) locate a vector in polar coordinates. With reference to Figure 2, it is apparent that the plane containing the wind vector is obtained by rotating the \(X_BZ_B\) plane through \(\phi'\) about the missile centerline (\(X_B\) axis). The wind vector is located in this plane by the angle \(\alpha'\) measured from the \(X_B\) axis. The angles \(\phi'\) and \(\alpha'\) are related to the angle of attack \(\alpha\) and sideslip \(\beta\) by the following equations:

\[
\begin{align*}
\cos \alpha' &= \cos \alpha \cos \beta \\
\sin \phi' &= \sin \beta / \sqrt{1 - \cos^2 \alpha \cos^2 \beta}
\end{align*}
\]

where if \(\alpha\) and \(\beta\) are small, one finds

\[
\alpha'^2 = \alpha^2 + \beta^2.
\]

Since if \(\alpha\) and \(\beta\) are small, \(\alpha'\) will similarly be small and it will be found that

\[
\begin{align*}
\beta &= \alpha' \sin \phi' \\
\phi' &= \alpha' \cos \phi' \\
\tan \phi' &= \beta / \alpha \\
\alpha' &= \sqrt{\alpha^2 + \beta^2}.
\end{align*}
\]
Figure 2. Wind Axis System
'A is the aerodynamic roll angle referenced to zero with the missile flying in the + configuration. If the missile is intended to fly in the X configuration, \(\phi' \) equals 45° with \(\beta = 0 \). Thus, \(\phi' = \phi' - 45^\circ \).

It will be found that the following relationships hold with respect to \(\phi \) and \(\phi' \):

\[
\begin{align*}
\cos 4\phi' &= -\cos 4\phi \\
\sin 4\phi' &= -\sin 4\phi \\
\cos (\phi' - 45^\circ) &= \cos \phi' \\
\sin (\phi' - 45^\circ) &= \sin \phi'.
\end{align*}
\]

Some of the above relations can be experienced in terms of the angle \(\phi' \).

In order to facilitate application to the program, Table II lists the correspondence between variable names, commonly used aero symbols, and their COMMON location in the program.
<table>
<thead>
<tr>
<th>Name</th>
<th>Symbol</th>
<th>Common Location</th>
<th>Name</th>
<th>Symbol</th>
<th>Common Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>CX</td>
<td>C_A</td>
<td>1203</td>
<td>CLDRP</td>
<td>$C_n'/\delta r$</td>
<td>1225</td>
</tr>
<tr>
<td>CY</td>
<td>C_Y</td>
<td>1204</td>
<td>CNQ</td>
<td>$C_n'/\delta q$</td>
<td>1226</td>
</tr>
<tr>
<td>C2</td>
<td>C_2</td>
<td>1205</td>
<td>CLD</td>
<td>$C_\ell'/\delta p$</td>
<td>1227</td>
</tr>
<tr>
<td>CLP</td>
<td>C_{LP}</td>
<td>1206</td>
<td>CLMP</td>
<td>C_m'</td>
<td>1228</td>
</tr>
<tr>
<td>CMQ</td>
<td>C_{mq}</td>
<td>1207</td>
<td>CLNP</td>
<td>C_n'</td>
<td>1229</td>
</tr>
<tr>
<td>CNR</td>
<td>C_{nr}</td>
<td>1208</td>
<td>BDEFL</td>
<td>$</td>
<td>\delta</td>
</tr>
<tr>
<td>CL</td>
<td>$C_{\ell'}$</td>
<td>1209</td>
<td>CDCM</td>
<td>$C_m'(\phi')$</td>
<td>1231</td>
</tr>
<tr>
<td>C1</td>
<td>C_1</td>
<td>1210</td>
<td>DDL</td>
<td>δ_p</td>
<td>1232</td>
</tr>
<tr>
<td>CN</td>
<td>C_N</td>
<td>1211</td>
<td>BDM</td>
<td>δ_q</td>
<td>1233</td>
</tr>
<tr>
<td>CXO</td>
<td>C_A</td>
<td>1212</td>
<td>BDN</td>
<td>δ_r</td>
<td>1234</td>
</tr>
<tr>
<td>CXC</td>
<td>$C_A'(trim)$</td>
<td>1213</td>
<td>CDCN</td>
<td>$C_N'(\phi')$</td>
<td>1235</td>
</tr>
<tr>
<td>CNPT</td>
<td>$C_N'(\alpha')$</td>
<td>1214</td>
<td>CL2</td>
<td>$C_\ell'(\phi)$</td>
<td>1240</td>
</tr>
<tr>
<td>CY2</td>
<td>$C_Y'(\phi')$</td>
<td>1215</td>
<td>CL3</td>
<td>$C_\ell'(\phi)_{1ug}$</td>
<td>1241</td>
</tr>
<tr>
<td>CMO</td>
<td>$C_m'(\alpha')$</td>
<td>1217</td>
<td>CNPU</td>
<td>$C_N'(\phi',\alpha')$</td>
<td>1244</td>
</tr>
<tr>
<td>CN2</td>
<td>$C_N'(\phi')$</td>
<td>1218</td>
<td>CYPU</td>
<td>$C_Y'(\phi)$</td>
<td>1245</td>
</tr>
<tr>
<td>CZQ</td>
<td>$C_N'/\delta q$</td>
<td>1219</td>
<td>CMP</td>
<td>$C_m'(\alpha',\phi')$</td>
<td>1247</td>
</tr>
<tr>
<td>CZR</td>
<td>$C_N'/\delta r$</td>
<td>1220</td>
<td>CNP</td>
<td>$C_n'(\phi')$</td>
<td>1248</td>
</tr>
<tr>
<td>C:IDQP</td>
<td>$C_N'/\delta q$</td>
<td>1221</td>
<td>CLR</td>
<td>$C_\ell'(\phi')$</td>
<td>1249</td>
</tr>
<tr>
<td>CMR</td>
<td>$C_m'/\delta r$</td>
<td>1222</td>
<td>C2P</td>
<td>C_N'</td>
<td>1250</td>
</tr>
<tr>
<td>CYR</td>
<td>$C_Y'/\delta r$</td>
<td>1223</td>
<td>CYP</td>
<td>C_Y'</td>
<td>1251</td>
</tr>
<tr>
<td>CYQ</td>
<td>$C_Y'/\delta q$</td>
<td>1224</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.3.1 **D1, D2 - Translational and Rotational Dynamics Module**

The following list of symbols applies to the equations of motion which are developed in paragraph 2.3.3 for modules D1 and D2.

2.3.2 **List of Symbols**

- **m** - $F(t)$ instantaneous mass (slugs)
- **p** - Rolling velocity = angular velocity along X axis (rad/sec)
- **q** - Pitching velocity = angular velocity along Y axis (rad/sec)
- **r** - Yawing velocity = angular velocity along Z axis (rad/sec)
- **I_X** - Moment of inertia about X axis (slug-ft)
- **I_Y** - Moment of inertia about Y axis (slug-ft)
- **I_Z** - Moment of inertia about Z axis (slug-ft)
 \[(I_z = I_y \text{ for a perfectly symmetrical missile})\]
- **U** - Linear velocity along the X body (X_E) axis (ft/sec)
- **V = U_\alpha** - Linear velocity along the Y body (Y_E) axis (ft/sec)
- **W = U_\beta** - Linear velocity along the Z body (Z_B) axis (ft/sec)
- **X_B, Y_B, Z_B** - Airframe axis system that moves with airframes
- **X_e, Y_e, Z_e** - Earth coordinates
- **\(\alpha\)** - Angle of attack = angle between a fuselage reference line and the relative wind in the X_B, Z_B plane (rad)
 \[\tan \alpha = \frac{W}{U}; \alpha = \frac{W}{U}\]
- **\(\beta\)** - Angle of sideslip (rad)
 \[\tan \beta = \frac{V}{U^2 + W^2}; \beta = \frac{V}{U}\]
Euler angles
ψ, θ, and φ - ψ is the rotation about Z_B, θ is the rotation about Y_B, and φ is the rotation about X_B in that order (rad)

g - Acceleration due to gravity (ft/sec²)

T - Thrust along X_B

C_N, C_Y, C_C, C_R, C_m, C_n - Dimensionless aerodynamics coefficients (body axes)

C'_N, C'_Y, C'_C, C'_R, C'_m, C'_n - Dimensionless aerodynamics coefficients (primed axes system - Figure 2)

- Density (slug/ft³)

q₀ - Dynamic pressure = ½ρU² (lb/ft²)

S - Body reference cross sectional area (ft²)

ι - Reference body length (ft)

ΔX - Shift of center of gravity from a reference point along the X_B axis (ft) - negative aft

δ - Control surface deflection (rad)

δq - Control surface deflection to give pitching motion (rad)

δp - Control surface deflection to give rolling motion (rad)

δr - Control surface deflection to give yawing motion (rad)

C_ij - Dimensionless aerodynamic derivatives

d' - Aerodynamic or wind angles of attack (rad) - Figure 2

ϕ' - Aerodynamic roll angle (rad) - Figure 2

ϕ''_A - Aerodynamic roll angle (rad) referenced to zero when flying in the + configuration.
ϕ''_A = ϕ' + 45°
2.3.3 Equations of Motion

The six-degree-of-freedom equations of motion implemented in the computer program in terms of the body axes are given below*. (See Figure 3 for coordinate system orientation.)

Longitudinal Force

\[\Sigma F_x = m[U + U_d q - U_b r] = q \rho S_n C_x - mg \sin \theta + T \]

Lateral Force

\[\Sigma F_y = m[d/dt(U_d) + Ur - U_d P] = q \rho S_n [C_y \Phi' - \sin \Phi']_n + mg \cos \theta \sin \phi \]

Vertical Force

\[\Sigma F_z = m[d/dt(U_a) + U_b p - U_q] = -q \rho S_n [C_z \Phi' + \sin \Phi']_n + mg \cos \theta \cos \phi \]

Rolling Moment

\[\Sigma M_x = I_x p = q \rho S_n \ell [C_l + \ell/2U_c \rho P] \]

Pitching Moment

\[\Sigma M_y = I_y q + (I_x - I_z)p r = q \rho S_n \ell [C_m \Phi' + \sin \Phi']_n + \ell/2U_c m q - \Delta X/2U_c (\sin \Phi' + \cos \Phi')_n \]

Yawing Moment

\[\Sigma M_z = I_z r + (I_y - I_x)p q = q \rho S_n \ell [C_n \Phi' - \sin \Phi']_n + \ell/2U_c m r - \Delta X/2U_c (\cos \Phi' - \sin \Phi')_n \]

* U_X velocity in X direction
 V_Y velocity in Y direction
 W_Z velocity in Z direction
Figure 3. Definitions of Angles and Coordinate Systems
The Euler transformations of

\[\dot{\phi} = p = r\cos\phi / \cos \theta + q\sin\phi / \cos \theta \]
\[\dot{\theta} = q = q\cos\phi - r\sin\phi \]
\[\dot{\psi} = r = p + (r\cos\phi + q\sin\phi) \tan \theta \]

The velocity, in terms of the earth axes, can be obtained as:

\[X = U\cos\theta \cos\psi + U_\beta (\sin\psi \sin\theta \cos\psi - \cos\psi \sin\psi) \]
\[+ U_\alpha (\cos\psi \sin\theta \cos\psi + \sin\psi \sin\psi) \]
\[Y = U\cos\theta \sin\psi + U_\beta (\cos\psi \cos\psi + \sin\psi \sin\psi \sin\phi) \]
\[+ U_\alpha (\cos\psi \sin\psi \sin\psi - \sin\psi \cos\psi) \]
\[Z = - U\sin\theta + U_\beta \sin\psi \cos\theta + U_\alpha \cos\theta \cos\phi \]

The Euler angles, shown in Figure 4, and the position of the missile in earth coordinates can be obtained through an integration of the above equations.

The block diagram of the implementation of the equations of motion and the Euler transformations are shown in Figure 5.

2.4 Subroutine G2

This subroutine is called the wind and gust module. This module determines the velocity and direction of the wind. The module assumes that there is no wind above an altitude RHW. Below that altitude the wind direction and magnitude are assumed to be constant throughout a layer RWINC in depth. (It should be noted that RWINC is measured along the line of sight. Since most missiles fly with only small deviation from the original line of sight, the altitude increments, if needed, may be readily estimated.) Two random variables are associated with the wind in each layer: the magnitude and angular orientation which are considered constant in each layer. The mean value of the wind magnitude is VWTE, and its standard deviation is given as SW. The mean value of the angular orientation of the wind in a layer is BPSIW, and the standard deviation of the angular variation is SW1. The current value of the wind magnitude and direction is given by VWTEV and BPSIYV, respectively. The relationship between these mean values and the inertial coordinate system is shown in Figure 6.
Figure 4. Euler Angles Between Body Axis and Inertial Axis
FIGURE 5. SIX-DEGREE-OF-FREEDOM EQUATIONS OF MOTION
Figure 6. Coordinate System Associated with Wind and Gust Module
2.5 **Subroutine C10**

This subroutine determines the ground plane coordinates of that point in the area illuminated by the laser beam which the missile seeker physics causes the autopilot to consider the designated target. This distinction is necessary since some seekers are hotspot trackers while others are centroidal trackers. The procedure used to develop this apparent target is accomplished first through the designation of the coordinates of the illuminator (XIL, HILL) which may either be on the forward air controller or on the launch aircraft. The maximum errors generated on the ground are considered to be made up of three parts: the maximum boresight error (BORE), the maximum pointing error (WAND), and the maximum deviation of the hotspot from the resulting beam centroid, which is designated as (RADIUS). Each of these variables is considered a random variable with a uniform distribution. The resulting random variables generated are, respectively, BOREF, WANDF, and SPWID. The variables are considered to vary independently in the XE and YE direction and are then appropriately summed in order to determine the apparent target location. The coordinates of this point are designated as the variables ZLASR and YLASR. The location in earth coordinates may be found by equating ZLASR to XE and YLASR to YE and setting ZE equal to zero.

2.6 **Subroutine QUADET**

Subroutine QUADET is called by Sl for the determination of the signal generated to the autopilot by the quadrant detector (Figure 7). The quadrant detector is oriented such that the dead zone is in the same direction as the fins, assuming the missile flies in the X configuration. The subroutine determines the current size of the circular image through the assumption that the image size increases inversely proportional to the range of the missile from the laser spot. RT1 is the variable designating the ratio of the size of the current spot to its size at infinity. The laser image on the detector is assumed to be circular. In order to determine the portion of the area of each quadrant covered by the laser image, the area of the detector is subdivided into LT segments. (In the current program LT is set equal to 16.) In order to effect a dead zone, an area around the axis of the coordinate system equal to half the segment width is not included in the area of the image which cover these segments. If a portion of the laser image falls off the assumed circular detector's surface, it is not considered. The variable DETRID is half the instantaneous field of view of the detector in degrees. DEFICS is half the
Missile fin orientation

Vertical

AA, BB, CC, DD - Area of laser spot in respective quadrant (sq. in.) (less dead zone) shaded area represents defocused spot on quadrant detector

Figure 7. Quadrant Detector Geometry
instantaneous field of view intercepted by the image of
the laser spot on the detector. The subroutine will de-
termine if the following blind range and breaklock cri-
teria are met and print this information on the line
printer. The breaklock criteria is met if there is no
portion of the laser image on any of the four quadrants.
The blind range criteria is met if the image of the laser
spot on the detector exceeds 90 percent of the total area
of the detector.

2.7 Subroutine S1 (Module)

The purpose of the S1 Module is to simulate the re-
sponse of several types of seeker models and to generate
the commands which are transmitted to the autopilot.

The subroutine will simulate the seeker response to
either a continuous information source or a sampled data
source. This is accomplished by setting the variable
OPTKR either to zero or one, respectively. If operating
from a continuous information source, the seeker is as-
sumed by the module to be a proportional seeker. In the
sampled data mode the seeker can be programmed as either
a proportional or a bang-bang seeker by the choice of the
magnitude of the variable DEFOCS. If this variable is
chosen so that it is equivalent to DELF (detector radius/LT
(in current program), the seeker will simulate a bang-bang
laser seeker; whereas, if this variable is chosen so that
it is larger than DELF, it will produce a proportional
laser processor.

In the sample data mode the seeker will simulate
either a pursuit or a proportional navigation system by
setting the variable CAGE equal to zero or one, respective-
ly. In the continuous information mode, corresponding
changes in the guidance law will occur. In either mode
of operation the PLG option may be implemented. This is
done by removing the C from the two cards following the
PLG OPTION card.

The mode of operation of the subroutine in either
mode is to initially determine the true location of the
target in the gimbal axis coordinate system (RXG, RYG, and
RZG) and then determine the angles the lines of sight make
with the RYG, RXG plane and the RZG, RXG planes (BEPSY and
BEPSZ, respectively, shown in Figure 8 and Figure 9).
Figure 8. Coordinate Relations Between Body and Gimbal Axis System and the Line of Sight
Gyroscope Platform Gimbal Angles

θ_g outer gimbal - pitch

ψ_g inner gimbal - yaw

Figure 9. Schematic Diagram of Platform Gimbal Angles
The rate of pulse loss is determined by the value, between zero and one, initially given the variable VLAZRP. This is done by comparing a uniformly distributed random variable [C(103)] whose range is also between zero and one with VLAZRP. If it is greater, it is assumed that the information in the pulse is lost. If pulse loss has not occurred, then the apparent location of the target is determined in the gimbal axis coordinate system which has resulted from boresight errors, wander, etc. Subroutine QUADDET is then called to determine the output of the quadrant detector. This output is used to generate the required gimbal rate and autopilot commands. If pulse loss has occurred, previously generated commands (e.g., gimbal rate, autopilot signals) are maintained.

In addition, Appendix I shows the mechanics of the coordinate transformation from the body axis to the gimbal axis system for easy reference.

2.8 C1 Autopilot Module

The following high and low frequency autopilot block diagrams are suitable representations for an autopilot that would prove to be consistent with either a proportional or bang-bang seeker. The block diagrams for each of those autopilots are given in Figures 10, 11, 12, and 13. These systems correspond to those mechanized in the program listing found in Section V for the low frequency autopilot and in Appendix III for the high frequency autopilot.

2.9 C4 - Actuator Module

The actuator module simulates the action of the actuator up to a third order system, as shown in Figure 14, which corresponds to a high frequency actuator. Under these conditions it is capable of simulating the dynamics of either a torque balance system whose block diagram is shown in Figure 15, or that of the position loop-controlled actuator shown in Figure 16. It will also simulate the dynamics of an actuator whose transfer function has been determined from hardware test data up to the third order.

The transfer function, given in general form as expressed in this module, is shown below:

\[
\frac{\delta}{\delta_c} = \frac{K}{\lambda_1 \cdot s^3 + \lambda_2 \cdot s^2 + \lambda_3 \cdot s + \lambda_4}
\]
FIGURE 10. AUTOPILOT
HIGH FREQUENCY MODEL
Figure 11. Pitch Rate Gyro
Figure 12. Yaw Rate Gyro
\[
\frac{\delta}{\delta_c} = \frac{1}{(16.3 + 1)(\frac{S^2}{180^2} + \frac{96}{180} S + 1)}
\]
[worst case model from hardware test data]

\[\delta \sim BDFLTRC(1) \frac{K_W}{K_L} \frac{1}{TS+1}\]

Figure 15. Actuator Torque Balance System
Figure 16. Actuator Position Loop Block Diagram
The transfer function for either the position feedback system or the torque balance system can be brought into the following form:

\[
\frac{\delta}{\delta_C} = \frac{K_yA^*\delta_57.3}{K_L[S(K_LJS(\tau S+1) + K_R(\tau S+1) + (A \tau)^2/K_L] + K_SK_57.3(\tau S+1)}
\]

and similarly for the position loop block diagram.

If either the torque balance system or the position loop control system is to be activated, then CKACT should be either set equal to one or zero, depending on whether the aerodynamic tables for FMH1, FMH2, FMH3, and FMH4 are included in the data tables. The variable BDMAX limits the maximum amplitude of the fin motion. The low frequency actuator equations are developed below.

Low Frequency Actuator

\[
\begin{align*}
BDELT(1) & = BDELT(1) - \delta p + \delta q - \delta r \\
BDELT(2) & = BDELT(2) - \delta p + \delta q + \delta r \\
BDELT(3) & = BDELT(3) + \delta p + \delta q - \delta r \\
BDELT(4) & = BDELT(4) + \delta p + \delta q + \delta r \\
\delta_1 & = BDELT(1) \\
\delta_2 & = BDELT(2) \\
\delta_3 & = BDELT(3) \\
\delta_4 & = BDELT(4)
\end{align*}
\]

where

\[
\begin{align*}
\delta p & = DELTPB \\
\delta q & = DELTQB \\
\delta r & = DELTRB
\end{align*}
\]

The mechanization of these equations may be found in the Program Listing (Section V) for the low frequency actuator. The high frequency actuator program listing may be found in Appendix II.
2.9.1 Fin Deflection

A positive pitch rate (motion up) is obtained with a negative δq, where

$$\delta q = \frac{\delta_1 + \delta_2 + \delta_3 + \delta_4}{4}.$$

A positive roll rate (motion clockwise about the X body axis) is obtained with a positive δp, where

$$\delta p = \frac{(\delta_3 - \delta_2 + \delta_4 - \delta_1)}{4}.$$

A positive yaw rate (motion clockwise about the Z body axis) is obtained with a negative δr.

A positive surface deflection is defined as a trailing edge down. The surfaces are labeled by looking at the missile tail-on, with δ_1 being the upper right surface, δ_2 the lower right surface, δ_3 the lower left surface, and δ_4 the upper left surface, as shown in Figure 17.

It is assumed that the surface effectiveness will be given in terms of δq, δp, and δr as a function of α' and ϕ'. These terms will be considered as a part of the aerodynamic coefficients given in the primed axis system.

2.10 A3 - Engine Module

As a result of various sources of error occurring in the manufacture and assembly of a solid propellant motor, the thrust alignment is not perfect. The coordinate system used in determining the misalignment the user wishes to simulate is shown in Figure 18.
Figure 17. Fin Sign Conventions
RFXCG - X Component of thrust vector with respect to body axis in the X direction

RFYCG - Y Component of thrust vector with respect to body axis in the Y direction

RFZCG - Z Component of thrust vector with respect to body axis in the Z direction

FTHRST - Missile Thrust

Figure 18. Offset Thrust Vector Coordinate System
SECTION III

VARIABLE LOCATIONS

3.1 Variable Names, Block Locations, and Definitions

Since the proper use of this program requires that the definition of upwards of five hundred singly dimensioned variables as well as many multidimensioned be made, it is clear that some order must be maintained in the allocation of storage or serious programming difficulties could arise. Therefore, blocks of common location have been allocated to specific subroutines as shown in Table III. This procedure should be continued in the event it is necessary to add variables as a result of program modifications.

Of the large number of variables actually listed by the program, only two hundred and fifty appear to be significant in the preparation of the input or of an aid in understanding the output. Therefore, it was felt that they should be separately defined. This is done in Table IV. It should be noted that the units of the variables listed in that table should be considered to be in feet, seconds, pounds, or degrees unless otherwise specified.
<table>
<thead>
<tr>
<th>Array Index</th>
<th>Module Name</th>
<th>Module Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 50</td>
<td>C10</td>
<td>Unsteady Illuminator</td>
</tr>
<tr>
<td>50 - 102</td>
<td>G2</td>
<td>Steady Winds, Variable Winds</td>
</tr>
<tr>
<td>200 - 299</td>
<td>G3</td>
<td>Air Data</td>
</tr>
<tr>
<td>350 - 399</td>
<td>G5</td>
<td>Coordinate Conversion</td>
</tr>
<tr>
<td>400 - 499</td>
<td>S1, S1I</td>
<td>Seeker - Platform</td>
</tr>
<tr>
<td>800 - 899</td>
<td>C1, C1I</td>
<td>Autopilot</td>
</tr>
<tr>
<td>1100 - 1149</td>
<td>C4, C4I</td>
<td>Actuators</td>
</tr>
<tr>
<td>1200 - 1299</td>
<td>A1</td>
<td>Aero Table Look-Up</td>
</tr>
<tr>
<td>1300 - 1399</td>
<td>A2</td>
<td>Forces and Moments</td>
</tr>
<tr>
<td>1400 - 1499</td>
<td>A3, A3I</td>
<td>Engine</td>
</tr>
<tr>
<td>1600 - 1699</td>
<td>D1, D1I</td>
<td>Translational Dynamics</td>
</tr>
<tr>
<td>1700 - 1799</td>
<td>D2, D2I</td>
<td>Rotational Dynamics</td>
</tr>
</tbody>
</table>

Note: Locations 1950 - 4310 are reserved for Executive Subroutines, Initial Conditions, and Input-Output Instructions.
<table>
<thead>
<tr>
<th>Common Location</th>
<th>Variable Name</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1)</td>
<td>BORE</td>
<td>Maximum boresight error</td>
</tr>
<tr>
<td>C(2)</td>
<td>WAND</td>
<td>Maximum pointing error</td>
</tr>
<tr>
<td>C(3)</td>
<td>RADIUS</td>
<td>Maximum deviation of hotspot from beam centroid</td>
</tr>
<tr>
<td>C(4)</td>
<td>HILL</td>
<td>Height of illuminator</td>
</tr>
<tr>
<td>C(5)</td>
<td>RILL</td>
<td>Ground range of illuminator</td>
</tr>
</tbody>
</table>
| C(6) | AIS PTT | { 0. - Centroid tracker
| | | 1. - Hotspot tracker } |
| C(7) | AILL | { 0. - Stationary illuminator*
| | | 1. - Moving illuminator } |
| C(8) | SPOTMO | { 0. - No spot motion
| | | 1. - Spot motion } |
| C(9) | XSPOT | X - Coordinate of centroid or hotspot |
| C(10) | YSPOT | Y - Coordinate of centroid or hotspot |
| C(11) | AIFAC | { 0. - Tracker on ground or on launch aircraft
| | | 1. - Tracker on separate aircraft } |
| C(12) | VILM | Velocity of illuminator, Mach number |
| C(18) | XILL | Ground range in X direction of illuminator |

*Must give HILL, XILL for input
<table>
<thead>
<tr>
<th>Common Location</th>
<th>Variable Name</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(51)</td>
<td>BPSIW</td>
<td>Mean angle of wind velocity vector</td>
</tr>
<tr>
<td>C(52)</td>
<td>VWTE</td>
<td>Mean wind velocity</td>
</tr>
<tr>
<td>C(53)</td>
<td>RHW</td>
<td>Altitude above which all the winds are zero</td>
</tr>
<tr>
<td>C(55)</td>
<td>SW</td>
<td>Standard deviation from mean angle of wind velocity vector BPSIW</td>
</tr>
<tr>
<td>C(56)</td>
<td>RWINC</td>
<td>Shear layer of wind. Depth of wind layers at which wind velocity and angle remain constant.</td>
</tr>
<tr>
<td>C(58)</td>
<td>SWl</td>
<td>Standard deviation from mean wind velocity VWTE</td>
</tr>
<tr>
<td>C(100)</td>
<td>VWXE</td>
<td>Wind velocity (X component with reference to the earth-fixed coordinate system)</td>
</tr>
<tr>
<td>C(101)</td>
<td>VWYE</td>
<td>Wind velocity (Y component with reference to the earth-fixed coordinate system)</td>
</tr>
<tr>
<td>C(102)</td>
<td>VWZE</td>
<td>Wind velocity (Z component with reference to the earth-fixed coordinate system)</td>
</tr>
<tr>
<td>C(203)</td>
<td>PDYNMC</td>
<td>Dynamic pressure</td>
</tr>
<tr>
<td>C(204)</td>
<td>VMACH</td>
<td>Mach number</td>
</tr>
<tr>
<td>C(205)</td>
<td>DRHO</td>
<td>Air density</td>
</tr>
<tr>
<td>C(206)</td>
<td>VSOUND</td>
<td>Speed of sound</td>
</tr>
<tr>
<td>C(207)</td>
<td>VAIRSP</td>
<td>Missile velocity with respect to air mass in earth axes</td>
</tr>
<tr>
<td>Common Location</td>
<td>Variable Name</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------</td>
<td>------------</td>
</tr>
<tr>
<td>C(208)</td>
<td>RH2RO</td>
<td>Initial altitude of the missile</td>
</tr>
<tr>
<td>C(209)</td>
<td>RI</td>
<td>Present altitude of the missile</td>
</tr>
<tr>
<td>C(350)</td>
<td>BTHT</td>
<td>Pitch angle in degrees - θ</td>
</tr>
<tr>
<td>C(351)</td>
<td>BPSI</td>
<td>Roll angle in degrees - ϕ</td>
</tr>
<tr>
<td>C(352)</td>
<td>BPHI</td>
<td>Yaw angle in degrees - ψ</td>
</tr>
<tr>
<td>C(356)</td>
<td>VTOTE</td>
<td>Total missile velocity</td>
</tr>
<tr>
<td>C(357)</td>
<td>LGAMH</td>
<td>Horizontal proportional navigation angle (degrees)</td>
</tr>
<tr>
<td>C(358)</td>
<td>LGAMV</td>
<td>Vertical proportional navigation angle (degrees)</td>
</tr>
<tr>
<td>C(367)</td>
<td>B(ALPHA)</td>
<td>Vertical component of angle of attack</td>
</tr>
<tr>
<td>C(368)</td>
<td>BALPHY</td>
<td>Horizontal component of angle of attack</td>
</tr>
<tr>
<td>C(369)</td>
<td>BALPHI</td>
<td>$\alpha' = \sqrt{B(ALPHA)^2 + BALPHY^2}$ total angle of attack</td>
</tr>
<tr>
<td>C(370)</td>
<td>BPHIF</td>
<td>γ' orientation of wind vector in roll axis</td>
</tr>
<tr>
<td>C(371)</td>
<td>RANGE</td>
<td>Range</td>
</tr>
<tr>
<td>C(372)</td>
<td>RXBA</td>
<td>Range (X component in body coordinate system)</td>
</tr>
<tr>
<td>C(373)</td>
<td>RYBA</td>
<td>Range (Y component in body coordinate system)</td>
</tr>
<tr>
<td>C(374)</td>
<td>RZBA</td>
<td>Range (Z component in body coordinate system)</td>
</tr>
<tr>
<td>Common Location</td>
<td>Variable Name</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------</td>
<td>------------</td>
</tr>
<tr>
<td>C(377)</td>
<td>BALPD</td>
<td>(d(BALPHA)/dt)</td>
</tr>
<tr>
<td>C(378)</td>
<td>BALYD</td>
<td>(d(BALPHY)/dt)</td>
</tr>
<tr>
<td>C(379)</td>
<td>BALPPD</td>
<td>(d(BALPHP)/dt)</td>
</tr>
<tr>
<td>C(380)</td>
<td>RANGO</td>
<td>The distance of missile from the launch point</td>
</tr>
<tr>
<td>C(403)</td>
<td>E2</td>
<td>Seeker output to autopilot (pitch)</td>
</tr>
<tr>
<td>C(407)</td>
<td>EY</td>
<td>Seeker output to autopilot (yaw)</td>
</tr>
<tr>
<td>C(427)</td>
<td>BTHTG</td>
<td>Platform position (\theta_g)</td>
</tr>
<tr>
<td>C(431)</td>
<td>DPSIG</td>
<td>Platform position yaw gimbal angle (\psi_g)</td>
</tr>
<tr>
<td>C(432)</td>
<td>RXG</td>
<td>Range X in gimbal axes</td>
</tr>
<tr>
<td>C(433)</td>
<td>RYG</td>
<td>Range Y in gimbal axes</td>
</tr>
<tr>
<td>C(434)</td>
<td>RZG</td>
<td>Range Z in gimbal axes</td>
</tr>
<tr>
<td>C(435)</td>
<td>BEPSZ</td>
<td>Angular position of the line of sight in gimbal axes (see Figure 2)</td>
</tr>
<tr>
<td>C(435)</td>
<td>BEPSY</td>
<td></td>
</tr>
<tr>
<td>C(437)</td>
<td>WZ</td>
<td>Missile body rate (W_z)</td>
</tr>
<tr>
<td>C(438)</td>
<td>WY</td>
<td>Missile body rate (W_y)</td>
</tr>
<tr>
<td>C(441)</td>
<td>SZGBLS</td>
<td>Pitch gimbal torque bias (deg/sec)</td>
</tr>
<tr>
<td>C(442)</td>
<td>SYGBLS</td>
<td>Yaw gimbal torque bias (deg/sec)</td>
</tr>
<tr>
<td>C(443)</td>
<td>OPTKR</td>
<td>Optics routine</td>
</tr>
<tr>
<td>C(444)</td>
<td>OPTBKLC</td>
<td>Optical breaklock</td>
</tr>
<tr>
<td>C(445)</td>
<td>UT</td>
<td>Time at which next pulse expected</td>
</tr>
<tr>
<td>C(446)</td>
<td>CDT</td>
<td>Pulse rate, sampling period</td>
</tr>
<tr>
<td>Common Location</td>
<td>Variable Name</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------</td>
<td>------------</td>
</tr>
<tr>
<td>C(450) NSW</td>
<td>Acquisition gain seeker constant</td>
<td></td>
</tr>
<tr>
<td>C(451) CAGE</td>
<td>[><0 uncaged gimbals] [(><0 remain in caged position]</td>
<td></td>
</tr>
<tr>
<td>C(452) QBREAK</td>
<td>(Breaklock has occurred due to loss of signal) (automatically parameterized)</td>
<td></td>
</tr>
<tr>
<td>C(453) RBLK</td>
<td>Range at breaklock (maximum range at which lock-on can take place)</td>
<td></td>
</tr>
<tr>
<td>C(454) BLEG</td>
<td>Half the field of view</td>
<td></td>
</tr>
<tr>
<td>C(455) WEPSMX</td>
<td>Breaklock drift rate</td>
<td></td>
</tr>
<tr>
<td>C(456) CKDDR</td>
<td>Seeker gain</td>
<td></td>
</tr>
<tr>
<td>C(457) CROSSTP</td>
<td>Pitch to yaw friction coupling</td>
<td></td>
</tr>
<tr>
<td>C(458) CROSPT</td>
<td>Yaw to pitch friction coupling</td>
<td></td>
</tr>
<tr>
<td>C(460) GUIDE</td>
<td>(=1 missile guidance system in effect) (=0 missile guidance system not in effect)</td>
<td></td>
</tr>
<tr>
<td>C(461) SAMP</td>
<td>Preprogrammed guidance trajectory (cutoff check automatically parameterized) (0 - missile uses preprogrammed flight path) (1 - missile uses preprogrammed flight path until seeker acquires target)</td>
<td></td>
</tr>
<tr>
<td>C(464) CGADES</td>
<td>Vertical trajectory programming constant</td>
<td></td>
</tr>
<tr>
<td>C(465) CGADES</td>
<td>Horizontal trajectory programming constant</td>
<td></td>
</tr>
<tr>
<td>C(466) ZLASE</td>
<td>Location of laser spot on target in X direction due to ground or airborne FAC</td>
<td></td>
</tr>
<tr>
<td>Common Location</td>
<td>Variable Name</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------</td>
<td>------------</td>
</tr>
<tr>
<td>C(467)</td>
<td>YLAZR</td>
<td>Location of laser spot on target in Y direction due to ground or airborne FAC</td>
</tr>
<tr>
<td>C(468)</td>
<td>DEFOCS</td>
<td>Half angle in degrees of angle intercepted by image of laser spot on detector surface</td>
</tr>
<tr>
<td>C(469)</td>
<td>DETRAD</td>
<td>Half angle in degrees of angle intercepted by quadrant detector</td>
</tr>
<tr>
<td>C(472)</td>
<td>CKSK1</td>
<td>Seeker driver constant</td>
</tr>
<tr>
<td>C(473)</td>
<td>VLAZRP</td>
<td>Used in pulse loss calculation</td>
</tr>
<tr>
<td>C(850)</td>
<td>HLIMO</td>
<td>Limit on δ_c from pitch and yaw plane (deg) (fins 1 and 3)</td>
</tr>
<tr>
<td>C(851)</td>
<td>HLIME</td>
<td>Limit on δ_c from pitch and yaw plane (deg) (fins 2 and 4)</td>
</tr>
<tr>
<td>C(852)</td>
<td>QBIAS</td>
<td>Pitch body rate bias (deg/sec) (used as "g" bias)</td>
</tr>
<tr>
<td>C(853)</td>
<td>RBIAS</td>
<td>Yaw body rate bias (deg/sec)</td>
</tr>
<tr>
<td>C(855)</td>
<td>GZ</td>
<td>Navigation ratio for pitch plane</td>
</tr>
<tr>
<td>C(856)</td>
<td>GY</td>
<td>Navigation ratio for yaw plane</td>
</tr>
<tr>
<td>C(863)</td>
<td>TAUZ</td>
<td>Pitch guidance lag filter (rad/sec)</td>
</tr>
<tr>
<td>C(864)</td>
<td>TAUY</td>
<td>Yaw guidance lag filter (rad/sec)</td>
</tr>
<tr>
<td>C(865)</td>
<td>TDY1</td>
<td>Rate loop gain switch 1 (sec)</td>
</tr>
<tr>
<td>C(866)</td>
<td>TDY2</td>
<td>Rate loop gain switch 2 (sec)</td>
</tr>
<tr>
<td>C(877)</td>
<td>TAUL</td>
<td>Guidance lead filter (rad/sec)</td>
</tr>
<tr>
<td>C(888)</td>
<td>CKSK2</td>
<td>Seeker gain constant</td>
</tr>
<tr>
<td>Common Location</td>
<td>Variable Name</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------</td>
<td>------------</td>
</tr>
<tr>
<td>C(1117)</td>
<td>BSURF 1</td>
<td>δ_1</td>
</tr>
<tr>
<td>C(1118)</td>
<td>BSURF 2</td>
<td>δ_2</td>
</tr>
<tr>
<td>C(1119)</td>
<td>BSURF 3</td>
<td>δ_3</td>
</tr>
<tr>
<td>C(1120)</td>
<td>BSURF 4</td>
<td>δ_4</td>
</tr>
<tr>
<td>C(1160)</td>
<td>DELTPB</td>
<td>$\delta_p = (-\delta_1 - \delta_2 + \delta_3 + \delta_4)/4$</td>
</tr>
<tr>
<td>C(1161)</td>
<td>DELTQB</td>
<td>$\delta_q = (\delta_1 + \delta_2 + \delta_3 + \delta_4)/4$</td>
</tr>
<tr>
<td>C(1162)</td>
<td>DELTRB</td>
<td>$\delta_r = (-\delta_1 - \delta_2 + \delta_3 + \delta_4)/4$</td>
</tr>
<tr>
<td>C(1260)</td>
<td>CXERR</td>
<td>Drag coefficient error</td>
</tr>
<tr>
<td>C(1261)</td>
<td>CZERR</td>
<td>Normal force ($C'z$) coefficient error</td>
</tr>
<tr>
<td>C(1262)</td>
<td>CYERR</td>
<td>Side force ($C'y$) coefficient error</td>
</tr>
<tr>
<td>C(1263)</td>
<td>CLERR</td>
<td>Roll moment ($C'L$) coefficient error</td>
</tr>
<tr>
<td>C(1264)</td>
<td>CMERR</td>
<td>Pitch moment ($C'M$) coefficient error</td>
</tr>
<tr>
<td>C(1265)</td>
<td>CNERR</td>
<td>Yaw moment ($C'N$) coefficient error</td>
</tr>
<tr>
<td>C(1300)</td>
<td>FXBA</td>
<td>The X component of aero force in body coordinate system</td>
</tr>
<tr>
<td>C(1301)</td>
<td>FYBA</td>
<td>The Y component of aero force in body coordinate system</td>
</tr>
<tr>
<td>C(1302)</td>
<td>FZBA</td>
<td>The Z component of aero force in body coordinate system</td>
</tr>
<tr>
<td>C(1303)</td>
<td>FMXBA</td>
<td>The X component of aero moment in body coordinate system</td>
</tr>
<tr>
<td>C(1304)</td>
<td>FYBA</td>
<td>The Y component of aero moment in body coordinate system</td>
</tr>
</tbody>
</table>

TABLE IV (Continued)
<table>
<thead>
<tr>
<th>Common Location</th>
<th>Variable Name</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1305)</td>
<td>FMZBA</td>
<td>The Z component of aero moment in body coordinate system</td>
</tr>
<tr>
<td>C(1306)</td>
<td>RFAREA</td>
<td>Missile reference area (ft²)</td>
</tr>
<tr>
<td>C(1307)</td>
<td>RFLGTH</td>
<td>Missile reference length (ft)</td>
</tr>
<tr>
<td>C(1308)</td>
<td>RDELCG</td>
<td>Center of gravity shift (ft)</td>
</tr>
<tr>
<td>C(1309)</td>
<td>FMH1</td>
<td>Hinge moments</td>
</tr>
<tr>
<td>C(1310)</td>
<td>FMH2</td>
<td></td>
</tr>
<tr>
<td>C(1311)</td>
<td>FMH3</td>
<td></td>
</tr>
<tr>
<td>C(1312)</td>
<td>FMH4</td>
<td></td>
</tr>
<tr>
<td>C(1313)</td>
<td>RFXCG</td>
<td>Thrust vector displacements (ft)</td>
</tr>
<tr>
<td>C(1314)</td>
<td>RFYCG</td>
<td></td>
</tr>
<tr>
<td>C(1315)</td>
<td>RFZCG</td>
<td></td>
</tr>
<tr>
<td>C(1316)</td>
<td>RLUG</td>
<td>Distance between lugs (ft)</td>
</tr>
<tr>
<td>C(1317)</td>
<td>RAIL</td>
<td>Rail length (ft) (between rear of front lug and end of rail)</td>
</tr>
<tr>
<td>C(1320)</td>
<td>FMXTH</td>
<td>X component of moment caused by thrust misalignments</td>
</tr>
<tr>
<td>C(1321)</td>
<td>FMYTH</td>
<td>Y component of moment caused by thrust misalignments</td>
</tr>
<tr>
<td>C(1322)</td>
<td>FMZTH</td>
<td>Z component of moment caused by thrust misalignments</td>
</tr>
<tr>
<td>C(1323)</td>
<td>FMXLUG</td>
<td>X component of moment due to lugs</td>
</tr>
<tr>
<td>C(1324)</td>
<td>FMYLUG</td>
<td>Y component of moment due to lugs</td>
</tr>
<tr>
<td>C(1325)</td>
<td>FMZLUG</td>
<td>Z component of moment due to lugs</td>
</tr>
</tbody>
</table>
TABLE IV (Continued)

<table>
<thead>
<tr>
<th>Common Location</th>
<th>Variable Name</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1401)</td>
<td>BALPHT</td>
<td>The angles as indicated in Figure 18</td>
</tr>
<tr>
<td>C(1402)</td>
<td>LPHIT</td>
<td>(> 0; include thrust misalignment angles)</td>
</tr>
<tr>
<td>C(1403)</td>
<td>QNALGN</td>
<td>Fractional increase in total thrust</td>
</tr>
<tr>
<td>C(1404)</td>
<td>FCFTX</td>
<td>Parameterized by program</td>
</tr>
<tr>
<td>C(1405)</td>
<td>QBURN</td>
<td>Missile thrust</td>
</tr>
<tr>
<td>C(1410)</td>
<td>FTHRST</td>
<td>X component of missile thrust</td>
</tr>
<tr>
<td>C(1411)</td>
<td>FTHX</td>
<td>Y component of missile thrust</td>
</tr>
<tr>
<td>C(1412)</td>
<td>FTHY</td>
<td>Z component of missile thrust</td>
</tr>
<tr>
<td>C(1413)</td>
<td>FTHZ</td>
<td>Specific impulse (lb/sec)</td>
</tr>
<tr>
<td>C(1414)</td>
<td>CISP</td>
<td>Total missile plus propellant wt (lb) initial</td>
</tr>
<tr>
<td>C(1415)</td>
<td>DWI</td>
<td>Propellant weight (lb)</td>
</tr>
<tr>
<td>C(1416)</td>
<td>DWP</td>
<td>Initial value of c.g. shift (ft)</td>
</tr>
<tr>
<td>C(1417)</td>
<td>RDCGO</td>
<td>Burnout value of c.g. shift (ft)</td>
</tr>
<tr>
<td>C(1418)</td>
<td>RDCGP</td>
<td>Initial value of moment of inertia about the roll axis (slugs ft)</td>
</tr>
<tr>
<td>C(1419)</td>
<td>FMIKO</td>
<td>Initial value of moment of inertia about the pitch axis (slugs ft)</td>
</tr>
<tr>
<td>C(1420)</td>
<td>FMIYO</td>
<td>Distance between launch c.g. and rear lug (ft)</td>
</tr>
<tr>
<td>C(1421)</td>
<td>FLCGA</td>
<td>Present position of c.g. of missile</td>
</tr>
</tbody>
</table>
TABLE IV (Continued)

<table>
<thead>
<tr>
<th>Common Location</th>
<th>Variable Name</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1496)</td>
<td>UIMP</td>
<td>Thrust of the motor</td>
</tr>
<tr>
<td>C(1499)</td>
<td>UIMP</td>
<td>Impulse of the motor</td>
</tr>
<tr>
<td>C(1603)</td>
<td>VXE</td>
<td>(X,Y,Z) coordinates of missile velocity with respect to the earth fixed coordinate system</td>
</tr>
<tr>
<td>C(1607)</td>
<td>VYE</td>
<td>(X,Y,Z) coordinates of missile c.g. with respect to the earth fixed coordinate system</td>
</tr>
<tr>
<td>C(1611)</td>
<td>VZE</td>
<td>(X,Y,Z) coordinates of missile c.g. with respect to the earth fixed coordinate system</td>
</tr>
<tr>
<td>C(1615)</td>
<td>RXE</td>
<td>(X,Y,Z) coordinates of missile c.g. with respect to the earth fixed coordinate system</td>
</tr>
<tr>
<td>C(1619)</td>
<td>RYE</td>
<td>(X,Y,Z) coordinates of missile c.g. with respect to the earth fixed coordinate system</td>
</tr>
<tr>
<td>C(1623)</td>
<td>RZE</td>
<td>(X,Y,Z) coordinates of missile c.g. with respect to the earth fixed coordinate system</td>
</tr>
<tr>
<td>C(1624)</td>
<td>AXBA</td>
<td>(X) component of acceleration in body coordinate axis</td>
</tr>
<tr>
<td>C(1625)</td>
<td>AYBA</td>
<td>(Y) component of acceleration in body coordinate axis</td>
</tr>
<tr>
<td>C(1626)</td>
<td>AZBA</td>
<td>(Z) component of acceleration in body coordinate axis</td>
</tr>
<tr>
<td>C(1627)</td>
<td>AGRAV</td>
<td>Gravitational constant</td>
</tr>
<tr>
<td>C(1628)</td>
<td>DMASS</td>
<td>Current mass</td>
</tr>
<tr>
<td>C(1629)</td>
<td>ATHRST</td>
<td>Target thrust</td>
</tr>
<tr>
<td>C(1630)</td>
<td>ATURNT</td>
<td>Maximum transverse acceleration of target in terms of (g)</td>
</tr>
<tr>
<td>C(1632)</td>
<td>VDELX</td>
<td>Relative velocity of missile to target in (X) direction</td>
</tr>
<tr>
<td>C(1633)</td>
<td>VDELY</td>
<td>Relative velocity of missile to target in (Y) direction</td>
</tr>
<tr>
<td>C(1634)</td>
<td>VDELZ</td>
<td>Relative velocity of missile to target in (Z) direction</td>
</tr>
<tr>
<td>Common Location</td>
<td>Variable Name</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------</td>
<td>------------</td>
</tr>
<tr>
<td>C(1635)</td>
<td>RDELX</td>
<td>Range difference between target and missile in the X direction of the earth fixed coordinate system</td>
</tr>
<tr>
<td>C(1636)</td>
<td>RDELY</td>
<td>Range difference between target and missile in the Y direction of the earth fixed coordinate system</td>
</tr>
<tr>
<td>C(1637)</td>
<td>RDELZ</td>
<td>Range difference between target and missile in the Z direction of the earth fixed coordinate system</td>
</tr>
<tr>
<td>C(1644)</td>
<td>ATARG</td>
<td>Acceleration of the target</td>
</tr>
<tr>
<td>C(1647)</td>
<td>VTARG</td>
<td>Velocity of the target</td>
</tr>
<tr>
<td>C(1648)</td>
<td>RTXED</td>
<td>The X component of the velocity of the target in the earth fixed coordinate system</td>
</tr>
<tr>
<td>C(1651)</td>
<td>RTXE</td>
<td>The X coordinate of the position of the target in the earth fixed coordinate system</td>
</tr>
<tr>
<td>C(1652)</td>
<td>RTYED</td>
<td>The Y component of the velocity of the target in the earth fixed coordinate system</td>
</tr>
<tr>
<td>C(1655)</td>
<td>RTYE</td>
<td>The Y coordinate of the position of the target in the earth fixed coordinate system</td>
</tr>
<tr>
<td>C(1656)</td>
<td>RTZED</td>
<td>The Z component of the velocity of the target in the earth fixed coordinate system</td>
</tr>
<tr>
<td>C(1659)</td>
<td>RTZE</td>
<td>The Z coordinate of the position of the target in the earth fixed coordinate system</td>
</tr>
<tr>
<td>C(1660)</td>
<td>VTXE</td>
<td>The X component of the velocity of the target in the earth fixed coordinate system</td>
</tr>
<tr>
<td>Common Location</td>
<td>Variable Name</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------</td>
<td>------------</td>
</tr>
<tr>
<td>C(1661)</td>
<td>VTYE</td>
<td>The Y component of the velocity of the target in the earth fixed coordinate system</td>
</tr>
<tr>
<td>C(1662)</td>
<td>VTZE</td>
<td>The Z component of the velocity of the target in the earth fixed coordinate system</td>
</tr>
<tr>
<td>C(1663)</td>
<td>VDXB</td>
<td>The X component of the acceleration of missile in the body coordinate axes</td>
</tr>
<tr>
<td>C(1664)</td>
<td>VDYB</td>
<td>The Y component of the acceleration of missile in the body coordinate axes</td>
</tr>
<tr>
<td>C(1665)</td>
<td>VDZB</td>
<td>The Z component of the acceleration of missile in the body coordinate axes</td>
</tr>
<tr>
<td>C(1666)</td>
<td>BDIVE</td>
<td>Initial pitch orientation of the aircraft (missile assumed oriented parallel to aircraft)</td>
</tr>
<tr>
<td>C(1667)</td>
<td>RSLANT</td>
<td>Initial slant range</td>
</tr>
<tr>
<td>C(1668)</td>
<td>RXO</td>
<td>The X component of the original launch point of the missile in the earth fixed coordinate system</td>
</tr>
<tr>
<td>C(1669)</td>
<td>RYO</td>
<td>The Y component of the original launch point of the missile in the earth fixed coordinate system</td>
</tr>
<tr>
<td>C(1670)</td>
<td>RZO</td>
<td>The Z component of the original launch point of the missile in the earth fixed coordinate system</td>
</tr>
<tr>
<td>C(1672)</td>
<td>BPSITD</td>
<td>The angular rate of turn of target</td>
</tr>
<tr>
<td>C(1675)</td>
<td>BPSIT</td>
<td>The total angle through which the target has turned in degrees</td>
</tr>
<tr>
<td>Common Location</td>
<td>Variable Name</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------</td>
<td>------------</td>
</tr>
<tr>
<td>C(1676)</td>
<td>ANGX</td>
<td>The X component of the acceleration of the missile in terms of g with respect to body axes</td>
</tr>
<tr>
<td>C(1677)</td>
<td>ANGY</td>
<td>The Y component of the acceleration of the missile in terms of g with respect to body axes</td>
</tr>
<tr>
<td>C(1678)</td>
<td>ANGZ</td>
<td>The Z component of the acceleration of the missile in terms of g with respect to body axes</td>
</tr>
<tr>
<td>C(1700)</td>
<td>CFA11D</td>
<td>Derivative of CFA11</td>
</tr>
<tr>
<td>C(1703)</td>
<td>CFA11</td>
<td>Cos(\psi) Cos(\theta)</td>
</tr>
<tr>
<td>C(1704)</td>
<td>CFA12D</td>
<td>Derivative of CFA12</td>
</tr>
<tr>
<td>C(1707)</td>
<td>CFA12</td>
<td>Sin(\psi) Cos(\theta)</td>
</tr>
<tr>
<td>C(1705)</td>
<td>CFA13D</td>
<td>Derivative of CFA13</td>
</tr>
<tr>
<td>C(1711)</td>
<td>CFA13</td>
<td>-Sin(\theta)</td>
</tr>
<tr>
<td>C(1712)</td>
<td>CFA21D</td>
<td>Derivative of CFA21</td>
</tr>
<tr>
<td>C(1715)</td>
<td>CFA21</td>
<td>Sin(\psi) Cos(\theta) + Cos(\psi) Sin(\theta) Sin(\phi)</td>
</tr>
<tr>
<td>C(1716)</td>
<td>CFA22D</td>
<td>Derivative of CFA22</td>
</tr>
<tr>
<td>C(1719)</td>
<td>CFA22</td>
<td>Cos(\psi) Cos(\phi) + Sin(\psi) Sin(\theta) Sin(\phi)</td>
</tr>
<tr>
<td>C(1720)</td>
<td>CFA23D</td>
<td>Derivative of CFA23</td>
</tr>
<tr>
<td>C(1723)</td>
<td>CFA23</td>
<td>Cos(\theta) Sin(\phi)</td>
</tr>
<tr>
<td>C(1724)</td>
<td>CFA31D</td>
<td>Derivative of CFA31</td>
</tr>
<tr>
<td>C(1727)</td>
<td>CFA31</td>
<td>Cos(\psi) Sin(\theta) Cos(\phi) + Sin(\psi) Sin(\phi)</td>
</tr>
<tr>
<td>C(1728)</td>
<td>CFA32D</td>
<td>Derivative of CFA32</td>
</tr>
<tr>
<td>Common Location</td>
<td>Variable Name</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------</td>
<td>------------</td>
</tr>
<tr>
<td>C(1731)</td>
<td>CFA32</td>
<td>Sinψ Sinθ Cosφ - Cosψ Sinθ</td>
</tr>
<tr>
<td>C(1732)</td>
<td>CFA33D</td>
<td>Derivative of CFA33</td>
</tr>
<tr>
<td>C(1735)</td>
<td>CFA33</td>
<td>Cosθ Cosφ</td>
</tr>
<tr>
<td>C(1736)</td>
<td>WPD</td>
<td>d(WP)/dt</td>
</tr>
<tr>
<td>C(1739)</td>
<td>WP</td>
<td>Roll rate of missile</td>
</tr>
<tr>
<td>C(1740)</td>
<td>WQD</td>
<td>d(WQ)/dt</td>
</tr>
<tr>
<td>C(1743)</td>
<td>WQ</td>
<td>Pitch rate of missile</td>
</tr>
<tr>
<td>C(1744)</td>
<td>WRD</td>
<td>d(WR)/dt</td>
</tr>
<tr>
<td>C(1747)</td>
<td>WR</td>
<td>Yaw rate of missile</td>
</tr>
<tr>
<td>C(1748)</td>
<td>FMIX</td>
<td>Missile moments of inertia about the X, Y, and Z missile body axes in slug-feet(^2)</td>
</tr>
<tr>
<td>C(1749)</td>
<td>FMIY</td>
<td>Missile moments of inertia about the X, Y, and Z missile body axes in slug-feet(^2)</td>
</tr>
<tr>
<td>C(1750)</td>
<td>FMIZ</td>
<td>Missile moments of inertia about the X, Y, and Z missile body axes in slug-feet(^2)</td>
</tr>
<tr>
<td>C(1751)</td>
<td>CRAD</td>
<td>Conversion factor (from radians to degrees)</td>
</tr>
<tr>
<td>C(1752)</td>
<td>BPHIO</td>
<td>Initial roll angle of missile</td>
</tr>
<tr>
<td>C(1753)</td>
<td>BTHTO</td>
<td>Initial pitch angle of missile</td>
</tr>
<tr>
<td>C(1754)</td>
<td>BPSIO</td>
<td>Initial yaw angle of missile</td>
</tr>
</tbody>
</table>
3.2 Subroutine Call Sequence

The subroutine call sequence is determined by the order in which these subroutines are identified in the data card assembly. A data card is identified by the program as a subroutine call by the number 2 located in column 2. The identification number of the subroutine may be called as either [MODNO(NOMOD)] or [XMODNO(NOMOD)] by the program. This integer must be right adjusted to column 25 on the card. Table V shows the identification number and the subroutines called in the example problem. If other routines are required, they will be found listed with their identification numbers in subroutine AUXSUB.

3.3 State Variables

The state variables within this six-degree-of-freedom simulation program are defined in the initialization subroutines (modules). These variables are identified through the IPL table which also defines the location of the state variables. Only these variables are integrated by the integration routine AMRK. Other variables found in the program which are derivatives are not state variables by this definition. A listing of the sequence number, IPL numbers, and variable names are found in Table VI. The listing is for the program when it contains the high frequency autopilot and actuator.

In the event a location is defined as a state variable, the following convention must be observed:

\[C(J + 3) \text{ State variable} \]

then

\[C(J) \text{ is the derivative of that state variable.} \]
TABLE V. INITIALIZATION SUBROUTINE CALL SEQUENCE

(By Subroutine AUXI) (As defined by current program listing)

<table>
<thead>
<tr>
<th>NOMOD</th>
<th>MODNO(NOMOD)</th>
<th>XMODNO(NOMOD)</th>
<th>SUBROUTINE CALL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>23</td>
<td></td>
<td>G2I</td>
</tr>
<tr>
<td>2.</td>
<td>24</td>
<td></td>
<td>G3I</td>
</tr>
<tr>
<td>3.</td>
<td>26</td>
<td></td>
<td>G5I</td>
</tr>
<tr>
<td>4.</td>
<td>28</td>
<td></td>
<td>S1I</td>
</tr>
<tr>
<td>5.</td>
<td>7</td>
<td></td>
<td>C1I</td>
</tr>
<tr>
<td>6.</td>
<td>10</td>
<td></td>
<td>C4I</td>
</tr>
<tr>
<td>7.</td>
<td>2</td>
<td></td>
<td>A1I</td>
</tr>
<tr>
<td>8.</td>
<td>4</td>
<td></td>
<td>A3I</td>
</tr>
<tr>
<td>9.</td>
<td>3</td>
<td></td>
<td>A2I</td>
</tr>
<tr>
<td>10.</td>
<td>17</td>
<td></td>
<td>D1I</td>
</tr>
<tr>
<td>11.</td>
<td>18</td>
<td></td>
<td>D2I</td>
</tr>
<tr>
<td>Sequence No.</td>
<td>N</td>
<td>IPL(N)</td>
<td>C(IPL(N))</td>
</tr>
<tr>
<td>-------------</td>
<td>----</td>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>1.</td>
<td>1</td>
<td>424</td>
<td>BTHTGD</td>
</tr>
<tr>
<td>2.</td>
<td>2</td>
<td>427</td>
<td>BTHTG</td>
</tr>
<tr>
<td>3.</td>
<td>2</td>
<td>428</td>
<td>BPSIGD</td>
</tr>
<tr>
<td>4.</td>
<td>2</td>
<td>431</td>
<td>BPSIG</td>
</tr>
<tr>
<td>5.</td>
<td>3</td>
<td>800</td>
<td>EPHISD</td>
</tr>
<tr>
<td>6.</td>
<td>4</td>
<td>803</td>
<td>BF4IS</td>
</tr>
<tr>
<td>7.</td>
<td>4</td>
<td>804</td>
<td>WQSDD</td>
</tr>
<tr>
<td>8.</td>
<td>5</td>
<td>807</td>
<td>WQSP</td>
</tr>
<tr>
<td>9.</td>
<td>5</td>
<td>808</td>
<td>WQSD</td>
</tr>
<tr>
<td>10.</td>
<td>6</td>
<td>811</td>
<td>WQS</td>
</tr>
<tr>
<td>11.</td>
<td>6</td>
<td>812</td>
<td>WRSDD</td>
</tr>
<tr>
<td>12.</td>
<td>6</td>
<td>815</td>
<td>WRSP</td>
</tr>
<tr>
<td>13.</td>
<td>7</td>
<td>816</td>
<td>WRSD</td>
</tr>
<tr>
<td>14.</td>
<td>7</td>
<td>819</td>
<td>WRS</td>
</tr>
<tr>
<td>15.</td>
<td>8</td>
<td>820</td>
<td>ESUMOD</td>
</tr>
<tr>
<td>16.</td>
<td>8</td>
<td>823</td>
<td>ESUMO</td>
</tr>
<tr>
<td>17.</td>
<td>9</td>
<td>824</td>
<td>ESUMED</td>
</tr>
<tr>
<td>18.</td>
<td>9</td>
<td>827</td>
<td>ESUME</td>
</tr>
<tr>
<td>19.</td>
<td>10</td>
<td>828</td>
<td>EZSDD</td>
</tr>
<tr>
<td>20.</td>
<td>10</td>
<td>831</td>
<td>EZSP</td>
</tr>
<tr>
<td>21.</td>
<td>11</td>
<td>832</td>
<td>EZSD</td>
</tr>
<tr>
<td>22.</td>
<td>11</td>
<td>835</td>
<td>EFS</td>
</tr>
<tr>
<td>Sequence No.</td>
<td>N</td>
<td>IPL(N)</td>
<td>C(IPL(N))</td>
</tr>
<tr>
<td>-------------</td>
<td>----</td>
<td>--------</td>
<td>----------------</td>
</tr>
<tr>
<td>23.</td>
<td>12</td>
<td>836</td>
<td>EYSDD</td>
</tr>
<tr>
<td>24.</td>
<td></td>
<td>839</td>
<td>EYSP</td>
</tr>
<tr>
<td>25.</td>
<td>13</td>
<td>840</td>
<td>EYSD</td>
</tr>
<tr>
<td>26.</td>
<td></td>
<td>843</td>
<td>EYS</td>
</tr>
<tr>
<td>27.</td>
<td>14</td>
<td>880</td>
<td>EZSSD</td>
</tr>
<tr>
<td>28.</td>
<td></td>
<td>883</td>
<td>EZSS</td>
</tr>
<tr>
<td>29.</td>
<td>15</td>
<td>884</td>
<td>EYSSD</td>
</tr>
<tr>
<td>30.</td>
<td></td>
<td>887</td>
<td>EYSS</td>
</tr>
<tr>
<td>31.</td>
<td>16</td>
<td>1100</td>
<td>BDELT(1)</td>
</tr>
<tr>
<td>32.</td>
<td></td>
<td>1103</td>
<td>BDELT(1)</td>
</tr>
<tr>
<td>33.</td>
<td>17</td>
<td>1104</td>
<td>BDELT(2)</td>
</tr>
<tr>
<td>34.</td>
<td></td>
<td>1107</td>
<td>BDELT(2)</td>
</tr>
<tr>
<td>35.</td>
<td>18</td>
<td>1108</td>
<td>BDELT(3)</td>
</tr>
<tr>
<td>36.</td>
<td></td>
<td>1111</td>
<td>BDELT(3)</td>
</tr>
<tr>
<td>37.</td>
<td>19</td>
<td>1112</td>
<td>BDELT(4)</td>
</tr>
<tr>
<td>38.</td>
<td></td>
<td>1115</td>
<td>BDELT(4)</td>
</tr>
<tr>
<td>39.</td>
<td>20</td>
<td>1124</td>
<td>BDLTDD(1)</td>
</tr>
<tr>
<td>40.</td>
<td></td>
<td>1127</td>
<td>BDELTP(1)</td>
</tr>
<tr>
<td>41.</td>
<td>21</td>
<td>1128</td>
<td>BDLTDD(2)</td>
</tr>
<tr>
<td>42.</td>
<td></td>
<td>1131</td>
<td>BDELTP(2)</td>
</tr>
<tr>
<td>43.</td>
<td>22</td>
<td>1132</td>
<td>BDLTDD(3)</td>
</tr>
<tr>
<td>44.</td>
<td></td>
<td>1135</td>
<td>BDELTP(3)</td>
</tr>
<tr>
<td>45.</td>
<td>23</td>
<td>1136</td>
<td>BDLTDD(4)</td>
</tr>
<tr>
<td>46.</td>
<td></td>
<td>1139</td>
<td>BDELTP(4)</td>
</tr>
<tr>
<td>Sequence No.</td>
<td>IIL(8)</td>
<td>C(IIL(8))</td>
<td>Module Location</td>
</tr>
<tr>
<td>-------------</td>
<td>--------</td>
<td>-----------</td>
<td>-----------------</td>
</tr>
<tr>
<td>47.</td>
<td>24</td>
<td>1496</td>
<td>LIMP</td>
</tr>
<tr>
<td>48.</td>
<td></td>
<td>1499</td>
<td>LIMP</td>
</tr>
<tr>
<td>49.</td>
<td>25</td>
<td>1600</td>
<td>VXED</td>
</tr>
<tr>
<td>50.</td>
<td></td>
<td>1603</td>
<td>VXE</td>
</tr>
<tr>
<td>51.</td>
<td>26</td>
<td>1604</td>
<td>VYED</td>
</tr>
<tr>
<td>52.</td>
<td></td>
<td>1607</td>
<td>VYE</td>
</tr>
<tr>
<td>53.</td>
<td>27</td>
<td>1612</td>
<td>RXED</td>
</tr>
<tr>
<td>54.</td>
<td></td>
<td>1615</td>
<td>RXL</td>
</tr>
<tr>
<td>55.</td>
<td>28</td>
<td>1616</td>
<td>RYED</td>
</tr>
<tr>
<td>56.</td>
<td></td>
<td>1619</td>
<td>RYE</td>
</tr>
<tr>
<td>57.</td>
<td>29</td>
<td>1620</td>
<td>RZED</td>
</tr>
<tr>
<td>58.</td>
<td></td>
<td>1623</td>
<td>RZE</td>
</tr>
<tr>
<td>59.</td>
<td>30</td>
<td>1640</td>
<td>VTARGET</td>
</tr>
<tr>
<td>60.</td>
<td></td>
<td>1643</td>
<td>VTARGET</td>
</tr>
<tr>
<td>61.</td>
<td>31</td>
<td>1644</td>
<td>BPSITD</td>
</tr>
<tr>
<td>62.</td>
<td></td>
<td>1647</td>
<td>BPSIT</td>
</tr>
<tr>
<td>63.</td>
<td>32</td>
<td>1648</td>
<td>RTXED</td>
</tr>
<tr>
<td>64.</td>
<td></td>
<td>1651</td>
<td>RTXE</td>
</tr>
<tr>
<td>65.</td>
<td>33</td>
<td>1652</td>
<td>RYED</td>
</tr>
<tr>
<td>66.</td>
<td></td>
<td>1655</td>
<td>RTYE</td>
</tr>
<tr>
<td>67.</td>
<td>34</td>
<td>1656</td>
<td>RTZED</td>
</tr>
<tr>
<td>68.</td>
<td></td>
<td>1659</td>
<td>RTZE</td>
</tr>
<tr>
<td>Sequence No.</td>
<td>N</td>
<td>IPL(N)</td>
<td>C(IPL(N))</td>
</tr>
<tr>
<td>-------------</td>
<td>----</td>
<td>--------</td>
<td>-----------</td>
</tr>
<tr>
<td>69.</td>
<td>35</td>
<td>1700</td>
<td>CFA1ID</td>
</tr>
<tr>
<td>70.</td>
<td>36</td>
<td>1703</td>
<td>CFA1I</td>
</tr>
<tr>
<td>71.</td>
<td>37</td>
<td>1704</td>
<td>CFA12D</td>
</tr>
<tr>
<td>72.</td>
<td></td>
<td>1707</td>
<td>CFA12</td>
</tr>
<tr>
<td>73.</td>
<td>38</td>
<td>1708</td>
<td>CFA13D</td>
</tr>
<tr>
<td>74.</td>
<td></td>
<td>1711</td>
<td>CFA13</td>
</tr>
<tr>
<td>75.</td>
<td>39</td>
<td>1712</td>
<td>CFA14D</td>
</tr>
<tr>
<td>76.</td>
<td></td>
<td>1715</td>
<td>CFA14</td>
</tr>
<tr>
<td>77.</td>
<td>40</td>
<td>1716</td>
<td>CFA22D</td>
</tr>
<tr>
<td>78.</td>
<td></td>
<td>1719</td>
<td>CFA22</td>
</tr>
<tr>
<td>79.</td>
<td>41</td>
<td>1720</td>
<td>CFA23D</td>
</tr>
<tr>
<td>80.</td>
<td></td>
<td>1723</td>
<td>CFA23</td>
</tr>
<tr>
<td>81.</td>
<td>42</td>
<td>1724</td>
<td>CFA310</td>
</tr>
<tr>
<td>82.</td>
<td></td>
<td>1727</td>
<td>CFA31</td>
</tr>
<tr>
<td>83.</td>
<td>43</td>
<td>1728</td>
<td>CFA32D</td>
</tr>
<tr>
<td>84.</td>
<td></td>
<td>1731</td>
<td>CFA32</td>
</tr>
<tr>
<td>85.</td>
<td>44</td>
<td>1732</td>
<td>CFA33D</td>
</tr>
<tr>
<td>86.</td>
<td></td>
<td>1735</td>
<td>CFA33</td>
</tr>
<tr>
<td>87.</td>
<td>45</td>
<td>1736</td>
<td>WPD</td>
</tr>
<tr>
<td>88.</td>
<td></td>
<td>1739</td>
<td>WP</td>
</tr>
<tr>
<td>89.</td>
<td>46</td>
<td>1740</td>
<td>WQD</td>
</tr>
<tr>
<td>90.</td>
<td></td>
<td>1743</td>
<td>WQ</td>
</tr>
<tr>
<td>91.</td>
<td>47</td>
<td>1744</td>
<td>WRD</td>
</tr>
<tr>
<td>92.</td>
<td></td>
<td>1757</td>
<td>WR</td>
</tr>
</tbody>
</table>
SECTION IV
INPUT REQUIREMENTS

4.1 Initial Conditions

In order to simplify the input data, the options which had existed in the original program have been eliminated. It is assumed by the program that all variables not initialized are automatically set equal to zero. Input data and initial conditions are entered into the program by entering a number 3 in column 2 of the data card which identifies the type of information. The name of the variable may be entered in column 3 to 20. Common location of the variable must be entered right adjusted in columns 21 to 25 and the numerical data in columns 31 to 45. Figure 19 shows the position of the data card in the completed program deck which is ready for submission, as well as the actual data card format.

In addition, since the seeker is generally assumed to lock on before launch, the gimbal angles are automatically initialized to this position. However, in the cases where gimbal angles must be chosen in any other position, the transformations and angular displacements between gimbal axes and body axes coordinate systems are given in Appendix I and Figure T-1, respectively.

Initial position and velocity can only be specified in one manner for simplicity. They are specified in terms of the following variables:

- BDIVL (in degrees, negative when orientation below horizontal)
- RSLPH (in ft)
- LALPHA (in degrees)
- DALPHY (in degrees)
- VMACH (Mach number)

It should be noted that the program when used to simulate many missions requires only that subsequent changes in data be added since the program will only update the last data set for the next run. (See "Program Description.")
<table>
<thead>
<tr>
<th>Description</th>
<th>Name of Variable</th>
<th>Location in common</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column No.</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>Format</td>
<td>12</td>
<td>A6</td>
</tr>
</tbody>
</table>
SECTION V
PROGRAM LISTING

5.1 Complete Six-Degree-of-Freedom Program Listing with Example
C

**********IPCGES TO BE USED WITH PORTRAM ANARK INTEGRATION ROUTINE

C

CCPGON C14310),GRAPP

EQUIVALENCE (CI2662),HMIN 1, (CI2663),NMAX 1, (CI2664),DER 1
C
C
C(I2900),N 3, (CI2902),IPL 1, (CI2904),ER 1
C
C(I22001),T 1, (CI22003),TSTEP 1, (CI22010),STEP 1
C
C(I22031),LSTEP 1, (CI22008),PLDIST 1, (CI22001),NCPLOT 1
C
C(I22021),OPQINT 1, (CI22023),TIME 1, (CI22203),VARIABLE 1
C
C(I3167),NODUT 1, (CI22023),OPTINT 1, (CI22001),REPLPT 1
C
C(I22005),EU 1, (CI22008),EL 1, (CI22001),PIELESS 1
C
EQUIVALENCE (CI1973),XASE 1, (CI1974),WX 1, (CI1975),API 1
C
DIMENSION VPAR[12],P 2
DIMENSION VLVAR[12,153] ; IPL[100], DER[100]
C
DIMENSION VAR[1001] + EL[100] + EU[100]
C
EQUIVALENCE (CI1981),NXT 3
EQUIVALENCE (CI1982),PLOTNA 3
EQUIVALENCE (CI1983),PLOT2 3
EQUIVALENCE (CI1984),PLOT 3
INTEGER CPQT
INTEGER CPFT
INTEGER CPFT
EXTERNAL AUSUB
CC 22=1,4910
22 C1130

C
CALL COUNT
C
CALL ZER0
1000 CONTINUE
1001 IF(F(PCLT<60),L600)GOTOF
C
IF(REPPLT=0. USE NEW NO. 4,7 (DISCARD OLD)
C
C
C
C
IF (REPPLT.GT.10) NODUT = U
C
T CALL C1APFL
C
IN หากแต่ไม่ได้ไว้ซึ่ง NPTH = 1
C
STEP = STEP
C
NPCLT4=PCLN
C
NPCLT2=PLOTN2
C
AUSUB=CPU
1002 CALL SUB1
1003 CALL AUX1
C
1004 CALL SUB2
1005 CC = 0.1 * 2N
C
C
J = 1
C
C
C
E = (J+1) * (J+1)
C
VAP = C (J+3)
C
DER = C (J)
C
VARI = 1
C
1006 CALL AUSUB
C
1007 AUS=1
C
CALL APPR1AUSUB
1008 DC 50 = 1 * 2N
C
J = IPL1 = 11
C
50 C(J+3) + VARI

59
| DATA AX/0.0.:7 | 9 | 0.1.05, 1.1, 1.5, 1.7, 2.0, 2.3/ |
| CATA CP/ |
| - 0.0, -0.05, 1.58, 2.25, 3.12, 4.1, 7.08, 10.71/ |
| - 0.0, -0.04, 1.41, 2.25, 3.17, 4.10, 7.18, 10.84/ |
| - 0.0, -0.03, 1.40, 2.32, 3.27, 4.31, 7.30, 11.14/ |
| - 0.0, -0.77, 1.62, 2.55, 3.54, 4.72, 7.98, 12.02/ |
| - 0.0, -0.77, 1.62, 2.57, 3.56, 4.74, 8.02, 12.11/ |
| - 0.0, -0.81, 1.65, 2.35, 3.36, 4.43, 7.6, 11.60/ |
| - 0.0, -0.7, 1.66, 2.37, 3.34, 4.40, 7.59, 11.61/ |
| - 0.0, -0.69, 1.67, 2.34, 3.30, 4.38, 7.59, 11.61/ |
| - 0.0, -0.67, 1.65, 2.37, 3.29, 4.20, 7.42, 11.47/ |
| DATA NCP/0.0,0/ |
| DATA ALF/0.0.:4 | 6 | 0.0, 12, 16, 20/ |
| DATA CP/ |
| - 0.0, -0.11, 2.46, -3.97, -5.62, -7.51, -12.03, -19.28/ |
| - 0.0, -0.11, 2.54, -4.06, -5.16, -7.68, -13.10, -19.04/ |
| - 0.0, -0.12, 2.60, -4.23, -5.59, -7.97, -13.54, -20.24/ |
| - 0.0, -0.16, 3.35, -5.28, -7.40, -9.75, -16.26, -23.67/ |
| - 0.0, -0.68, -3.48, -5.66, -7.68, -10.09, -16.75, -23.94/ |
| - 0.0, -1.07, -2.31, -3.34, -5.25, -7.12, -12.48, -19.91/ |
| - 0.0, -1.11, -2.34, -3.65, -5.50, -7.40, -12.70, -19.12/ |
| - 0.0, -1.15, -2.67, -3.97, -5.85, -7.57, -12.90, -19.70/ |
| - 0.0, -1.14, -2.46, -3.96, -5.63, -7.54, -12.81, -19.09/ |
| CATA NCP/6,6:6,0/ |
| CATA ALF/0.0.:4 | 6 | 0.0, 12, 16, 20/ |
| CATA CP/ |
| - 0.0, -0.13, -2.84, -5.62, -7.51, -12.03, -19.28/ |
| - 0.0, -0.13, -2.84, -5.62, -7.51, -12.03, -19.28/ |
| - 0.0, -0.13, -2.84, -5.62, -7.51, -12.03, -19.28/ |
| - 0.0, -0.13, -2.84, -5.62, -7.51, -12.03, -19.28/ |
| - 0.0, -0.13, -2.84, -5.62, -7.51, -12.03, -19.28/ |
| - 0.0, -0.13, -2.84, -5.62, -7.51, -12.03, -19.28/ |
| ENC |
| BLOCK DATA |
| CCPP/CC/NC/NCOD23 |
| / CXARC/PAP10 |
| / CXF/NC/NCOD23/ |
| DATA NCP/4/ |
| CATA ALF/0.0.:4 | 6 | 0.0, 12, 16, 20/ |
| CATA CP/ |
| - 0.0, -0.13, -2.84, -5.62, -7.51, -12.03, -19.28/ |
| - 0.0, -0.13, -2.84, -5.62, -7.51, -12.03, -19.28/ |
| - 0.0, -0.13, -2.84, -5.62, -7.51, -12.03, -19.28/ |
| - 0.0, -0.13, -2.84, -5.62, -7.51, -12.03, -19.28/ |
| - 0.0, -0.13, -2.84, -5.62, -7.51, -12.03, -19.28/ |
| - 0.0, -0.13, -2.84, -5.62, -7.51, -12.03, -19.28/ |
| ENC |
| BLOCK DATA |
| CCPP/CC/NC/NCOD24/ |
| / CXARC/ALP101. AM191 |
| / C/N2FUN/NCOD24/ |
| DATA NCP/26,3,0.0/ |
| CATA ALF/0.0.:4 | 6 | 0.0, 12, 16, 20/ |
| CATA CP/ |
| - 0.0, -0.13, -2.84, -5.62, -7.51, -12.03, -19.28/ |

61
null
IF I* "I
LI.O.IAI 1)-C.
BF
I
I
.;.5
1
3.0
AlII.0123-CZCM
21
I
3-
'- 'e
I
I
I'
C
II
GEC.
010
CC IC
3
8(A11-0.
30
Al
it
11S(C4
1 - 1 3
CA.0.
IAO
40CO0
A-S
TNR
ccrc~o
4Z
111 L
WT
(6.1
* ACTIW 14653
184x492
AC 1A2~
AA.0.
Be 0:
Cc
0.
Folap;T(32p,
345
lI. AC 1A2~
AA.0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
Be 0:
Cc
0.
S CeQAFAT(l.
1I. AC 1A2~
AA.0.
EQUIVALENCE (E11, AIFAC)
EQUIVALENCE (E123, CIL)
EQUIVALENCE (E420X, VAC)
EQUIVALENCE (E532, XIL)
EQUIVALENCE (E1456, AXR)
EQUIVALENCE (E17, SCH)
EQUIVALENCE (E1823, RHE)
EQUIVALENCE (E19, BIL)
EQUIVALENCE (E201, VIL)
EQUIVALENCE (E2131, VIL)
EQUIVALENCE (E2010, 11)
EQUIVALENCE (E1466, VCI)
EQUIVALENCE (E1587, ASLANT)
EQUIVALENCE (E189, SP2/MOS)
IF (SP2/MOS) .GT. 0.01 RETURN
UT = 0.0
IF (UJ.EQ.0.01 GO TO 10
WRITE(6,1234) VILM, VNAF, XIL, T, MILL, RZE; VIL, VSOUND, VILF
RETURN
ENC
SUBROUTINE C10
C=PSY(4,1310)
EQUIVALENCE (C490, TLG591, 14471, TL583)
EQUIVALENCE (C571, RIL)
EQUIVALENCE (C153, VIL)
EQUIVALENCE (C124, VIL, MIN)
EQUIVALENCE (C159, RIL)
EQUIVALENCE (C10, HIL)
EQUIVALENCE (C11, BREL)
EQUIVALENCE (C22, WONE)
EQUIVALENCE (C31, BACTUS)
EQUIVALENCE (C66, RIL)
EQUIVALENCE (C91, KSOFT)
EQUIVALENCE (C102, KSOFT)
EQUIVALENCE (C143, UT)
EQUIVALENCE (C209, G, T)
EQUIVALENCE (C246, ET)
EQUIVALENCE (C185, RXT)
EQUIVALENCE (C185, RXT)
EQUIVALENCE (C185, RXT)
EQUIVALENCE (C185, RXT)
IF (SP2/MOS) .GT. 0.01 RETURN
IF (E1.EQ.0.01 GO TO 1
IF (UJ.EQ.0.01 GO TO 3
IF (UT.EQ.0.01) GO TO 2
IF (E1.EQ.0.01) GO TO 4
CONTINUE
140
UT = UT + C40T
67
CONTINUE
ANGILL = ASIN(0.0)
BCREF = BCREF*1.0
WANG = WANG*ANGILL
SPHID = SPHID*1.0
SPLEN = SPLEN*1.0
OUTC = OUTC*1.0

4 CONTINUE
XSCRT = 0.0
YSCRT = 0.0
I = 1
RETURN
END
FUNCTION ASINDIX
ASINDIX = 5.0
RETURN
END
FUNCTION RONDIX
RONDIX = 5.0
RETURN
END
68
SUBROUTINE CLINE(IX,IA,IB,IC)
 COMMON (X*X,IC)
 DIMENSION A(I),B(I)
 IF(JA) 100,101,101
101 DO 102 J = 2, M
 K = J
102 CONTINUE
 IF (EA(J) > E(J)) 103, 102, 103
103 Y = E(J) - (E(J) - E(A(J))/A(A(J)-A(J-1))
 RETURN
 Y = 0.0
 RETURN
 END
FUNCTION BMON(B)
 COMMON (X*X,IC)
 DIMENSION A(I),B(I)
 IF(JA) 100,101,101
101 DO 102 J = 2, M
 K = J
102 CONTINUE
 IF (EA(J) > E(J)) 103, 102, 103
103 Y = E(J) - (E(J) - E(A(J))/A(A(J)-A(J-1))
 RETURN
 Y = 0.0
 RETURN
 END

End-Of-Run Calculations Subroutine GA

This is a Subroutine, Not a Module.
C++ IT IS CALLED BY STAGE 3 TO COMPUTE MISS DISTANCE AND STOP THE
C++ PROCEDURE IF RANGE IS ZERO.

C** STATE VARIABLE INPUTS, DATA, TIME
C** OTHER VARIABLES ARE INVOLVED IN COMMON

C++ STATE VARIABLE OUTPUTS
C** OTHER OUTPUTS INVOLVED IN COMMON

C++ MISS DISTANCE PARAMETERS ARE OUTPUT DIRECTLY AND ARE NOT IN COMMON
C++ TEST FOR INCREASING RANGE AND SOLVE FOR TIME AT WHICH RANGE IS ZERO
C++ FORMAT (1/F) 16H MISS DISTANCE*#1017.8/1018 TIME FINAL*#1017.8
C++ TEST FOR INCREASING RANGE AND SOLVE FOR TIME AT WHICH RANGE IS ZERO
C++ IF RANGE>0.0 GO TO 20
C++ IF RANGE<1.0-D.T.0.0 GO TO 10

C++ FORMAT (1/F) 16H MISS DISTANCE*#1017.8/1018 TIME FINAL*#1017.8
C++ TEST FOR INCREASING RANGE AND SOLVE FOR TIME AT WHICH RANGE IS ZERO
C++ IF RANGE>0.0 GO TO 20
C++ IF RANGE<1.0-D.T.0.0 GO TO 10

C++ FORMAT (1/F) 16H MISS DISTANCE*#1017.8/1018 TIME FINAL*#1017.8
C++ TEST FOR INCREASING RANGE AND SOLVE FOR TIME AT WHICH RANGE IS ZERO
C++ IF RANGE>0.0 GO TO 20
C++ IF RANGE<1.0-D.T.0.0 GO TO 10

C++ FORMAT (1/F) 16H MISS DISTANCE*#1017.8/1018 TIME FINAL*#1017.8
C++ TEST FOR INCREASING RANGE AND SOLVE FOR TIME AT WHICH RANGE IS ZERO
C++ IF RANGE>0.0 GO TO 20
C++ IF RANGE<1.0-D.T.0.0 GO TO 10

C++ FORMAT (1/F) 16H MISS DISTANCE*#1017.8/1018 TIME FINAL*#1017.8
C++ TEST FOR INCREASING RANGE AND SOLVE FOR TIME AT WHICH RANGE IS ZERO
C++ IF RANGE>0.0 GO TO 20
C++ IF RANGE<1.0-D.T.0.0 GO TO 10

C++ FORMAT (1/F) 16H MISS DISTANCE*#1017.8/1018 TIME FINAL*#1017.8
C++ TEST FOR INCREASING RANGE AND SOLVE FOR TIME AT WHICH RANGE IS ZERO
C++ IF RANGE>0.0 GO TO 20
C++ IF RANGE<1.0-D.T.0.0 GO TO 10

C++ FORMAT (1/F) 16H MISS DISTANCE*#1017.8/1018 TIME FINAL*#1017.8
C++ TEST FOR INCREASING RANGE AND SOLVE FOR TIME AT WHICH RANGE IS ZERO
C++ IF RANGE>0.0 GO TO 20
C++ IF RANGE<1.0-D.T.0.0 GO TO 10

71
GO31 = UC314USPSI
GO32 = US324USPSI
GO33 = UCPSI
RXFF = UC314RCX <UC32> + ROT <UC33> RDZ
RYFF = UC314RCX <UC32> RDY
RXFF = UC314RCX <UC32> KCX <UC33> RDZ
WRITE (6,9) PM55, ZERO
WRITE (6,9) RCX, RCY, RDZ
WRITE (6,33) RXFF, RYFF
LCEAV = 2
RETURN
10 UT = 1
UKE = RKE
LXE = RYE
UX = XE
UX = XE
UXE = RYE
LXE = XE
UVX = RYE
UVT = VTX
UYT = VTY
UVT = VTX
20 URANGE = RANGE
IF INVE <GT 100,1 CC1 = 2
RETURN
END
CC35 UCC35 UCC35 CONVERSION MODULE
CC36 UCC36 CONVERSION CC36 (C3530)
CC37 UCC37 UCC37 EQU CC35(UCLCC 35)
 CC38 UCC38 UCC38 EQU CC37(UCLCN 35)
CC39 UCC39 UCC39 EQU CC36(UCLCN 35)
CC3A UCC3A UCC3A EQU CC35(UCLCC 35)
CC3B UCC3B UCC3B EQU CC36(UCLCC 35)
CC3C UCC3C UCC3C EQU CC37(UCLCC 35)
CC3D UCC3D UCC3D EQU CC38(UCLCN 35)
CC3E UCC3E UCC3E EQU CC39(UCLCN 35)
CC3F UCC3F UCC3F EQU CC3A(UCLCC 35)
C \texttt{BLANV = \text{ATANCE-ROELY,ROELY}}
C
C \texttt{**VERTICAL ARC HORIZONTAL LINE OF SIGHT ANGLES (EARTH AXES)}
C
C \texttt{BLANK = \text{ATANCE-ROELY,ROEL}}
C
C \texttt{**VERTICAL ARC HORIZONTAL PROPORTIONAL NAVIGATION ANGLES}
C \texttt{INIT=LY,GERICOGR30}
C \texttt{FP=\text{ANG.EQ}0.01 \text{ GO TO 2}}
C \texttt{VY=VX*ECO3+VXE*VYE*VYE/RANGE}
C \texttt{GONCINUE}
C \texttt{FP=\text{ANG.EQ}0.01 \text{ GO TO 3}}
C \texttt{VY=VX*ECO3+VXE*VYE*VYE/RANGE}
C \texttt{GONCINUE}
C \texttt{BLAM = \text{ATANCE-ROELY,ROELY}}
C
C \texttt{**VELOCITY AT AIR IN EARTH AXES}
C \texttt{UWPH = CFAS24*VX*VXE*VYE+CFAS24*VY+VYE*VYE}
C \texttt{VWPH = CFAS24*VX*VXE*VYE+CFAS24*VY+VYE*VYE}
C
C \texttt{**VERTICAL ARC HORIZONTAL ANGLES OF ATTACK}
C \texttt{BALPHA = \text{ATANCE-ROELY,ROELY}}
C \texttt{BALPHY = \text{ATANCE-ROELY,ROELY}}
C
C \texttt{USE = \text{VPH}}
C \texttt{IF\text{\texttt{SSS.EQ}0.01 \text{ AND \texttt{VPH.EQ}0.01 \text{ GO TO 3}}}
C \texttt{IF\text{\texttt{SSS.EQ}0.01 \text{ AND \texttt{VPH.EQ}0.01 \text{ GO TO 4}}}
C \texttt{IF\text{\texttt{SSS.EQ}0.01 \text{ AND \texttt{VPH.EQ}0.01 \text{ GO TO 5}}}
C \texttt{IF\text{\texttt{SSS.EQ}0.01 \text{ AND \texttt{VPH.EQ}0.01 \text{ GO TO 6}}}
C \texttt{IF\text{\texttt{SSS.EQ}0.01 \text{ AND \texttt{VPH.EQ}0.01 \text{ GO TO 7}}}
C
C \texttt{**ALPHA PRIME ARC PRIME \text{ WIND FLANGE AXES}}
C \texttt{IF\text{\texttt{SSS.EQ}0.01 \text{ AND \texttt{VPH.EQ}0.01 \text{ GO TO 9}}}
C \texttt{RETURN}
C \texttt{END}
C
C ** SEEKER AND PLATFORM INIT MODULE
C
C \texttt{SUBROUTINE 311}
C \texttt{ENDCNCH (C1=311301}
C \texttt{ENDCNCH (C1=311302}
C \texttt{ENDCNCH (C1=311303}
C \texttt{ENDCNCH (C1=311304}
C \texttt{ENDCNCH (C1=311305}
C \texttt{ENDCNCH (C1=311306}
C \texttt{ENDCNCH (C1=311307}
C \texttt{ENDCNCH (C1=311308}
C \texttt{ENDCNCH (C1=311309}
C \texttt{ENDCNCH (C1=311310}
C \texttt{ENDCNCH (C1=311311}
C \texttt{ENDCNCH (C1=311312}
C \texttt{ENDCNCH (C1=311313}
C \texttt{ENDCNCH (C1=311314}
C
C \texttt{74}
SUBROUTINE 91
CPFPEN C(43D)

C INPUT DATA

EQUIVALENCE IC(2502),IPL
52=0.
57=0.
UT = 0.
GUIDE+1.
CASE+0.
SAPP = 0.
C(452) = 0.
IPLINT = 428
IPLINT+1 = 428
RETURN
ENC

C TIGER PLATFORM INC TRACER MODULE

C SUBROUTINE 91
C CPFPEN C(43D)
C
C INPUT DATA

EQUIVALENCE IC(10443),SEGRRISI
EQUIVALENCE IC(10443),SYGRISI
EQUIVALENCE IC(443),OPTER
EQUIVALENCE IC(443),OPTERNL
EQUIVALENCE IC(443),UT
EQUIVALENCE IC(443),CDT
EQUIVALENCE IC(4473),CODB
EQUIVALENCE IC(4483),CFVDE
EQUIVALENCE IC(4493),CFVDE
EQUIVALENCE IC(14233),JMSLI
EQUIVALENCE IC(5001),GSW
EQUIVALENCE IC(553),CASE
EQUIVALENCE IC(10472),DREAM
EQUIVALENCE IC(10472),REXLOC
EQUIVALENCE IC(14072),REC
EQUIVALENCE IC(14072),SFP
EQUIVALENCE IC(6051),WEPSHI
EQUIVALENCE IC(14703),XICAL
EQUIVALENCE IC(14055),XLSAR
EQUIVALENCE IC(14072),RECOCS
EQUIVALENCE IC(14051),SFP
EQUIVALENCE IC(6051),CASE
EQUIVALENCE IC(6051),SFP
EQUIVALENCE IC(14233),JMSLI
EQUIVALENCE IC(14233),JMSLI
EQUIVALENCE IC(14072),CASE
EQUIVALENCE IC(14072),SFP

C INPUTS FROM OTHER MODULES

EQUIVALENCE IC(43731),RANGE
EQUIVALENCE IC(43731),RXBA

75
EQUIVALENCE (EC179901, WM)
EQUIVALENCE (EC179901, WD)
EQUIVALENCE (EC179901, WG)
EQUIVALENCE (EC17941, WM)
EQUIVALENCE (EC17941, WD)
EQUIVALENCE (EC17941, WG)
EQUIVALENCE (IC120001, T)

C

C STATE VARIABLE CUTFITS
EQUIVALENCE (IC0241, BTHTG)
EQUIVALENCE (IC0241, BTFT)
EQUIVALENCE (IC0241, BP51)
EQUIVALENCE (IC0433, BP51)

C

C OTHER CUTFITS
EQUIVALENCE (EC10433, LE)
EQUIVALENCE (EC10371, EY)
EQUIVALENCE (EC10371, EY)
EQUIVALENCE (EC10371, BX)
EQUIVALENCE (EC10371, BX)
EQUIVALENCE (IC04351, IC04351)
EQUIVALENCE (IC04351, IC04351)
EQUIVALENCE (IC04351, IC04351)
EQUIVALENCE (IC04351, IC04351)
EQUIVALENCE (IC04331, IC04331)
EQUIVALENCE (IC04331, IC04331)

C

C DIRECTION COSINES FOR BODY TO PLATFORM TRANSFORMATION
EFC, G, D1, IC0T030
SLT= 0.
S2 = 0.
S3 = 0.
30 CONTINUE
U31 = SIN(D1)*HTG)
U33 = COS(D1)*HTG)
U012 = SIN(D1)*PS161
U022 = COS(D1)*PS161
U013 = -U23*U33
U023 = -U23*U33
U032 = 0.

C

C CALCULATE TOTAL REFLECTION OF GIMBALS
BGEFL *SGN(BHTG)*4*IC0PS51*23

C

C TRANSFORM LCS FROM BODY TO GIMBAL AXES
RG = U01+RDA+U12+RBA+U13+RBA
RG = U01+RDA+U12+RBA+U13+RBA
RG = U01+RDA+U12+RBA+U13+RBA
RG = U01+RDA+U12+RBA+U13+RBA

C

C CHECK FOR MISSILE AT SEEKER BREAK-LOCK RANGE
IF (RANGE, GT, 80) GO TO 30
IF (IC0PS51, LE, 0.1) GO TO 30
IF (IC0PS51, GE, 0.1) GO TO 30

C

C LINE OF SIGHT RATES AFTER BREAK-LOCK
LEPS = (IC0PS51 - 1.)*EPSMK
IF (IC0PS51, GT, .00) UEPS = EDEGE
IF (IC0PS51, LE, .00) BESY = UEPS
BESY = UEPS

76
OICHECK = 1.
GO TO 50
C
INITIALIZATION OF BREAK LOCK VARIABLES
35 VTYPE = T
UPST = DEPSZ
UPSY = DEPSY
VIVER = L
WRITE (10,200) T,KAMPF
200 KAMPF = (JuniorLockAs Occurred, TIME=,FC,-,BM, RANGE=,F12,*)
C
NO ERRORS IN PLATFORM COORDINATES
NO DEPSZ = ATANCF-RG,DEPSZ
DEPSY = ATANCF-DEPSY,DEPSY
GO TO 50
49 CICHECK = -1.
50 CONTINUE
C
IF (CFTKR .GT. 0.) GO TO 80
ST = CTPHR*DEPSZ
SY = CTPHR*DEPSY
GUICE = 1.
GO TO 52
80 IF (IT .LT. UEZ) GO TO 92
UT = UT + CFT
SUMP = 1.
CALL(CAUS,SET,A012,A120)
FRIC(S031),G12,G12V,DEPSZ(010)
SUMP = SUMP + 1.
CALL(SLGT,SEND,PE11,DEPSZ)
SUMP = SUMP/DEPSZ RANGE
60 PE1 = CC*ST*RANGE
PLOC=EX
DEPSZ = ATANCF-PLOC,DEPSZ
DEPSY = ATANCF-PLOC,DEPSY
CALL(GAKE,ICECF,CFECF,AE,BC,CC,DO,DEPSZ,DEPSY)
LT = 2 + 4*E10
IF(CFTKR.LE.1.E6) IF(10.
ST = ((CE-12)+CHR)E10
S2 = (ICE+91+CHR)/10
CALL(11)
GCF(E2)
91 S2 = 0.
ST = 0.
92 UT = UT + SX
LY = LT
IF(CFTKR.GT.0.)GICHECK = 1.
C
PITCH PROGRAMMING AND SEEKER GAIN SWITCHING
IF (GUICE.GT.0.)GO TO 20
IF (SAPP .GT. 0.1) GO TO 19
IF (EAGE .LE. 0.1) GO TO 21
UEZ = UEZ
SAPP = 1.
19 IF (SIGNAL .GE. 1.E-6) UEZ = 1.
UEZ = 2
GO TO 21
GUCE = 1.
20 DAFOC5 = 57.43*OFRF/CEFED
EF = UE/CHR+DAF0C5
EF = UF/CHR+DAF0C5
77
UZ = 0
UY = 0
GO TO 22
21 EE = CGAMYS/GZ
EV = CGANFS/GY
UZ = GSN/UE
UY = GSN/UU
22 CONTINUE
C
C == COUPLED FREQUENCY COUPLING OF GIMBALS
UZK = SIGNS(CEP1, BPS1C0)
ACY = SIGNS(CEP2, BPS2C0)
C
C == MISSILE ECCY RATES IN GIMBAL AXES
W = U31*X + U022*Y + U23*Z
W = U31*X + U022*Y + U23*Z
C
C == GIMBAL ANGLE DERIVATIVES
TF = EACH -- 5.1 TO 99
BP1GC = I1ALPD - K1/UB22
BPS1C0 = I1ETAO - K1
C
C == PLG OPTION
C
C == MISSILE -- 6X53+BTHIC
C
C == BPS1C0 -- 6X53+BPSIG
C
C == TIGER AUTOPILOT INITIALIZATION MODULE
C
C == FREQUENCY MODEL
C
SUBROUTINE CII
C
C = CII (1 + 310)
DIMENSION EPI(100)
EQUIVALENCE (EI, 8301, EES)
EQUIVALENCE (EI, 8302, EES)
EQUIVALENCE (EI, 8303, EES)
EQUIVALENCE (EI, 8304, EES)
EQUIVALENCE (EI, 8305, EES)
EQUIVALENCE (EI, 8306, EES)
EQUIVALENCE (EI, 8307, EES)
EQUIVALENCE (EI, 8308, EES)
RETURN
FFC
C
C == TIGER AUTOPILOT INITIALIZATION MODULE
C
C == FREQUENCY MODEL
C
SUBROUTINE CII
C
C = CII (1 + 310)
DIMENSION EPI(100)
EQUIVALENCE (EI, 8301, EES)
EQUIVALENCE (EI, 8302, EES)
EQUIVALENCE (EI, 8303, EES)
EQUIVALENCE (EI, 8304, EES)
EQUIVALENCE (EI, 8305, EES)
EQUIVALENCE (EI, 8306, EES)
EQUIVALENCE (EI, 8307, EES)
EQUIVALENCE (EI, 8308, EES)
RETURN
FFC
EYS = CGAF8
22 EISS = EES
EISS = EYS
C1 8037 = 0.
C1 8231 = 0.
C1 8273 = 0.
C1 8733 = 0.
C1 8593 = 0.
RETURN
END

C++ TIGER AUTOPILOT MODE
C++ New Frequency Model

SUBROUTINE C1
COMMON CLASID1
CIPRISTC=true,VAR(101)

C++ INPUT DATA
EQUIVALENCE ECI00850),MLHOL)
EQUIVALENCE ECI00851),MLMIN)
EQUIVALENCE ECI00852)],OB1AS)
EQUIVALENCE ECI00853)],GB1AS)
EQUIVALENCE ECI00854)],GL
EQUIVALENCE ECI00855),GT
C
C CE 0573 TO CE 0573 ARE USED BY ECNTAL(E)
EQUIVALENCE ECI00861],TAP2)
EQUIVALENCE ECI00862],TAU3)
EQUIVALENCE ECI00863],TAP2)
EQUIVALENCE ECI00864],TAP3)

C++ INPUTS FROM OTHER MODULES
EQUIVALENCE ECI10521],MP
EQUIVALENCE ECI103053),BB110
C
EQUIVALENCE ECI105031],CZ
EQUIVALENCE ECI105041],ET
EQUIVALENCE ECI10881],NP-SUM
EQUIVALENCE ECI10739],NP
EQUIVALENCE ECI10740],NP
EQUIVALENCE ECI10741],NP
EQUIVALENCE ECI10742],NP
EQUIVALENCE ECI10743],NP
EQUIVALENCE ECI10744],NP

C++ INPUTS FROM PARA PROGRAM
EQUIVALENCE ECI1220041],T
EQUIVALENCE ECI1220653],VAR
EQUIVALENCE ECI1226441],DER
C
C++ STATE VARIABLE OUTPUTS
EQUIVALENCE ECI001],BPHSME
EQUIVALENCE ECI002],BPHSME
EQUIVALENCE ECI003],BPHSME
EQUIVALENCE ECI004],BPHSME
EQUIVALENCE ECI005],BPHSME
EQUIVALENCE ECI006],BPHSME
EQUIVALENCE ECI007],BPHSME
EQUIVALENCE ECI008],BPHSME
EQUIVALENCE ECI009],BPHSME
EQUIVALENCE ECI010],BPHSME
EQUIVALENCE ECI011],BPHSME
EQUIVALENCE ECI012],BPHSME
EQUIVALENCE ECI013],BPHSME
EQUIVALENCE ECI014],BPHSME
EQUIVALENCE ECI015],BPHSME
EQUIVALENCE ECI016],BPHSME
EQUIVALENCE ECI017],BPHSME
EQUIVALENCE ECI018],BPHSME
EQUIVALENCE ECI019],BPHSME
EQUIVALENCE ECI020],BPHSME
EQUIVALENCE ECI021],BPHSME
EQUIVALENCE ECI022],BPHSME
EQUIVALENCE ECI023],BPHSME
EQUIVALENCE ECI024],BPHSME
EQUIVALENCE ECI025],BPHSME
EQUIVALENCE ECI026],BPHSME
EQUIVALENCE ECI027],BPHSME
EQUIVALENCE ECI028],BPHSME
EQUIVALENCE ECI029],BPHSME
EQUIVALENCE ECI030],BPHSME
EQUIVALENCE ECI031],BPHSME
EQUIVALENCE ECI032],BPHSME
EQUIVALENCE ECI033],BPHSME
EQUIVALENCE ECI034],BPHSME
EQUIVALENCE ECI035],BPHSME
EQUIVALENCE ECI036],BPHSME
EQUIVALENCE ECI037],BPHSME
EQUIVALENCE ECI038],BPHSME
EQUIVALENCE ECI039],BPHSME
EQUIVALENCE ECI040],BPHSME

79
EQUVALENCE ICE 8571, UDELTC
C
C**OUTPUTS
EQUVALENCE ICE 8571, UDELTC
C
C**OTHER OUTPUTS
EQUVALENCE ICE 8571, UDELTC
C
C**PLATFORM RATES IN INERTIAL SPACE
EQUVALENCE ICE 8571, UDELTC
C
C**GRAVITY AND RATE DIAVS
EQUVALENCE ICE 8571, UDELTC
C
C**BODY RATE SHAPING AND CYRO DYNAMICS
EQUVALENCE ICE 8571, UDELTC
C
C**SUMMARY OF RATE CAMPING AND GUIANCE SIGNALS AND THEIR DERIVATIVES
EQUVALENCE ICE 8571, UDELTC
C
C**NCL SIGNAL SHAPING
EQUVALENCE ICE 8571, UDELTC
C
CO*AUTOPIL OUTPUT CURRENTS TO EACH ACTUATOR (FROM SUMMATION AMPS)

BDELT(1) = EDEL1 - RDELPC
BDELT(2) = EDEL2 - RDELPC
BDELT(3) = EDEL3 - RDELPC
BDELT(4) = EDEL4 - RDELPC
RETURN

CC TECER SIMPLIFIED ACTUATOR MODEL

****LCW : FREQUENCY MODEL****

C SUBROUTINE CA

C COPPEN (43310)

C DIMENSION BUDEL(4),BUDEL(4),BUDEL(4),VAR(10)

C DIMENSION ROCET(4),ROCET(4)

C **INPUT DATA**

EQUAICNCE IC(1121),ROMAX
EQUAICNCE IC(1140),DELTPB
EQUAICNCE IC(1141),DELTPB
EQUAICNCE IC(1142),DELTD

C **INPUTS FROM OTHER MODULES**

EQUAICNCE IC(1151),RODLT
EQUAICNCE IC(1152),RODLT
EQUAICNCE IC(1153),RODLT
EQUAICNCE IC(1154),RODLT

C **FLAP DEFORMATION X: Y: Z**

BDELT(1) = BDELT(1) - DELTPB - DELTPB - DELTPB - DELTPB
BDELT(2) = BDELT(2) - DELTPB - DELTPB - DELTPB - DELTPB
BDELT(3) = BDELT(3) - DELTPB - DELTPB - DELTPB - DELTPB
BDELT(4) = BDELT(4) - DELTPB - DELTPB - DELTPB - DELTPB

C **ACTUATOR DYNAMICS**

DC 30 NC 1.4
BDELT(4) - BDELT(4)

C **SURFACE POSITION LIMITER**

IF(ABS(BDELT(3)) > 1.5MAX)GOTO30
BDELT(4) = SIGMA7(3);BDELT(4)
30 CONTINUE

C BSURFF = BDELT(1)
BSURF2 = BDELT(2)
BSURF3 = BDELT(3)
BSURF4 = BDELT(4)

C (1103) = BDELT(1)
(1107) = BDELT(2)
(1111) = BDELT(3)
(1115) = BDELT(4)
RETURN

CC SUBROUTINE #1

C COPPEN (43310)

C **TABLE LOOKUP FOR BCY FORCE COEFFICIENTS**

81
EQUIVALENCE IC11213,CH
EQUIVALENCE IC11217,CPR
EQUIVALENCE IC11218,CH2
EQUIVALENCE IC11219,CLCM
EQUIVALENCE IC11220,CL2
EQUIVALENCE IC11223,CL0
EQUIVALENCE IC11224,CM
EQUIVALENCE IC11227,CM0
EQUIVALENCE IC11231,CL2
EQUIVALENCE IC11233,CM0
EQUIVALENCE IC11234,CM
EQUIVALENCE IC11237,CL0
EQUIVALENCE IC11238,CL2
EQUIVALENCE IC11239,CM
EQUIVALENCE IC11240,CM0
EQUIVALENCE IC11241,CM
EQUIVALENCE IC11247,CM0
EQUIVALENCE IC11250,CL2
EQUIVALENCE IC11251,CM0
EQUIVALENCE IC11252,CM

C **OUTPUTS - COEFFICIENTS FOR SURFACE EFFECTS, AND TOTAL EFFECTS**

EQUIVALENCE IC12001,CL2
EQUIVALENCE IC12002,CL2
EQUIVALENCE IC12003,CL0
EQUIVALENCE IC12004,CL2
EQUIVALENCE IC12005,CL0
EQUIVALENCE IC12006,CL2
EQUIVALENCE IC12009,CLCM
EQUIVALENCE IC12010,CL2
EQUIVALENCE IC12013,CH2
EQUIVALENCE IC12014,CHCM
EQUIVALENCE IC12020,CH2
EQUIVALENCE IC12021,CHCM
EQUIVALENCE IC12022,CH2
EQUIVALENCE IC12023,CHCM
EQUIVALENCE IC12024,CH2
EQUIVALENCE IC12025,CHCM
EQUIVALENCE IC12026,CH2
EQUIVALENCE IC12027,CHCM
EQUIVALENCE IC12028,CH2
EQUIVALENCE IC12029,CHCM
EQUIVALENCE IC12030,CH2
EQUIVALENCE IC12031,CHCM
EQUIVALENCE IC12032,CH2
EQUIVALENCE IC12033,CHCM
EQUIVALENCE IC12034,CH2
EQUIVALENCE IC12035,CHCM
EQUIVALENCE IC12036,CH2
EQUIVALENCE IC12037,CHCM
EQUIVALENCE IC12038,CH2
EQUIVALENCE IC12039,CHCM
EQUIVALENCE IC12040,CH2
EQUIVALENCE IC12041,CHCM

C INPUT VARIABLE XINTER IS THE INTERPOLATION CONTROL
C 0.0 - STRAIGHT LINE INTERPOLATION
C 1.0 - STRAIGHT LINE INTERPOLATION WITH END INTERVAL
C 0.0 - PARABOLIC INTERPOLATION
C POSITIVE = PARABOLIC INTERPOLATION WITH END INTERVAL
C IF XINTER .LE. 0.0, UINTER = 0.
C IF XINTER .GT. 0.0, UINTER = XINTER

C MULTIPLE ANGLE FORMULAE AND ABSOLUTE VALUES OF ANGLE OF ATTACK

C USPF1 = SIN(C1P+P2)
C USPH1 = COS(C1P+P2)
C USPH2 = SIN(C1P+P2)
C USPF2 = COS(C1P+P2)
C USPF3 = SIN(C1P+P2)
C USPH3 = COS(C1P+P2)

C **CALCULATION OF FORCE COEFFICIENTS**

C BOEFL = RADS(USPF1)*RADS(|USPH2|)*ABS(|USPF3|)*ABS(|USPH4|)
C FCDC = COS(C1P2)*COS(C1P3)*COS(C1P4)*COS(C1P5)
C CALL TABLE 151247P, 1520X, 15210, 15211, 15212, 15213, 15214
C CALL CGCV, 15220, 15221, 15222, 15223, 15224
C CALL C220, 15225, 15226, 15227
C CALL C228, 15229, 15230, 15231
C CALL C224, 15225, 15226, 15227
C CALL C228, 15229, 15230, 15231
C = CYTHPCRP= =CYTHPCRP
C = -CYPHPCRP=CYTHPCRP
C = CLHPCRP=CLHPCRP
C = CLHPCRP=CLHPCRP
RETURN

CNC

C...AEROFORCE AND MOMENT MODULE

COORDINATE AXES

SHEARindle #2

COPERA C (14310)

C

C...INPUT DATA

EQUIVALENCE (C(1100),AFAREA)
EQUIVALENCE (C(1101),RFLCENT)
EQUIVALENCE (C(1102),REJLCY)
EQUIVALENCE (C(1103),RFLCGR)
EQUIVALENCE (C(1104),RFLCG)
EQUIVALENCE (C(1105),RFLCG)
EQUIVALENCE (C(1106),RPLCG)
EQUIVALENCE (C(1107),RPLAL)
EQUIVALENCE (C(1108),RPLAG)
EQUIVALENCE (C(1109),RPLPH)
EQUIVALENCE (C(1110),RPLPH)

C

C...INPUTS FROM OTHER MODULES

EQUIVALENCE (C(1101),FRANK3)
EQUIVALENCE (C(1102),W VINP)
EQUIVALENCE (C(1103),SINT3)
EQUIVALENCE (C(1104),STP)
EQUIVALENCE (C(1105),STP)
EQUIVALENCE (C(1106),STP)
EQUIVALENCE (C(1107),STP)
EQUIVALENCE (C(1108),STP)
EQUIVALENCE (C(1109),STP)
EQUIVALENCE (C(1110),STP)

C

C...OTHER INPUTS

EQUIVALENCE (C(1101),FFBA)
EQUIVALENCE (C(1102),FFBA)
EQUIVALENCE (C(1103),FFBA)
EQUIVALENCE (C(1104),FFBA)
EQUIVALENCE (C(1105),FFBA)
EQUIVALENCE (C(1106),FFBA)
EQUIVALENCE (C(1107),FFBA)
EQUIVALENCE (C(1108),FFBA)
EQUIVALENCE (C(1109),FFBA)
EQUIVALENCE (C(1110),FFBA)

85
C FORCED VECTOR COMPONENTS
UCS = ALIGNED AREA
UCS = UCS*PFLGM
C
FX = UCSUCS*(CX) + SPX
FY = UCSUCS*SPY
FZ = UCSUCS*SPZ
IF VARS - LEC = 0) GO TO 71
C AERO MOMENTS
FXEA = (CL1*CLP*VAERS*PFLGC + WMP)*UOSL
FFEA = (CM1*CMU*VAERS*PFLGC + WMP)*UOSL + FIBA*RDELCG
FFEA = (CM1*CMU*VAERS*PFLGC + WMP)*UOSL + FIBA*RDELCG
C MOMENTS CAUSED BY THRUST MISALIGNMENTS
FPITH = -FTPA*FACC # FTPI*FACC
FVTH = -FTPA*FACC # FTPI*FACC
FVTH = -FTPA*FACC # FTPI*FACC
C MOMENTS ARE FORCES DUE TO LUGS
FPBH = -FTPA*FACC # FTPI*FACC
GO TO 74
70 IF (RACE = 'L.R. RAIL') GO TO 72
FXLUG = -(FIBA + MASA*GRAV) = (FM2B + FM2TH) + A
FM2B = (FM2B + MASA*GRAV) + A
GO TO 74
72 CONTINUE
FXLUG = - (FIBA + MASA*GRAV) + A
FM2B = (FM2B + MASA*GRAV) + A
74 CONTINUE
C TOTAL FORC AND MOMENTS
FIBA = FIBA + FXLUG
C CALCULATE MOMENTS
FPITH = C*UMP71
FPZ = C3+UCSL
FPHS = C3+UCSL
FPM = C3+UCSL
RETURN

END

C*INITIALIZATION FOR ENGINE MODULE
SUBROUTINE X3E
COPRCH (C4310)
CPASCH (C4310)
EQUIVALENCE (C125811, N)
EQUIVALENCE (C125811, IPL)
C1493 = 0.
IPL1M = 1.
N = 141
RETURN

END

C**ENGINE MODUUE
SUBROUTINE X3E
COPRCH (C4310)
C
C*CORP UP TABLE FOR TPHUS
COPRCH (C4310)
C
C* INPUT DATA
EQUIVALENCE (C114013, BALPM)
EQUIVALENCE (C114021, PHSF)
EQUIVALENCE (C114023, OHSF)
EQUIVALENCE (C114043, PCTH)
EQUIVALENCE (C114053, GPHN)
EQUIVALENCE (C114101, CHP)
EQUIVALENCE (C114151, CHP)
EQUIVALENCE (C114171, MCCG)
EQUIVALENCE (C114181, MCCG)
EQUIVALENCE (C114201, PHMO)
EQUIVALENCE (C114211, ACGG)
EQUIVALENCE (C114213, ACGG)
EQUIVALENCE (C114221, ACRAV)
EQUIVALENCE (C114223, ACRAV)

C* INPUTS FROM OTHER MODULES
EQUIVALENCE (C112521, XINTER)
EQUIVALENCE (C120001, T)

C* OUTPUTS
EQUIVALENCE (C113021, RDLCCG)
EQUIVALENCE (C114023, OCMP)
EQUIVALENCE (C114031, ORMST)
EQUIVALENCE (C114031, FTKH)
EQUIVALENCE (C114121, PTHY)
EQUIVALENCE (C114123, PTHY)
EQUIVALENCE (C114125, RTH)
EQUIVALENCE (C114127, PTHY)
EQUIVALENCE (C114129, RTHY)
EQUIVALENCE (C114121, RTH)
EQUIVALENCE (C114123, RTH)
EQUIVALENCE (C114125, RTH)
EQUIVALENCE (C114127, RTH)
EQUIVALENCE (C114129, RTH)

C* STATE VARIABLES AND THEIR DERIVATIVES
EQUIVALENCE (C114991, URMO)
EQUIVALENCE (C114991, UMPO)

C IF (IQUAN.GTABLE) RETURN
PFLM = CCEPH2(TPH, THM, THFR, XINTER, ENTHR)

87
C FTNST = FTNST+1.0, PCFTO

10 USINF = SINC(4BCLPHT)
FTNST = FTNST + COSC(4BCLPHT)
FTNY = FTNST*SIN(4BPHIT)
FTNM = FTNST + S(NACOSC10PHIT)
GO TO 30

20 IF(FTNST .LT. 0.1) RETURN

30 CONTINUE

C UMDP = FTNST
UDMP = UMDP/CISP

C CPASS = (CWT - UMDP/AGRAY
RDELCG = DCCGO - DCCGO - DCCGO - DCCGO + UMDP/DWP

C FPIX = FMIXC*HCWT - AGWIN/AGRP
FPIY = FMIXC*HWT - AGWIN/AGRP
FPIZ = FMIXC
RLEC = RCLCG + RDELCG
IF (FTNST .LT. 0.1) RETURN

C WRITE (4,1000) T
100 FORMAT (5/34H DURCAT TIME+FB,4.5H SEC.)
COUR = 3.0
FTNST = 0.0
FTNY = 0.0
FTNM = 0.0
RETURN

END

C** TRANSLATIONAL DYNAMICS INITIALIZATION MODULE FOR DI

C** INPUT DATA

C EQUIVALENCE (CI,1001) VVKE
EQUIVALENCE (CI,1002) VVWE
EQUIVALENCE (CI,1003) VVW2
EQUIVALENCE (CI,2041) VMACH
EQUIVALENCE (CI,2081) REN
EQUIVALENCE (CI,367) DLPMA
EQUIVALENCE (CI,371) RANCE
EQUIVALENCE (CI,1752) RNPH(UO)
EQUIVALENCE (CI,1751) RNPH(UO)
EQUIVALENCE (CI,3681) BLPH
EQUIVALENCE (CI,427) BTHG
EQUIVALENCE (CI,431) BPSEG1
EQUIVALENCE (CI,4405) DERN
EQUIVALENCE (CI,3513) DFPARG
EQUIVALENCE (CI,4866) DCEVE
EQUIVALENCE (CI,1161) ASSLNF
EQUIVALENCE (CI,1793) WM
EQUIVALENCE (CI,1743) MO
EQUIVALENCE (CI,1774) MR
EQUIVALENCE (CI,3502) DOPNA

88
C

C*** OUTPUT TO MODULES
EQUIVALENCE (IC13703, BPPIP)
EQUIVALENCE (IC14155, RPI)
EQUIVALENCE (IC16174, RPI)
EQUIVALENCE (IC16223, RPI)
EQUIVALENCE (IC16431, VPI)
EQUIVALENCE (IC19077, VRI)
EQUIVALENCE (IC21511, VPI)
EQUIVALENCE (IC25279, RPI)
EQUIVALENCE (IC16395, RPI)
EQUIVALENCE (IC16361, RPI)
EQUIVALENCE (IC16391, RPI)
EQUIVALENCE (IC16443, RPI)
EQUIVALENCE (IC16447, RPI)
EQUIVALENCE (IC16533, RTPE)
EQUIVALENCE (IC16553, RTPE)
EQUIVALENCE (IC16591, RPI)
EQUIVALENCE (IC16651, RPI)
EQUIVALENCE (IC17553, RTPE)
EQUIVALENCE (IC17554, RTPE)

C

C (16471)C (1648)

IPLIN = 1000
IPLIN+1 = 1004
IPLIN+2 = 1260
IPLIN+3 = 1612
IPLIN+4 = 1216
IPLIN+5 = 1620
IPLIN+6 = 1240
IPLIN+7 = 1244
IPLIN+8 = 1648
IPLIN+9 = 1652
IPLIN+10 = 1656
IPLIN+11 = 1672

CALL
IF (EMT#1G10.9, 10)
ATP1 = ATP1 + 838
GCTG11
9 ATARGD.
10 CONTINUE
SP-IC=9.

C+++CALCULATE MISSILE PARAMETER INITIAL CONDITIONS
BYTC=BETEY+ALPHA
BPS1E=PS1E+ALPHA
RAXEL=SLANT+COS(RECEIVE)
RAYC=SLANT
RVE=SLANT+SEC(BALPHA)
RVE=SLANT+COS(RECEIVE)

20 HH = HRIT - RZE
C(+47)+ALPHA
C(+49)+ALPHA
C(+43)+ALPHA
C(+41)+ALPHA

C

C USHT = SIND1(TD1)
USHT = COST(TD1)
UCPSI = COSD1(FPS1D)
USP1 = SIND1(FPS1D)
UCPSI = COSD1(FPS1D)
SXA = -UPSI1*UCMTREE * USTMTREE
RBA = USPS1*UCMTREE
RBU = -UPSI1*UCMTREE - USTMTREE

24 VSCLUD = 1.17.3 = .0039288
VNYTE = VNYC + VSCUD
VNYR = VNYC + CSUD(ALPHA = BFEND)
VNYVRK = VNYT + COS(166PHY)
VNYVRE = VNYT + SIN(166PHY)
VNE = VNYT - WHITE + SIN(1806)

C 30 PCEL = RTG-RE
PCEL = RTG-RE
PECL = RE-RE
PCL = RE
PCL = RE
PCL = RE
RETURN
END

C*TRANSFORMATION CYKAPICS MODULE

SUPROUTAE C1
COPPEN C143301
C
C*INPUT DATA
EQUIVALEN E(16421),RAIL 1
EQUIVALEN E(16271),AGRA 1
EQUIVALEN E(16221),CHAD 1
EQUIVALEN E(16221),CHAD 1
EQUIVALEN E(16271),ATUR 1
EQUIVALEN E(16331),CCAT 1
EQUIVALEN E(16801),DPMD 1
EQUIVALEN E(18031),CIV 1
EQUIVALEN E(18531),CRAV 1
EQUIVALEN E(19301),Optr 4 1

C*CINPUTS PMP OTHER MODULES
EQUIVALEN E(17711),RANGE 1
EQUIVALEN E(17001),RANGE 1
EQUIVALEN E(17001),PBA 1

C*STATE VARIABLE OUTPUTS
EQUIVALEN E(18001),VRE 1
EQUIVALEN E(18001),VRE 1
EQUIVALEN E(18041),VRE 1
EQUIVALEN E(18041),VRE 1
EQUIVALEN E(18071),VRE 1
EQUIVALEN E(18071),VRE 1
EQUIVALEN E(18081),VRE 1
EQUIVALEN E(18081),VRE 1
EQUIVALEN E(18111),VRE 1
EQUIVALEN E(18111),VRE 1
EQUIVALEN E(18141),VRE 1
EQUIVALEN E(18141),VRE 1

90
C**ADD AERO AND THRUST FORCES TO GET TOTAL ACCELERATION IN BODY AXES
\nAEX = FEX/MASS
AAYE = FYE/MASS
ABE = FEY/MASS
\nC**RESOLVE FCHE ABCY TO EARTH AXES
AEX = CFA1*VXED+CFA2*AYE+CFA3*ZED
AAYE = CFA2*VXED+CFA22*AYE+CFA23*ZED
ABE = CFA3*VXED+CFA23*AYE+CFA33*ZED
\nC**INTEGRATE ACCELERATIONS
VXED = VX
VY = AY
VZED = AZ + AGRAV
\nC* CALCULATE TOTAL MISSILE ACCELERATION IN BODY AXES
VXBE = CFAL1*VXED+CFA12*VY+VZED+CFA13*ZED
VYBE = CFAL2*VXED+CFA22*VY+VZED+CFA23*ZED
VZEBE = CFAL3*VXED+CFA32*VY+VZED+CFA33*ZED
\nIF (AGRAV-LE100)=0, GO TO 10
\nANGX = VXBE/AGRAX
ANGY = VYBE/AGRAX
ANGZ = VZEBE/AGRAX
C*INTEGRATE VELOCITIES TO EARTH AXES POSITION
AXEC=AXE
AYEC = YVE
AZEC = ZVE
INERTIAP(10:4)+10
ATARG=ATST/INERTA
CGETC1
9 ATARG=0.
11 CONTINUE
IF (VTARG.0.1) BPSICTH ATURN+AGRAV+GRAD/VTARG
C
ATARG = XIJE
AYEC = YJE
AZEC = ZJE
C
VCELX = VTXE-VXE
VCELY = VYJE-YJE
VCELZ = VZJE-ZJE
C
REEXL = RAXE-ARE
REELY = RYJE-REJ
REELZ = RZJE-ZJE
VCLNG = RCELX*VCELX+RCELY*VCELY+RCELZ*VCELZ/RANGE
RETURN
END
C**ROTATIONAL DYNAMICS INITIALIZATION MODULE OZIELU
SUBROUTINE OZIELU
C
C**INPUTS FROM MAIN PROGRAM
C
C**STATE VARIABLES INPUTS
C
C**STATE VARIABLES OUTPUTS
C
C**OTHER INPUTS
C
C**OTHER OUTPUTS
C
C**INITIAL CALCULATION OF EULER ANGLE MATRIX OF DIRECTION COSINES (CFA)

USPHI = COSDEP+PI0
USEP = COSDEP+PI0
UCSP = COSDEP+PI0
USPS1 = SIND1PHS1
USPS2 = SIND1PHS2
USPS3 = SIND1PHS3
CFA11 = USPHI*USPHI+USPS1*USPS1+USPS2*USPS2
CFA12 = USPHI*USPS2+USPS1*USPS3
CFA13 = USPS1*USPS3
CFA21 = USPS1*USPHI+USPS2*USPHI+USPS3*USPHI
CFA22 = USPS2*USPHI+USPS3*USPHI
CFA23 = USPS3*USPHI
CFA31 = USPS1*USPHI+USPS2*USPHI+USPS3*USPHI
CFA32 = USPS2*USPHI
CFA33 = USPS3*USPHI

C
92
C** INTEGRATED PARAMETER LIST I IPL FOR WPD, WDG, WAD, AND CFAAD

C IPL = 11703
 IPL(1) = 11704
 IPL(2) = 11708
 IPL(3) = 11712
 IPL(4) = 11716
 IPL(5) = 11720
 IPL(6) = 11724
 IPL(7) = 11728
 IPL(8) = 11732
 IPL(9) = 11736
 IPL(10) = 11740
 IPL(11) = 11744
 h = 0.12

C** RESET ANGULAR RATE DERIVATIVES TO ZERO.

C CE1001 = 0.
 CE1002 = 0.
 CE1003 = 0.
 CE1004 = 0.
 CE1005 = 0.
 CE1006 = 0.
 CE1007 = 0.
 CE1008 = 0.
 CE1009 = 0.
 CE1010 = 0.

C RETURN

C** ROTATIONAL DYNAMICS MODULE

SUBROUTINE F7

C C DATA I NPUTS

C EQUIVALENCE (CE11401,RAIL)
 EQUIVALENCE (CE117481,FM81)
 EQUIVALENCE (CE117493,FM82)
 EQUIVALENCE (CE117563,CRAD)
 EQUIVALENCE (CE119031,OPTRI)
 EQUIVALENCE (CE125064,UPTRI)

C C INPUTS FOR OTHER MODULES

C EQUIVALENCE (CE139301,RAND)
 EQUIVALENCE (CE139321,WMDA)
 EQUIVALENCE (CE119341,FMDA)
 EQUIVALENCE (CE119351,FMDA)
 EQUIVALENCE (CE119361,FMCG)

C C INPUTS FOR THE PROGRAM

C EQUIVALENCE (CE115001,CFALL)
 EQUIVALENCE (CE115011,CFALL)
 EQUIVALENCE (CE115031,CAFIA3)
 EQUIVALENCE (CE115041,CAFIA2)
 EQUIVALENCE (CE115061,CAFIA4)
 EQUIVALENCE (CE115071,CAFIA1)
 EQUIVALENCE (CE115131,CF2C)
 EQUIVALENCE (CE115151,CF2C)
 EQUIVALENCE (CE115161,CEF2C)
 EQUIVALENCE (CE115171,CEF2C)

93
INTEGER STATUS
CPI(NX(N1))<59,59
95 KK=0
96 CONTINUE
JAR = 0
WRITE(*,51)
51 FLP(H1,H2,IJU,TPT)
 1 READ(C,2) T1(1),ALPHA(1),ALPHA(2),ALPHA(3),I(2), RED(1), VR(2)
 2 WRITE(6,30) T1(1),ALPHA(1),ALPHA(2),ALPHA(3),I(2), RED(1), VR(2)
 30 FORMAT(2,3X,5.1,3X,5.1,3X,5.1,2X,5.1)
7 IF (I(JAR), NE. 1) GO TO 3
 ACSUB = ACSUB + 1
 SLT(C,ACSUB,1)
 R1=KK+3510
 C(I(1)+1)=R1
 KK=KK+2
 CC FC L
3 IF (I(1), NE. 2) GO TO 4
 NCED = NUMCE + 1
 NCED(1,NCED) = I(12)
 R1=KK+3510
 C(I(1)+1)=R1
 KK=KK+3510
 NCED = NUMCE + 1
 NCED = NUMCE + 1
 R1=KK+3510
 C(I(1)+1)=R1
 KK=KK+2
 CC FC L
4 IF (I(1), NE. 3) GO TO 5
 L = I(12)
 C(EJ) = VR(1)
 R1=KK+3510
 C(I(1)+1)=R1
 KK=KK+2
 IF (VR(12), EQ. 0), 2 GO TO 1
 NCLIST = NOLIST + 1
 NLIST(NLIST) = L
 NLIST(NLIST) = VR(12)
 R1=KK+3510
 C(I(1)+1)=R1
 KK=KK+4
 CC FC L
5 IF (I(1), NE. 4), GO TO 6
 NCUT = A(CUT) + 1
 IF (ACUT(T), EQ. 0), GO TO 1
 C(A(1), NCLIST) = L
 C(A(1), NCLIST) = A(CUT)
 NLIST(NLIST) = I(12)
 R1=KK+3510
 C(I(1)+1)=ALPHA(2)
 KK=KK+3
 IF (L(1), EQ. 1), GO TO 7
 C(I(1)+1)=L(1)+L(2)
 KK=KK+6
 CC FC L
6 IF (I(1), NE. 5) GO TO 16
 IF (VR(12), EQ. 0), GO TO 17
WRITE (6, 134)
13 FORMAT (1(15D10)) " WARNING- PLOTTING ARRAY FILLED- ONLY FIRST 309 P
COUNTS Plotted: ****, ****
14 COUNTO = POINT
15 CONTINUE
16 COUNTO = POINT
17 CONTINUE
18 COUNTO = POINT
19 CONTINUE
20 COUNTO = POINT
21 CONTINUE
22 COUNTO = POINT
23 CONTINUE
24 COUNTO = POINT
25 CONTINUE
26 COUNTO = POINT
27 CONTINUE
28 COUNTO = POINT
29 CONTINUE
30 COUNTO = POINT
31 CONTINUE
32 COUNTO = POINT
33 CONTINUE
34 COUNTO = POINT
35 CONTINUE
36 COUNTO = POINT
37 CONTINUE
38 COUNTO = POINT
39 CONTINUE
40 COUNTO = POINT
41 CONTINUE
42 COUNTO = POINT
43 CONTINUE
44 COUNTO = POINT
45 CONTINUE
46 COUNTO = POINT
47 CONTINUE
48 COUNTO = POINT
49 CONTINUE
50 COUNTO = POINT
51 CONTINUE
52 COUNTO = POINT
53 CONTINUE
54 COUNTO = POINT
55 CONTINUE
56 COUNTO = POINT
57 CONTINUE
58 COUNTO = POINT
59 CONTINUE
60 COUNTO = POINT
61 CONTINUE
62 COUNTO = POINT
63 CONTINUE
64 COUNTO = POINT
65 CONTINUE
66 COUNTO = POINT
67 CONTINUE
68 COUNTO = POINT
69 CONTINUE
70 COUNTO = POINT
71 CONTINUE
72 COUNTO = POINT
73 CONTINUE
74 COUNTO = POINT
75 CONTINUE
76 COUNTO = POINT
77 CONTINUE
78 COUNTO = POINT
79 CONTINUE
80 COUNTO = POINT
81 CONTINUE
82 COUNTO = POINT
83 CONTINUE
84 COUNTO = POINT
85 CONTINUE
86 COUNTO = POINT
87 CONTINUE
88 COUNTO = POINT
89 CONTINUE
90 COUNTO = POINT
91 CONTINUE
92 COUNTO = POINT
93 CONTINUE
94 COUNTO = POINT
95 CONTINUE
96 COUNTO = POINT
97 CONTINUE
98 COUNTO = POINT
99 CONTINUE
100 COUNTO = POINT
101 CONTINUE
102 COUNTO = POINT
103 CONTINUE
104 COUNTO = POINT
105 CONTINUE
106 COUNTO = POINT
107 CONTINUE
108 COUNTO = POINT
109 CONTINUE
110 COUNTO = POINT
111 CONTINUE
112 COUNTO = POINT
113 CONTINUE
114 COUNTO = POINT
115 CONTINUE
116 COUNTO = POINT
117 CONTINUE
118 COUNTO = POINT
119 CONTINUE
120 COUNTO = POINT
121 CONTINUE
122 COUNTO = POINT
123 CONTINUE
124 COUNTO = POINT
125 CONTINUE
126 COUNTO = POINT
127 CONTINUE
128 COUNTO = POINT
129 CONTINUE
130 COUNTO = POINT
131 CONTINUE
132 COUNTO = POINT
133 CONTINUE
134 COUNTO = POINT
135 CONTINUE
136 COUNTO = POINT
137 CONTINUE
138 COUNTO = POINT
139 CONTINUE
140 COUNTO = POINT
141 CONTINUE
142 COUNTO = POINT
143 CONTINUE
144 COUNTO = POINT
145 CONTINUE
146 COUNTO = POINT
147 CONTINUE
148 COUNTO = POINT
149 CONTINUE
150 COUNTO = POINT
151 CONTINUE
152 COUNTO = POINT
153 CONTINUE
154 COUNTO = POINT
155 CONTINUE
156 COUNTO = POINT
157 CONTINUE
158 COUNTO = POINT
159 CONTINUE
160 COUNTO = POINT
161 CONTINUE
162 COUNTO = POINT
163 CONTINUE
164 COUNTO = POINT
165 CONTINUE
166 COUNTO = POINT
167 CONTINUE
168 COUNTO = POINT
169 CONTINUE
170 COUNTO = POINT
171 CONTINUE
172 COUNTO = POINT
173 CONTINUE
174 COUNTO = POINT
175 CONTINUE
176 COUNTO = POINT
177 CONTINUE
178 COUNTO = POINT
179 CONTINUE
180 COUNTO = POINT
181 CONTINUE
182 COUNTO = POINT
183 CONTINUE
184 COUNTO = POINT
185 CONTINUE
186 COUNTO = POINT
187 CONTINUE
188 COUNTO = POINT
189 CONTINUE
190 COUNTO = POINT
191 CONTINUE
192 COUNTO = POINT
193 CONTINUE
194 COUNTO = POINT
195 CONTINUE
196 COUNTO = POINT
197 CONTINUE
198 COUNTO = POINT
199 CONTINUE
200 COUNTO = POINT
201 CONTINUE
202 COUNTO = POINT
203 CONTINUE
204 COUNTO = POINT
205 CONTINUE
206 COUNTO = POINT
207 CONTINUE
208 COUNTO = POINT
209 CONTINUE
210 COUNTO = POINT
211 CONTINUE
212 COUNTO = POINT
213 CONTINUE
214 COUNTO = POINT
215 CONTINUE
216 COUNTO = POINT
217 CONTINUE
218 COUNTO = POINT
219 CONTINUE
220 COUNTO = POINT
221 CONTINUE
222 COUNTO = POINT
223 CONTINUE
224 COUNTO = POINT
225 CONTINUE
226 COUNTO = POINT
227 CONTINUE
228 COUNTO = POINT
229 CONTINUE
230 COUNTO = POINT
231 CONTINUE
232 COUNTO = POINT
233 CONTINUE
234 COUNTO = POINT
235 CONTINUE
236 COUNTO = POINT
237 CONTINUE
238 COUNTO = POINT
239 CONTINUE
240 COUNTO = POINT
241 CONTINUE
242 COUNTO = POINT
243 CONTINUE
244 COUNTO = POINT
245 CONTINUE
246 COUNTO = POINT
247 CONTINUE
248 COUNTO = POINT
249 CONTINUE
250 COUNTO = POINT
251 CONTINUE
252 COUNTO = POINT
253 CONTINUE
254 COUNTO = POINT
255 CONTINUE
256 COUNTO = POINT
257 CONTINUE
258 COUNTO = POINT
259 CONTINUE
260 COUNTO = POINT
261 CONTINUE
262 COUNTO = POINT
C ADAP=GOUCLS INTEGRATION
200 KCUT=CLS
DELTA=0.5
CC 250 1=1.1
R1=J2=J
R2=J3=1

C COMPUTE Y-PREDICIEED

C C[1]:NP=P(1)
N=NP+1=C(NP+1)+E1(T1-E1+P2+T(K3)-P3+T(K2))
210 V=V1+11(NP)
V=V+11(E1)
V=V+11(NP)
CALL AUX
CC 250 1=1.1
R2=J2=1

C COMPUTE Y-CL-PREDICED

N=NP+1=C(NP+1)+E3(E1-E1+P4+T(K4)+P3+T(K3))
220 IF=(K4<K4) GO TO 250
STEP=STEP+STEP(1)
CC TO 240
C IF=STEP(1) < STEP TO 230
STEP=STEP(1)
STEP=STEP(1)
WHITE=2,291
SPT(IP[E1+TEMP)
230 IF=(K5<K5) GO TO 270
STEP=STEP(1)
CC TO 280
C IF=STEP(1) < STEP TO 230
STEP=STEP(1)
STEP=STEP(1)
WHITE=2,291
SPT(IP[E1+TEMP)
250 IF=(K3<K3) GO TO 290
STEP=STEP(1)
CC TO 270
C IF=STEP(1) < STEP TO 250
STEP=STEP(1)
STEP=STEP(1)
WHITE=2,291
SPT(IP[E1+TEMP)
270 IF=(K3<K3) GO TO 290
STEP=STEP(1)
CC TO 270
C IF=STEP(1) < STEP TO 250
STEP=STEP(1)
STEP=STEP(1)
WHITE=2,291
SPT(IP[E1+TEMP)
290 IF=(K3<K3) GO TO 290
STEP=STEP(1)
CC TO 270
C IF=STEP(1) < STEP TO 250
STEP=STEP(1)
STEP=STEP(1)
WHITE=2,291
SPT(IP[E1+TEMP)
C SET-UP FOR CCULDING STEP SIZE

C CC=COUNT+1 TO 290
CC CC=COUNT+1 TO 290
R2=J2=1
R2=J3=1
R5=J5=1
T(E1+T(K1))
T(K1)+T(K2)
200 IF=(K2<K2) GO TO 290
DELTA=0.5
HCAL=7
290 IF=(K2<K2) GO TO 290
DELTA=0.5
HCAL=7
CC TO 290
C SET-UP FOR SAVING STEP SIZE
270 IF MOUNT=5L, A100 TO 310
 TPE=1PE-CALL
 V11=1PE
 DL1=DECL
cell=0.5(d11)
 CC ~20 = 1.d11
 A1 = 3.1.
 A2 = 2.1.
 A3 = 3.1.
 A8+1(1)=DOLI
 V12(A)=1 CL1(A)
 V(T31(A))=V(T21(A))=0.5(T21(A))=T21(A)
 V(T21)=T22
280 T21(T31(1)(1)((10.5N1(1)+T11)
 CC TO 400
 C INTEGRATION IS, FINISH, SET UP DERIVATIVES AND EXIT.
290 CC NO 14L,H3
 NPEP=1(N1=1)
 300 V(11)=N1CC11
 CC TO 400
 C RETURN TO THE PRECEDING POINT AND RESTART
310 DO 320 1=1,41
 A1=V11
 NPEP1=1(N1)
320 V11=1PE
 TPE=1PE+G(C1)
 V11=1PE
 DL1=DECL
 CALL AUSUB
 CC TO 30
 T1=
 SUBROUTINE AUSUB
 CC=CN CN3010
 EQUALS: P (CE238), WUOOG T, CECE23821, WUOOG1, CECE23811
 CREATION AUSOGE1199
 A =
 CC 1 = 1
 WUOOG11
 1 AUSOGE11
 GC TC 015, 016, 017, 018, 019, 020, 021, 022, 023
 1 .24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38
 2 CALL A11
 CC TO 1
 3 CALL A21
 GC TO 1
 4 CALL A31
 GC TO 1
 5 CALL A41
 GC TO 1
 6 CALL A51
 CC TO 1
 7 CALL A61
 CC TO 1
 8 CALL A71
 CC TO 1
 9 CALL A81
 CC TO 1
 10 CALL A91
 CC TO 1
 11 CALL A11
 CC TO 1
 12 CALL A12
 103
GO TO 1
13 CALL C7E
GO TO 1
14 CALL C6E
GO TO 1
15 CALL C4E
GO TO 1
16 CALL C1E01
GO TO 1
17 CALL C1E
GO TO 1
18 CALL C2E
GO TO 1
19 CALL C3E
GO TO 1
20 CALL C4E
GO TO 1
21 CALL C5E
GO TO 1
22 CALL C6E
GO TO 1
23 CALL C7E
GO TO 1
24 CALL C8E
GO TO 1
25 CALL C9E
GO TO 1
26 CALL C0E
GO TO 1
27 CALL C1E
GO TO 1
28 CALL C2E
GO TO 1
29 CALL C3E
GO TO 1
30 CALL C4E
GO TO 1
31 CALL C5E
GO TO 1
32 CALL C6E
GO TO 1
33 CALL C7E
GO TO 1
34 CALL C8E
GO TO 1
35 CALL C9E
GO TO 1
36 CALL SL1E
GO TO 1
37 CALL SL0E
GO TO 1
1 CONTINUE
RETURN
END
SUBROUTINE AUXSUB
COPCH (C(459))
EQUIVALENCE (C(2000),T) + (C(2561),XMOD) + (C(2562),XCOND)
EQUIVALENCE (C(2563),T) + (C(2562),IPL) + (C(2564),DER)
EQUIVALENCE (C(2565),VAR)
DIMENSION (ER1(101)) + WAR(101) + P(100)
DECK C354(XMOD2N999)
DO 50 1 = 2, N
104
29 CALL S2
30 CALL S3
GO TO 1
31 CALL S4
GO TO 1
32 CALL S5
CC TC 1
33 CALL S6
GO TO 1
34 CALL S7
CC TO 1
35 CALL S8
GO TO 1
36 CALL S9
CC TO 1
37 CALL S10
CONTINUE
DO AS 1 * 2, N
J = 1 (PLF = 1)
60 DOPIAS + (EJ)
RETURN
END
SUBROUTINE RESQ
CUPCLX X (4,10)
EQUVALENCE (IC(4,10),K,EC,ER)
EQUVALENCE (C(13041),MOLESTK, ICE(3007),LISTIN11, (C(13171),VALUE 1)
EQUVALENCE (C(13001),NORMIS, (C(13411),RADMNO)
EQUVALENCE KE(1300), B)
DIPNEN (K(4,10))
DIPNEN (LISTIG(59))
DIPNEN (PLF(50))
DIPNEN (RADIUS(50))
C3332=1.x3599
33 C3332=0.
C30=3.494
D3=1.33500+4C2
63 K(I) = K(I)+1
K (2561) = K (2500)
K (2361) = K (2300)
K (1301) = K (1000)
K (1361) = K (1300)
K (13301) = K (1305)
K (33101) = K (3200)
K (3101) = K (3000)
K (3120) = K (3050)
K (2120) = K (2010)
K (110) = 2
RELIAB
END
C DUMMY SUBROUTINE
C SUBROUTINE DUMMY
C ENTRY A1
C ENTRY A11
C ENTRY A2
C ENTRY A21
C ENTRY A3
C ENTRY A31
C ENTRY A4
C ENTRY A41
C ENTRY A5
C ENTRY A51

106
<table>
<thead>
<tr>
<th>Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
</tr>
<tr>
<td>C2</td>
</tr>
<tr>
<td>C3</td>
</tr>
<tr>
<td>C4</td>
</tr>
<tr>
<td>C5</td>
</tr>
<tr>
<td>C6</td>
</tr>
<tr>
<td>C7</td>
</tr>
<tr>
<td>C8</td>
</tr>
<tr>
<td>C9</td>
</tr>
<tr>
<td>C10</td>
</tr>
<tr>
<td>C11</td>
</tr>
<tr>
<td>C12</td>
</tr>
<tr>
<td>C13</td>
</tr>
<tr>
<td>C14</td>
</tr>
<tr>
<td>C15</td>
</tr>
<tr>
<td>C16</td>
</tr>
<tr>
<td>C17</td>
</tr>
<tr>
<td>C18</td>
</tr>
<tr>
<td>C19</td>
</tr>
<tr>
<td>C20</td>
</tr>
<tr>
<td>C21</td>
</tr>
<tr>
<td>C22</td>
</tr>
<tr>
<td>C23</td>
</tr>
<tr>
<td>C24</td>
</tr>
<tr>
<td>C25</td>
</tr>
<tr>
<td>C26</td>
</tr>
<tr>
<td>C27</td>
</tr>
<tr>
<td>C28</td>
</tr>
<tr>
<td>C29</td>
</tr>
<tr>
<td>C30</td>
</tr>
<tr>
<td>C31</td>
</tr>
<tr>
<td>C32</td>
</tr>
<tr>
<td>C33</td>
</tr>
<tr>
<td>C34</td>
</tr>
<tr>
<td>C35</td>
</tr>
<tr>
<td>C36</td>
</tr>
<tr>
<td>C37</td>
</tr>
<tr>
<td>C38</td>
</tr>
<tr>
<td>C39</td>
</tr>
<tr>
<td>C40</td>
</tr>
<tr>
<td>C41</td>
</tr>
<tr>
<td>C42</td>
</tr>
<tr>
<td>C43</td>
</tr>
<tr>
<td>C44</td>
</tr>
<tr>
<td>C45</td>
</tr>
<tr>
<td>C46</td>
</tr>
<tr>
<td>C47</td>
</tr>
<tr>
<td>C48</td>
</tr>
<tr>
<td>C49</td>
</tr>
<tr>
<td>C50</td>
</tr>
<tr>
<td>C51</td>
</tr>
<tr>
<td>C52</td>
</tr>
<tr>
<td>C53</td>
</tr>
<tr>
<td>C54</td>
</tr>
<tr>
<td>C55</td>
</tr>
<tr>
<td>C56</td>
</tr>
<tr>
<td>C57</td>
</tr>
<tr>
<td>C58</td>
</tr>
<tr>
<td>C59</td>
</tr>
<tr>
<td>C60</td>
</tr>
<tr>
<td>C61</td>
</tr>
<tr>
<td>C62</td>
</tr>
<tr>
<td>C63</td>
</tr>
<tr>
<td>C64</td>
</tr>
<tr>
<td>C65</td>
</tr>
<tr>
<td>C66</td>
</tr>
<tr>
<td>C67</td>
</tr>
<tr>
<td>C68</td>
</tr>
<tr>
<td>C69</td>
</tr>
<tr>
<td>C70</td>
</tr>
<tr>
<td>C71</td>
</tr>
<tr>
<td>C72</td>
</tr>
<tr>
<td>C73</td>
</tr>
<tr>
<td>C74</td>
</tr>
<tr>
<td>C75</td>
</tr>
<tr>
<td>C76</td>
</tr>
<tr>
<td>C77</td>
</tr>
<tr>
<td>C78</td>
</tr>
<tr>
<td>C79</td>
</tr>
<tr>
<td>C80</td>
</tr>
<tr>
<td>C81</td>
</tr>
<tr>
<td>C82</td>
</tr>
<tr>
<td>C83</td>
</tr>
<tr>
<td>C84</td>
</tr>
<tr>
<td>C85</td>
</tr>
<tr>
<td>C86</td>
</tr>
<tr>
<td>C87</td>
</tr>
<tr>
<td>C88</td>
</tr>
<tr>
<td>C89</td>
</tr>
<tr>
<td>C90</td>
</tr>
<tr>
<td>C91</td>
</tr>
<tr>
<td>C92</td>
</tr>
<tr>
<td>C93</td>
</tr>
<tr>
<td>C94</td>
</tr>
<tr>
<td>C95</td>
</tr>
<tr>
<td>C96</td>
</tr>
<tr>
<td>C97</td>
</tr>
<tr>
<td>C98</td>
</tr>
<tr>
<td>C99</td>
</tr>
<tr>
<td>C100</td>
</tr>
</tbody>
</table>

107
ENTRY A412
ENTRY A423
ENTRY A434
ENTRY A456
ENTRY A512
ENTRY A523
ENTRY A534
ENTRY A551
ENTRY A562
ENTRY A563
ENTRY A612
ENTRY A641
ENTRY A741
ENTRY A752
ENTRY A763
ENTRY A812
ENTRY A861
ENTRY B1
ENTRY C1
ENTRY C2
ENTRY C3
ENTRY C4
ENTRY D1
ENTRY D2
ENTRY D3
ENTRY D4
ENTRY E1
ENTRY E2
ENTRY E3
ENTRY E4
ENTRY E5
ENTRY E6
ENTRY E7
ENTRY E8
ENTRY E9
ENTRY F1
ENTRY F2
ENTRY F3
ENTRY F4
ENTRY F5
ENTRY F6
ENTRY F7
ENTRY F8
ENTRY F9
ENTRY G1
ENTRY G2
ENTRY G3
ENTRY G4
ENTRY G5
ENTRY G6
ENTRY G7
ENTRY G8
ENTRY G9
ENTRY H1
ENTRY H2
ENTRY H3
ENTRY H4
ENTRY H5
ENTRY H6
ENTRY H7
ENTRY H8
ENTRY H9
ENTRY I1
ENTRY I2
ENTRY I3
ENTRY I4
ENTRY I5
ENTRY I6
ENTRY I7
ENTRY I8
ENTRY I9
ENTRY J1
ENTRY J2
ENTRY J3
ENTRY J4
ENTRY J5
ENTRY J6
ENTRY J7
ENTRY J8
ENTRY J9
ENTRY K1
ENTRY K2
ENTRY K3
ENTRY K4
ENTRY K5
ENTRY K6
ENTRY K7
ENTRY K8
ENTRY K9
ENTRY L1
ENTRY L2
ENTRY L3
ENTRY L4
ENTRY L5
ENTRY L6
ENTRY L7
ENTRY L8
ENTRY L9
ENTRY M1
ENTRY M2
ENTRY M3
ENTRY M4
ENTRY M5
ENTRY M6
ENTRY M7
ENTRY M8
ENTRY M9
ENTRY N1
ENTRY N2
ENTRY N3
ENTRY N4
ENTRY N5
ENTRY N6
ENTRY N7
ENTRY N8
ENTRY N9
ENTRY O1
ENTRY O2
ENTRY O3
ENTRY O4
ENTRY O5
ENTRY O6
ENTRY O7
ENTRY O8
ENTRY O9
ENTRY P1
ENTRY P2
ENTRY P3
ENTRY P4
ENTRY P5
ENTRY P6
ENTRY P7
ENTRY P8
ENTRY P9
ENTRY Q1
ENTRY Q2
ENTRY Q3
ENTRY Q4
ENTRY Q5
ENTRY Q6
ENTRY Q7
ENTRY Q8
ENTRY Q9
ENTRY R1
ENTRY R2
ENTRY R3
ENTRY R4
ENTRY R5
ENTRY R6
ENTRY R7
ENTRY R8
ENTRY R9
ENTRY S1
ENTRY S2
ENTRY S3
ENTRY S4
ENTRY S5
ENTRY S6
ENTRY S7
ENTRY S8
ENTRY S9
ENTRY T1
ENTRY T2
ENTRY T3
ENTRY T4
ENTRY T5
ENTRY T6
ENTRY T7
ENTRY T8
ENTRY T9
ENTRY U1
ENTRY U2
ENTRY U3
ENTRY U4
ENTRY U5
ENTRY U6
ENTRY U7
ENTRY U8
ENTRY U9
ENTRY V1
ENTRY V2
ENTRY V3
ENTRY V4
ENTRY V5
ENTRY V6
ENTRY V7
ENTRY V8
ENTRY V9
ENTRY W1
ENTRY W2
ENTRY W3
ENTRY W4
ENTRY W5
ENTRY W6
ENTRY W7
ENTRY W8
ENTRY W9
ENTRY X1
ENTRY X2
ENTRY X3
ENTRY X4
ENTRY X5
ENTRY X6
ENTRY X7
ENTRY X8
ENTRY X9
ENTRY Y1
ENTRY Y2
ENTRY Y3
ENTRY Y4
ENTRY Y5
ENTRY Y6
ENTRY Y7
ENTRY Y8
ENTRY Y9
ENTRY Z1
ENTRY Z2
ENTRY Z3
ENTRY Z4
ENTRY Z5
ENTRY Z6
ENTRY Z7
ENTRY Z8
ENTRY Z9
Functeb ATAC (X,Y)

ATAC 7.120578+51322 (X,Y)

CONTINUE

RETURN

END

SUBROUTINE TABLE (X,Y)

DIMENSION AXELE (3)

Y = CC1B2 (X,XY,XE,XY,AXELE)

RETURN

END

SUBROUTINE TABLE1 (X,Y)

DIMENSION AXELE (2)

Y = CC1B2 (X,XY,XE,XY,AXELE)

RETURN

END

SUBROUTINE TABLE2 (X,Y)

DIMENSION AXELE (2)

Y = CC1B2 (X,XY,XE,XY,AXELE)

RETURN

END

SUBROUTINE TEPICICLET)

RETURN

END

SUBROUTINE WRITE1 (P, N)

RETURN

END

SUBROUTINE PLOTGRAPH (VARIABLE, TIME, X, Y)

RETURN

END

SUBROUTINE PLOT1(X, Y)

RETURN

END

SUBROUTINE PLOT2 (X, Y)

RETURN

END

SUBROUTINE PLOT3 (X, Y)

RETURN

END

SUBROUTINE CODEN

DITCE

TO FI A OF POINTS WITH A CONTINUOUS FUNCTION THAT
SIMULATES A LINEAR CURV OR CURVE FIT.

USAGE

Y = CODEN (X, X, Y, X, N, F + LABEL)

OR

Y = CODEN (X, X, Y, N, F + LABEL)

DESCRIPTION OF PARAMETERS

E

ARGUMENT - INDEPENDENT VARIABLE

X

ARRAY OF INDEPENDENT VARIABLES - X

Y

ARRAY OF COEFFICIENT VARIABLES - Y

N

NUMBER OF POINTS REPRESENTED BY X AND Y ARRAYS

F

INTERPOLATION CONTROL

LESS THAN ZERO - STRAIGHT LINE INTERPOLATION

POSITIVE - END INTERVAL INTERPOLATION

0.0 STRAIGHT LINE

1.0 FULL PARABOLIC

109
C

FUNCTION GCCEP (X, XI, YE, N, F, XLABEL)

DIMENSION XE(N), YE(N), PI2(2), EI(2), XI(N), XLABEL(N)

C

REMARKS

EXTRAPOLATION IS DONE BY PASSING A STRAIGHT LINE THRU THE

THE ALCONS AT THE END INTERVAL.

THE ARRAY OF THE INDEPENDENT VARIABLE, XI, MAY BE IN

 EITHER INCREASING OR DECREASING ORDER.

C

PARAMETERS

FUNCTION GCCEP (X, XI, YE, N, F, XLABEL)

100 OUT = .FALSE.

XI = .FALSE.

K = .FALSE.

J = 1

IF (XI - XI(2)) 500 .GT. 200 .AND. 500

400 CC = 1000 XII = XI

900 CONTINUE

800 J = J + 1

CALL REMARK (XLABEL)

CC TO 1000

900 CUT = .FALSE.

IF (J .LT. 20) 1000, 1000, 1000

1000 KPL = 1

CC TO 1000

1100 IF (J .LT. 1500) 1000, 1400, 1300

1200 J = J + 1

1300 CONTINUE

1400 IF (XI(2) - XI(1)) 250 .GT. 1500 .AND. 1500

1500 AL = (XI(2) - XI(1)) / (XI(2) - XI(1))

CC = II .AND. XI(2) + XI(1) .AND. XI(1) .AND. XI(2) .AND. XI(1) .AND. XI(2)

IF (CUT = .TRUE.) RETURN

CC = 1000 MP = KPL .AND. KPU

CC = 0.0

CC = 0.0

CC = 1.0 .AND. J .EQ. K

1950 XI = 0.

1990 XI = XI(1)

110
PROCEDURE

1750 JL=JAPSIN,MP
1760 J2 = J * (SQR(J)+MP)
1800 J3 = P1J) + Y1) + (XK - XI(J3)) / (XO - XI(J3))
 * (XK - XI(J2)) / (XO - XI(J2))
 IF EKL+J2, MP=1 GO TO 1700
1800 CONTINUE
 IF (11) + (E2) = EQ G.O.1 RETURN
 ECCM2 = (E1 + AL) + P2) + (E1 + G.0. - AL))
 IF (11) / (E1 + AL) + (E2) + (G.0. - AL))
 RETURN
 END

C DIMENSION 2-DIMENSION INTERPOLATION SUBPROGRAM

C CALLING SEQUENCE =
C Z = FCOM2(X1,X2,Y1,Y2,NX,NY,XX,YY,IX,IX)
C
Z = ARGUMENT 1ST VARIABLE
X = ARGUMENT 2ND VARIABLE
X = ARRAY OF 1ST VARIABLE
Y = ARRAY OF 2ND VARIABLE
Z = ARRAY OF COEFFICIENT VARIABLE
N = COEFFICIENTS SIZE OF X ARRAY
M = NUMBER OF VALUES IN ARRAY Y
K = EU INTERVAL INTERPOLATION CONSTANT

LABEL = 5-CHARACTER FIELD OF UP TO 5 CHARACTERS

C THIS ROUTINE DIFFERS FROM FCOM2 IN THAT THE Z ARRAY DOES NOT
C HAVE TO BE SORTED - I.E., IT DOES NOT HAVE TO OCCUPY COORDINATE
C SECTIONS LOCATIONS IN CORE, AND IN THAT EITHER OR BOTH THE
C X AND Y ARRAYS MAY BE IN ASCENDING OR DESCENDING ORDER.

C FUNCTION FCOM2XYX1X2Y1Y2NXNYXXYMY LABEL
C DIMENSION X1(Y1, Y2), XXMNX, NY, XX, YY, IX, IX
C IF (NX+NY) GO TO 120
120 NX+NY = LABEL(2)
130 IF (Y1+Y2) = EQ 130, 150, 133
140 GO TO 150
150 IF (Y1+Y2) = EQ 130, 150, 133
160 GO TO 150
170 CONTINUE
180 CONTINUE
190 NW+NY = 3

111
GO TO 200
C
112
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A CCP</td>
<td>870</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cellt & Const.</td>
<td>875</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Campan</td>
<td>393</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Campan</td>
<td>358</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rey</td>
<td>1625</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EV</td>
<td>403</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EV</td>
<td>407</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RY</td>
<td>405</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RZ</td>
<td>404</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relant</td>
<td>1663</td>
<td>50.00</td>
<td>-0.0</td>
</tr>
<tr>
<td>CPP</td>
<td>2015</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>BOIVE</td>
<td>1666</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>El</td>
<td>855</td>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td>EV</td>
<td>856</td>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIME</td>
<td>ROLL (°)</td>
<td>PITCH (°)</td>
<td>YAW (°)</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Note: The table above contains various parameters such as time, roll, pitch, yaw, speed, heading, altitude, and heading. The units and values are to be interpreted based on the context of the document.
<table>
<thead>
<tr>
<th>TIME</th>
<th>P</th>
<th>ROLL FLAP</th>
<th>PNL MISSLE</th>
<th>VV LEATH</th>
<th>X WUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1.47260262e-21</td>
<td>9.4282141e-02</td>
<td>2.74953995e-61</td>
<td>1.624933DE+03</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1.54422449e-20</td>
<td>6.32505259e-02</td>
<td>1.74045355e-62</td>
<td>6.747892DE+02</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1.5305522e-21</td>
<td>3.95686758e-02</td>
<td>1.55205494e-62</td>
<td>6.873462DE+02</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>1.5305522e-21</td>
<td>4.06417417e-02</td>
<td>1.55205494e-62</td>
<td>6.977641DE+02</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>1.5305522e-21</td>
<td>4.16587417e-02</td>
<td>1.55205494e-62</td>
<td>6.977641DE+02</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>1.5305522e-21</td>
<td>4.16587417e-02</td>
<td>1.55205494e-62</td>
<td>6.977641DE+02</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>1.5305522e-21</td>
<td>4.16587417e-02</td>
<td>1.55205494e-62</td>
<td>6.977641DE+02</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>1.5305522e-21</td>
<td>4.16587417e-02</td>
<td>1.55205494e-62</td>
<td>6.977641DE+02</td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td>1.5305522e-21</td>
<td>4.16587417e-02</td>
<td>1.55205494e-62</td>
<td>6.977641DE+02</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>1.5305522e-21</td>
<td>4.16587417e-02</td>
<td>1.55205494e-62</td>
<td>6.977641DE+02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TIME</th>
<th>P</th>
<th>ROLL FLAP</th>
<th>PNL MISSLE</th>
<th>VV LEATH</th>
<th>X WUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>2.36033897e-02</td>
<td>5.3217784e-02</td>
<td>1.3587514e-62</td>
<td>1.2490946e-02</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2.38915236e-02</td>
<td>5.3217784e-02</td>
<td>1.3587514e-62</td>
<td>1.2490946e-02</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2.38915236e-02</td>
<td>5.3217784e-02</td>
<td>1.3587514e-62</td>
<td>1.2490946e-02</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>2.38915236e-02</td>
<td>5.3217784e-02</td>
<td>1.3587514e-62</td>
<td>1.2490946e-02</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>2.38915236e-02</td>
<td>5.3217784e-02</td>
<td>1.3587514e-62</td>
<td>1.2490946e-02</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2.38915236e-02</td>
<td>5.3217784e-02</td>
<td>1.3587514e-62</td>
<td>1.2490946e-02</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>2.38915236e-02</td>
<td>5.3217784e-02</td>
<td>1.3587514e-62</td>
<td>1.2490946e-02</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>2.38915236e-02</td>
<td>5.3217784e-02</td>
<td>1.3587514e-62</td>
<td>1.2490946e-02</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>2.38915236e-02</td>
<td>5.3217784e-02</td>
<td>1.3587514e-62</td>
<td>1.2490946e-02</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>2.38915236e-02</td>
<td>5.3217784e-02</td>
<td>1.3587514e-62</td>
<td>1.2490946e-02</td>
</tr>
</tbody>
</table>
APPENDIX I

COORDINATE TRANSFORMATION FROM BODY TO GIMBAL AXIS SYSTEM
Figure I-1. Angles Between Gimbal and Body Axes

Transformation for Gimbal Pitch Angle \((\theta_g) \)

\[
\begin{bmatrix}
X_B' \\
X_B' \\
Z_B'
\end{bmatrix} = \begin{bmatrix}
\cos \theta_g & 0 & -\sin \theta_g \\
0 & 1 & 0 \\
\sin \theta_g & 0 & \cos \theta_g
\end{bmatrix} \begin{bmatrix}
X_B \\
Y_B \\
Z_B
\end{bmatrix}
\]

Transformation for Gimbal Yaw Angle \((\psi_g) \)

\[
\begin{bmatrix}
X_G \\
Y_G \\
Z_G
\end{bmatrix} = \begin{bmatrix}
\cos \psi_g & \sin \psi_g & 0 \\
-\sin \psi_g & \cos \psi_g & 0 \\
0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
X_B' \\
Y_B' \\
Z_B'
\end{bmatrix}
\]

Transformation from Body Axis to Gimbal Axes

\[
\begin{bmatrix}
X_G \\
Y_G \\
Z_G
\end{bmatrix} = \begin{bmatrix}
\cos \psi_g & \sin \psi_g & 0 \\
-\sin \psi_g & \cos \psi_g & 0 \\
0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
\cos \theta_g & 0 & -\sin \theta_g \\
0 & 1 & 0 \\
\sin \theta_g & 0 & \cos \theta_g
\end{bmatrix} \begin{bmatrix}
X_B \\
Y_B \\
Z_B
\end{bmatrix}
\]
Transformation for both Gimbal Pitch angle and Gimbal Yaw angle for Range Determination is given as:

\[
\begin{bmatrix}
RXG \\
RYG \\
RZG
\end{bmatrix} =
\begin{bmatrix}
\cos\psi \cos\theta & \sin\psi & -\sin\theta \cos\psi \\
-\sin\psi \cos\theta & \cos\psi & -\sin\psi \sin\theta \\
\sin\theta & 0 & \cos\theta
\end{bmatrix}
\begin{bmatrix}
RXBA \\
RYBA \\
RZBA
\end{bmatrix}
\]
APPENDIX II
HIGH FREQUENCY ACTUATOR PROGRAM LISTING
INITIALIZATION MODULE FOR TIGER

Simplified Actuator Model

C

Subroutine CAT

C

C

DELTIN

C

CALL

END

C

TIGER SIMPLIFIED ACTUATOR MODEL

HIGH FREQUENCY MODEL

C

Subroutine CA4

C

C

INPUT DATA

C

C

DELT are MEASURES IN RADIANS
C
C**INPUTS FFP LIPER MOLECLES
EQUIVALENCE IC(11300)./WELT)
EQUIVALENCE IC(153)./WELT)
EQUIVALENCE IC(1111)./WELT)
EQUIVALENCE IC(1111)./WELT)
EQUIVALENCE IC(1111)./WELT)
EQUIVALENCE IC(1111)./WELT)
EQUIVALENCE IC(1111)./WELT)
EQUIVALENCE IC(1111)./WELT)
C
C**STATE VARIABLE OUTPUTS
BCELTF(1) = CE(11231)
BCELTF(2) = CE(11331)
BCELTF(3) = CE(11330)
BCELTF(4) = CE(11323)
BCELTF(5) = CE(11322)
BCELTF(6) = CE(11321)
BCELTF(7) = CE(11313)
BCELTF(8) = CE(11312)
BCELTF(9) = CE(11311)
BCELTF(10) = CE(11310)
BCELTF(11) = CE(11309)
BCELTF(12) = CE(11308)
BCELTF(13) = CE(11307)
BCELTF(14) = CE(11306)
BCELTF(15) = CE(11305)
BCELTF(16) = CE(11304)
BCELTF(17) = CE(11303)
BCELTF(18) = CE(11302)
BCELTF(19) = CE(11301)
BCELTF(20) = CE(11300)
C
C**INPUTS FFP* PAIN PROGRAM
EQUIVALENCE IC(27965).VAR
1
CE(1131).=CE(1132)
CE(1132)=CE(1133)
CE(1133)=CE(1134)
CE(1134)=CE(1135)
CE(1135)=CE(1136)
CE(1136)=CE(1137)
CE(1137)=CE(1138)
CE(1138)=CE(1139)
CE(1139)=CE(1140)
CE(1140)=CE(1141)
CE(1141)=CE(1142)
CE(1142)=CE(1143)
C
C**FLAP CELLITION BEAS
BCELTF(1) = BCELTF(1) - CELTF + DELTOR - DELTB
BCELTF(2) = BCELTF(2) - CELTF + DELTO - DELTB
BCELTF(3) = BCELTF(3) - CELTF + DELTB + DLTETB
BCELTF(4) = BCELTF(4) - CELTF + DELTB + DELTB
C
C**ACTUATOR DYNAMICS
IC 70 1+1
CECET(1) = +CECLF(11)+PT
H = 1-1.461
CECET(1) = CE(1121.1)
CECET(1) = BCELTF(1)
CECET(1) = BCELTF(1)-3/A1+DELTO+DELTO-A4/A1+DELTE+DELTE
**CECET(1)+A1+01+HY(+1)/A1
C
C**SURFACE POSITION LIMITER
IF (CECLET(1) = A1) GO TO 600
BCELTF(1) = SIGMOT +BCELTF(1)
J = CECLF(1)
VARJ = COFL(1)
IF (SIGMA = BCELTF(1) = CECLF(1) = COFL(1)) GO TO 60

126
BCEL(1) = 0.
BCEL(2) = 0.
J = J + 4

d = abs(BCEL(1))

10 CONTINUE
C

C SLF1 = CCEL 2; PT
B5L2 = CCEL 12; PT
B5L3 = CCEL 43; PT
B5L4 = CCEL 64; PT
C(1) = C(1) + C(1) + C(1) + C(1)
C(2) = C(2) + C(2) + C(2) + C(2)
C(3) = C(3) + C(3) + C(3) + C(3)
C(4) = C(4) + C(4) + C(4) + C(4)

C

C***OUTPUT DERIVATIVES OF STATE VARIABLES TO INTEGRATION
C
C(1100) = CCEL(11)
C(1101) = CCEL(12)
C(1102) = CCEL(13)
C(1103) = CCEL(14)
C(1104) = CCEL(15)
C(1105) = CCEL(16)
C(1106) = CCEL(17)
C(1107) = CCEL(18)
RETURN
END
APPENDIX III
HIGH FREQUENCY AUTOPilot PROGRAM LISTING
C*** TIGER AUTOPILOT INITIALIZATION MODULE
C**********HIGH FREQUENCY MODEL********
SL2CMULTIDE C1
CCEPA (4310)
COPPASL (FL1100)
EQUVALENCE (C1 373, E29)
EQUVALENCE (C1 473, E29)
EQUVALENCE (C1 573, E29)
EQUVALENCE (C1 673, E29)
EQUVALENCE (E1 4843, C345)
EQUVALENCE (C1 4843, C345)
EQUVALENCE (C1 5843, C345)
EQUVALENCE (C1 FL1843, E25)
EQUVALENCE (C1 6843, C345)
EQUVALENCE (C1 7843, C345)
EQUVALENCE (C1 8843, C345)

C
APSP = H
FLPLN = A30
FLPLN+1 = 004
FLPLN+2 = 000
FLPLN+3 = 012
FLPLN+4 = 016
FLPLN+5 = 020
FLPLN+6 = 024
FLPLN+7 = 028
FLPLN+8 = 032
FLPLN+9 = 036
FLPLN+10 = 040
FLPLN+11 = 044
FLPLN+12 = 048
FLPLN+13 = 052
FLPLN+14 = 056
FLPLN+15 = 060
FLPLN+16 = 064
FLPLN+17 = 068
FLPLN+18 = 072
FLPLN+19 = 076
FLPLN+20 = 080
FLPLN+21 = 084
FLPLN+22 = 088
FLPLN+23 = 092
FLPLN+24 = 096
FLPLN+25 = 100
FLPLN+26 = 104
FLPLN+27 = 108
FLPLN+28 = 112
FLPLN+29 = 116
FLPLN+30 = 120
FLPLN+31 = 124

21 E2S = C345
EVS = C345
EVS = C345

22 E2S = E2S
EYS = EYS
C1 803 = 0
C1 807 = 0
C1 813 = 0
C1 819 = 0
C1 823 = 0
C1 827 = 0
C1 833 = 0
C1 839 = 0
RETURN
EN0

C*** TIGER AUTOPILOT MODULE
C**********HIGH FREQUENCY MODEL********
SHIPMULTIDE C1
CCEPA (4310)
CIPERSICH BEELTCE (1, 4A93130)
C
C***INPUT DATA
EQUVALENCE (C1OR53) = PLIMD 1
EQUIVALENCE (IC(256), LE(1)
EQUIVALENCE (IC, 007, LE(2)
EQUIVALENCE (IC, 00, LE(2)
EQUIVALENCE (IC, 02, LE(2)
EQUIVALENCE (IC, 0X6, LE(2)
EQUIVALENCE (IC, 02, LE(2)
EQUIVALENCE (IC, 007, LE(2)
EQUIVALENCE (IC, 00, LE(2)
EQUIVALENCE (IC, 007, LE(2)
EQUIVALENCE (IC, 00, LE(2)

C (BIT) IN #CC ARE USED BY EQN(11)
EQUIVALENCE (IC, 003, LE(2)
EQUIVALENCE (IC, 004, LE(2)
EQUIVALENCE (IC, 005, LE(2)
EQUIVALENCE (IC, 006, LE(2)

C++ INPUT PACK ETHER POCKETS
EQUIVALENCE (IC, 0052, LE(2)
EQUIVALENCE (IC, 0051, LE(2)

C++ INPUT PACK WITH PROGRAM
EQUIVALENCE (IC, 0053, LE(2)
EQUIVALENCE (IC, 0054, LE(2)
EQUIVALENCE (IC, 0055, LE(2)

C++ STATE VARIABLE OUTPUTS
EQUIVALENCE (IC, 0056, LE(2)
EQUIVALENCE (IC, 0057, LE(2)
EQUIVALENCE (IC, 0058, LE(2)
EQUIVALENCE (IC, 0059, LE(2)
EQUIVALENCE (IC, 0060, LE(2)
EQUIVALENCE (IC, 0061, LE(2)
EQUIVALENCE (IC, 0062, LE(2)
EQUIVALENCE (IC, 0063, LE(2)

130
C **OUTPUTS**

EQUIVALENCE IC= RSP, BCELTC

C **OTHER CLIPUTS**

EQUIVALENCE IGORBETLC.ZRRA, 1
EQUIVALENCE IGORBETLC.EPS, 1
EQUIVALENCE IGORBETLC.WCC, 1
EQUIVALENCE IGORBETLC.RTLC.WCC, 1

C **EXTERNAL SIGNAL SHAPING**

ELEC = SELEC
CVRH = ECVW
E2SC = EDSP
E3SC = EVSP
E3SC = TALC1 (TALC1 = E31) = 2.2E30)
E3SL = TALC2 (TALC2 = E32) = 2.2E30)
E3SC = TALC1 (TALC1 = E31) + E32 = E33)
E3SS = TALC1 (TALC1 = E31) + E32 = E33)

C **GRAVITY FACE RATE RIS**

WCP = E35 + CT4AS
WCP = EYSS + HTAS

C

C **DECAY RATE SHAPING AND CYNO DYNAMICS**

WSEC = WSP:
WSEC = HASC
WSEC = HASC (WEC = WSEC - 2.2WSE30)
WSEC = HASC (WEC = WSEC - 2.2WSE30)

IF (ABS (E30) = 0.1) GO TO 30
WEC = SICH (E30) WEC: GO TO 30
WSEC = 0.

30 IF (E35(WBC) .LE. 30) GO TO 32
WEC = SICH (E35(WBC) .NE. WEC) WEC: GO TO 32
WSEC = 0.

32 CONTINUE

C **SUPPRESSION OF RATE DAMPING AND QUICHCANCE SIGNALS AND THEIR DERIVATIVES**

E4AR = UCS - WUC
E4AR = UCS - WUC

C

UTC = -25
IF (UTC .LT. T6) UTR = 4.25
IF (UTC .LT. T6) UTR = 6.

C

ES = UCW + E3 AR + E4 AR
ES = UCW + E3 AR + E4 AR

131
C END ALL SIGNAL SHAPING

C**OUTPIECE OUTPUT CURRENTS TO EACH ACTUATOR (FROM SUMMATION AMPS)

DCELFCL(1) = EVICR - BCELPC

DCELFCL(2) = EVICR - BCELPC

DCELFCL(3) = EVICR - BCELPC

DCELFCL(4) = EVICR - BCELPC

RETURN

END

132
Distribution List
Not Filmed

Fax 133-134
This report describes in detail a six-degree-of-freedom program which can be used to determine the trajectory and miss distance of a missile system. The options for the program are such as to permit variation of the aerodynamics, seeker, autopilot actuator, and missile motor performance for the purpose of accurately simulating a given missile design and evaluating the effects of changes in system parameters. Sufficient detail has been included in the text in order to minimize the users' effort needed to know how to update or modify the program for his purposes.
<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ROLE WT</td>
<td>ROLE WT</td>
<td>ROLE WT</td>
</tr>
<tr>
<td>Guided Missile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missile Simulation System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Six-Degree-of-Freedom Simulation</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>