UNCLASSIFIED

AD NUMBER

AD880428

LIMITATION CHANGES

TO:
Approved for public release; distribution is unlimited.

FROM:
Distribution authorized to U.S. Gov't. agencies and their contractors; Critical Technology; JAN 1971. Other requests shall be referred to Office of Naval Research 875 North Randolph Street, Arlington, VA 22203-1995. This document contains export-controlled technical data.

AUTHORITY

ONR ltr, 13 Jan 1972

THIS PAGE IS UNCLASSIFIED
THE FRACTURE TOUGHNESS OF EPOXY-GLASS BEAD COMPOSITES

BY

A. T. DIBENEDETTO
A. D. WAMBACH

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of the Director of Material Sciences, Office of Naval Research.

Atie. 470

Arl. Md. 22217

PROGRAM MANAGER
ROLF BUCHDAHL

MONSANTO RESEARCH CORPORATION
A SUBSIDIARY OF MONSANTO COMPANY
800 N. LINDBERGH BOULEVARD
ST. LOUIS, MISSOURI 63166
NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

DDC release to CFSTI is not authorized.
THE FRACTURE TOUGHERNESS OF EPOXY-GLASS BEAD COMPOSITES

BY

A. T. DIBENEDETTO
A. D. WAMBACH

JANUARY 1971

MONSANTO WASHINGTON UNIVERSITY ASSOCIATION
HIGH PERFORMANCE COMPOSITES PROGRAM
SPONSORED BY ONR AND ARPA
CONTRACT NO. N00014-67-C-0218, ARPA ORDER 876
ROLF BUCHDAHL, PROGRAM MANAGER

MONSANTO RESEARCH CORPORATION
800 NORTH LINDBERGH BOULEVARD
ST. LOUIS, MISSOURI 63166
FOREWORD

The research reported herein was conducted by the staff of Monsanto/Washington University Association under the sponsorship of the Advanced Research Projects Agency, Department of Defense, through a contract with the Office of Naval Research, N00014-67-C-0218 (formerly N00014-66-C-0045), ARPA Order No. 876, ONR contract authority NR 356-484/4-13-66, entitled "Development of High Performance Composites."

The prime contractor is Monsanto Research Corporation.
The Program Manager is Dr. Rolf Buchdahl (phone-314-694-4721).
The contract is funded for $7,000,000 and expires 30 April 1972.
THE FRACTURE TOUGHNESS OF EPOXY–GLASS BEAD COMPOSITES

A. T. DiBenedetto and A. D. Wambach*
Materials Research Laboratory
Washington University
St. Louis, Missouri 63130

Abstract

The plane strain fracture toughness of epoxy resins and glass bead filled epoxy composites has been investigated. Primary parameters were curing agent concentration, filler concentration, adhesion of filler to polymer, temperature, and water immersion. Fracture toughness was measured using double edge notched specimens and tensile strength and Young's modulus were measured using standard ASTM tensile bars. Scanning electron microscopy was used to examine the fracture surfaces.

It was found that the energy required for fracture depended primarily on the ability to dissipate energy in the polymer phase. At higher temperatures and/or increased catalyst concentration, the unfilled epoxy became more ductile, its fracture surface became rougher, and its fracture energy was increased. At lower temperatures, where the epoxy was relatively brittle, the addition of glass beads increased the fracture energy and induced roughness in the otherwise smooth fracture surface. When the epoxy was ductile, the addition of beads tended to decrease the fracture energy. The reduction of fracture energy for the ductile polymer was attributed to the reduction

*Presently at General Electric Co., Chemical Development Operation, One Plastics Avenue, Pittsfield, Mass. 01201
of the amount of polymer surface created.

Adhesion of the matrix to the glass beads was only important when the polymer was ductile. Improved adhesion permitted the beads to constrain polymer flow and decrease the fracture energy. Poor adhesion permitted flow around the beads which required additional energy for crack propagation. At low temperatures, where the matrix was brittle, the additional constraints caused by adhesion appeared to make little difference.

Water absorption resulted in plasticizing the polymer, destroying the interface, and probably destroying the polymer near the interface. Short term immersion increased the toughness because of the additional ductility. Long term immersion tended to reduce the toughness. An effective coupling agent minimized this reduction, thereby showing that improved adhesion can improve the environmental stability and extend the useful life of the material.
THE FRACTURE TOUGHNESS OF EPOXY-GLASS BEAD COMPOSITES

A. T. DiBenedetto and A. D. Wambach*
Materials Research Laboratory
Washington University
St. Louis, Missouri 63130

Introduction

The fracture toughness of glass bead-epoxy composites depends primarily on the ability to dissipate energy in the polymer phase. Factors which enhance polymer flow and/or polymer surface roughness also increase the fracture toughness.

The parameters investigated included glass bead concentration, temperature, adhesion of polymer to filler, water immersion, and curing agent concentration. The fracture toughness was measured using double edge notched tensile specimens as described previously (1).

The fracture toughness parameter (γ) is defined by Irwin (2) as:

$$\gamma = \frac{\sigma W (1 - \nu^2)}{2E} \left[\tan \frac{\pi (a + r_y)}{W} + 0.1 \sin \frac{2\pi (a + r_y)}{W} \right]$$

where σ is the gross section stress at onset of catastrophic fracture, based on the original cross-section, W is the sample width, E is Young's modulus, ν is Poisson's ratio, a is the half crack length at onset of catastrophic fracture, and r_y is Irwin's plastic zone correction factor, given by:

$$r_y = \frac{\gamma E}{\pi (1 - \nu) \sigma_y^2}$$

where σ_y is the yield strength of the material.

* Presently at General Electric Co., Chemical Development Operation, One Plastic Avenue, Pittsfield, Mass. 01201
The Poisson's ratio for a composite was computed by the rule of mixtures, (i.e., a volume fraction average) with $v = 0.35$ for the epoxy and $v = 0.22$ for the glass beads.

The glass beads were Class IV Uni-Spheres, number 4000, diameter range of 1 to 30 microns, purchased from Microbead Division, Cataphote Corporation. To enhance adhesion, the beads were treated with either Union Carbide's A-1100 (gamma-aminopropyltriethoxysilane) or A-187 (gamma-glycidoxypropyltrimethoxy- silane). To prevent adhesion, the beads were treated with Union Carbide’s A-156 (dimethyl dichlorosilane). Beads left untreated were used for a fourth composite system.

The resin used was Shell's Epon 828, a diglycidyl ether-bisphenol A type epoxy. The curing agent was Curing Agent Z, a liquid eutectic mixture of aromatic amines. The curing cycle for the systems was 24 hours at room temperature, 24 hours at 60°C, 24 hours at 100°C, and 12 hours at 130°C, followed by slow cooling. The samples were machined, further conditioned by annealing at 100°C for 12 hours and then stored in desiccators over silica gel until testing. The specimens used for the water immersion studies were immersed in distilled water at room temperature for the specified time.

Results

Fracture toughness of the Epon 828/Curing Agent Z epoxies appeared to depend solely on the ability to dissipate energy in the polymer phase. The results for the dry epoxies are summarized in Table 1. The effects of immersing these samples in water are detailed in Table 2. The postulated explanations of the observed phenomena are
based primarily on scanning electron microscope photographs of the fracture surfaces, tensile strengths and Young's moduli.

Increase in the curing agent concentration or temperature increased the fracture toughness of unfilled epoxy as shown in Figure 1. Apparently, incompletely reacted curing agent served as plasticizer and thereby lowered the glass transition temperature and enhanced viscous flow during fracture. Similarly, higher temperatures caused a corresponding enhancement of ductility and polymer flow, and thus increased the fracture toughness. These increases in ductility were apparent in the fracture surface morphology as illustrated in Figures 2 and 3. The increase in temperature had a greater effect on increasing the surface roughness than did the increase in curing agent concentration. Further evidence of the increased ductility is shown by the decrease in Young's modulus (Figure 4) and the decrease in tensile strength (Figure 5).

Addition of glass beads to the brittle epoxy (Epon 828/20 phrZ) resulted in increased fracture toughness at room temperature as shown in Figure 6. As is evident from comparing Figure 7 with 2, the addition of beads resulted in increased roughness in the fracture surface, and probably increased the total amount of polymer surface per unit area of cross-section. This additional polymer surface was probably instrumental in increasing the fracture toughness. Only insignificant changes due to glass bead surface treatment were observed at room temperature.

At 100°C and 130°C (illustrated for 130°C in Figure 8), the fracture toughness of A-156 silane treated beads was significantly greater than the fracture toughness of the other epoxy composites. A close examination of the fracture surfaces reveals
that when there is no adhesion, the polymer tends to flow away from the filler interface leaving a large smooth crater within which the particle sits (Figure 9). On the other hand, when there is adhesion, the polymer tends to be constrained by the rigid filler surface and in a region of about 1/4 to 1/2 micron around the filler surface there is a tendency for cavitation of the polymer rather than gross yielding (Figure 10). The same situation exists in PPO-glass composites (I), but to even a greater extent. The constraint to flow and the supplanting of the polymer by the addition of beads are probably the primary factors that cause the decrease of the fracture toughness for these composites. The tensile strengths and Young's moduli are illustrated in Figures 11 and 12. Below the glass transition temperature Young's modulus was not affected by bead surface treatment.

The fracture toughness of the unfilled epoxy increased significantly upon short term immersion in distilled water at room temperature (Figure 13). Similar increases for untreated bead composites after 100 hours are shown in Table 2. However, after 135-160 days in water, the fracture toughness of untreated and A-156 treated materials reverted to slightly lower values than the dry composites. The fracture toughness for composites containing A-1100 silane treated glass beads continued to increase for longer periods of time as shown in Table 2 but ultimately reached a fairly constant value. In all cases the water immersion caused decreases in tensile strength ranging from 20 to 50 percent of the dry strength.

The amount of water absorbed per unit volume of polymer in the composites is shown in Figure 14. For immersions of the order of 135-160 days, the amounts of water absorbed per unit volume of polymer was greater than for the unfilled polymer when there was no adhesion between polymer and filler (A-156) but was less than for the unfilled polymer when there was good adhesion (A-1100). This clearly suggests
that water accumulated at the poorly bonded interfaces causing a destruction of the interface and a decrease in the physical properties of the system. Good adhesion at the interface, however, caused a barrier to migration of water and in fact promoted a lowering of the solubility of water in the epoxy near the interface, thereby at least temporarily protecting the hydrophilic surfaces from damage.

The tentative explanation for the initial increase in toughness and continual decrease in strength is that the polymer phase is slightly plasticized during the initial stage of water sorption, thereby enhancing the ductility. Continued sorption, however, leads to a migration of the water to the hydrophilic glass surfaces thus causing a degradation of all physical properties. The development of good adhesion at the interface retards this latter phenomenon, thereby extending the useful life and improving the environmental stability of the material.

It is the opinion of the authors, however, based on tentative data that will be reported at a later date, that improved adhesion merely retards the migration of water to the interface and that longer term exposure of these systems leads to the same kind of degradation observed in the poorly adhering systems.

Acknowledgement

This work was sponsored by the Advanced Research Projects Agency, Department of Defense and Office of Naval Research under contract No. N00014-67-C-0218, (formerly N00014-66-C-0045).

Fracture toughness computations were made with use of Washington University Computing Facilities supported through NSF Grant G-22296.

The authors wish to express their gratitude to John Fairing and John Ruprecht, Monsanto Company, for securing the photographs taken on the scanning electron microscope.
References

<table>
<thead>
<tr>
<th>Material</th>
<th>Parameter</th>
<th>Effect on γ of increase in Parameter</th>
<th>Reason</th>
<th>Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unfilled Epoxy</td>
<td>Curing Agent</td>
<td>Increase</td>
<td>Incompletely reacted curing agent plasticized epoxy</td>
<td>Decrease in strength and modulus, increase in fracture surface roughness</td>
</tr>
<tr>
<td></td>
<td>Concentration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unfilled Epoxy</td>
<td>Temperature</td>
<td>Increase</td>
<td>Increase in ductility</td>
<td>Decrease in strength and modulus; increase in fracture surface roughness</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glass Bead/</td>
<td>Adhesion</td>
<td>None</td>
<td>Constraints on polymer flow due to adhesion are not important when polymer is very brittle</td>
<td>Fractographic plus toughness data</td>
</tr>
<tr>
<td>Epoxy Composites</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>at 25°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glass Bead/</td>
<td>Adhesion</td>
<td>Decrease</td>
<td>Adhesion at interface constrains polymer flow and significantly reduces energy absorbing ability of polymer.</td>
<td>Fractographic plus toughness data</td>
</tr>
<tr>
<td>Epoxy Composites</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>at 100°C, 130°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material</td>
<td>Parameter</td>
<td>Effect of γ on Increase in Parameter</td>
<td>Reason</td>
<td>Evidence</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-----------------</td>
<td>--</td>
<td>--</td>
<td>-----------------</td>
</tr>
<tr>
<td>A-156 Silane treated Glass</td>
<td>Glass Bead</td>
<td>Increase</td>
<td>Increase in total polymer fracture surface due to increased roughness plus unconstrained polymer flow around beads at fracture surface.</td>
<td>Fractographic</td>
</tr>
<tr>
<td>Bee 4/Epoxy Composites at 25°C, 100°C and 130°C</td>
<td>Concentration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untreated, A-100 silane treated, and A-187 silane treated Glass</td>
<td>Glass Bead</td>
<td>Increase</td>
<td>Increase in polymer fracture surface roughness counterbalances the supplanting of polymer by beads. Polymer ductility is not a dominant factor.</td>
<td>Fractographic</td>
</tr>
<tr>
<td></td>
<td>Concentration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untreated, A-100, silane treated and A-187 silane treated Glass</td>
<td>Glass Bead</td>
<td>Decrease</td>
<td>Increase in total polymer fracture surface is counteracted by constraint of polymer flow near beads.</td>
<td>Fractographic</td>
</tr>
<tr>
<td></td>
<td>Concentration</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 2

Effect of Water Immersion on Fracture Toughness of Epoxy Systems

<table>
<thead>
<tr>
<th>Polymer or Composite</th>
<th>Time In Water</th>
<th>% Water Absorbed</th>
<th>% Water per Unit Volume Polymer</th>
<th>% Change in γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epon 828 + 18 phr Z</td>
<td>100 hours</td>
<td>0.37</td>
<td>0.37</td>
<td>+70</td>
</tr>
<tr>
<td>19 phr Z</td>
<td>100 hours</td>
<td>0.39</td>
<td>0.39</td>
<td>+67</td>
</tr>
<tr>
<td>20 phr Z</td>
<td>100 hours</td>
<td>0.39</td>
<td>0.39</td>
<td>+65</td>
</tr>
<tr>
<td>21 phr Z</td>
<td>100 hours</td>
<td>0.39</td>
<td>0.39</td>
<td>+62</td>
</tr>
<tr>
<td>22 phr Z</td>
<td>100 hours</td>
<td>0.38</td>
<td>0.38</td>
<td>+60</td>
</tr>
<tr>
<td>Epon 828 + 20 phr Z</td>
<td>100 hours</td>
<td>0.42</td>
<td>0.46</td>
<td>+57</td>
</tr>
<tr>
<td>untreated beads</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$v_f = .10$</td>
<td>100 hours</td>
<td>0.39</td>
<td>0.49</td>
<td>+75</td>
</tr>
<tr>
<td>$.20</td>
<td>100 hours</td>
<td>0.34</td>
<td>0.49</td>
<td>+100</td>
</tr>
<tr>
<td>$.30</td>
<td>160 days</td>
<td>2.23</td>
<td>3.18</td>
<td>-7</td>
</tr>
<tr>
<td>$.30</td>
<td>160 days</td>
<td>1.95</td>
<td>1.98</td>
<td>+67</td>
</tr>
<tr>
<td>$.20</td>
<td>160 days</td>
<td>1.58</td>
<td>1.98</td>
<td>+62</td>
</tr>
<tr>
<td>$.30</td>
<td>160 days</td>
<td>1.29</td>
<td>1.84</td>
<td>+53</td>
</tr>
<tr>
<td>Epon 828 + 20 phr Z</td>
<td>135 days</td>
<td>2.01</td>
<td>2.23</td>
<td>+45</td>
</tr>
<tr>
<td>A-156 treated beads</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$v_f = .10$</td>
<td>135 days</td>
<td>1.98</td>
<td>2.47</td>
<td>-17</td>
</tr>
<tr>
<td>$.20</td>
<td>135 days</td>
<td>2.05</td>
<td>2.93</td>
<td>-50</td>
</tr>
<tr>
<td>$.30</td>
<td>135 days</td>
<td>0.45</td>
<td>0.45</td>
<td>+50</td>
</tr>
</tbody>
</table>

Note: The above table presents the effect of water immersion on the fracture toughness of epoxy systems, detailing the percentage of water absorbed, the percentage of water per unit volume polymer, and the percentage change in γ. The data includes various polymers and composites, with different concentrations of a filler (Z) and exposure times in water, indicating notable changes in fracture toughness due to water exposure.
LIST OF FIGURES AND TABLES.

Figure 1. Effect of Temperature and Catalyst Z Concentration on Gamma-Fracture Toughness of Unfilled Epon 828 Epoxies.

Figure 2. Fracture Surface of Unfilled Epon 828 Epoxy Cured with 20 pph Catalyst Z - Fractured at Room Temperature.

Figure 3. Fracture Surface of Unfilled Epon 828 Epoxy Cured with 20 PHR Catalyst Z - Fractured at 100°C.

Figure 4. Effect of Temperature and Catalyst Z Concentration on the Flexural Modulus of Epon 828 Epoxies.

Figure 5. Effect of Temperature and Catalyst Z Concentration on the Tensile Strength of Unfilled Epon 828 Epoxies.

Figure 6. Effect of Volume Fraction Glass Beads and Bead Surface Treatment on the Gamma-Fracture Toughness of Epoxy Composites at 25°C.

Figure 7. Fracture Surface of 0.3 Volume Fraction A-1100 Silane Treated Glass Bead-Epoxy Composite - Fractured at Room Temperature.

Figure 8. Effect of Volume Fraction Glass Beads and Bead Surface Treatment on the Gamma-Fracture Toughness of Epoxy Composites at 130°C.

Figure 9. Fracture Surface of A-156 Silane Treated Glass-Epoxy Composite - Fractured at 100°C.

Figure 10. Fracture Surface of A-187 Silane Treated Glass-Epoxy Composite - Fractured at 100°C.

Figure 11. Effect of Volume Fraction and Temperature on the Young's Modulus of Glass Bead-Epoxy Composites.

Figure 12. Effect of Temperature and Bead Treatment on the Tensile Strength of Glass Bead-Epoxy Composites.

Figure 13. Effect of 100 Hours of Immersion in Water on the Gamma-Fracture Toughness for Unfilled Epon 828 Epoxies at Room Temperature.

Figure 14. Water Content Per Unit Volume Polymer as a Function of Volume Fraction Glass Beads for Glass Bead-Epoxy Composites.
Table 1. Summary of Fracture Toughness Data for Dry Epoxy Systems.

Table 2. Effect of Water Immersion on Fracture Toughness of Epoxy Systems.
Figure 1. Effect of Temperature and Catalyst Z Concentration on Gamma-Fracture Toughness of Unfilled Epon 828 Epoxies.
Figure 2. Fracture Surface of Unfilled Epon 828 Epoxy Cured with 20 pph Catalyst Z - Fractured at Room Temperature.
Figure 3. Fracture Surface of Unfilled Epon 828 Epoxy Cured with 20 PHR Catalyst Z - Fractured at 100°C.
Figure 4. Effect of Temperature and Catalyst Z Concentration on the Flexural Modulus of Epon 828 Epoxies.
Figure 5. Effect of Temperature and Catalyst Z Concentration on the Tensile Strength of Untreated Epon 828 Epoxies.
Figure 6. Effect of Volume Fraction Glass Beads and Bead Surface Treatment on the Gamma-Fracture Toughness of Epoxy Composites at 25°C.
Figure 7. Fracture Surface of 0.3 Volume Fraction A-1100 Silane Treated Glass Bead-Epoxy Composite - Fractured at Room Temperature.
Figure 8. Effect of Volume Fraction Glass Beads and Bead Surface Treatment on the Gamma-Fracture Toughness of Epoxy Composites at 130°C.
Figure 9. Fracture Surface of A-156 Silane Treated Glass-Epoxy Composite - Fractured at 100°C.
Figure 10. Fracture Surface of A-187 Silane Treated Glass-Epoxy Composite - Fractured at 100°C.
Figure 11. Effect of Volume Fraction and Temperature on the Young's Modulus of Glass Bead-Epoxy Composites.
Figure 12. Effect of Temperature and Bead Treatment on the Tensile Strength of Glass Bead-Epoxy Composites.
Figure 13. Effect of 100 Hours of Immersion in Water on the Gamma-Fracture Toughness for Unfilled Epon 828 Epoxies at Room Temperature.
Figure 14. Water Content Per Unit Volume Polymer as a Function of Volume Fraction Glass Beads for Glass Bead-Epox y Composites.
The plane strain fracture toughness of epoxy resins and glass bead filled epoxy composites has been investigated. Primary parameters were curing agent concentration, filler concentration, adhesion of filler to polymer, temperature, and water immersion. Fracture toughness was measured using double edge notched specimens and tensile strength and Young’s modulus were measured using standard ASTM tensile bars. Scanning electron microscopy was used to examine the fracture surfaces.

It was found that the energy required for fracture depended primarily on the ability to dissipate energy in the polymer phase. At higher temperatures and/or increased catalyst concentration, the unfilled epoxy became more ductile, its fracture surface became rougher, and its fracture energy was increased. At lower temperatures, where the epoxy was relatively brittle, the addition of glass beads increased the fracture energy and induced roughness in the otherwise smooth fracture surface. When the epoxy was ductile, the addition of beads tended to decrease the fracture energy. The reduction of fracture energy for the ductile polymer was attributed to the reduction of the amount of polymer surface created.

Adhesion of the matrix to the glass beads was only important when the polymer was ductile. Improved adhesion permitted the beads to
fracture toughness
epoxy glass composites
mechanical properties of composites
water absorption in composites
effects of adhesion on composite properties
constrain polymer flow and decrease the fracture energy. Poor adhesion permitted flow around the beads which required additional energy for crack propagation. At low temperatures, where the matrix was brittle, the additional constraints caused by adhesion appeared to make little difference.

Water absorption resulted in plasticizing the polymer, destroying the polymer near the interface. Short term immersion increased the toughness because of the additional ductility. Long term immersion tended to reduce the toughness. An effective coupling agent minimized this reduction, thereby showing that improved adhesion can improve the environmental stability and extend the useful life of the material.