AD NUMBER

AD869251

LIMITATION CHANGES

TO:
Approved for public release; distribution is unlimited.

FROM:
Distribution authorized to DoD only; Administrative/Operational Use; 30 JAN 1970. Other requests shall be referred to Department of the Army, ATTN: Public Affairs Office, Washington, DC 20310.

AUTHORITY

OACSFOR ltr dtd 13 Sep 1973
ARMY CONCEPT TEAM IN VIETNAM
APO SAN FRANCISCO 96384

FOR OFFICIAL USE ONLY
FINAL REPORT
EVALUATION OF THE NIGHT HAWK SYSTEM
ACTIV PROJECT 2/701

APPROVED: 30 JAN 1970

C.B. McCoid
C.B. McCoid
Colonel, IN
Commanding

FOR OFFICIAL USE ONLY
AVHGC-DST (30 Jan 73) 1st Ind

SUBJECT: Final Report - Evaluation of the Nighthawk System

Headquarters, United States Army, Vietnam, APO San Francisco 96375

TO: Commander in Chief, United States Army, Pacific, ATTN: GPOP-DT,
 APO 96552

1. Concur in the comments and recommendations contained in the attached
 ACTIV Final Report of the Nighthawk System.

2. BOI as recommended in the final report generally agrees with that
 adopted by USARV. The established USARV BOI for 58 systems was developed
 based upon stated unit requirements and is attached as Inclosure 1. This
 BOI only established an authorization for the AN/VSS-3 searchlight. The
 remaining components must be taken from units' operational assets.

3. Fabrication of one Nighthawk system requires removal of components from
 three weapons systems (M21, M23, and XM27E1), rendering these systems
 inoperative and not available for their intended use. Should the Army
 accept Nighthawk as a system, the components required for fabrication must
 be provided as an authorized overage and not taken from operational assets.

4. Request one copy of the CINCUSARPAC forwarding indorsement be provided
 this headquarters, ATTN: AVHGC-DST and one copy be provided CO, ACTIV.

FOR THE COMMANDER:

[Signature]

D. J. WINTER

ATT: AG

Assistant Adjutant General.
<table>
<thead>
<tr>
<th>UNIT</th>
<th>BOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Cav Div (AM)</td>
<td>10</td>
</tr>
<tr>
<td>101st Abn Div</td>
<td>9</td>
</tr>
<tr>
<td>25th Inf Div</td>
<td>4</td>
</tr>
<tr>
<td>Americal Div</td>
<td>4</td>
</tr>
<tr>
<td>199th LIB</td>
<td>1</td>
</tr>
<tr>
<td>3d Bde, 9th Inf Div</td>
<td>1</td>
</tr>
<tr>
<td>173d Abn Bde</td>
<td>1</td>
</tr>
<tr>
<td>1st Bde, 5th Inf Div (Mech)</td>
<td>1</td>
</tr>
<tr>
<td>11th ACR</td>
<td>3</td>
</tr>
<tr>
<td>12th CAG</td>
<td>8</td>
</tr>
<tr>
<td>17th CAG</td>
<td>5</td>
</tr>
<tr>
<td>164th CAG</td>
<td>9</td>
</tr>
<tr>
<td>165th CAG</td>
<td>1</td>
</tr>
<tr>
<td>212th CAB</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>58</td>
</tr>
</tbody>
</table>
FOR OFFICIAL USE ONLY

AUTHORITY

ACKNOWLEDGEMENTS
The Army Concept Team in Vietnam gratefully acknowledges the outstanding support provided by the officers and men of the following units that participated in the Night Hawk Evaluation:

1st Infantry Division
25th Infantry Division
3rd Brigade, 9th Infantry Division

PROJECT OFFICERS

LTC CHARLES M. HICKERSON, FIELD ARTILLERY
LTC THOMAS J. SHAUGHNESSY, ARMOR

TECHNICAL ANALYST
Mr. Gerry O. Sibley, Booz-Allen Applied Research Inc.

ADMINISTRATIVE ASSISTANTS

SP4 Kirby L. Wiemelt
SP4 Luckie D. Glynn

EVALUATORS
1LT Kenneth J. Cole, 1st Infantry Division
PSG Robert M. Newman, 1st Infantry Division
1LT Joseph A. Martin, 25th Infantry Division
CPT William C. Godfrey, 25th Infantry Division
CPT Winston F. McColl, 3d Brigade, 9th Infantry Division

FOR OFFICIAL USE ONLY

ii
The Night Hawk system was evaluated by ACTIV during the period 1 October to 30 October 1969. The purpose of the evaluation was to determine the suitability of the Night Hawk system for combat operations in the Republic of Vietnam (RVN) and, if acceptable, to recommend a basis of issue (BOI). The Night Hawk system was evaluated during night operations by three units located in the III Corps Tactical Zone. Analysis of evaluation data resulted in the following recommendations:

- That the Night Hawk be adopted as an interim system for use by units throughout RVN. Recommendations should be implemented immediately to permit earliest practical application within USARV.

- That the Night Hawk system be assigned and distributed in accordance with the following BOI:

<table>
<thead>
<tr>
<th>TYPE UNIT</th>
<th>NUMBER OF NIGHT HAWKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airmobile Division</td>
<td>8</td>
</tr>
<tr>
<td>Infantry Division</td>
<td>4</td>
</tr>
<tr>
<td>Separate Brigade</td>
<td>1</td>
</tr>
<tr>
<td>Armored Cavalry Regiment</td>
<td>2</td>
</tr>
<tr>
<td>Separate Air Cavalry Squadron</td>
<td>3</td>
</tr>
<tr>
<td>Combat Aviation Groups</td>
<td>(Depending on mission requirements)</td>
</tr>
</tbody>
</table>

- That the development of a standardized Night Hawk mounting kit be initiated as a VLAPA item.

- That the feasibility of developing a portable gunner's seat, to meet appropriate safety standards, be investigated.

- That the Big Screen Observation device be incorporated in the Night Hawk system to replace the AN/TVS-4.

- That the doctrine for employment of this system state explicitly that it will be normally employed with an escort helicopter.

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>iii</td>
</tr>
<tr>
<td>Index of Figures</td>
<td>v1</td>
</tr>
<tr>
<td>SECTION I - INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1. Reference</td>
<td>I-1</td>
</tr>
<tr>
<td>2. Purpose</td>
<td>I-1</td>
</tr>
<tr>
<td>3. Objective</td>
<td>I-1</td>
</tr>
<tr>
<td>4. Background</td>
<td>I-1</td>
</tr>
<tr>
<td>5. Scope</td>
<td>I-2</td>
</tr>
<tr>
<td>6. Description of Materiel</td>
<td>I-2</td>
</tr>
<tr>
<td>7. Approach</td>
<td>I-5</td>
</tr>
<tr>
<td>8. Environment</td>
<td>I-5</td>
</tr>
<tr>
<td>9. Data Collection and Analysis</td>
<td>I-5</td>
</tr>
<tr>
<td>SECTION II - OBJECTIVE 1 - SUITABILITY OF NIGHT HAWK</td>
<td></td>
</tr>
<tr>
<td>10. Operability</td>
<td>II-1</td>
</tr>
<tr>
<td>11. System Technical Performance</td>
<td>II-5</td>
</tr>
<tr>
<td>12. Findings</td>
<td>II-10</td>
</tr>
<tr>
<td>SECTION III - OBJECTIVE 2 - EMPLOYMENT</td>
<td></td>
</tr>
<tr>
<td>13. General</td>
<td>III-1</td>
</tr>
<tr>
<td>14. Procedures</td>
<td>III-1</td>
</tr>
<tr>
<td>15. Tactics and Techniques</td>
<td>III-1</td>
</tr>
<tr>
<td>16. Findings</td>
<td>III-6</td>
</tr>
<tr>
<td>SECTION IV - OBJECTIVE 3 - SYSTEM SUPPORT</td>
<td></td>
</tr>
<tr>
<td>17. Operational Time</td>
<td>IV-1</td>
</tr>
<tr>
<td>18. Failures and Maintenance Requirements</td>
<td>IV-1</td>
</tr>
<tr>
<td>19. Level of Maintenance</td>
<td>IV-2</td>
</tr>
<tr>
<td>20. Findings</td>
<td>IV-2</td>
</tr>
</tbody>
</table>
SECTION V - BASIS OF ISSUE

21. Objective 4 - BOI...V-1

SECTION VI - CONCLUSIONS AND RECOMMENDATIONS

22. Conclusions...VI-1

23. Recommendations..VI-1
I-1. The Night Hawk System..I-3
I-2. Armament System...I-4
II-1. Distribution of Crew Member Judgments of Operability........II-2
II-2. Minigun with Spring Modification..II-3
II-3. NCW/Searchlight Modified with Springs added....................II-4
II-4. Installation of Big Screen Viewer in Place of the AN/TVS-4......II-6
II-5. Distribution of Crew Member Judgments of Field of View........II-8
II-6. Distribution of Crew Member Judgments of AN/VSS-3 Performance....II-9
III-1. Percentage of Missions Flown Over Various Terrain and Vegetation..III-3
III-2. Number of Flights at Various Altitudes and Airspeeds........IIII-4
FOR OFFICIAL USE ONLY

SECTION I - INTRODUCTION

1. REFERENCES

2. PURPOSE

The purpose of this evaluation was to determine the suitability of the Night Hawk system for combat operations in RVN and, if found acceptable, to recommend a BOI.

3. OBJECTIVES

a. Determine the suitability of the Night Hawk system mounted in the UH-1 helicopter for target acquisition and destruction.

b. Determine and document the employment techniques developed by the units that employed the Night Hawk system.

c. Determine the logistical support requirements of the Night Hawk system.

d. Recommend a BOI for the Night Hawk system, if found suitable for employment in RVN.

4. BACKGROUND

a. Since the beginning of the Vietnam conflict, the enemy has used darkness to conceal movement of troops and supplies. This has enabled him to sustain some degree of guerrilla warfare throughout RVN. One means of detecting and limiting the enemy's capability to move freely at night is an airborne observation system. Several systems have been employed and evaluated by the Army during the past five years:

(1) Helicopter Illumination System (a cluster of seven C-123 landing lights).

(2) 1.6KW Xenon, lightweight, helicopter-mounted searchlights (ENSURE 26C).

(3) AN/ASS-1 searchlight.

(4) Spectrolab, FX-150 20KW searchlight.
(5) Night Hawk system.

b. The first four systems provided some capability for night operations, but they were not completely satisfactory. The Night Hawk system, incorporating the best ideas of previous systems, was designed and built by the 25th Infantry Division. This new system combined, as a package, in one helicopter, a covert and white light illumination capability with an extremely accurate, high rate of fire weapons system. Other units soon copied the design and began using it. Units employing the Night Hawk system enjoyed such initial successes that the CG, II Field Force, Vietnam, requested additional systems for operational use. This request was approved for a total of 36 systems. ACTIV was directed to conduct an informal evaluation using the first nine systems made available.

5. SCOPE

Nine Night Hawk systems employed by three units were evaluated for 30 days. No part of the evaluation was controlled for the sole purpose of data collection. All data was derived from the results of missions flown in support of tactical operations.

6. DESCRIPTION

a. As shown in Figure I-1 the Night Hawk system consists of a UH-1D/H helicopter with three major components mounted at one side and operated by two crewmen in the cargo compartment. The three major components consist of an AN/VSS-3 searchlight, an AN/TVS-4 night observation device (NOD) coupled by a common framework on the door gunner’s pintle and the M134 7.62 minigun. The minigun is attached to a pallet located in the forward area of the cargo compartment. The entire system can be mounted on either side of the helicopter, or two systems can be mounted in the same aircraft.

b. The AN/VSS-3 Xenon Searchlight is a component of the Sheridan Armored Reconnaissance Vehicle. It provides both visible and infrared light in a narrow or spread beam. Beam width is adjustable from 1.5° to 6.5°. Approximately 2 seconds are required to change from one light mode to the other, and the same time is required to change beam width. A change in light modes is controlled by activating a toggle switch which allows a sleeve type infrared filter to extend over or retract from the light source. The light requires approximately 1.6KW input power, which is provided by the aircraft’s 28 VDC generator. Weight of the searchlight with auxiliary attachments is 90 pounds.

c. The AN/TVS-4 NOD is a battery powered, 7.5 power, monocular image intensifier with a field of view of 8°. It weighs 34 pounds. The NOD is mounted above the searchlight in a common frame. The frame weighs approximately 35 pounds, and is so designed that the two components remain aligned as they are swiveled in search of targets.

d. The armament system is shown in Figure I-2. It consists of the M134 minigun, feeder - delinker mechanism, and ammunition containers from
FIGURE I-1. The Night Hawk System.
FIGURE I-2. Armament System
the XM27E1 armament subsystem. The pintle post upon which the weapon is mounted is anchored to a pallet that can be set in the forward area of the UH-1 cargo compartment and bolted to the floor or secured with cargo straps. Ammunition capacity is 2000 rounds. The selective rate of fire is 2000 or 4000 rounds per minute. Electrical power is provided by the aircraft's 28VDC generator. The total weight of this system fully loaded is approximately 245 pounds. Stops are included in the system mount to limit the range of the miniguns vertical and horizontal movement.

7. APPROACH

Judgments of operability of the Night Hawk system were obtained from the users of the equipment. Users indicated their judgments by placing a checkmark in one of ten value intervals along a scale ranging from "difficult" to "easy". This technique allowed evaluators to quantify the sampled factors. The same method was used to obtain operator judgments on the adequacy of equipment technical performance. Specific difficulties experienced in the use of the system were identified and described. Information on employment, maintenance and BOI was obtained from interviews, observation and questionnaires.

8. ENVIRONMENT

The 1st and 25th Infantry Divisions were located in the III Corps Tactical Zone with headquarters at Lai Khe and Cu Chi, respectively. The mission of these units was to conduct stability operations within assigned areas of operation. The terrain within the area varied from flat to moderately hilly, with vegetation ranging from sparse cover to heavy forest, including many interspersed plantation groves. The 3rd Brigade, 9th Infantry Division was located in the southern part of the III Corps Tactical Zone with its headquarters at Tan An. The terrain in this area was similar to that of the Mekong Delta region: flat and generally less than one meter above sea level, with vast networks of rivers and canals. Enemy activity throughout the III Corps Tactical Zone was light throughout the evaluation. Weather was influenced by the Southwest monsoon which was in its final state of transition. Rainfall had diminished considerably, but late afternoon and early evening thundershowers occurred almost daily. Toward the end of the evaluation, skies at night were generally clear with unrestricted visibility. Atmospheric conditions i.e., fog and haze, had some adverse effect on Night Hawk operations, particularly in the early hours of darkness.

9. DATA COLLECTION AND ANALYSIS

Each evaluating unit appointed one evaluator to insure that questionnaire forms were distributed to all personnel, properly completed, collected and submitted to the ACTIV project officer. The ACTIV project officer and unit evaluators participated in Night Hawk operations during the data collection phase. At the end of the evaluation all available aviation and ground unit commanders who participated were interviewed to obtain additional subjective
data upon which to base conclusions for this report. The two principal techniques used to evaluate data were: Analysis of user observations and military judgment applied to quantified data. Data pertaining to operability and system technical performance were summarized by category and presented as frequency distributions. The percentage of judgments in each category was also determined.
10. OPERABILITY

Figure II-1 shows the distribution of crew member judgments of operability (ease of control) of the NOD and the minigun. Judgments were indicated on the ten-step scale. The scale ranged from "very difficult" to "easy". The number of responses is shown in the vertical axis of the figure. Percentage of responses to a given category is indicated at the top of each column. For the NOD, 93 percent of the judgments fell in the five categories from "somewhat difficult" to "easy" to use. The two categories closest to the "easy" end of the scale contained 65 percent of the total of 179 responses. For the minigun, 85 percent of the judgments fell in the five categories at the favorable end of the scale. The two categories closest to "easy" contained 55 percent of the total of 293 responses. The median (point above which 50 percent of the responses fall) is indicated on the figure. Problems as described below were encountered at the beginning of the evaluation; of these many were corrected prior to its conclusion.

a. During firing, the minigun had a tendency to elevate due to recoil forces. It was difficult for the gunner to anticipate and counteract this effect. To offset this problem, two springs were attached to the front of the mount as shown in Figure II-2. These springs are the same type as used on the UH-1 cargo hook release.

b. Design of the mounting for the searchlight/NOD did not allow the horizontal pivot axis to pass through the center of mass. By placing the horizontal axis above the center of mass the observer was able to reach the NOD throughout its range of movement; however, it required a considerable amount of force to depress the system and hold it at a normal operating angle for any length of time. The type springs installed on the minigun were also attached to the front side of the searchlight/NOD system to relieve the pressure. See Figure II-3.

c. The gunner and observer each needed an interphone switch on the floor to allow them the use of both hands. No satisfactory solutions were found for this problem.

d. Crew members experienced difficulty from muzzle flash. It was so intense that all crew members lost sight of the ground as the weapon commenced firing. An effective flash suppressor is required.

e. As the Night Hawk is presently configured, gunners do not have seats. The minigun mount utilizes two of the hold down posts normally used for the jump seat. Makeshift seats of wooden boxes and other items have been used but none were considered satisfactory. This condition constituted a crew safety hazard. The gunner should have a seat that comfortably positions him behind the minigun and provides a seat belt or restraining harness.
FIGURE II-1. Distribution of Crew Member Judgments of Operability
FIGURE II-2. Minigun with Spring Modification
FIGURE II-3. NOD/Searchlight Modified with Springs Added.
f. The observer was unable to talk over the interphone system while his eye was at the NOD because his head was out in the wind stream. Sponge rubber covers for the boom microphone were tried but proved to be unsuitable. A throat or other type microphone is necessary to enable the observer to communicate without removing his eye from the NOD. A possible solution to this problem might be found by substituting the Big Screen Night Observation device for the AN/TVS-4 NOD. The Big Screen NOD is similar to the AN/TVS-4. It offers an improved viewing system by projecting a target image on a 5-inch screen. This improvement permits more comfortable viewing for the operator. The advantages offered are: the operator can use both eyes to view the screen from a distance of 12 to 24 inches, move his head freely and is subject to less eyestrain. Other improvements include an adjustable light intensity and image magnification system and a red screen filter. See Figure II-4.

g. Some common causes for minigun stoppages and steps taken to restore firing are listed below:

(1) Falling expended links were blown into the rotating mechanism. To rectify this problem, a locally fabricated chute or the same chute used with the XM27E1 was attached to the minigun to direct expended links away from the weapon.

(2) Drive cables frequently broke due to sharp bends which occurred as the minigun was swiveled. Particular attention was paid to this problem during installation and routing of the drive cable.

(3) Feeder-delinker malfunction, though not exclusively peculiar to the Night Hawk system, was the cause of many minigun stoppages. All ammunition loaded for the minigun had to be carefully inspected to prevent this.

11. SYSTEM TECHNICAL PERFORMANCE

a. AN/TVS-4 NOD

(1) Of the three major components of the Night Hawk system, the NOD is the most limiting with respect to system employment. Given any set of conditions -- operator proficiency, ambient light, visibility and terrain -- the ability to use the system effectively will be determined by the aircraft's altitude (because the NOD has a limited range) versus apparent ground speed. At any ground speed, the closer the helicopter is to the ground, the more rapidly objects below appear to move. As this rate of apparent movement increases, the NOD operator will have greater difficulty in focusing and may experience nausea. In order to offset this problem, it was necessary to select an optimum trade-off between altitude and ground speed.
FIGURE II-4. Installation of Big Screen Viewer in Place of the AN/TVS-4.
(2) Approximately 20 hours of operator training on use of the NOD is necessary before a Night Hawk crew can be effective. The searchlight/NOD operator is the most important member of the Night Hawk crew. Figure II-5 depicts the distribution of operator judgments of the adequacy of the field of view of the NOD. The ten-step scale ranged from "too little" through "correct" to "too large". The two categories closest to "correct" contained 69 percent of the total of 173 responses. The following problems were encountered with the NOD:

(a) Colors appeared as various shades of green. Resolution was difficult even under the best conditions; and there remained a constant requirement to change focus on target images due to variation of altitude. Movement over the ground often caused the image to dance and rush by, which resulted in operator nausea.

(b) Since operating conditions cause a great deal of operator fatigue, additional crewmen require training in the operation of the NOD/Searchlight in order to rotate duties.

(c) There was no brightness control on the NOD. This control device was required to improve performance under certain conditions of ambient and artificial illumination.

(d) Operator eye fatigue and communication problems caused by rushing wind were directly attributable to the NOD. However, late in this evaluation the 25th Infantry Division employed a Big Screen Night Observation device, shown in Figure II-4, in place of the AN/TVS-4. This alternate system was preferred by all crew members who used it.

b. AN/VSS-3 Searchlight

(1) Although designed and built for use on an armored reconnaissance vehicle, the AN/VSS-3 searchlight was easily adapted for use on the helicopter, however, there are minor installation problems.

(2) Although its beam spread was quite narrow (1.5° to 6.5°), the AN/VSS-3 illuminates sufficient area when employed with the Night Hawk system. Light intensity was more than sufficient at operating altitudes of 500 to 700 feet. Figure II-6 depicts the distribution of operator judgments of the adequacy of the searchlight.

c. M134 Minigun

(1) The minigun was ideally suited for use in the Night Hawk aircraft. It provided a high rate of fire with good area coverage and effectiveness from normal altitudes of employment.

(2) Due to the small amount of ammunition carried, firepower was limited but well suited for the types of targets normally encountered. Most encounters consisted of small groups of personnel or sampans. Larger elements of troops and fortified emplacements required support from armed helicopters or artillery.
FIELD OF VIEW, NOD

NOTES:

a. Percentage of each response is indicated at top of column.

b. Ten arbitrary categories of response are used to represent the continuous variation of user opinion.

FIGURE II-5. Distribution of Crew Member Judgments of Field of View.
FOR OFFICIAL USE ONLY

FIGURE II-6. Distribution of Crew Members' Judgments of AN/VSS-3 Performance.
(3) Some of the nine systems evaluated were equipped with M21 ammunition containers loaded with 4000 rounds of ammunition. Others used XM27E1 ammunition containers with 2000 rounds. In order to extend the use of available ammunition, the slower rate of fire (2000 rounds per minute) was normally used. Reloading required excessive time unless preloaded ammunition containers were available. The average time to rearm was 30 minutes.

12. **FINDINGS**

 a. All components of the Night Hawk required well-trained individuals to operate them effectively.

 b. Many minor problems had to be overcome before the Night Hawk became a suitable system for night operations.

 c. Crew inter-communications were inadequate. The gunner and observer could not communicate adequately with other crew members while keeping both hands on their equipment.

 d. The NOD is the crucial component of the Night Hawk system because of its operational limitations.

 e. Muzzle flash from the minigun remains an unsolved problem area.

 f. The majority of crew members sampled gave a favorable rating to the NOD and the minigun with respect to ease of control.

 g. Most crew members judged the field of view of the NOD to be appropriate.

 h. Most crew members judged the searchlight to be adequate in all respects.

 i. The gunner did not have an adequate or safe seating arrangement that would allow proper positioning behind the minigun.
13. GENERAL

The Night Hawk combined a night surveillance system, which incorporated a searchlight capable of providing both infrared and white light and a night viewing device, and the 7.62 minigun. This provided a single aircraft with the capability to (1) conduct search operations at night in a covert manner and (2) illuminate a detected target and then attack it with organic firepower. Many different approaches were tried in search of optimum procedures for employing Night Hawk. Various tactics and techniques were employed until most units established fairly standard procedures. This section will be devoted to describing those most commonly used.

14. PROCEDURES

a. When units first employed the Night Hawk system, they were flying maximum hours on every available system. The aircraft were flown in random search patterns over likely avenues of enemy movement, such as rivers, trails, woods and open areas.

b. By 1 October 1969, when this evaluation started, enough experience had been gained to provide for more selective employment. The division G2 and smaller unit intelligence sections provided current intelligence for targeting the Night Hawk. Employment became more productive and better controlled. As operational procedures for Night Hawk were refined, it became standard practice to employ one system in support of each brigade. This provided sufficient coverage under most situations. Many factors were considered, including the enemy and friendly situations, terrain, size of area and aircraft and crew members available.

15. TACTICS AND TECHNIQUES

a. Discussion

Results obtained from Night Hawk operations varied depending on time and location of employment.

(1) Results

At the start of Night Hawk operations, units enjoyed good success, but the number of confirmed kills tapered off as more systems became operational. The decrease was attributed to the enemy's passive counteractions taken in response to his increased awareness of the Night Hawk capabilities. Also, results obtained by the use of Night Hawk were in direct proportion to the level of enemy activity, which was low throughout the evaluation period. Total results compiled by the nine systems during the 30-day period were 86 enemy killed and 16 sampans destroyed.

(2) Terrain

Effectiveness was influenced by terrain. Figure III-1 illustrates, by percentage, the missions flown over different types of
terrain and cover. Night Hawk was virtually useless over dense jungle canopies and was cautiously employed in mountainous terrain. Targets could not be located using white or infrared light in areas where heavy jungle vegetation, consisting of double or triple canopy, existed. Neither visual nor infrared light would penetrate this growth. Similarly, targets were difficult to locate in mountainous terrain because of difficulty experienced by pilots navigating over rough terrain and maintaining an optimum air speed and altitude. Greater success was obtained in areas where terrain was flat or rolling and vegetation was less dense. During the evaluation a distinction was made between flat dry and flat wet terrain to denote the peculiarity of specific areas in which test units operated. Employment of the Night Hawk system was not affected by this terrain distinction, however, target types, i.e. sampans versus troops in the open, were identified with a specific type terrain.

b. Techniques of Employment

Various tactics and techniques were experimented with in an effort to develop the best application of the system.

(1) **Airspeed and Altitude**

Figure III-2 graphically displays the airspeed and altitude options reported by the 1st and 25th Infantry Divisions. Several factors served to limit the options available to the user; these were: the ability of the observer to detect targets through the NOD, the limiting characteristic of the NOD and the helicopter's safety of flight operating limitations. Following interviews with the Night Hawk crews and an analysis of reported flight profiles, an optimum airspeed of 50 knots and an altitude of 500 feet above the ground were selected. This optimum operating criterion was therefore a compromise between operational effectiveness and safety.

(2) **Crew Composition**

Commanders soon recognized the importance of having experienced, well-trained crews to man the Night Hawk aircraft, so units assigned permanent crews. Results achieved with these crews showed a marked improvement over those obtained with crews that were continuously rotated through Night Hawk duty.

(3) **Aircraft**

One unit could afford to dedicate aircraft to Night Hawk operations. Again, results reflected improved effectiveness. Aircraft and Night Hawk systems received better maintenance and experienced fewer breakdowns. The separate brigade having only four assigned aircraft could not afford this luxury, nor could the infantry division. In these units, Night Hawk systems were removed at the end of the night missions and the aircraft configured for daylight operations. While a Night Hawk system could be removed in about 30 minutes, it took up to 1½ hours to reinstall.
FOR OFFICIAL USE ONLY

DISTRIBUTION OF MISSIONS FLOWN BY TERRAIN TYPE

- Flat Wet: 61%
- Flat Dry: 31%
- Hilly: 3%
- Mountainous Terrain: 5%

DISTRIBUTION OF MISSIONS FLOWN BY VEGETATION TYPE

- Tall Grass: 17%
- Faddy: 35%
- Planatation: 11%
- Jungle: 19%
- Open: 18%

FIGURE III-1. Percentage of Missions Flown Over Various Terrain and Vegetation
LEGEND: Cross hatched and solid areas are arbitrary divisions of the flight envelope. Boundaries of the crossed hatched area have significance only for this evaluation.

FIGURE III-2. Number of Flights at Various Altitudes and Airspeeds.
(4) **Navigation**

There is no accurate position-fixing navigation system on the UH-1. Ground controlled approach (GCA) radar is the best means available within its range capabilities; however, it cannot always provide coverage throughout the Night Hawk's area of operation. Two of the three units had no GCA with which to assist Night Hawk. Although pilotage was relied on at all times, this often failed to provide the accuracy desired. Targets detected could not be engaged unless an accurate position fix could be reported to the supported unit. Wherever possible, specified strike zones were assigned to Night Hawk aircraft. This eliminated the need for pinpoint accuracy in position fixing as long as the aircraft was within the assigned area. In addition, Night Hawk operations require good visual weather conditions. Missions cannot be performed under adverse visibility conditions that are below normal safe limits.

(5) **Escort Aircraft**

Night Hawk aircraft were capable of operating alone, and did so in many cases; however, escort aircraft were used when available. Escort aircraft used either another UH-1D/H or a gunship, AH-1G or UH-1C. Neither type possessed distinct advantages over the other, so the aircraft selected depended on what was most readily available. The 1st Infantry Division found that, when an escort aircraft was employed, Night Hawk's effectiveness ran much higher than on unescorted missions. The escort aircraft was capable of providing much assistance. Some of its functions included maintaining Night Hawk communications with artillery and the supported unit; recovery, if required; navigation; protection; additional firepower; and illumination. Due to black-out operating conditions, the crew members of a Night Hawk were under strong psychological stresses; these stresses were particularly heavy on the aircraft commander. The mere knowledge that an accompanying aircraft was along to assist, in the event something went wrong, reduced tension and resulted in more concentrated effort.

(6) **Targeting**

Since achieving the initial successes previously mentioned, few positive results have been obtained while operating above well established routes and suspected areas. Undoubtedly there are some intangible effects achieved by the restrictions Night Hawk imposes on the enemy's freedom of movement; but to be truly effective targeting must be based on sound intelligence information. With the demonstrated capability of responding in minutes, Night Hawk proved to be invaluable to the commander for verifying ground sensor reports. Many times Night Hawk was called on to check ground radar sightings in the vicinity of base camps. On some of these occasions this system was credited with preventing completely or considerable reducing the effectiveness of an enemy ground attack. On other occasions, when Night Hawk was tasked to investigate mechanical ambush activations, crews discovered enemy troops either dazed by the ambush explosions or occupied with the burial and/or evacuation of the victims.
(7) **Enemy Trends**

Although credited with being devious and skillful, the enemy has established some fairly predictable operational patterns and habits that were discovered or confirmed by Night Hawk operations. Some of these are listed below:

(a) Movements of troops and supplies were accomplished during the evening hours from just after last light until midnight. Planned attacks against friendly encampments usually were initiated between shortly after midnight and 0300 hours.

(b) The majority of water movement took place during high tide conditions.

(c) The enemy frequently used flashlights when moving along jungle trails. Although his light discipline was good, the Night Hawk NOD could detect the flicker of flashlights through the jungle canopy.

(8) **Crew Training and Proficiency**

As with employment of any system by two or more individuals, teamwork was essential for effective operations. This was especially true with the Night Hawk system. Due to fatigue, gunners were cross-trained on the observer's duties and vice versa. Night Hawk crew members normally rotated jobs about every 30 minutes. Some units had two complete crews trained and proficient for each assigned system. Only the best qualified aviators were assigned as aircraft commanders on Night Hawk aircraft. When available, instrument-qualified aviators were used.

16. **FINDINGS**

a. In most situations, it became standard practice to employ one Night Hawk system in support of each brigade.

b. The optimum airspeed and altitude above ground level determined from this evaluation are 50 knots and 500 feet respectively.

c. The Night Hawk system has little value for operations over heavy jungle and mountainous terrain.

d. Night Hawk is most effective when units are able to dedicate aircraft and crews to its employment.

e. The lack of accurate, on-board position fixing equipment is the second greatest limitation to the use of Night Hawk.

f. The use of escort aircraft significantly enhances the effectiveness of the Night Hawk system.
c. Night Hawk is employed more gainfully when reliable intelligence information is available for selecting the area of operations, rather than when assigned to a free-search mission.

h. Crew training is critical for effective Night Hawk employment.
OBJECTIVE 3 - SYSTEM SUPPORT

17. OPERATIONAL TIME

During this evaluation, 755 hours were flown on the nine systems used. Searchlights and NODs were operated continually during this time. Reporting was not consistent enough to establish accurately the number of rounds fired from the minigun.

18. FAILURES AND MAINTENANCE REQUIREMENTS

Surprisingly few component failures of the Night Hawk system were reported. Insufficient data was collected on maintenance and supply requirements to enable the evaluators to determine logistical support needs.

a. AN/TVS-4 NOD

No maintenance failures of the NOD were reported. Extra batteries were carried for replacements as required. Average battery life was approximately 8 hours. NODs were carefully cleaned and kept covered when not in use. Very little maintenance time was required.

b. AN/VSS-3 Searchlight

(1) Three malfunctions were reported during the evaluation. Two were due to power interruptions caused by the observer inadvertently kicking the power cable loose from its terminal, and the third was due to a jammed focus control. These malfunctions were repaired by direct support maintenance. Some lost mission time resulted from these incidents, but they did not cause complete mission aborts.

(2) The searchlight required only a few minutes of daily maintenance for inspection and cleaning.

c. M134 Minigun

(1) Malfunctions occurred frequently with the miniguns due primarily to dirty or misaligned ammunition or poor firing techniques. Guns mounted in the left door were often jammed by expended links being blown into the rotating mechanism by the windstream. Two instances of broken drive cables were reported. Except for the problem with expended links, all stoppages were common to those experienced with the M134 in other applications. The link problem was corrected by using a locally fabricated chute to direct expanded links clear of the weapon. Another solution used the link chute from the XM27E1 system, this was also effective. Most weapon stoppages caused the Night Hawk to discontinue its mission until the jam could be cleared. By carrying extra feeder-delinkers for every weapon, some stoppages were quickly cleared in flight.

(2) Maintenance of the M134 minigun presented no unusual requirements.
19. **LEVEL OF MAINTENANCE**

All maintenance of the Night Hawk system was accomplished at unit level except for one searchlight failure, which was repaired by direct support maintenance.

20. **FINDINGS**

The Night Hawk system is reliable. Only minor maintenance is required, much of which can be performed by organizational maintenance personnel.
21. **OBJECTIVE 4 - BOI**

A BOI for the Night Hawk was difficult to establish because of the many variables involved. Unit mission, size of area of operation, type of unit, enemy situation and personnel and aircraft availability were considered. When allowed unrestricted operation, Night Hawk covered a large area in a relatively short period. During the evaluation one Night Hawk was generally employed in each brigade-size area of operation. Experienced operations personnel in brigade and division sized units were unable to provide adequate statistical data to allow a precise determination for a BOI. Therefore, the following provisional BOI was established as a guide. It is a deliberately cautious recommendation, but can be sustained by reasonable objective military observations. Specific requirements for a BOI must be established on an individual basis until more field experience is gained. A suggested BOI follows:

<table>
<thead>
<tr>
<th>TYPE UNIT</th>
<th>NO. OF SYSTEMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infantry Division</td>
<td>4</td>
</tr>
<tr>
<td>Airmobile Division</td>
<td>8</td>
</tr>
<tr>
<td>Separate Brigade</td>
<td>1</td>
</tr>
<tr>
<td>Armored Cavalry Regiment</td>
<td>2</td>
</tr>
<tr>
<td>Separate Air Cavalry Squadron</td>
<td>3</td>
</tr>
<tr>
<td>Combat Aviation Group</td>
<td>as required.</td>
</tr>
</tbody>
</table>
CONCLUSIONS

1. As a helicopter-borne system, Night Hawk is effective for target acquisition and destruction at night and is suitable for employment in the combat environment in RVN.

2. The Night Hawk system has the following capabilities:

 (1) With the exception of dense jungle, Night Hawk provides a means for covertly observing specific locations at night.

 (2) This system can respond rapidly to combat commanders' requests or to fresh intelligence reports.

 (3) Night Hawk incorporates an integral weapons system well suited for destruction of small boats and personnel.

 (4) By employing the searchlight in the visible light mode, small area illumination can be provided.

 (5) Aircraft used for Night Hawk systems employment are standard HH-1D/S helicopters, which require no modifications. Installation of the Night Hawk system takes 1 1/2 hours; removal takes only 30 minutes.

 (6) All Night Hawk components, except the locally fabricated mounts, are standard items of equipment available from assets in RVN, and are recoverable for use as originally intended.

 (7) Under most situations, one Night Hawk system can provide adequate support to one brigade-size area of operations.

3. Night Hawk is subject to the following limitations:

 (1) The helicopter must operate in visual flight weather conditions.

 (2) Effectiveness of Night Hawk varies inversely with the density of the jungle canopy; it is virtually useless over dense jungle.

 (3) Firepower is limited by the amount of ammunition available.

 (4) Night Hawk does not have on-board position-fixing navigation system; therefore, it must rely on pilotage and/or ground radar for accurate positioning.

RECOMMENDATIONS

It is recommended that:

1. Night Hawk be adopted as an interim system for use by units throughout RVN.
b. The Night Hawk system be distributed to meet unit requirements based upon area of operations, unit mission, and availability of aircraft and system components as recommended in the proposed BOI contained in paragraph 21.

c. The development of a standardized Night Hawk mounting kit be initiated under the VLAPA program.

d. A foot-operated microphone switch for the gunner's and observer's stations be installed under the provisions of MWO 55-1520-210-30/27.

e. The Big Screen Night Observation device be incorporated in the Night Hawk system to replace the AN/TVS-4.

f. The feasibility of developing a portable gunner's seat, to meet appropriate safety standards, be investigated.

g. A flash suppressor for the 7.62 minigun, -- corresponding to the type being tested by the Research and Engineering Directorate, Aircraft Weapons Systems Laboratory, Guns and Components Branch, US Army Weapons Command, Rock Island, Illinois, -- be procured.

h. The Night Hawk systems' allied aircraft equipment be tested and flight qualified under the provisions of Army Regulations 70-10 and 385-16 (Safety for Systems, associated Subsystems and Equipment).

i. The doctrine for employment of this system state explicitly that it will be normally employed with an escort helicopter.
DISTRIBUTION LIST

STATE DEPARTMENT

OAS, US Embassy, Saigon, ATTN: Chief Tech 2

DEPARTMENT OF DEFENSE

DDRE 1
ARPA 1
DDC 20

JOINT CHIEFS OF STAFF

Sp Asst for Cnsgcy and Sp Actv, JCS 1

JOINT COMMANDS

CINCPAC 1
CINCARSTRIKE 1

DEPARTMENT OF THE ARMY

Sp Asst, Sp Warfare Actv 2
D, Wpn Sys Anal, Ofc Asst VCOfS, ATTN: Inf Sys Gp 1
DCSLOG 1
ACSFOR 2
ACSFOR, ATTN: ACTIV LO 11
OACSC-E 2
OPO 1
CRD, ATTN: Sp Warfare Div 1
CO, USAWL 2
ACSIINTEL, ATTN: Doc Sys Div 1

ARMY MATERIEL COMMAND

CG, USAMC 20
CG, USAMC, ATTN: AMCPM-SW 2
CG, USA Avn Sys Cmd. ATTN: AMCPM-UA 2
DIR, USA Night Vision Lab 2
CG, USAMC, ATTN: AMC-RD 2
CG, USA Avn Sys Command, ATTN: AMSAV-EF 2
CG, USAECOM 2
CG, USA Gen Equip Test Actv, ATTN: STEGE-SS-E 1
CG, USATECOM 5
President, USAAVNTRD 2
CG, USAMCOM 2
CG, USAWCOM 2
President, USAINFBD 1
<table>
<thead>
<tr>
<th>Installation/Command</th>
<th>Location</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CG, USA CDC, ATTN: CDCRE-T</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>CG, USA CDCEC</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>CONUS COMMANDS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG, USCONARC</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>CG, USA Elec Proving Ground</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>CG, XVII Abn Corps</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ARMY SCHOOLS AND CENTERS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cmdt, USA War College, ATTN: Library</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Cmdt, USAAVNS</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Cmdt, USAPHS</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Cmdt, USAARS</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Cmdt, USAFAS</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Cmdt, USAINF</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>CG, USASCS</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>CG, USAJFKCEN for Mil Asst</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Cmdt, USAC&GS College</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>US ARMY EUROPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG, USAEUR, ATTN: G3</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>CG, 7th US Army</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>CO, 8th SF Gp (Abn)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>CO, SF Det (Abn) Europe, ATTN: TSCO</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>US ARMY SOUTHERN COMMAND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG, USA Forces Southern Comd, ATTN: SCARCD Commander, USA Tropic Test Cen</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>US ARMY PACIFIC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CINCUSARPAC</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>CG, 8th US Army, ATTN: ACoFS, G3 (EAGO-P)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>CO, 1st SF Gp (Abn)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>THAILAND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMUSMACTHAI</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>D, ARPA RDFU, Thailand</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>MACV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMUSMACV, ATTN: J1, J2, J3-052, J3-053, J4, J5, J6</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>C, ARPA RDFU-V</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Sr Adv, I Corp Adv Gp</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
MACV (CONT)

Sr Adv, II Corp Adv Gp
Sr Adv, III Corp Adv Gp
Sr Adv, IV Corp Adv Gp
Sr Adv, 5th Inf Div Adv Det, ATTN: Team 70
Sr Adv, 7th Inf Div Adv Det, ATTN: Team 75
Sr Adv, 9th Inf Div Adv Det, ATTN: Team 60
Sr Adv, 21st Inf Div Adv Det, ATTN: Team 51
Sr Adv, 22nd Inf Div Adv Det, ATTN: Team 22
Sr Adv, 23rd Inf Div Adv Det, ATTN: Team 33
Sr Adv, 25th Inf Div Adv Det, ATTN: Team 99

USARV

CG, USARV, ATTN: AVHGC-DST, CDC LO

SUBORDINATE COMMANDS, USARV

CG, Capital Military Assistance Comd, CG DMAC
CG, 18th Engr Bde
CG, 20th Engr Bde
CG, I Fld Force, Vietnam
CG, II Fld Force, Vietnam
CC, XXIV Corps
CC, 1st Cav Div (Airmobile)
CC, 1st Inf Div
CC, 4th Inf Div
CC, Americal Div
CC, 25th Inf Div
CC, 101st Abn Div (Airmobile)
CC, 173rd Abn Bde
CC, 199th Light Inf Bde
CC, 1st Log Comd, ATTN: ACofS, G3
CG, 1st Avn Bde
CG, 1st Sig Bde

UNITED STATES AIR FORCE

HQ, TAC, ATTN: DORQ, DR, DPLW
Commander, AF Sys Comd, ATTN: SCS-6, SCS-3
Commander, ADTC, ATTN: PGBPS-12
Commander, Sp Air War Cen
Commander, 7th USAF
HQ, Research & Technology Div, ATTN: RTTW
HQ, Aeronautical Sys Div, ATTN: ASZ, ASR, ASJD, AFNS, ASD
HQ, SFWAR Div, ATTN: Dir of Plans for Policy (DCS/P&O)
HQ, AF Materiel Lab, ATTN: MAG
HQ, AF Armament Test Lab, ATTN: ATWR
UNITED STATES NAVY

C, Navy R&D Unit
Ofc of Nav Rsch, DN
Cmdr, Naval Test Center

UNITED STATES MARINE CORPS

CG, USMC, ATTN: ACoS, G3 (AX) (AO3)
CG, III Marine Amphibious Force, ATTN: ACoS, G3 (R&D)
Director, Marine Corps Ldg Force Dev Cen, Marine Corps Sch
Director, Marine Corps Dev & Educ Comd, ATTN: Director, Dev Cen

RACIC

Director, Battle Memorial Institue, RACIC, Columbus Lab, 505 King Ave, Columbus, OH 43201

WITHIN ACTIV

ACTIV Project Officer, ATTN: AAD
ACTIV Library
EVALUATION OF THE NIGHT HAWK SYSTEM

Final Report 1 October 1969 - 30 October 1969

Charles M. Hickerson, LTC FA

7a. TOTAL NO. OF PAGES 7b. NO. OF REFS
32 0

10. DISTRIBUTION STATEMENT
In addition to security requirements which apply to this document and must be met, each transmittal outside the Department of Defense must have prior approval of CG, USARV.

11. SUPPLEMENTARY NOTES
None

12. SPONSORING MILITARY ACTIVITY
U.S. Army, Vietnam
APO San Francisco 96384

13. ABSTRACT

The Night Hawk system was evaluated by ACTIV during the period 1 October to 30 October 1969. The purpose of the evaluation was to determine the suitability of the Night Hawk system for combat operations in the Republic of Vietnam (RVN) and, if acceptable, to recommend a basis of issue (BOI). The Night Hawk system was evaluated during night operations by three units located in the III Corps Tactical Zone. Analysis of evaluation data resulted in the following recommendations:

a. That the Night Hawk system, consisting of three basic components: a AN/VSS-3 Searchlight, a Night Observation device, AN/TVS-4 or a Big Screen Night Observation device, and a pintal mounted 7.62 minigun, be adopted as an interim system for use by units throughout RVN.

b. The Night Hawk system be distributed to meet unit requirements based upon area of operations, unit mission, and availability of aircraft and system components as recommended in the proposed BOI contained in paragraph 21, subject report.

c. The development of a standarized Night Hawk mounting kit be initiated under the VLAPA program.

d. A foot-operated microphone switch for the gunner's and observer's stations be installed under the provisions of MWO 55-1520-210-30/27.

e. The Big Screen Night Observation device be incorporated in the Night Hawk system to replace the AN/TVS-4.
<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Night Hawk System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Night Observation Device (NOD) AN/TVS-4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xenon Searchlight AN/VSS-3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Big Screen Viewer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gun System M134 Minigun</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
13. Abstract (cont)

f. The feasibility of developing a portable gunners seat, to meet appropriate safety standards, be investigated.

g. A flash suppressor for the 7.62 minigun, -- corresponding to the type being tested by the Research and Engineering Directorate, Aircraft Weapons Systems Laboratory, Guns and Components Branch, US Army Weapons Command, Rock Island, Illinois, -- be procured.

h. The Night Hawk systems' allied aircraft equipment be tested and flight qualified under the provisions of Army Regulations 70-10 and 385-16 (Safety for Systems, associated Subsystems and Equipment).

i. The doctrine for employment of this system state explicitly that it will be normally employed with an escort helicopter.