<table>
<thead>
<tr>
<th><strong>UNCLASSIFIED</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td><strong>AD NUMBER</strong></td>
</tr>
<tr>
<td>AD845264</td>
</tr>
<tr>
<td><strong>NEW LIMITATION CHANGE</strong></td>
</tr>
<tr>
<td><strong>TO</strong></td>
</tr>
<tr>
<td>Approved for public release, distribution unlimited</td>
</tr>
<tr>
<td><strong>FROM</strong></td>
</tr>
<tr>
<td>Distribution authorized to U.S. Gov’t. agencies and their contractors; Critical Technology; SEP 1968. Other requests shall be referred to Space and Missile Systems Organization, Attn: SMTT, Los Angeles, CA 90045.</td>
</tr>
<tr>
<td><strong>AUTHORITY</strong></td>
</tr>
<tr>
<td>Space and Missile Systems Organization [USAF] ltr dtd 28 Feb 1972</td>
</tr>
</tbody>
</table>

**THIS PAGE IS UNCLASSIFIED**
Iron Containing Contaminants in $N_2O_4$

Prepared by H. H. TAKIMOTO, G. C. DENUAULT, and P. A. MARSH
Aerodynamics and Propulsion Research Laboratory

September 1968

Prepared for SPACE AND MISSILE SYSTEMS ORGANIZATION
AIR FORCE SYSTEMS COMMAND
LOS ANGELES AIR FORCE STATION
Los Angeles, California

THIS DOCUMENT IS SUBJECT TO SPECIAL EXPORT CONTROLS AND EACH TRANSMITTED TO FOREIGN GOVERNMENTS OR FOREIGN NATIONALS MAY BE MADE ONLY WITH PRIOR APPROVAL OF SAMSO(SMT). THE DISTRIBUTION OF THE REPORT IS LIMITED BECAUSE IT CONTAINS TECHNOLOGY RESTRICTED BY MUTUAL SECURITY ACTS.
IRON CONTAINING CONTAMINANTS IN $\text{H}_2\text{O}_4$

Prepared by
H. H. Takimoto, G. C. Denault, and P. A. Marsh
Aerodynamics and Propulsion Research Laboratory

September 1968

Prepared for
SPACE AND MISSILE SYSTEMS ORGANIZATION
AIR FORCE SYSTEMS COMMAND
LOS ANGELES AIR FORCE STATION
Los Angeles, California

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of SAMSO (SMT). The distribution of the report is limited because it contains technology restricted by mutual security acts.
FOREWORD

This report is published by The Aerospace Corporation, El Segundo, California, under Air Force Contract F04701-68-C-0200.

This report, which documents research carried out from August 1967 through April 1968, was submitted on 14 October 1968 to Lieutenant John F. Turk, II, SMTP, for review and approval.

Information in this report is embargoed under the Department of State International Traffic In Arms Regulations. This report may be released to foreign governments by departments or agencies of the U.S. Government subject to approval of Space and Missile Systems Organization or higher authority within the Department of the Air Force. Private individuals or firms require a Department of State export license.

Approved

G. W. King
Operations General Manager

Publication of this report does not constitute Air Force approval of the report's findings or conclusions. It is published only for the exchange and stimulation of ideas.

John F. Turk, II, 2nd Lt., USAF
Project Officer
The contaminants found in $\text{H}_2\text{O}_4$ causing flow blockage at the launch site have been analyzed and identified as nitrosyl tetranitratoferrate. An authentic sample of this material was synthesized in the laboratory for comparison purposes. The corrosive action of the oxidizer on the iron containing materials of constructions results in the formation of this contaminant.
CONTENTS

FOREWORD ........................................... 11
ABSTRACT ........................................... 111
I. INTRODUCTION .................................... 1
II. EXPERIMENTAL ................................... 3
III. RESULTS AND DISCUSSION ..................... 5
REFERENCES ......................................... 9

FIGURE

1. Infrared Spectrum of Nitrosyl Tetranitratoferrate .... 4
I. INTRODUCTION

The contaminants present in nitrogen tetroxide can seriously affect the performance of bipropellant rocket motors. The deposition of impurities in the oxidizer can cause decreased \( \text{N}_2\cdot\text{O}_4 \) flow by partially or completely clogging injectors, screens, and filters in the propellant line. One such contaminant believed to be present in any \( \text{N}_2\cdot\text{O}_4 \) that has come in contact with iron-containing materials is nitrosyl tetranitratoferrate (NTNF). Although the presence of this compound in \( \text{N}_2\cdot\text{O}_4 \) has been shown in the laboratory, its actual isolation from the oxidizer used in the field has not been previously reported. This report describes the identification of NTNF as a major constituent in the gel-like material that causes blockage of a filter in the transfer line between the oxidizer transport trailers and the ready storage vessel at Vandenberg AFB.
The stainless steel filter containing the contaminants was obtained from
SIC-IV West at Vandenberg AFB. Approximately 18,000 gal of H$_2$O$_4$ had been
passed through this filter, which was located in the transfer line between the oxidizer
transport trailers and the ready storage vessel. The filter and its contents
had minimum exposure to moisture during removal and were placed in an air-tight
stainless steel container while still copiously evolving NO$_2$. The container
was transported to the laboratory at Aerospace Corporation and then opened in
a dry box under nitrogen atmosphere.

Extraction of the filter contaminants with ethyl acetate and removal of
the solvent yielded a dark amber-brown viscous material. The crude contaminants
were purified by the following procedure: (1) dissolution in ethyl acetate,
(2) filtration, (3) removal of the volatile from the filtrate, and (4) pre-
cipitation with fresh H$_2$O$_4$. This purification process was repeated several
times while excluding moisture to yield a light amber-colored solid. The infra-
red spectrum of this compound (Fig. 1) was taken on a halocarbon null between
polyethylene films since HINF reacted with NaCl when placed directly on the
salt plate and gave extraneous absorptions. Characteristic absorption bands
observed at 2225, 1597, 1550, 1280, 1013, 976, and 765 cm$^{-1}$ are similar to that
reported for HINF. Further, an authentic sample of HINF was prepared from the
reaction of iron powder and H$_2$O$_4$ in ethyl acetate catalyzed by ferric chloride.
This synthetic material yielded an infrared spectrum identical to that for the
iron compound obtained from the filter.

In an analysis of HINFe(NO$_3$)$_4$ iron (Ref. 5), a known quantity of HINF was
dissolved in water. Aliquots were taken, and the iron content of the solution
was determined colorimetrically using a phenanthroline as an indicator on a
Beckman Spectrophotometer DK-2 at 510 mp. The procedure described in ASTM E37-58
was followed. The values were obtained by a comparison with a calibration
curve obtained on standard iron solutions:

Calculated: 16.8%          Found: 16.8%
Figure 1. Infrared Spectrum of Nitrosoy Tetranitratoferrate.
III. RESULTS AND DISCUSSION

Addison, et al. (Ref. 1), have described the synthesis of HMTF by the reaction of \( \text{H}_2\text{O}_4 \) with either iron filings, ferric chloride, or iron pentacarbonyl. Of particular interest is the first reaction involving the metallic iron that resembles in part the corrosion process taking place between \( \text{H}_2\text{O}_4 \) and steel storage tanks. \( \text{H}_2\text{O}_4 \) is reported not to react with metallic iron unless a catalytic quantity of iron chloride is added. However, trace amounts of chlorides are known to be present in all propelant grade \( \text{H}_2\text{O}_4 \). Further, in a synthesis program such as that undertaken by Addison, where a relatively large amount of the product was expected, the formation of parts per million quantity of HMTF could be very easily overlooked. In fact Cain, et al. (Ref. 2), have reported that the presence of iron \( \text{H}_2\text{O}_4 \) can be detected a few hours after the oxidizer is in contact with the metal powder, stainless steel, or carbon steel. This reaction is limited by the solubility of HMTF in the oxidizer, and the reaction stops when the concentration of the iron compounds reaches 1 to 2 ppm (determined as iron).

The reaction product of \( \text{H}_2\text{O}_4 \) and iron, identified by Addison, was later verified by Cain as nitrosyl tetranitratoferrate (HMTF) having the following structure:

\[
\text{HFe}^2(\text{NO}_3)_4
\]

This compound is frequently called ferric nitrate \( \text{H}_2\text{O}_4, \) "adduct" for simplicity. The presence of HMTF even in low concentrations can bring about flow restriction in the laboratory by complete blockage of a Tiny orifice by the deposition of crystalline or gel-like contaminant (Ref. 3). Upon contact with moisture, it is readily converted to hydrated ferric nitrate, nitric acid, and nitrous acids.

The iron contaminants in \( \text{H}_2\text{O}_4 \) can take various forms, such as straw-colored solid, gel, or black oil (Ref. 4), depending on the purity of the material and the water content of the media. Although the exact conditions necessary for the flow restriction process to occur are not completely understood, two factors.
appear to be important, viz., reduction in temperature and the presence of small orifices in the propellant line. The former causes the separation of the adduct out of solution, and the latter, a location for the accumulation of the NTNF. Other factors such as configuration of the orifice, pressure drop, flow rate, and turbulence are also believed to influence the deposition of NTNF.

The isolation and identification of NTNF from the field is difficult due to its extremely hygroscopic nature. This compound is generally converted to hydrated ferric nitrate before it can be transferred to the laboratory for analysis. However, this compound together with other contaminants can be collected by passing a large volume of $N_2O_4$ through fine filters. In this study, by taking precautions to minimize exposure to moisture, the contents of the filter were transferred to the laboratory for analyses. NTNF was isolated and purified by extraction with dry ethyl acetate and reprecipitation with fresh $N_2O_4$. The infrared spectrum of this compound taken on a halocarbon null between polyethylene film (Fig. 1) showed absorption bands essentially identical to that reported for NTNF. Its structure was further verified by comparison of the spectrum of an authentic sample of NTNF prepared by the reaction of iron powder with $N_2O_4$ in ethyl acetate.

Further substantiation of the NTNF structure was carried out by analyses for iron and nitrite ions after hydrolysis and determination of its equivalent weight by titration with a base. The results are in agreement with the structure $NFe(NO_3)_4$.

In addition to NTNF, other contaminants were also found to be collected in the filter. The residue (approximately 20% of total contaminant), after extraction with ethyl acetate, was divided into a water soluble and insoluble portion. The former was found to be primarily ferric nitrate monohydrate, which probably resulted from the hydrolysis of NTNF. The water insoluble fraction consisted of brownish-black magnetic material. An x-ray diffraction pattern taken on this material showed this solid to be a mixture of $Fe_3O_4$ and $Fe_2O_3$.

The major contaminant trapped in the filter has been identified as the ferric nitrate $N_2O_4$ "adduct." A sufficient quantity of this material can be
collected to result in flow restriction in the propellant line of the oxidizer loading unit at the rocket launch site. This iron compound results from the reaction of $\text{H}_2\text{O}_4$ with the iron containing material of construction. Since the oxidizer is manufactured in stainless steel apparatus and transported and stored in either stainless or carbon steel equipment, it appears that all $\text{H}_2\text{O}_4$ (unless specially purified) will contain NMF. Further, if the oxidizer had undergone considerable fluctuation in temperature over an extended period of time, it may contain a much higher quantity of NMF than realized from the solubility data. Under these conditions, it can exist as a separate phase in the oxidizer in the form of a solid, gel, or an oil.

The oxides of iron are believed to result from the action of wet $\text{H}_2\text{O}_4$ with carbon steel. Indications are available which show that when the water content of the oxidizer is high (such as incomplete drying of transport trailers after hydrostatic testing) a larger quantity of iron oxides is observed in the oxidizer.

An aqueous solution of NMF in water was analysed for nitrite ion (Ref. 6) by a colorimetric method using sulfanilic acid and 2-naphthylamine (Griess reagent). The ferric ion which interferes with this analysis was removed with the addition of 1% HF solution. Comparison of the absorption to a standard curve yielded the value for nitrite content.

Calculated: 13.8%  Found: 13.5%

In the determination of equivalent weight, a solution of NMF can be titrated with base to a pH endpoint of 5.7 according to the following equation:

$$\text{HOFe(NO}_3)_4 + 5 \text{OH}^- = \text{Fe(OH)}_3 + 4 \text{NO}_3^- + \text{NO}_2^- + \text{H}_2$$

Equivalent weight of the iron-containing compound from the filter can be calculated by the above equation.

Calculated: 67.8%  Found: 67.3%
REFERENCES


Iron Analysis

5. ASTM Standards Chemical Analysis of Metals; Sampling and Analysis of Metal Bearing Ores, Part 32 (May 1965).

Nitrite Analysis

**Title:** IRON CONTAINING CONTAMINANTS IN H₂O₄

**Authors:** Takimoto, Hideyo H., Densult, Genevieve C., and Marsh, Peter A.

**Abstract:**

The contaminants found in H₂O₄ causing flow blockage at the launch site have been analyzed and identified as nitrosyl tetraenitratoferate. An authentic sample of this material was synthesized in the laboratory for comparison purposes. The corrosive action of the oxidizer on the iron containing materials of constructions results in the formation of this contaminant.
14. KEY WORDS

Nitroyl Tetranitratoferrate
Ferric Nitrate
Ferric Nitrate \cdot \text{H}_2\text{O}_4 \text{ Adduct}
\text{H}_2\text{O}_4 \text{ Contaminant}

10. (continued)

limited because it contains technology restricted by mutual security acts.