AD NUMBER

AD840896

NEW LIMITATION CHANGE

TO

Approved for public release, distribution unlimited

FROM

Distribution authorized to U.S. Gov’t. agencies and their contractors; Administrative/Operational Use; 25 JUL 1967. Other requests shall be referred to Department of the Army, Fort Detrick, MD 21701.

AUTHORITY

SMUFD D/A ltr, 15 Feb 1972

THIS PAGE IS UNCLASSIFIED
TRANSLATION NO. 1916

DATE: 25 July 1967

DEPARTMENT OF THE ARMY
Fort Detrick
Frederick, Maryland
COMPARATIVE INVESTIGATIONS ON THE FILTRATION EFFICIENCY OF MEMBRANE FILTERS

Kolloid Zeitschrift U.E. Polymere
(Kolloid Journal and Polymer Journal)
Article No 788, pp 1-6 [first galley proof]
Mains, 18 April 1967

Ehrenfried Petras

Preussner (1) conducted extensive electron-microscope studies with membrane filter surfaces. He found, among others, that neither the average pore diameter nor the diameter of the largest pores, by itself, is sufficient to define the filtration effectiveness. It therefore seemed a good idea to determine the quality of a larger number of different membrane filter types and products by investigating the filtrates of particle suspensions for comparison.

Material and Method

Filters Tested: Sartorius membrane filter MF 500, MF 250, MF 150; MF 125, MF 100, MF 50, MF 20, MF 15, MF 14, MF 13, MF 10 (diameter 50 mm); millipore filter SM, AA, HA, GS (diameter 47 mm); Gelman filter GA 4, GA 6 (diameter 47 mm). Altogether, at least 20 or 30, and in some cases considerably more filters of every grade and type were tested.

Test Particles: polystyrol latex, diameter 2.05 mm, 1.90 mm, 1.305 mm, 1.171 mm, 0.796 mm, 0.557 mm, 0.365 mm (very kindly made available by the Dow Chemical Co, Midland, Michigan); colanyl green 0 from the Hoechst Dyesulf Factory; normal and inhibition forms of Serratia marcescens, strain 15% from the Gottingen University's Institute of Microbiology.

Preparation of Latex Suspensions: Each case, one drop of latex parent suspension was diluted with 50 ml of a 4% NaCl solution [(1) an extensively particle-free NaCl solution, filtered through Sartorius membrane filter MF 10, was used in all experiments). In a few cases, 2 or 3 drops of the parent suspension had to be used.
Preparation of Colamy Colmy Suspension: A glass rod, at whose end a small quantity of Colamyl Green dough had been glued, was dipped in 50 ml of 4% NaCl solution until the developing suspension became nontransparent.

Preparation of Bacteria Suspensions:

(a) Normal form: After at least 8 days of cultivation at 26°-28° C in a peptone-glucose medium (peptone 0.5%, glucose 0.5%, NaCl 0.9%, FeSO₄ 7 H₂O traces, pH 7.0-7.2; placed in 30-ml Erlenmeyer flasks in 100 ml increments) 1 ml of bacteria suspension (containing about 1·10⁶ cells capable of multiplication) was diluted, in each experiment, with 49 ml of 4% NaCl solution.

(b) Inhibition (Inhibited) form: Normal cells of the test bacteria were incubated at 26°-28° C in 50 ml of nutrient solution (100-ml Erlenmeyer flasks) with the following composition:

Mg(H₂O)PO₄ 4 H₂O 0.15%, KH₂PO₄ 0.05%, K₂HPO₄ 0.05%, MgSO₄ 7 H₂O 0.05%, Asparagin 0.5%, glucose 1%; pH about 7.2. After 5-8 days, the entire matured bacteria population was then used for inoculation of 450 ml of a nutrient solution which, in addition to the abovementioned components, contained 14.8% LiCl. As a result of the rather moderate formation of precipitate, the LiCl concentration of the overall solution was not quite 0.7 molar after inoculation. Incubation took place in upright 1-liter Roux flasks at 20°-21° C. After as little as 24 hours, it was possible to use 1 ml samples, diluted with 49 ml of a 4% NaCl solution, for the testing of the filters. After 10 days of cultivation, the LiCl-containing medium contained a large number of bacteria cells capable of multiplying but some of them by then had already lost their capability of forming dyestuff. According to optical and electron microscope investigations, the bacteria inhibition forms used for filter testing were on the average somewhat shorter and above all they were definitely shimmer than the "normal form" cultivated in the peptone-glucose medium.

Filtration of Particle Suspensions: Increments of 50 ml of particle suspension were suctioned into extensively dust-free, previously carefully cleaned beakers, through the filters to be tested. The filters were clamped in "Coli 5" instruments from the Sartorius Membrane Filter Company, Inc., Gottingen. The metal fritts, which are provided as filter supports or bases in this apparatus, could be cleaned of particles only with great difficulty; this is why an easily cleaned perforated plate was used as filter support in the filtration of later and Colamy Green. For microbiological investigations, the filtration instruments were sterilized in autoclaves.

Particle Size Measurement: The magnitude spectra of the particles contained in the filtrates were determined with the help of a Coulter Counter, Model B (with recorder); (here we have the following dimensions: nozzle diameter 30 mm, 1 aperture current = 1/4 + fine motion = 100; 1/1 amplification = 1, volume per individual measurement = 0.05 ml, calibration of apparatus with latex particles having a diameter of 1.305 and 1.171 mm).
Cultivation Method for Establishment of Bacteria in Filtrates: The filtrates to be tested were filtered through sterile Sartorius membrane filters MF 30 and were incubated at 260-280 C after placing on agar plates (peptone-glucose medium with addition of 1.5% agar). These experiments were always conducted parallel to the corresponding Coulter Counter measurements. There were no contradictory results in any case here.

Results and Discussion

The results of the investigations can essentially be seen in Tables 1 and 2.

Table 1 gives us a general picture of the filtration efficiency of the filters tested. Using the available test particles, it was possible to arrange almost all filter types according to their qualitative nature. Only the membrane filters MF 10 and MF 12 did not allow any type of particle to pass through in measurable quantities. On the basis of the differing mill [zero] rates, registered in connection with the Coulter Counter measurements, it was however possible to determine that the MF 12 was definitely the coarsest of the two.

Table 2 in particular illustrates the relationship between the form and the filterability of the test particles: assuming that the diameter is just about the same, the longitudinal bacteria cells turned out to be just as easily filterable as the latex particles whose volume on the basis of their spherical shape was many times smaller. The Colavyl Green particles, which reached the filtrates, likewise were disproportionately voluminous — obviously as a result of the very high plastic deformability.

The volume of the latex particles used, which was 0.557 mm, is already so small that the particles here, under the experimental conditions described, cannot be measured as individual particles. However, in watery suspensions, latex particles incline toward the formation of particle aggregates. The size of these aggregates, as Preusser determined also by means of the electron microscope (personal communication), is a function of the total particle concentration. Moreover, the Coulter Counter, at high particle concentrations, registers several or many individual particles found simultaneously in the nozzle area as a single, correspondingly larger particle. This so-called coincidence effect is likewise a function of the concentration. It was therefore possible also to establish the presence of latex particles with diameters of 0.557, 0.365, and 0.264 mm; it was thus also possible to use the volumes of the largest "particles" registered in a filtrate in each case as a yardstick for the relative evaluation of the permeability of the filters tested.

The filters made by the Sartorius Membrane Filter Co., Inc, which were tested here proved to be uniform in terms of their quality. The volumes of the largest latex particle aggregates and bacteria cells, registered in the filtrates, differed from each other, assuming we work with filters of the same type, generally by no more than about 0.04 cubic mm.
In the Colanyl Green filtrates, the fluctuations were somewhat greater although this is due obviously to the fact that the particle spectra of the unfiltered pigment suspensions were not completely uniform.

On the other hand, there was quite a bit of difference in the quality of the tested Millipore filter of Type HA and the Gelman filter, Type GA 6. Particles of certain size were completely or almost completely retained by some of these filters while other filters (including those from the same charge [lot]) allowed these particles to pass in moderate or larger quantities. The volumes of the largest particle aggregates and bacteria cells registered in the filtrates of these two filter types differed quite considerably from one experiment to the next, partly by far more than 0.1 cubic mm.

I want to thank Mr. G. Knaig for his extremely conscientious collaboration in these experiments. At the same time I want to express my appreciation to Dr. D. Thom and Dr. R. Oropi from the Sartorius Membrane Filter Co., Inc., Getttingen, and my colleague, Dr. H. J. Preusser, for the discussions and ideas they offered; I am particularly indebted to the latter for the electron-microscope study of the bacterial inhibition forms.

Summary

The filtration effectiveness of a total of 17 Sartorius membrane, Millipore, and Gelman filters was tested through experiments for test particles of varying form and size, suspended in a 4% watery NaCl solution (latex, Colanyl Green, and bacteria cells). This was done by means of electronic and microbiological filtrate analyses. The most important investigation results are compiled in the form of tables and are briefly discussed.

Author's Address: Dr. Hermann Petras, Institut für Aerobiologie
 3949 Grafschaft, Sauerland
Table 1. Permeability of Sartorius Membrane, Millipore, and Gelman Filters for Particles of Different Shape and Size Suspended in a 4% NaCl Solution

<table>
<thead>
<tr>
<th>Filter Type</th>
<th>Latex ϕ</th>
<th>Latex ϕ</th>
<th>Latex ϕ</th>
<th>Latex ϕ</th>
<th>Latex ϕ</th>
<th>Colanry Green</th>
<th>Serrata marcescens</th>
<th>Normal form</th>
<th>Hemm form</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) MF 500</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>MilliporeSM</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MF 150</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>GelmanGA4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MF 125</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MilliporeAA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MF 100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MilliporeHA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>GelmanGA8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MF 50</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MilliporeGS</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MF 30</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MF 12</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MF 12</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MF 10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Key:
- **a.** filter type
- **b.** Colanry Green
- **c.** Serrata marcescens/normal forms
- **d.** Serrata marcescens/inhibition forms
- **+** = Particles definitely established in filtrate
- **-** = No particles established in filtrate
- **(+)** = Only very small particle quantities established in filtrate
- **(-)** = Complete absence of small particle quantities not definitely established
- **(+)** = Filtration effectiveness differs from filter to filter.

For latex particles with diameter of 0.264 mm the same filters proved to be permeable as for latex particles with a diameter of 0.365 mm.
<table>
<thead>
<tr>
<th>Filter type designation</th>
<th>Volume of largest particles and particle aggregates registered in the filtrate</th>
<th>Diameter</th>
<th>Volume</th>
<th>Volume of largest particles registered in the filtrate</th>
<th>Volume of largest normal forms registered in the filtrate</th>
<th>Volume of largest inhibition forms registered in filtrate</th>
<th>Not investigated</th>
</tr>
</thead>
<tbody>
<tr>
<td>MF 500</td>
<td>2.05</td>
<td>4.401</td>
<td>0.67</td>
<td></td>
<td></td>
<td></td>
<td>(k)</td>
</tr>
<tr>
<td>Millipore GM</td>
<td>1.306</td>
<td>1.184</td>
<td>2.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MF 250</td>
<td>1.306</td>
<td>1.184</td>
<td>2.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MF 150</td>
<td>1.171</td>
<td>0.941</td>
<td>1.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geiman GA 49</td>
<td>0.798</td>
<td>0.224</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MF 150</td>
<td>0.798</td>
<td>0.224</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Millipore AA</td>
<td>0.587</td>
<td>0.080</td>
<td>1.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MF 100</td>
<td>0.537</td>
<td>0.080</td>
<td>1.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Millipore HA1</td>
<td>0.365</td>
<td>0.025</td>
<td>1.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geiman GA 99</td>
<td>0.365</td>
<td>0.025</td>
<td>1.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MF 80</td>
<td>0.365</td>
<td>0.025</td>
<td>1.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Millipore GS</td>
<td>0.365</td>
<td>0.025</td>
<td>1.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MF 40</td>
<td>0.355</td>
<td>0.025</td>
<td>1.37</td>
<td>(1.37)(k)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MF 15</td>
<td>0.18 (0.27)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MF 14</td>
<td>0.10 (0.21)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MF 13</td>
<td>0.065 (0.15)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MF 10</td>
<td>0.010 (0.01)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: a. Filter type designation and average pore diameter given by manufacturer; b. Test particle; c. Colony green; d. Size of test particles (average value).
(4) Considerable quality differences from one filter to the next, also within one and the same lot.

(5) Filtrate only very slightly stained [dyed].

(6) Filtrate colorless. Here we measured only the colorless spherical particles coming from the Colanyl Green preparation used.