AD NUMBER

| AD838004 |

LIMITATION CHANGES

TO:

Approved for public release; distribution is unlimited.

FROM:

Distribution authorized to DoD only; Test and Evaluation; APR 1968. Other requests shall be referred to Army Materiel Command, Attn: AMCPM-IR, PO Box 209, Main Office, St. Louis, MO 63166.

AUTHORITY

usaavscom ltr, 12 nov 1973

THIS PAGE IS UNCLASSIFIED
ENGINEERING FLIGHT TEST
OF THE AH-1G HELICOPTER EQUIPPED WITH
THE XM-28 CHIN TURRET WITH ONE 7.62MM AUTOMATIC GUN (M-134)
AND ONE 40MM GRENADE LAUNCHER (XM-129) HYBRID

PHASE B • PART 8

FINAL REPORT

PETER V. PASSINISI WILLIAM J. CONNOR
SP5 CW4, AV
US ARMY US ARMY
PROJECT ENGINEER PROJECT OFFICER/PILOT

APRIL 1968
STATEMENT 44 UNCLASSIFIED

Each transmittal of this document outside the Department of
Defense must have prior approval of the
US Army Material Command
Attn: AMC-PM-IR
P.O. Box 209 Main Office
St. Louis, Missouri 63166

US ARMY AVIATION TEST ACTIVITY
EDWARDS AIR FORCE BASE, CALIFORNIA 93523
DDC Availability Notice

US military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through the Commanding General, Hq, US Army Materiel Command (USAMC), ATTN: AMCPM-IR, St. Louis, Missouri 63166.

Reproduction Limitations

Reproduction of this document in whole or in part is prohibited except with permission obtained through the Commanding General, Hq, USAMC, ATTN: AMCPM-IR, St. Louis, Missouri 63166. DDC is authorized to reproduce the document for United States Government purposes.

Disposition Instructions

Destroy this report when it is no longer needed. Do not return it to the originator.

Trade Names

The use of trade names in this report does not constitute an official endorsement or approval of the use of the commercial hardware and software.

Distribution

This document may be further distributed by any holder only with specific prior approval obtained through the Commanding General, Hq, USAMC, ATTN: AMCPM-IR, St. Louis, Missouri 63166.
ENGINEERING FLIGHT TEST OF
THE AH-1G HELICOPTER EQUIPPED WITH
THE XM-28 CHIN TURRET WITH ONE 7.62mm
AUTOMATIC GUN (M-134) AND ONE 40mm GRENADE
LAUNCHER (XM-129)-HYBRID

PHASE B
PART 5

FINAL REPORT

PETER V. PASSINISI
SP5
US ARMY
PROJECT ENGINEER

WILLIAM J. CONNOR
CW4, AV
US ARMY
PROJECT OFFICER/PILOT

APRIL 1968

US ARMY AVIATION TEST ACTIVITY
EDWARDS AIR FORCE BASE, CALIFORNIA 93523

iii
ABSTRACT

Part 5 of the AH-1G helicopter Phase B test was conducted at Yuma Proving Ground, Yuma, Arizona, from 6 through 9 February 1968 by the US Army Aviation Test Activity, Edwards Air Force Base, California. The test consisted of firing the XM-28 chin turret, with one 7.62 millimeter automatic gun (M-134) and one 40 millimeter grenade launcher (XM-129) to determine the weapons system's effect on the stability and control characteristics of the helicopter. No safety of flight restrictions resulted from firing this system within the flight envelope. Correction of four deficiencies is mandatory to provide acceptable mission effectiveness and safety. These deficiencies are the inadequate forward visibility from the pilot's cockpit due to the N-9A gunsight installation, the lack of a fire warning system, the lack of a standby generator for IFR flight, and link jam malfunctions of the minigun during symmetrical pull-out maneuvers. Fifteen shortcomings, for which correction is desirable, limit mission effectiveness. The reliability of the weapons system was questionable and service type testing should be conducted prior to system acceptance. Correction of the deficiencies is mandatory and should be tested prior to deployment. Shortcomings, for which correction is desirable, should be corrected on a high priority basis.
FOREWORD

During the conduct of the AH-1G helicopter Phase B, Part 5 test at Yuma, Arizona, the test helicopter with installed special instrumentation was maintained by Bell Helicopter Company personnel. Data reduction assistance was also provided by Bell Helicopter Company personnel. US Army firing ranges, hanger and office facilities at Yuma Proving Ground, Arizona were utilized.
TABLE OF CONTENTS

INTRODUCTION

- Background ... 1
- Test Objectives 1
- Description 1
- Scope of Test 2
- Methods of Test 4
- Chronology 5

RESULTS AND DISCUSSION

Firing Tests
- General ... 6
- Yaw and Pitch Axis Reactions 6
- Roll Axis Reaction 7

Cockpit Evaluation
- Pilot's Cockpit 8
- Copilot/gunner's Cockpit 9

Mission Suitability
- Aircraft .. 10
 - Fire Warning System 9
 - Electrical System 9
 - Weapons System 9
- Maintenance Suitability 11
- Aircraft .. 11
- Weapons System 11

CONCLUSIONS

- General .. 12
- Deficiencies and Shortcomings Affecting Mission Accomplishment 12

RECOMMENDATIONS 14

APPENDIXES

I. References .. 15
II. Test Data ... 16
III. Flight Restrictions and Operating Procedures 38
IV. Pilot's Rating Scale 39
V. Test Instrumentation 41
VI. Photographs 42
VII. Distribution 43
INTRODUCTION

BACKGROUND

1. The XM-28 chin turret was designed to accommodate three basic weapons' configurations. These configurations are: (1) two 7.62 millimeter automatic guns M-134 (miniguns); (2) two 40 millimeter grenade launchers XM-129 (launchers); and (3) one 7.62 millimeter automatic gun M-134 and one 40 millimeter grenade launcher XM-129. The third configuration, hereafter referred to as the Hybrid, is capable of operating with either gun on the right or left side of the turret. Configurations (1) and (2) were previously flight tested by the US Army Aviation Test Activity (USAAVNTA) and the results of these tests are contained in references 1 and 2, appendix I. This test, directed by references 3 and 4, appendix I, was conducted with the Hybrid configuration and completes the engineering flight tests of the XM-28 chin turret.

TEST OBJECTIVES

2. The objectives of this test were to provide flight test data to:

 a. To assist in determining if the contractor's proposed flight envelope should be used by Army pilots for future service tests, logistic tests, or operational tests.

 b. Define any helicopter or weapons system deficiencies to allow early correction.

 c. Provide a basis for evaluation of subsequent changes incorporated to correct deficiencies.

 d. Determine the aircraft and weapon system capabilities to perform their intended mission.

DESCRIPTION

3. The AH-1G helicopter, manufactured by Bell Helicopter Company, is a tandem, two-place, high speed conventional helicopter with a two-bladed door hinge type main rotor and a conventional antitorque rotor. The helicopter was designed specifically for the attack mission from a land based operation and is capable of operating under day/night visual or instrument flight conditions. The AH-1G is equipped with a three axes stability and control augmentation system to improve helicopter stability
and control characteristics. The powerplant is a Lycoming T53L-13 turbo-shaft engine rated at 1400 shaft horsepower (shp) at sea level under standard day static conditions. The engine is pilot limited to 1100 shp due to the maximum torque limits of the helicopter's main transmission. The distinctive features of the AH-1G are the narrow fuselage (36 inches), the stub mid-wings with four external stores stations and the integral XM-28 chin turret. The flight control system is a positive mechanical irreversible type with conventional helicopter controls in the pilot's aft cockpit. The copilot/gunner's controls in the forward cockpit consist of conventional antitorque pedals and sideward collective and cyclic controls. An electrical force trim system is connected to the cyclic and directional controls to induce artificial feel and to provide positive control centering. A synchronized elevator is used to improve static longitudinal stability and increase the center of gravity (C.G.) range. The test helicopter, AH-1G serial number 66-15283, was representative of production helicopters. A complete aircraft description is contained in references 5 and 6, appendix I.

4. The XM-28 chin turret with the Hybrid weapons system incorporates one 7.62 millimeter automatic gun (M-134) and one 40 millimeter grenade launcher (XM-129). The system is hydraulically and electrically operated and is fully flexible. A copilot/gunner's sighting station is provided for the purpose of tracking and firing the turret guns. Maximum turret positions are 107.5-degrees left and right azimuths, 50-degrees depression and 12-degrees to 17.5-degrees elevation. The pilot can control and fire the weapons system from a forward stowed position, only. Rates of fire of the 7.62 millimeter automatic gun are 1300 and 4000 rounds per minute. Either rate may be selected by the copilot/gunner or pilot. Continuous fire is limited to 6 second bursts by an automatic burst limiter to prevent overheating of the weapon. The 40 millimeter grenade launcher has a rate of fire of 400 rounds per minute and is automatically limited to 10 second bursts. Although separate switches are provided for selecting minigun or launcher fire the system is designed to fire one weapon at a time. Should both switches be depressed simultaneously an overriding feature will allow only the minigun to fire. A full complement of ammunition consists of 4000 rounds of 7.62 millimeter and 300 rounds of 40 millimeter.

SCOPE OF TEST

5. Flight testing of the Hybrid weapons system was conducted to evaluate the system's firing effects on the stability and control characteristics of the AH-1G helicopter. Weapon configurations and turret positions tested are presented in tables 1 and 2.
Table 1. Hybrid Configurations.

Table 2. Turret Positions.

6. Four flights were conducted for a total of 7.1 hours of flying time. The flight restrictions and operating limitations stated by Flight Standards Office, AVCOM were observed during this test and are summarized in appendix III. A safety of flight release (ref 7, app I) was issued by US Army Aviation Materiel Command (USAAVCOM), St. Louis, Missouri. During the test approximately 15,500 rounds of 7.62 millimeter and 630 rounds of 40 millimeter ammunition were expended. Test C.G. locations are presented in figure 1, appendix II. An airspeed calibration for this aircraft was conducted during the Phase B, Part III test (ref 1, app I) and the results are presented in figure 21, appendix II. Flight test conditions are presented in table 3.
Table 3. Flight Test Conditions.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Weapon</th>
<th>Airspeed (KIAS)</th>
<th>Turret Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Minigun</td>
<td>Hover</td>
<td>1, 2, 3, 7, 8, 9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>130</td>
<td>1, 2, 3, 4, 5, 6, 7, 9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>176</td>
<td>1, 2, 3, 4, 5, 6, 7, 9</td>
</tr>
<tr>
<td>B</td>
<td>Minigun</td>
<td>Hover</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>130</td>
<td>1, 2, 3, 4, 5, 6, 7, 9</td>
</tr>
<tr>
<td>A</td>
<td>Launcher</td>
<td>130</td>
<td>1, 2, 3, 4, 5, 6, 7, 9</td>
</tr>
</tbody>
</table>

Gross Weight Range: 7360 to 8480 lb; C.G. Range: 196.6 to 199.3 in FRL; Density Altitude: 1500 to 3400 ft; Rotor Speed: 324 rpm. Instrumentation pods installed on outboard wing stations.

METHODS OF TEST

7. Stability and control data were obtained using standard engineering flight test methods. All firing was initiated from steady heading, balanced flight at stabilized airspeed of 130 KIAS (a representative attack airspeed), 180 KIAS (V_{limit}) or from hovering flight out of ground effect (OGE). The tests were conducted at an aft C.G. and light gross weight to attain maximum reactions on stability and control. The majority of the tests were conducted with the minigun firing at the high rate since previous tests (ref 1 and 2, app I) show greater aircraft reactions when firing this weapon.

8. Oscillograph and cockpit data were recorded with the flight controls fixed and free. The control-fixed method was used to evaluate the effects of the weapons firing upon the stability and control parameters and the control-free method was used to evaluate the pilot's ability and workload in maintaining the initial trim flight condition. Qualitative ratings of flying qualities are based on the Pilot Rating Scale (PRS) presented as appendix IV. A list of test instrumentation is contained in appendix V.

9. Various factors, such as turret position, airspeed and physical location of the weapon, i.e. configuration A or B, affect the aircraft's reaction to the single firing of dual mounted weapons. In an attempt to isolate these factors, the test was conducted in the sequence listed below.
a. Fire all turret positions at one airspeed.
b. Vary airspeed and fire one turret position.
c. Change weapon configurations and spot check selected turret positions.

CHRONOLOGY

10. The chronology of this test is as follows:

Test directive received 20 October 1967
Test helicopter received 6 February 1968
Flight tests commenced 6 February 1968
Flight test completed 9 February 1968
Draft report submitted 4 March 1968
Final report forwarded April 1968
RESULTS AND DISCUSSION

FIRING TESTS

General

11. Firing tests were conducted in the test configurations listed in paragraphs 5 and 6 to determine the effects of the XM-28 Hybrid weapons system firing on the stability and control characteristics of the AH-1G helicopter. Yaw and pitch axes firing reactions were small at all conditions tested and required only minor pilot compensation to maintain the desired flight condition. Roll axis firing reactions were also small, however, the aircraft exhibited an oscillatory roll response to all firing and considerable pilot compensation in lateral control was required to maintain the initial trim flight condition. Although the lateral reactions and control corrections were insignificant regarding safety of flight, the pilot effort required to damp the roll oscillation will have a detrimental effect on rocket gunnery where a stable gun platform is necessary for firing accuracy.

12. The effects of the weapons firing (flight controls fixed) on the stability and control parameters are presented as time histories in figures 2 thru 19, appendix II. Figures 2 thru 15 are the results of firing the minigun in configurations A and B. Figures 16 thru 19 are the results of launcher firing in configuration A. All extreme minigun turret positions are presented with the exception of 90-degree left azimuth, full down depression. In this position a trigger switch malfunction prevented the copilot/gunner from firing the minigun at the high rate of fire. Previous testing (ref 1, app I) indicated that no safety of flight restrictions existed from firing two miniguns simultaneously from this turret position.

Yaw and Pitch Axes Reactions

13. Yaw and pitch axes reactions to the minigun and launcher firing were determined for the turret positions and flight conditions listed in tables 1, 2 and 3. The rates at 0.5 seconds after start of firing (a representative pilot reaction time) and the maximum rates that occurred during the firing sequence are presented in table 4. Under all conditions tested the yaw and pitch axes reactions were very small and should not create a target tracking problem to the copilot/gunner or the pilot (PRS A3, app IV).
Table 4. Yaw and Pitch Rates.

<table>
<thead>
<tr>
<th>Airespent KCAS</th>
<th>Weapon and Turret Position</th>
<th>Yaw Rates °/sec</th>
<th>Pitch Rates °/sec</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Rate at 0.5 sec</td>
<td>Maximum Rate and time (sec)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rate at 0.5 (sec)</td>
<td>Maximum Rate and time (sec)</td>
</tr>
<tr>
<td>128</td>
<td>Minigun 0° azimuth full up elevation</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0 down</td>
<td>2.0 down, 0.5 sec</td>
</tr>
<tr>
<td>179</td>
<td>Minigun 90° right, 0° elevation</td>
<td>2.0 left</td>
<td>--</td>
</tr>
<tr>
<td>Hover</td>
<td>Minigun 90° azimuth, 0° elevation</td>
<td>-- 3.2 right, 2.25</td>
<td>--</td>
</tr>
</tbody>
</table>

14. The pilot compensation for longitudinal and directional control to maintain steady heading, balanced flight is presented as a time history in figure 20, appendix II. With the minigun firing at a turret position of 90-degrees right azimuth, full up elevation, the yaw rates and attitudes were arrested and stabilized within 4 seconds with two inputs of longitudinal control and one input of pedal control. The reactions were easily compensated for by the pilot without over controlling (PRS A3).

15. Yaw axes reactions resulting from firing the minigun from a position off the longitudinal axis of the aircraft were also small. The maximum yaw reactions resulting from asymmetric firing occurred in hovering flight and were not objectionable. Hover firing tests were conducted with the minigun in configuration A and B and no significant changes in asymmetric firing reactions were noted. The yaw reaction obtained at 128 KCAS was .2 degrees per second left yaw rate and was not perceptible to the pilot (PRS A1, app IV).

Roll Axis Reaction

16. Roll axis reactions (flight controls fixed) to the minigun and launcher firing are included in figures 2 thru 19, appendix II. Under all firing conditions tested, the roll rates were small and did not cause any unsafe flight condition. The maximum
roll rate was 6-degree/sec right and occurred after 1 second of minigun firing from a turret position of 90-degree right azimuth, full down depression.

17. Although the roll rates were small, the data indicated that regardless of weapon, turret position, or airspeed, firing caused a roll oscillation. This indicated weak roll damping. The pilot effort required to damp this oscillatory roll response is presented in figure 2u, appendix II. The data show numerous inputs of lateral control as the pilot attempted to maintain steady-heading, balanced flight. Although the pilot was able to return the aircraft to the original trim attitude in 3.5 seconds, continuous lateral corrections were required throughout the firing sequence to damp the roll oscillation. Stabilizing the helicopter in roll attitude required considerable pilot compensation and even greater pilot effort would be required if the turret weapon was traversed while firing (PRS A5, app IV). The pilot effort required to maintain a desired roll attitude adversely affects rocket gunnery, in that full pilot attention must be given to gunnery techniques and to the tactical situation in order to achieve satisfactory accuracy. An increase in lateral damping is desirable for improved operation and mission accomplishment.

COCKPIT EVALUATION

Pilot’s Cockpit

18. With the pilot’s seat in upper most position, the pilot’s forward visibility is obstructed by the N-9 pilot’s gun sight. This restriction to forward vision is particularly noticeable during contour flying and the final portion of approaches to a landing. During normal approaches, where peripheral visual cues to the intended landing area are not available, the pilot must fly the aircraft in a 5 to 10-degree sideslip during the final portion of the approach to compensate for the visual obstruction (PRS A5, app IV). During autorotative approaches, this sideslip technique cannot be employed and the pilot cannot observe his intended landing area during the flare just prior to touchdown. Because of the reduced visibility, the pilot compensation required to perform an autorotative landing during daylight hours was excessive (PRS A6, app IV). During night operations, when visibility is already restrictive, it is doubtful that repeatable successful touchdown autorotations can be accomplished even under ideal conditions (PRS U7, app IV). An increase in forward cockpit visibility is mandatory for satisfactory operation and mission accomplishment. The
shortcomings noted in reference 1, appendix I, concerning the
headphone jack cord and the smoke grenade dispenser switch have
not been corrected and were still applicable.

Copilot/gunner's Cockpit

19. Entry and egress to the copilot/gunner's cockpit was dif-
ficult. The one single step is located 38 inches from ground
level at a position too high for comfortable use. An individual
of average size, wearing combat dress i.e. flak jacket, chest
protector and sidearm, would require assistance from a ground
crewman to gain entry to the cockpit. An additional lower
step is desirable for improved entry and egress to the copilot/
gunner's cockpit.

20. The copilot/gunner's cockpit was identical to the one
evaluated in references 1 and 2, appendix I. The shortcomings
noted in reference 1, appendix I, concerning sight interference,
non distinct positions of the trigger switches and mislocation
of functional switches have not been corrected and are still
applicable.

MISSION SUITABILITY

Aircraft

Fire Warning System

21. A fire warning system is not provided on production AH-1G
helicopters. Installation of a fire warning system is mandatory
to accomplish the intended combat mission with a satisfactory
degree of safety.

Electrical System

22. The AH-1G helicopter is equipped with one 300 amp generator.
A generator failure will preclude satisfactory completion of
an attack mission, and during instrument flight operations may
preclude safe return of the aircraft. Incorporation of a standby
generator is desirable for day/night visual operations and is
mandatory for mission requiring instrument flight.

Weapons System

23. Prior to this test several stoppages of the minigun were
encountered during tests by Bell Helicopter Company. The stop-
pages occurred when ammunition links jammed in the link ejection
chute and prevented the weapon from firing. The link jams occurred
when the minigun was configured on the right side, with the turret position as 90-degree left azimuth, full down depression, and while maneuvering the aircraft in a high speed symmetrical pull-out and firing at the high rate of 4000 rounds/minute. This maneuver was repeated four times during this test using a low rate of fire (1300 round per minute). Stoppage occurred each time. Link jams were the cause of three malfunctions. The cause of the fourth stoppage was unknown. The weapons system contractor's representative stated that the probable reason this particular malfunction did not occur during the twin minigun testing (ref 1, app I) was the difference in link ejection chutes. A prototype link ejection chute was used during the twin minigun tests while a production link ejection chute was installed for this test. Correction of the link jam malfunction is mandatory for satisfactory operation and mission accomplishment.

24. During the conduct of this test 13 malfunctions occurred while expending 15,500 rounds of 7.62 millimeter ammunition and 650 rounds of 40 millimeter ammunition indicating poor reliability of the weapons system. Although a portion of these malfunctions could have been the result of defective ammunition and ammunition linkage this reasoning was not substantiated during this test. It is recommended that service testing be conducted prior to system acceptance to determine if the Hybrid weapons system's reliability is satisfactory for operation and mission accomplishment.

MAINTENANCE SUITABILITY

Aircraft

25. The following shortcomings noted in reference 1, appendix I, were not corrected and were still applicable.

a. The 90-degree gear box and mount casting are not easily accessible for daily inspections.

b. The lack of hand holds to assist in rotor head daily inspections.

c. An inadequate amount of non-skid type material installed on the stub wings.

d. The lack of main rotor droop stops to prevent main rotor head mast damage.

e. The throttle linkage, electrical wiring and oil cooler are not easily accessible for daily inspections.
26. The 40 millimeter ammunition chute links, located closest to the weapon, wear excessively in comparison to the remainder of the chuting. Previous testing has indicated an ammunition chute service life of approximately 2,000 rounds. This service life could be extended considerably if the first four links of the chuting were constructed of heavier gauge metal. Correction is desirable for improved operation and mission accomplishment.

27. Two stoppages of the minigun were caused by crossover system jams. The latches on the crossover mechanism failed during both malfunctions and allowed 25 to 100 rounds of 7.62 millimeter ammunition to jam between the ammunition cans and the top of the ammunition compartment. An excessive amount of time (30 minutes to an hour) and considerable physical force with a long screwdriver and hammer was required to correct these malfunctions. Damage could easily occur to the weapons system and/or the aircraft because of the method in which the jam must be cleared. A redesign of the system to prevent the ammunition from leaving the container during a crossover malfunction is desirable for improved operation and mission accomplishment.

28. During this test the weapons system contractor's representative replaced the grenade launcher drive cable after three weapon jams. The contractor's representative stated that from previous testing it was found that the cable could only withstand approximately three jams before breaking. An increase in the service life of the drive cable is desirable for improved operation and mission accomplishment.

29. The following deficiencies and shortcomings noted in references 1 and 2, appendix I, were not corrected and were still applicable.

 a. The ammunition feeder roll pins on the minigun had an excessively short service life.

 b. The lack of a guide for the minigun ammunition chute to prevent damage to chute during loading operations.

 c. The ammunition loading tool for the grenade launcher is inadequate.

 d. Separation of the teflon covering on the ammunition bay guide rails.

 e. Excessive wear of grenade launcher's rear gun mounts.
CONCLUSIONS

GENERAL

30. The following conclusions were reached upon completion of firing tests of the XM-28 Hybrid installation on the AH-1G helicopter.

a. No safety of flights restrictions resulted from firing the XM-28 Hybrid installation within the flight envelope (para 16).

b. The intended mission of the AH-1G helicopter as a weapons platform is degraded by inadequate roll damping (para 17).

DEFICIENCIES AND SHORTCOMINGS AFFECTING MISSION ACCOMPLISHMENT

31. Correction of the following deficiencies is mandatory prior to further acceptance of the aircraft and/or acceptance of the weapons system.

a. Inadequate forward visibility from the pilot's cockpit during contour flying and approaches (para 18).

b. Lack of a fire warning system (para 21).

c. Lack of a standby generator for instrument flight (para 22).

d. Link jam malfunctions of the minigun during symmetrical pull-out maneuvers (para 23).

32. Correction of the following shortcomings is desirable for improved operation and mission accomplishment.

a. Inadequate roll damping (para 17).

b. Excessive length of the pilot's headphone jack cord allows entanglement with the collective control (para 18).

c. The XM-20 smoke grenade dispenser switch can only be operated when the Master Arm Switch is in "ARMED" position (para 18).
d. Difficult entry and egress to the copilot/gunner's cockpit (para 19).

e. When stowed, the flexible copilot/gunner's sight interfered with the gunner's right leg (para 20).

f. The lead angle compensation switch and the gun selector switch, both located on the copilot/gunner's sight mounting, were unguarded and can be accidentally actuated (para 20).

g. Lack of a standby generator for day/night visual flight operations (para 22).

h. The 90-degree gear box and mount casting were not easily accessible for daily inspection (para 25a).

i. The lack of hand holds to assist in rotor head daily inspections (para 25b).

j. Inadequate amount of non-skid type material installed on the stub wings (para 25c).

k. The lack of main rotor droop stops to prevent main rotor mast damage (para 25d).

l. The throttle linkage, electrical wiring and oil cooler were not easily accessible for daily inspections (para 25c).

m. Short service life of the grenade launcher ammunition chute (para 26).

n. Clearance of minigun crossover jams is time consuming to clear and clearance can result in damage to the weapons system and/or the aircraft (para 27).

o. Short service life of the grenade launcher drive cable (para 28).
RECOMMENDATIONS

33. Service testing should be conducted prior to system acceptance to determine if the Hybrid weapons system's reliability is satisfactory for operation and mission accomplishment (para 24).

34. The deficiencies for which correction is mandatory should be corrected prior to further aircraft acceptance and/or acceptance of the weapons system.

35. The shortcoming for which correction is desirable should be corrected on a high priority basis.
APPENDIX I REFERENCES

Figure No. 2

XM-28 (ONE GAU-2B/A MINIGUN) FIRING

AH-1G USA S/N 66-15283

<table>
<thead>
<tr>
<th>AIRSPEED ~ KNOTS</th>
<th>GROSS WEIGHT ~ LBS</th>
<th>C.G. STATION ~ IN.</th>
<th>APPROXIMATE DENSITY ALTITUDE ~ FT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>130</td>
<td>8185</td>
<td>1976</td>
<td>2800</td>
</tr>
</tbody>
</table>

Longitudinal Cyclic

Pedal

Lateral Cyclic

Pitch Scas

Roll Scas

Yaw Scas

Pitch Rate

Roll Rate

Yaw Rate

Pitch Attitude

Yaw Attitude

Roll Attitude

Load Factor

Load and Yaw Attitude

Pitch and Roll Rate

Time ~ Seconds

-1 0 1 2 3 4 5 6
APPROXIMATE DENSITY ALTITUDE

| FT. | 2800 |

ROTOR SPEED

| RPM | 324 |

CONFIGURATION

<table>
<thead>
<tr>
<th>INSTRUMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PODS OUTBOARD</td>
</tr>
</tbody>
</table>

NOTES:

1. TURRET POSITION
 - 90° LEFT AZIMUTH
 - FULL UP ELEVATION

2. MINIGUN FIRING AT
 - HIGH RATE (1000 ROUNDS/MIN)

3. DENSITY ALTITUDE IS
 - BASED ON UNCALIBRATED FREE AIR TEMPERATURE

4. ENGINE OUTPUT POWER
 - APPROXIMATELY
 - 760 SHP (SHAFT HORSEPOWER)

5. CONFIGURATION A
No. 3 MINIGUN FIRING

<table>
<thead>
<tr>
<th>APPROXIMATE DENSITY ALTITUDE</th>
<th>ROTOR SPEED</th>
<th>CONFIGURATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>~FT. 1760</td>
<td>~ RPM 324</td>
<td>INSTRUMENTATION PODS OUTBOARD</td>
</tr>
</tbody>
</table>

NOTES:

1. TURRET POSITION ZERO AZIMUTH PULL UP ELEVATION
2. MINIGUN FIRING AT HIGH RATE (1000 ROUNDS/MIN)
3. DENSITY ALTITUDE IS BASED ON UNCALIBRATED FREE AIR TEMPERATURE
4. ENGINE OUTPUT POWER APPROXIMATELY 750 SHAFT HORSEPOWER
5. CONFIGURATION A
Figure No. 4
XM-28 (ONE GAU-2B/A MINIGUN) FIRING

AH-1G USA S/N 66-15285

<table>
<thead>
<tr>
<th>AIRSPEED ~ KNOTS</th>
<th>GROSS WEIGHT ~ LBS</th>
<th>C.G. STATION ~ IN.</th>
<th>APPROXIMATE DENSITY ALTITUDE ~ FT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>8220</td>
<td>1974</td>
<td>2900</td>
</tr>
</tbody>
</table>

- LATERAL CYCLIC AND PEDAL
 - LEFT 40 %
 - RIGHT 80 %
 - PEDAL 80 %

- SCAS ACTUATOR
 - PITCH 50 %
 - ROLL 0 %
 - YAW 0 %

- PITCH, ROLL, YAW RATE
 - PITCH 10 %
 - ROLL 0 %
 - YAW 0 %

- PITCH ATTITUDE
 - UP 20°
 - DOWN 20°

- ROLL ATTITUDE
 - LEFT 20°
 - RIGHT 20°

- LOAD FACTOR
 - 1.5

Start FIRING
Stop FIRING

Longitudinal Cyclic
Lateral Cyclic
Pitch Scas
Roll Scas
Pitch Rate
Yaw Rate
Roll Rate
Load Factor

Time ~ Seconds
TEST NO: 4

MINIGUN Firing

Serial No.: 15283

<table>
<thead>
<tr>
<th>APPROXIMATE DENSITY ALTITUDE (FT.)</th>
<th>ROTOR SPEED (R.P.M.)</th>
<th>CONFIGURATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2900</td>
<td></td>
</tr>
</tbody>
</table>

INSTRUMENTATION
- PODS OUTBOARD
- STOP FIRING
- PITCH SCAS
- ROLL SCAS
- PITCH RATE

NOTES:
1. TURRET POSITION 90° RIGHT AZIMUTH, FULL UP ELEVATION
2. MINIGUN FIRING AT HIGH RATE (4000 ROUNDS/MIN)
3. DENSITY ALTITUDE IS BASED ON UNCALIBRATED FREE AIR TEMPERATURE
4. ENGINE OUTPUT POWER APPROXIMATELY 760 SHAFT HORSEPOWER
5. CONFIGURATION A

- SECONDS
NOTES:
1. TURFLE POSITION 90° RIGHT AXIOMTH
 HEAD ELEVATION
2. MINIGUN FIRING AT HIGH RATE (5000 ROUNDS/MM)
3. DENSITY ALTITUDE IS BASED ON UNCALIBRATED
 FREE AIR TEMPERATURE.
4. ENGINE OUTPUT POWER APPROXIMATELY 750 SHAFT HORSEPOWER.
5. CONFIGURATION A.
Figure No. 6
XM-28 (One GAU-28/A Minigun) Firing

<table>
<thead>
<tr>
<th>Airspeed</th>
<th>Gross Weight</th>
<th>CG Location</th>
<th>Approximate Density Altitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>~ KNOTS</td>
<td>~ LB/130</td>
<td>~ IN. 1975</td>
<td>~ FT. 2600</td>
</tr>
</tbody>
</table>

Lateral Cyclic and Pedal
- Percent: Left 0, Right 8

Longitudinal Cyclic
- Percent: Front 0, Rear 8

Yaw Scas
- Percent: Left 0, Right 8

Pitch Scas
- Percent: Front 0, Rear 8

Roll Scas
- Percent: Left 0, Right 8

Roll Rate
- Percent: Left 0, Right 8

Yaw Rate
- Percent: Left 0, Right 8

Pitch Rate
- Percent: Left 0, Right 8

Roll Attitude
- Percent: Left 0, Right 8

Yaw Attitude
- Percent: Left 0, Right 8

Pitch Attitude
- Percent: Left 0, Right 8

Load Factor
- Percent: Left 0, Right 8

Time ~ Seconds

- 0
- 1
- 2
- 3
- 4
- 5
- 6
<table>
<thead>
<tr>
<th>Approximate Density Altitude (ft)</th>
<th>Rotor Speed (RPM)</th>
<th>Configuration</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Instrumentation
- Pods Outboard

Notes:

1. Vehicle position 120° right azimuth full down slant.
2. Minigun firing at high rate (200 rounds/min).
3. Density mixture is based on calibrated free air temperature.
4. Engine output power approximately 760 shaft horsepower.
5. Configuration A.
Figure No. 7
XM-28 (ONE GAU-28/A MINIGUN) FIRING

AH-1G USA S/N 66-15265

<table>
<thead>
<tr>
<th>AIRSPEED ~ KNOTS</th>
<th>GROSS WEIGHT ~ LBS.</th>
<th>C.G. STATION ~ IN.</th>
<th>APPROXIMATE DENSITY ALTITUDE ~ FT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>8275</td>
<td>1975</td>
<td>2700</td>
</tr>
</tbody>
</table>

LONGITUDINAL CYCLIC

PEDAL

LATERAL CYCLIC

START FIRING

STOP FIRING

LOAD FACTOR

PITCH ATTITUDE

ROLL ATTITUDE

YAW ATTITUDE

ROLL RATE

YAW RATE

PITCH RATE
16) FIRING

APPROXIMATE
USITY ALTITUDE
~ FT
2760

ROTOR SPEED
~ R.P.M.
324

CONFIGURATION

INSTRUMENTATION
PODS OUTBOARD

NOTES:
1. TURRET POSITION
20° LEFT AZIMUTH
ZERO ELEVATION

2. MINIGUN FIRING AT HIGH
RATE (1000 ROUNDS/MIN)

3. DENSITY ALTITUDE IS
BASED ON UNCALIBRATED
FREE AIR TEMPERATURE

4. ENGINE OUTPUT POWER
APPROXIMATELY 760
SHAFT HORSEPOWER

5. CONFIGURATION A
Figure No. 9
XM-28 (ONE GAU-2B/AMINIGUN) FIRING
AH-1G USA B/N 66-15283

<table>
<thead>
<tr>
<th>AIRSPEED ~KTS. HOVER</th>
<th>GROSS WEIGHT ~LBS</th>
<th>C.G. LOCATION ~ IN.</th>
<th>APPROXIMATE DENSITY ALTITUDE ~FT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LATERAL CYCLIC & PEDAL</th>
<th>LONGITUDINAL CYCLIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEFT ~PERCENT</td>
<td>RIGHT ~PERCENT</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SCAS'S	PITCH, ROLL, AND YAW RATE			
	ACTUATOR	~DEG/SEC.	~DEG/SEC.	~DEG/SEC.
	LEFT	UP	DOWN	RIGHT
	~PERCENT	~PERCENT	~PERCENT	~PERCENT

<table>
<thead>
<tr>
<th>Pitch Attitude</th>
<th>Roll Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left ~DEG.</td>
<td>Right ~DEG.</td>
</tr>
<tr>
<td>~PERCENT</td>
<td>~PERCENT</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Load Factor</th>
<th>Time ~Seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>G/S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Notes:
- LATERAL CYCLIC
- LONGITUDINAL CYCLIC
- PEDAL
- PITCH SCAS
- YAW SCAS
- ROLL SCAS
- ROLL RATE
- YAW RATE
- PITCH RATE
- PITCH ATTITUDE
- ROLL ATTITUDE
- LOAD FACTOR

Figure Details:
- XM-28 (ONE GAU-2B/AMINIGUN) FIRING
- AH-1G USA B/N 66-15283
- Airspeed, Gross Weight, C.G. Location, Approximate Density Altitude
- Lateral Cyclic & Pedal
- Longitudinal Cyclic
- SCAS's
- Pitch, Roll, and Yaw Rate
- Pitch Attitude
- Roll Rate
- Load Factor

Graphs:
- Graph showing variations in control inputs and attitudes over time.

Time Scale:
- Time ~ Seconds
- Time range from 0 to 6 seconds.
<table>
<thead>
<tr>
<th>Approximate Density Altitude (FT)</th>
<th>Rotor Speed (RPM)</th>
<th>Configuration</th>
<th>Instrumentation</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500</td>
<td>324</td>
<td></td>
<td>Poles outboard</td>
<td>1. Turret position 90° right azimuth 3000 rpm elevation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2. Minigun firing at high rate (4000 r.p.m.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3. Density altitude is based on uncalibrated free air temperature</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4. Engine output power approximately 150 shaft horsepower</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5. Configuration A</td>
</tr>
</tbody>
</table>

GUN Firing

NOTE:

1. Turret position 90° right azimuth 3000 rpm elevation
2. Minigun firing at high rate (4000 r.p.m.)
3. Density altitude is based on uncalibrated free air temperature
4. Engine output power approximately 150 shaft horsepower
5. Configuration A
Figure No. 10

XM-28 (ONE GAU-28/A MINIGUN) FIRING

<table>
<thead>
<tr>
<th>AH-1G USA 5/4 66-15283</th>
<th>AIRSPEED ~ KTS 179</th>
<th>GROSS WEIGHT ~ LBS 8430</th>
<th>C.G. LOCATION ~ IN. 196.9</th>
<th>APPROXIMATE DENSITY ALTITUDE ~ FT 3000</th>
</tr>
</thead>
</table>

LATERAL CYCLIC & PEDAL

<table>
<thead>
<tr>
<th>~ PERCENT</th>
<th>LEFT</th>
<th>CENTER</th>
<th>RIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>60</td>
<td>70</td>
<td>80</td>
</tr>
<tr>
<td>50</td>
<td>70</td>
<td>80</td>
<td>90</td>
</tr>
</tbody>
</table>

LONGITUDINAL CYCLIC

<table>
<thead>
<tr>
<th>~ PERCENT</th>
<th>FRONT</th>
<th>CENTER</th>
<th>REAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>60</td>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td>50</td>
<td>70</td>
<td>90</td>
<td>110</td>
</tr>
</tbody>
</table>

PITCH ROLL SCAS

<table>
<thead>
<tr>
<th>ACTUATOR</th>
<th>PITCH</th>
<th>ROLL</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEFT</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CENTER</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RIGHT</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

PITCH RATE

<table>
<thead>
<tr>
<th>ROLL RATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

LOAD FACTOR

<table>
<thead>
<tr>
<th>G'S</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

TIME ~ SECONDS
Figure No. 11
XM-28 (ONE GAU-2B/A MINIGUN) FIRING

AH-1G USA S/N 66-15285

<table>
<thead>
<tr>
<th>TIME ~ SECONDS</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOAD FACTOR</td>
<td>0.8</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>PITCH ATTITUDE</td>
<td>-10</td>
<td>0</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>ROLL AND YAW ATTITUDE</td>
<td>-10</td>
<td>0</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>ROLL AND YAW RATE</td>
<td>-10</td>
<td>0</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>YAW SCAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PITCH SCAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROLL SCAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROLL RATE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PITCH RATE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YAW RATE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROLL ATTITUDE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PITCH ATTITUDE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YAW ATTITUDE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LATERAL CYCLIC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LONGITUDINAL CYCLIC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AIRSPEED ~ KNOTS	70	60	50	40	30	20	10	0
GROSS WEIGHT ~ LBS	750	800	850	900	950	1000	1050	1100
C.G. STATION ~ FT.	196.7	195.0	193.3	191.6	189.9	188.2	186.5	184.8
APPROXIMATE DENSITY ALTITUDE								

| LATERAL CYCLIC AND PEDAL |
LEFT	40	80	120	160	200	240	280	320
RIGHT	40	80	120	160	200	240	280	320
LONGITUDINAL CYCLIC								
LEFT	40	80	120	160	200	240	280	320
RIGHT	40	80	120	160	200	240	280	320
ACTUATOR								
FORWARD	0	50	100	150	200	250	300	350
BACKWARD	0	50	100	150	200	250	300	350

Note: The diagram shows various performance metrics and data points for the XM-28 (ONE GAU-2B/A MINIGUN) firing, including airspeed, gross weight, c.g. station, and approximate density altitude, along with cyclic and pedal inputs.
Approximate Density Altitude Rotor Speed Configuration

NOTES:
1. Turret position
 - Zero azimuth
 - Zero elevation
2. Minigun firing at high
 rate (1000 rounds/min)
3. Density altitude is
 based on uncalibrated
 free air temperature
4. Engine output power
 approximately 880
 shaft horsepower
5. Configuration A.
MINIGUN FIRING

SG-15289

APPROXIMATE DENSITY ALTITUDE
~FT.
1700

ROTOR SPEED
~RPM
314

CONFIGURATION

INSTRUMENTATION
PODS OUTBOARD

NOTES:
1. TURRET POSITION
 ZERO AZIMUTH
 ZERO ELEVATION
2. MINIGUN FIRING AT HIGH RATE
 (4000 ROUNDS/MIN)
3. DENSITY ALTITUDE IS BASED
 ON UNCALIBRATED FREE
 AIR TEMPERATURE
4. ENGINE OUTPUT POWER
 APPROXIMATELY 810
 SHAT HORSEPOWER
5. CONFIGURATION 3
3 GUN FIRING

<table>
<thead>
<tr>
<th>APPROXIMATE ENSITY ALTITUDE (FT)</th>
<th>ROTOR SPEED (~ RPM)</th>
<th>CONFIGURATION</th>
<th>NOTES:</th>
</tr>
</thead>
<tbody>
<tr>
<td>3400</td>
<td>329</td>
<td>INSTRUMENTATION</td>
<td>1. TURRET POSITION 90° RIGHT AZIMUTH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PCOE OUTBOARD</td>
<td>2. MINIMUM FIRING AT HIGH RATE (4400 ROUNDS/MIN)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. DENSITY ALTITUDE IS BASED ON UNCALIBRATED FREE AIR TEMPERATURE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4. ENGINE OUTPUT POWER APPROXIMATELY 760 SHAFT HORSEPOWER</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5. CONFIGURATION B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STOP FIRING</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>ECONDS</td>
<td>20</td>
</tr>
</tbody>
</table>

20 SECONDS
Figure No. 14
XM-28 (ONE GAU-28/A MINIGUN) FIRING

<table>
<thead>
<tr>
<th>AIRSPEED ~ KNOTS</th>
<th>GROSS WEIGHT ~ LBS</th>
<th>C.G. LOCATION ~ IN</th>
<th>APPROXIMATE DENSITY ALTITUDE ~ FT</th>
<th>ROT</th>
</tr>
</thead>
<tbody>
<tr>
<td>130</td>
<td>8140</td>
<td>1922</td>
<td>8000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LATERAL CYCLIC + PEDAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEFT ~ PERCENT RQ</td>
</tr>
<tr>
<td>40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LONGITUDINAL CYCLIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEFT ~ PERCENT FLD</td>
</tr>
<tr>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LATERAL CYCLIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEDAL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>YAW SCAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PITCH SCAS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ROLL SCAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROLL RATE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ROLL ATTITUDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>YAW ATTITUDE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PITCH ATTITUDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOAD FACTOR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TIME ~ SECONDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

Diagram showing various flight parameters and controls.
<table>
<thead>
<tr>
<th>No. 14</th>
<th>(A MINIGUN) FIRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>N66-15283</td>
<td></td>
</tr>
</tbody>
</table>

APPROXIMATE DENSITY ALTITUDE

<table>
<thead>
<tr>
<th>ALTITUDE</th>
<th>FT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5000</td>
<td></td>
</tr>
</tbody>
</table>

ROTOR SPEED

<table>
<thead>
<tr>
<th>RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>824</td>
</tr>
</tbody>
</table>

CONFIGURATION

<table>
<thead>
<tr>
<th>INSTRUMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PODS OUTBOARD</td>
</tr>
</tbody>
</table>

NOTES:

1. TURRET POSITION 400 RIGHT AZIMUTH ZER0 ELEVATION
2. MINIGUN FIRING AT HIGH RATE (4900 ROUNDS/MIN)
3. DENSITY ALTITUDE IS BASED ON UNCALIBRATED FREE AIR TEMPERATURE
4. ENGINE OUTPUT POWER APPROXIMATELY 760 SHAD HORSEPOWER
5. CONFIGURATION B

Graphs:

- **Y-AXIS**: Secones
- **X-AXIS**: Variables not explicitly labeled but likely include time, speed, altitude, and other related parameters.
MINIGUN FIRING

Notes:
1. Turret position 180° right azimuth pull-down elevation
2. Minigun firing at high rate (1,000 rounds/min)
3. Density altitude is based on uncalibrated-free air temperature
4. Engine output power approximately 760 shaft horsepower
5. Configuration 3

<table>
<thead>
<tr>
<th>SECONDS</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALTITUDE</td>
<td></td>
</tr>
<tr>
<td>ATM ATTITUDE</td>
<td></td>
</tr>
<tr>
<td>PITCH RATE</td>
<td></td>
</tr>
<tr>
<td>ALL SCAS</td>
<td></td>
</tr>
<tr>
<td>STOP FIRING</td>
<td></td>
</tr>
<tr>
<td>Rotor Speed</td>
<td>~ RPM 934</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instrumentation</td>
<td>Pdas Outboard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure No. 16
XM-28 (ONE XM-125 LAUNCHER) FIRING

Approximate Density Altitude

Airspeed ~ Knots
Gross Weight ~ Lbs.
C.G. Station ~ in.

PEDAL
Longitudinal Cyclic
Lateral Cyclic

Start Firing
Stop Firing

Yaw Scas
Pitch Scas
Roll Scas

Yaw Rate
Pitch Rate

Roll Attitude
Pitch Attitude
Yaw Attitude

Load Factor

Time ~ Seconds

8-5-62

AH-1G, USA S/N 66-13283
<table>
<thead>
<tr>
<th>POSITION</th>
<th>APPROXIMATE DENSITY ALTITUDE</th>
<th>ROTOR SPEED</th>
<th>CONFIGURATION</th>
<th>INSTRUMENTATION</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>~ 3000</td>
<td>~ 3500 rpm</td>
<td></td>
<td>PODS OUTBOARD</td>
<td></td>
</tr>
</tbody>
</table>

- **TURRET POSITION**: Zero Azimuth Full Up Elevation
- **Density Altitude**: Base on uncalibrated free air temperature
- **Engine Output Power Approximate shaft Horsepower**
- **Configuration B**

Diagram

- **Pitch Scas**
- **Roll Rate**
- **Roll Attitude**
- **Yaw Attitude**

[Data Table]

<table>
<thead>
<tr>
<th>Time (s)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceleration</td>
<td></td>
</tr>
</tbody>
</table>
NOTES:
1. TURRET POSITION
 90° RIGHT AZIMUTH
 FULL DOWN ELEVATION
2. DENSITY ALTITUDE IS
 BASED ON UNCALIBRATED
 FREE AIR TEMPERATURE
3. ENGINE OUTPUT POWER
 APPROXIMATELY 750
 SHAFT HORSEPOWER
4. CONFIGURATION B
Approximate Data

<table>
<thead>
<tr>
<th>No.</th>
<th>Launcher</th>
<th>Firing</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>44-15288</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Approximate Density Altitude</th>
<th>Rotor Speed</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>~2700 ft.</td>
<td>~224 rpm</td>
<td>Instrumentation PODs Outboard</td>
</tr>
</tbody>
</table>

Notes:
1. Turret position 90° left azimuth pull down elevation.
2. Density altitude is based on uncalibrated free air temperature.
3. Engine output power approximately 760 shaft horsepower.
4. Configuration B.
Figure No. 20
XM-28 (ONE GAU-2B/A MINGUN) FIRING

AH-1G USA S/N 66-15203

Approximate GROSS WEIGHT
APPROXIMATE DENSITY ALTITUDE
1805
158.7
3100

Airspeed
C.G. Location
Time ~ Seconds
~ Kts.
~ Feet
~ 130
~ ft

-68
-50
-40
-80

Longitudinal Cyclic
Lateral Cyclic
Pedal

Start Firing
Stop Firing

Lateral Cyclic Pedal
Longitudinal Cyclic

Pitch Rate
Roll Rate
Yaw Rate

Pitch, Roll, and Yaw Rate
Roll, Yaw, and Pitch Rate

Roll Attitude
Pitch Attitude

Approximate GROSS WEIGHT
C.G. LOCATION
Density Altitude

Appro. GROSS Weight
C.G. Location
Density Altitude

Approximate GROSS WEIGHT
C.G. LOCATION
Density Altitude
Approximate ENSITY ALTITUDE
~ FT
3200
Rotor Speed
~ RPM
324
Configuration
INSTRUMENTATION
PODS OUTBOARD

Notes:
1. Turret Position
50° Right Azimuth
Pull Up Elevation
2. Minigun Firing at High Rate
(4000 Rounds/Min)
3. Density Altitude is Based
On UnCalibrated Pres.
Air Temperature
4. Engine Output Power
Approximately 760
Shaft Horsepower
5. Configuration A
Figure No. 21
Airspeed Calibration
AN-1G USA 44N8815883
Gross weight C.G. Station Density Alt. Rotor Speed
Reg 120 lbs. 1991 in. 3100 ft (avg) 334 rpm
Configuration Instrumentation Pods: Outboard
Standard System

Position Error
Correction - Knots

Calibrated Airspeed - Knots

Line of Zero Error

Indicated Airspeed - Knots (Corrected for Instrument Error)
APPENDIX III FLIGHT RESTRICTIONS and OPERATING PROCEDURES

1. Limit Airspeed (V_L):

 Hog or alternate configuration - 180 KCAS below 3000 feet density altitude. Decrease 8 KCAS per 1000 feet above 3000 feet.

 All other configurations - 190 KCAS below 4000 feet density altitude. Decrease 8 KCAS per 1000 feet above 4000 feet.

2. Gross Weight - Center of Gravity Envelope:

 Forward limit - Below 7000 lb, fuselage station (F.S.) 190, linear decrease from F.S. 190 at 7000 lb to F.S. 192.1 at 9500 lb.

 Aft limit - Below 7880 lb, F.S. 201.4. Linear decrease from F.S. 201.4 at 7880 lb to F.S. 200 at 9500 lb.

3. Sideslip Limits: 5 degrees at 190 KCAS. Linear increase to 20 degrees at 60 KCAS.

4. RPM Limits (steady state):

 Power on - 6600 to 6400 engine rpm
 324 to 314 rotor rpm

 Power off - 304 to 339 rotor rpm
 transient lower limit 250 rotor rpm

 Power on during dives and maneuvers 319 to 324 rpm

5. Temperature and Pressure Limits:

 Engine oil temperature 93° C
 Transmission oil temperature 110° C
 Engine oil pressure 25 - 100 psi
 Transmission oil pressure 5 - 20 psi

6. T53L-13 Engine Limits - Installed:

 Normal rated (maximum continuous) 625° C
 Military rated (30 minute limit) 645° C
 Starting and acceleration 675° C
 (5 second limit)

 Maximum for starting and acceleration 760° C
 Torque pressure 50 psi
APPENDIX IV PILOT’S RATING SCALE

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTROLLABLE</td>
<td>CAPABLE OF BEING CONTROLLED OR MANAGED IN CONTEXT OF MISSION, WITH AVAILABLE PILOT ATTENTION.</td>
</tr>
<tr>
<td>UNCONTROLLABLE</td>
<td>CONTROL WILL BE LOST DURING SOME PORTION OF MISSION.</td>
</tr>
<tr>
<td>ACCEPTABLE</td>
<td>MAY HAVE DEFICIENCIES WHICH WARRANT IMPROVEMENT BUT</td>
</tr>
<tr>
<td></td>
<td>ADEQUATE FOR MISSION. PILOT COMPENSATION, IF REQUIRED</td>
</tr>
<tr>
<td></td>
<td>TO ACHIEVE ACCEPTABLE PERFORMANCE, IS FEASIBLE.</td>
</tr>
<tr>
<td>UNACCEPTABLE</td>
<td>DEFICIENCIES WHICH REQUIRE MANDATORY IMPROVEMENT.</td>
</tr>
<tr>
<td></td>
<td>INADEQUATE PERFORMANCE FOR MISSION, EVEN WITH MAXIMUM FEASIBLE PILOT COMPENSATION.</td>
</tr>
<tr>
<td>SATISFACTORY</td>
<td>MEETS ALL REQUIREMENTS AND EXPECTATIONS: GOOD ENOUGH WITHOUT IMPROVEMENT.</td>
</tr>
<tr>
<td></td>
<td>CLEARLY ADEQUATE FOR MISSION.</td>
</tr>
<tr>
<td>UNSATISFACTORY</td>
<td>RELUCTANTLY ACCEPTABLE. DEFICIENCIES WHICH WARRANT IMPROVEMENT. PERFORMANCE ADEQUATE FOR MISSION WITH FEASIBLE PILOT COMPENSATION.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>SATISFACTORY</th>
<th>EXCELLENT, HIGHLY DESIRABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCEPTABLE</td>
<td>MEETS ALL REQUIREMENTS AND EXPECTATIONS, GOOD ENOUGH WITHOUT IMPROVEMENT</td>
<td>GOOD, PLEASANT, WELL BEHAVED</td>
</tr>
<tr>
<td>CAPABLE OF BEING CONTROLLED OR MANAGED IN CONTEXT OF MISSION, WITH AVAILABLE PILOT ATTENTION</td>
<td>CLEARLY ADEQUATE FOR MISSION.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PILOT COMPENSATION, IF REQUIRED TO ACHIEVE ACCEPTABLE PERFORMANCE, IS FEASIBLE.</th>
<th>UNSATISFACTORY</th>
<th>SOME MILDLY UNPLEASANT CHARACTERISTICS. GOOD ENOUGH FOR MISSION WITHOUT IMPROVEMENT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>RELUCTANTLY ACCEPTABLE DEFICIENCIES WHICH WARRANT IMPROVEMENT, PERFORMANCE ADEQUATE FOR MISSION WITH FEASIBLE PILOT COMPENSATION.</td>
<td>RESULT OF PERFORMANCE IS EASILY COMPENSATED FOR BY PILOT.</td>
<td></td>
</tr>
</tbody>
</table>

| MARGINARY DEFICIENCIES. PILOT COMPENSATION REQUIRED FOR MINIMUM ACCEPTABLE PERFORMANCE. | MODERATELY OBJECTABLE DEFICIENCIES. IMPROVEMENT IS NEEDED. REASONABLE PERFORMANCE REQUIRES CONSIDERABLE PILOT COMPENSATION. |
|---|----------------|----------------|
| PILOT ATTENTION TO RETAIN CONTROL AND CONTINUE MISSION. | PILOT ATTENTION TO RETAIN CONTROL. |

| UNCONTROLLABLE DEFICIENCIES WHICH REQUIRE MANDATORY IMPROVEMENT FOR ACCEPTANCE. CONTROLLABLE. PERFORMANCE INADEQUATE FOR MISSION. PILOT ATTENTION TO RETAIN CONTROL. | CONTROLLABLE WITH DIFFICULTY. REQUIRES SUBSTANTIAL PILOT SKILL AND ATTENTION TO RETAIN CONTROL AND CONTINUE MISSION. |
|---|----------------|----------------|
| PILOT ATTENTION TO RETAIN CONTROL. | PILOT ATTENTION TO RETAIN CONTROL. |

| UNCONTROLLABLE | PILOT ATTENTION TO RETAIN CONTROL. |
|---|----------------|----------------|
| CONTROL WILL BE LOST DURING SOME PORTION OF MISSION. | |

Revised Pilot Rating Scale
APPENDIX V TEST INSTRUMENTATION

Flight test instrumentation was installed in the test helicopter by the contractor prior to the start of this evaluation. This instrumentation provided data from the pilot's panel, copilot/gunner's panel, and oscillograph. The following instrumentation was calibrated by the contractor and approved by the USAAVNTA flight test engineer. The flight test instrumentation was maintained by the contractor throughout the test program. The following parameters were included in the instrumentation package:

a. Pilot's Panel
 - Standard system airspeed
 - Standard system altimeter
 - Collective stick position
 - Normal acceleration
 - Oscillograph counter
 - Sensitive rotor tachometer

b. Engineer's Panel
 - Standard system airspeed
 - Standard system altitude
 - Turret azimuth
 - Turret elevation
 - Oscillograph counter
 - Free air temperature

c. Oscillograph
 - Longitudinal cyclic stick position
 - Lateral cyclic stick position
 - Collective stick position
 - Directional control position
 - C.G. vertical accelerometer
 - Pitch, roll, and yaw attitudes
 - Pitch, roll, and yaw rates
 - Copilot/gunner's vertical acceleration
 - Altitude
 - Delta torque
 - Linear rotor speed
 - Turret position
 - Longitudinal, lateral, and directional SCAS actuator position
PHOTO 1 - Front view of the XM-28 chin turret with the 40mm grenade launcher at left of photo and the 7.62mm automatic gun (M-134) on the right.

PHOTO 2 - AH-1G helicopter, depicting stow area for ammunition cans in side compartment and the oscillograph installation in wing pod.
Part 5 of the AH-1G helicopter Phase B test was conducted at Yuma Proving Ground, Yuma, Arizona, from 6 through 9 February 1968 by the US Army Aviation Test Activity, Edwards Air Force Base, California. The test consisted of firing the XM-28 chin turret, with one 7.62 millimeter automatic gun (M-134) and one 40 millimeter grenade launcher (XM-129) to determine the weapons system's effect on the stability and control characteristics of the helicopter. No safety of flight restrictions resulted from firing this system within the flight envelope. Correction of four deficiencies is mandatory to provide acceptable mission effectiveness and safety. These deficiencies are the inadequate forward visibility from the pilot's cockpit due to the N-9A gunsight installation, the lack of a fire warning system, the lack of a standby generator for IFR flight, and link jam malfunctions of the minigun during symmetrical pull-out maneuvers. Fifteen shortcomings, for which correction is desirable, limit mission effectiveness. The reliability of the weapons system was questionable and service type testing should be conducted prior to system acceptance. Correction of the deficiencies is mandatory and should be tested prior to deployment. Shortcomings, for which correction is desirable, should be corrected on a high priority basis.
XM-28 Chin turret
7.62 Millimeter automatic gun (M-134)
40 Millimeter grenade launcher (XM-129)
Stability and control characteristics
Inadequate forward visibility
Fire warning system
IFR flight
Link jam
Reliability of weapons system
SUPPLEMENTARY

INFORMATION
SUBJECT: Change Number 1 to the USAAVNTA Project 68-03 (66-06) Final Report.

SEE DISTRIBUTION

1. In accordance with unclassified message 12-1331 from AMSAV-R-FT, subject: AH-1G Phase B Test Reports – Control Positions, 13 December 1968, the following pen and ink changes will be made:

 Engineering Flight Test of the AH-1G Helicopter Equipped with the XM-28 Chin Turret with one 7.62mm Automatic Gun (M-134) and one 40mm Grenade Launcher (XM-129) Hybrid, Phase B, Part 5, April 1968, (para 17, pg 8).

 Add: The following:

 NOTE: The following applies to the aircraft dimensions and design information:

 MAIN ROTOR

 Collective:
 - Pitch full travel is 8.63 inches.
 Stick:
 - Longitudinal full travel is 9.29 inches.
 - Lateral full travel is 9.29 inches.

 TAIL ROTOR

 Directional:
 - Pedal full travel is 5.86 inches.

2. After the above change has been posted, this letter will be filed with the subject report.

FOR THE COMMANDER:

GERALD T. YAHMOL
CPT, INF
Acting Adjutant
INCLOSURE 1. DISTRIBUTION

Commanding General
US Army Aviation Systems Command
ATTN: AMSAV-R-FT 15
AMSAV-R-EJ 2
AMSAV-C-AD 2
AMSAV-L-F 1
AMSAV-C-W 2
PO Box 209
St. Louis, Missouri 63166
Commanding General
US Army Materiel Command
ATTN: AMCPM-IR 5
PO Box 209
St. Louis, Missouri 63166
Commanding General
US Army Materiel Command
ATTN: AMCAD-S 2
AMCPF 1
AMCHR 2
AMCQA 1
AMCPM-AI 5
Washington, D. C. 20315
Commanding General
US Army Combat Developments Command
ATTN: USACDC LnO 11
PO Box 209
St. Louis, Missouri 63166
Commanding General
US Continental Army Command
ATTN: DCSIT-SCH-PD 1
Fort Monroe, Virginia 23351
Commanding General
US Army Test and Evaluation Command
ATTN: AMSTE-BG 2
USMC LnO 1
Aberdeen Proving Ground, Maryland 21005

Commanding Officer
US Army Aviation Materiel Laboratories
ATTN: SAVFE-SO, M. Lee 1
SAVFE-TD 2
SAVFE-AM 1
SAVFE-AV 1
SAVFE-PP 1
Fort Eustis, Virginia 23604
Commanding General
US Army Aviation Center
Fort Rucker, Alabama 36362
Commandant
US Army Primary Helicopter School
Fort Wolters, Texas 76067
President
US Army Aviation Test Board
Fort Rucker, Alabama 36362
Director
US Army Board for Aviation Accident Research
Fort Rucker, Alabama 36362
President
US Army Maintenance Board
Fort Knox, Kentucky 40121
Commanding General
US Army Electronics Command
ATTN: AMSEL-VL-D 1
Fort Monmouth, New Jersey 07703
Commanding General
US Army Weapons Command
ATTN: AMSWE-RDT 2
Rock Island Arsenal 2
Rock Island, Illinois 61202

1
Director
US Marine Corps Landing
Force Development Center
Quantico, Virginia 22133

Commandant
US Marine Corps
Washington, D. C. 20315

US Air Force, Aeronautical
Systems Division
ATTN: ASZTD
ASNFD-10

Wright Patterson Air Force
Base, Ohio 45433

Army Concept Team in Vietnam
AFC, San Francisco, California

Federal Aviation Administration
ATTN: Administrative Standard
Division (MS-110)

800 Independence Avenue S.W.
Washington, D. C. 20590

Defense Documentation Center
Cameron Station
Alexandria, Virginia 22314

Air Force Flight Test Center
ATTN: FTBPP-2
FTTE
Edwards Air Force Base, California 93523

Naval Air Test Center (FT23)
Patuxent River, Maryland 20670

Naval Air System Command
Headquarters (A530122)
Washington, D. C. 20350

Department of the Army
Deputy Chief of Staff for Logistics
ATTN: LOG/MED
LOG/SAA-ASLB
LOG/OSALSCE
Washington, D. C. 20310

Department of the Navy

Department of Army
Army Concept Team in Vietnam
APO, San Francisco, California 96384