TABLE OF CONTENTS

1. Introduction
 1.1 Background
 1.2 Objectives

2. Methodology
 2.1 Literature Review
 2.2 Experimental Design

3. Results
 3.1 Data Analysis
 3.2 Discussion

4. Conclusion

Appendix A: Additional Data

Appendix B: References

LIST OF FIGURES

1. Schematic Diagram

LIST OF TABLES

1. Summary of Key Findings

ACKNOWLEDGMENTS
THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

REPRODUCED FROM BEST AVAILABLE COPY
This package represents the culmination of the six months' efforts on the joint study. While some portions are incomplete, release was made at this time to make the material assembled, available in advance of document completion. Future effort will include additional joints called for on Pages 3 & 9 and expansion of the material as described in Section 8.0.
ABSTRACT

This report is a comprehensive document that contains information to assist the preliminary and conceptual design engineer in selecting and designing a variety of missile joints, including:

- Payload Stage Assembly and Separation Joints,
- Booster Stage Assembly and Separation Joints,
- Missile Carrier Interface Joints,

In addition, information on design considerations and system requirements are included to assist the engineer in making, cost concept choices and justifying the applicability and feasibility.

KEY WORDS

- Middle Joints
- Primary Structure
- Booster Staging
- Assembly
- Joint Seals
- Motor Vehicles
- AGM
- Split Joints

- Payload Separation
- Access Cover
- Canister
- Motor Cover
- Fiberglass
- Minuteman
- Saturn

CONTRIBUTORS

W. Fuxa
W. Hoke
R. Thompson
W. Gause

W. F. Martis
W. L. Green
R. V. Gearhelt
J. C. Burdage
LIMITATIONS

Initial Release. Document to be distributed to the Defence Documentation Center (DDC). Each transmittal of this document outside the agencies of the U.S. Government must have prior approval of The Boeing Company.

This document is controlled by Development Design, Org. 2-5156

All revisions to this document shall be approved by the above noted organization prior to release.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>PARAGRAPH</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td>1</td>
</tr>
<tr>
<td>ABSTRACT AND KEY WORDS</td>
<td>11</td>
</tr>
<tr>
<td>LIMITATIONS</td>
<td>111</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>1v</td>
</tr>
<tr>
<td>1.0 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2.0 PAYLOAD STAGE JOINTS</td>
<td>2</td>
</tr>
<tr>
<td>2.1 ASSEMBLY JOINTS</td>
<td>2</td>
</tr>
<tr>
<td>2.1.1 PAYLOAD</td>
<td>2</td>
</tr>
<tr>
<td>2.1.2 ASCENT COVER</td>
<td>4</td>
</tr>
<tr>
<td>2.2 SEPARATION JOINTS</td>
<td>5</td>
</tr>
<tr>
<td>2.2.1 PAYLOAD</td>
<td>5</td>
</tr>
<tr>
<td>2.2.2 ASCENT COVER</td>
<td>6</td>
</tr>
<tr>
<td>3.0 BOOSTER STAGE JOINTS</td>
<td>6</td>
</tr>
<tr>
<td>3.1 ASSEMBLY JOINTS</td>
<td>8</td>
</tr>
<tr>
<td>3.1.1 INTERSTAGE OR BOOSTER ADAPTERS</td>
<td>8</td>
</tr>
<tr>
<td>3.1.2 MID-BODY OR MID-INTERSTAGE RINGS</td>
<td>15</td>
</tr>
<tr>
<td>3.2 SEPARATION JOINTS</td>
<td>19</td>
</tr>
<tr>
<td>3.2.1 STAGING RINGS</td>
<td>19</td>
</tr>
<tr>
<td>3.2.2 LONGITUDINAL JOINTS</td>
<td>21</td>
</tr>
<tr>
<td>4.0 SMALL MISSILE JOINTS</td>
<td>27</td>
</tr>
<tr>
<td>4.1 AGM-69A JOINT DESIGN</td>
<td>27</td>
</tr>
<tr>
<td>4.2 SELECTED SMALL MISSILE JOINTS</td>
<td>42</td>
</tr>
<tr>
<td>4.3 THE JOINT SELECTION PROCESS</td>
<td>51</td>
</tr>
<tr>
<td>4.4 A CONCEPTUAL MISSILE JOINT</td>
<td>54</td>
</tr>
</tbody>
</table>

SHEET LV
1. INTRODUCTION

This document was prepared to compile an abbreviated design information useful to the preliminary or conceptual design engineer. The intent is not to present methods with which an engineer can design structural interface joints on missiles, but to assemble in one document, a cross-section of state-of-the-art designs.

It is recognized that a design engineer can arrive at a feasible design of a missile joint with no assistance. However, this takes a certain amount of time depending on the type of joint and its use. The engineer must investigate the loads, environment, cost, etc., or else he must initiate a literature search to see what similar joint has been used successfully in the past. With this document a designer will be able to select a feasible, proven joint design using only gross loads and environment data. This is usually sufficient for preliminary or conceptual design work since loads and environment data are usually estimated at this stage.

The format of the document has been prepared to facilitate this task as much as possible. For each joint a sketch is given with dimensions if possible, the loads to which the joint is designed and the environment to which the joint will be subjected are summarized. Also, a short written description and project use is provided to give information on what type of use the joint might be applicable. Finally references are stated, if available, which will allow the designer to search for additional detail material.

Comparative data are provided in the tables of Appendix I for joints intended as alternatives for a particular application.
2.6 PAYLOAD STAGE JOINTS

This section covers the variety of structural joints designed to (1) attach the payload to the booster, (2) separate the payload from its booster, (3) attach the payload's ascent cover to the payload or booster and (4) separate the ascent cover in flight.

Figure 2-1 schematically shows the typical location of the four types of joints on a payload stage. It should be referred to as a guide to a specific type of joint. It is not intended that a given application require all of the indicated joints or that they be located as shown. For example, certain ascent covers have "over-the-top" removal and hence have no longitudinal separation joint. Or, separation and assembly joints may be integrated into one structural joint. For clarity, all joints are shown here as separate items for reference on Figure 2-1.

2.1 ASSEMBLY JOINTS

These joints serve to provide field attachment of the payload to the booster or the ascent cover to the booster. The joint may or may not be integral with the separation joint. If it is, a cross reference to that particular joint in Section 2.2 is made.

2.1.1 PAYLOAD ASSEMBLY JOINTS

These joints are shown on Figure 2-1 to be located on a "payload adapter," depicted as a frustrum of a cone. This is typical of satellite payloads on space boosters and is generally applicable to cases where the payload has a different diameter than the booster. Where diameters are nominally the same, the payload may be attached directly to the booster and this joint may be quite similar in appearance to booster interstage joints. Both types are shown in this section.
ASCENT COVER ASSEMBLY JOINTS

Figure 2d locates these joints at the intersection of the booster and payload adapter. Another common location is direct attachment to the payload itself, others will become apparent as the engineer encounters different applications. The conditions of interest are how much of the payload can be exposed or covered at different phases of the mission, how much protection can be required by a multi-purpose structure (integrating the ascent cover as part of the payload's primary structure), and the desire to discard or not to discard early in the mission as possible. Joints applicable to any situations are covered in this section.
2.2 SEPARATION JOINTS

The separation joints described in this section provide inflight release of the payload or the ascent cover from the missile. The joints may be part of integral joints combining the function of assembly and release, in which case a cross reference to ASSEMBLY JOINTS, Section 2.1 will normally be made.

2.2.1 PAYLOAD SEPARATION JOINTS

These joints are commonly located as shown in Figure 2-1 or at the booster interface. Both types will be shown here. In some cases, additional mechanisms (springs, ordnance thrusters, etc.) are used for separation impulse. These will not be discussed in this document and mention will be made only when necessary to show clearance or functional association with the joint.
2.2.2 ASCENT COVER SEPARATION JOINTS

Two types of joints are indicated in Figure 2-1, the circumferential and the longitudinal joint. The longitudinal joint is not always used, depending on the mode of ascent cover deployment. Both types of device are shown in this section. Comments of section 2.2.1, PAYLOAD SEPARATION JOINTS, also apply here.

2.2.2.1 NOSE CONE SEPARATION JOINT (FIG. 2-1)

This detail is of a joint used to separate the nose cone of the Hibex missile and thereby provide a high drag blunt nose exposure to the airstream.

The joint is an uncomplicated design similar in many respects to a fabrication joint - two skins are butted together and bolted using bolts and nut plates. The separation is done with a linear shaped charge which expends its energy primarily in one direction, in this case outward, to cut the nose cone skin. This impulse is sufficient to make the physical break but not to effect total separation. To do this, a gas generator and thruster is used to "blow" the two pieces apart.

For additional details of the ordnance used, refer to section 5.1.
SECTION A - A

CORK

RUBBER

NOSE CONE SEPARATION JOINT

DESIGN LOAD:

AVG. DIAMETER:

OD

N.A.

MATERIAL:

ALUMINUM

FIGURE 2.2.2-1

REFERENCES: HIBEX PROGRAM DWG: 25-39910
3.0 BOOSTER STAGE JOINTS

This section includes the variety of structural joints designed to
(1) enable the assembly and disassembly of missile segments for purposes of
manufacture, transportation and maintenance in the field and (2) enable the
staging separation necessary for the missile's mission flight profile.

Figure 3-1 schematically shows the typical location of the joints
on a missile booster segment and interstage. This is representative of any
stage. It is not intended that a given application require all of the indicated
joints or that they be located as shown. As an example, an inflight separation
function and a field joint may be integrated into a single structural joint.

For clarity, all joints are indicated as separate items on Figure 3-1.

3.1 ASSEMBLY JOINTS

The assembly joints described in this section are those used to
connect segments of the booster to each other, through interstages or not.
This connection might be purely a shop fabrication assembly or it might be
a field operation done many times. The joints may be integral joints as in
payload stages. If so, cross referencing is done.

3.1.1 INTERSTAGE OR BOOSTER ADAPTERS

This section covers the assembly joints made between one booster
stage and another, usually through an interstage. The joints are usually
referred to as "adapter rings" and commonly form the interface between two
manufacturers. These rings may be purely assembly or may be integrated with
a separation joint if the location is one where staging is desirable. Both
types are covered here.
3.1.1.1 Interstage Adapter Assembly Joint (Fig. 3.1.1-1)

This joint detail is a section through a circumferential joint used on the Minuteman missile. The dimensions given are typical of the Stage 1 - Stage 2 interstage as are the diameter and cross section area. The ring's characteristic shape is also typical of the Stage 2 - Stage 3 interstage on Minuteman. For reference, the numbers in parenthesis pertain to that ring.

The ring is a dual purpose joint. It permits both field assembly and fabrication assembly in the shop. It also functions as an inflight separation joint (Ref. Section 3.2.1.1).

Two bolt circles are provided in the joint, both to be used with bolt-out plate combinations. The lower bolts are primarily fabrication fasteners and are backed with standard nutplates. The upper bolts are for field assembly and disassembly and are backed with floating nutplates. Cork plugs are commonly used to replace insulation removed during disassembly.

Structurally, the main brumance carrying ring is not the primary load carrying member. Compression loads are reacted by a butting together of the interstage skins, tension loads by the tension tie. The joint is designed to react all boost flight loads as well as silo overpressure.

3.1.1.2 Interstage Adapter Assembly Joint (Fig. 3.1.1-2)

This joint is designed for assembly of an interstage (or other structure such as a test module) on top of a booster stage. The assembly operation may be done in the manufacturing facility or the field. The ring is typical of that used on the Minuteman program to join the Autonetics Guidance and Control module to the third booster stage.
The ring itself is riveted to the interstage structure and forms an integral component. The assembly operation is done then by means of the bolts and nutplates shown. Nuts may be used instead of nutplates, depending on the accessibility and "dropped-nut" considerations. Cork plugs are commonly used to replace any insulation removed during disassembly.

The joint is designed to retain its structural integrity throughout boost flight loads and silo overpressures.

3.1.1.3 STAGE TO STAGE ASSEMBLY JOINT (FIG. 3.1.1-3)

This detail is a section through a circumferential joint used on the HIBEX Missile. It is used to assemble the upper stage instrumentation package to the booster. The assembly operation could take place either in the fabrication facility or a munitions field facility.

The ring is riveted to the lower missile stage, which is made of fiberglass in this application. The upper stage is attached with bolt-nutplate combinations. The joint is designed to resist extremely high boost acceleration loads.
INTERSTAGE ADAPTER
ASSEMBLY JOINT

CORK
PR-1910

TENSION TIE
FIELD JOINT
SEPARATION PLANE

INTERSTAGE

FILLER
LINEAR EXPLOSIVE

USE FOR DRAWING AND HANDPRINTING - NO TYPEWRITTEN MATERIAL

DESIRED LOAD - (CRITICAL) 915 lb/in TENSION LOAD (BEARING)
AVERAGE DIAMETER - 53.0 in. OD
CROSS SECT. AREA - 1.003 sq. in.
MATERIAL - 2024 AL.

REFERENCE: MINUTEMAN ENGINEERING
Dwg. 25-3746
25-37647
PARA. 3.2.1-1

FIGURE 3.1.1-1

SCALE FULL
INTERSTAGE ADAPTER
ASSEMBLY JOINT

DESIGN LOAD - 257 7/IN. TENSION (RING BUCKLING CRITICAL)
AVERAGE DIAMETER - 0.5 IN. OD (APPROXIMATE), ID (APPROXIMATE)
CROSS SECT. AREA - UNKNOWN
MATERIAL - ALUMINUM

FIGURE 3.1.1-2
REFERENCES: MINUTEMAN INTERFACE CONTROL DRAWING 25-77/45
25-77/47
REFERENCE STRUCTURE

STAGE TO STAGE
ASSEMBLY JOINT

CORK

DESIGN LOAD
AVERAGE DIAMETER - OD, ID
CROSS SECT. AREA -
MATERIAL - ALUMINUM

FIGURE 3.1.1-3

REFERENCES: HIBEX PROGRAM DWG 25-34110

FIGURE 3.2.1-4
3.1.2 MIDDYORY OR MID-INTERSTAGE RINGS

These joints are almost entirely used integrally with a staging separation joint. Their purpose is to assemble the staged segments, usually in a fabrication environment.

3.1.2.1 Intermediate Assembly Joint (Fig. 3.1.2-1)

This joint detail is a section through a circumferential joint used on the Minuteman missile. The dimensions given are typical of the Stage 1 - Stage 2 interstage.

The ring is a dual purpose joint. It permits both field assembly and fabrication assembly in the shop. It also functions as an inflation staging joint (Ref. Section 3.2.1.4).

Two bolt circles are provided in the joint, both to be used with bolt-nut plate combinations. The lower bolts are primarily fabrication fasteners and are backed with standard nuts. The upper bolts are also fabrication assembly fasteners but are backed with floating nutplates.

Structurally, the main ordnance carrying ring is not the primary load carrying member. Compression loads are reacted by a butting together of the interstage skins, tension loads by the tension tie. The joint is designed to react all boost flight loads as well as silo overpressures.

3.1.2.2 Intermediate Assembly Joint (Fig. 3.1.2-2)

This joint detail is a section through a circumferential joint used on the Minuteman missile. The dimensions given are typical of the Stage 2 - Stage 3 interstage.
The ring is a dual purpose joint. It permits both field assembly and fabrication, mainly in the shop. It also functions as an inflight life line joint (Ref. Section 5.1.6). The bolt clusters are provided in the joint, both to be used with bolt-nutplate combinations. The lower bolts are primarily fabrication fasteners and are coated with standard zinc. The upper bolts are also fabrication assembly fasteners but are coated with plating materials.

Structurally, the main universal carryin, ring is not the primary load carrying member. Compression loads are reacted by a boltting together of the interference joint, tension loads by the tension tie. The joint is designed to react all joint flight loads as well as other overpressures.
INTERSTAGE ASSEMBLY JOINT

CORK
PR-1910

DESIGN LOAD - 1000 lb/in. TENSION, HEAR
AVERAGE IDIAMETER - 46.0 IN. OD, IN. ID.
CROSS SECT. AREA - 0.910 SQ. IN.
MATERIAL - 2024 AL.

FIGURE 3.1.2-2

REFERENCES: MINUTEMAN ENGINEERING
DMG: 25-37-45
PAREL: 3.2.1.3
3. SEPARATION JOINTS

Described in this section are the variety of joints designed to provide inflight staging of a missile booster. This is the mechanism which separates a burned out motor from the remaining "live" booster stages. It also may separate an interstage structure from an associated motor case. As in most of the other joints described in this document, these joints may be part of integral joints combining other functions. When this is the case, cross referencing to appropriate sections will be made.

3.2 STAGING RINGS

These rings function to either "stage" an expended booster segment from an unexpended one or to separate an interstage from a booster. Figure 3-1 shows typical locations for this type of joint. In some instances they are used in conjunction with longitudinal joints to separate and segment an interstage. This is covered in more detail in Section 3.2.2.

3.2.1 Interstage Adapter Booster Skirt Removal Joint (Fig. 3-1-1)

This joint detail is a section through a circumferential joint used on the Minuteman missile. The dimensions given are typical of the Stage 1 - Stage 2 interstage as are the diameter and cross section area. The ring's characteristic shape is also quite typical of the Stage 2 - Stage 3 interstage on Minuteman. For reference, the numbers in parenthesis pertain to that ring.

The ring is a dual purpose joint. It provides the inflight interstage skirt removal function, working in conjunction with the longitudinal joint described in Section 3.2.1.1. It also functions as a field assembly joint (Ref. Section 3.1.1.1).
The separation impulse to provide the required function comes from a linear explosive charge. The ring is designed to contain any particle fragmentation from this charge. This function is enhanced by the use of a rubber-like material, FR-1106 (BMS 5-62) which can contain small fragments. The primary function of the material however is to absorb much of the shock of the explosion.

Structurally, the main ordnance carrying ring is not the primary load carrying member. Compression loads are reacted by a butting together of the stage skins, tension loads by the tension tie. The joint is designed to react all boost flight loads as well as all overpressures.

For additional details on the ordnance used in this joint, refer to Section 3.1.

3.2.1.2 Booster Staging Joint (Fl. 3.1.2-1)

This joint detail is a section through a circumferential joint used on the Minuteman missile. The dimensions given are typical of the Stage 1 - Stage 2 interstage.

The ring is a dual purpose joint. It provides the inflight booster staging function, separating the upper stage from the expended stage. It also functions as an assembly joint (Ref. 3.1.2.1).

The separation impulse to provide the required function comes from a linear explosive charge. The ring is designed to contain any particle fragmentation from this charge by the use of a rubber-like material, FR-1106 (BMS 5-62) which can contain small fragments. The primary function of the material however is to absorb much of the shock of the explosion.
Structurally, the main ordnance carrying ring is not the primary load carrying member. Compression loads are reacted by a butting together of the stage skins, tension loads by the tension tie. The joint is designed to react all boost flight loads as well as silo overpressures.

For additional details on the ordnance used in this joint, refer to Section 5.1.

3.1.3 Booster Staging Joint (Fig. 3.1.2-4)

This joint detail is a section through a circumferential joint used on the Minuteman missile. The dimensions given are typical of the Stage 2 - Stage 3 interstage.

The ring is a dual purpose joint. It provides the inflight booster staging function, separating the upper stage from the expended stage. It also functions as an assembly joint (Ref. 3.1.2).

The separation impulse to provide the required function comes from a linear explosive charge. The ring is designed to contain any partial fragmentation from this charge by the use of a rubber-like material, PR-1910 (AMS 5-62) which can contain small fragments. The primary function of the material however is to absorb much of the shock of the explosion.

Structurally, the main ordnance carrying ring is not the primary load carrying member. Compression loads are reacted by a butting together of the stage skins, tension loads by the tension tie. The joint is designed to react all boost flight loads as well as silo overpressures.

For additional details on the ordnance used in this joint, refer to Section 5.1.
3.2.1.4 BOOSTER SEPARATION JOINT (FIG. 3.2.1-4)

This detail is a section through a circumferential joint used on the Hibex Missile. It functions to separate the lower (booster) stage from the upper (instrumentation package) stage during flight.

The joint primarily consists of a circumferential retainer ring bolted to the inside of the fiberglass skirt. The ring contains a linear shaped charge designed to direct its energy in an outward direction and thereby sever the fiberglass skirt circumferentially. The retainer ring is not designed to react any loads. It is massive enough however to absorb shock from the explosive charge.

For additional details on the ordnance used in this joint, refer to Section 5.1.2.
UPPER STAGE

ADAPTER RING (AD.)

SEPARATION
PLANE

LINEAR SHAPED
CHARGE

RETAINER RING

FILLER

LOWER STAGE (FIBERGLASS)

BOOSTER SEPARATION JOINT

CORK

DESIGN LOAD

AVERAGE DIAMETER

IN. OD, IN. ID

CROSS SECT. AREA

MATERIAL

FIBERGLASS

FIGURE 3.2.1-4

REFERENCES: H1BEX PROGRAM DWG 25-39910

FIGURE 3.1.1-3
3.2.2 LONGITUDINAL JOINTS

These joints are used to separate an interstage or other missile segment into a number of sections for removal from the booster in flight. They are longitudinal rather than circumferential and usually function with a circumferential joint (Ref. Fig. 3-1 and Section 3.2.1).

No distinction is made in this section between separation and assembly joints. These joints have one primary function which is separation. They must be assembled, of course, but this is differentiated from the assembly joints discussed elsewhere since they are used to assemble missile sections, not joints.

3.2.2.1 Interstage Longitudinal Joint (Fig. 3.2.2-1)

This joint is typical of those used on the Minuteman missile to split both the Stage 1 - Stage 2 and the Stage 2 and Stage 3 interstage. It is used in conjunction with the circumferential separation joint discussed in Section 3.2.1.1. The dimensions given are the same as both interstages, the only difference being the joint length. Numbers in parenthesis pertain to the Stage 2 and Stage 3 interstage.

The joint works simultaneously with the skirt removal joint which separates the skirt from the upper booster stage. At the same time, the skirt is split into four sections, effecting both the axial removal from the path of flight, and the radial removal for clearance. The separation impulse providing this function comes from a linear explosive charge. The ring is designed to contain any particle fragmentation with the rubber-like material, FP-1410 (BMS 5-2).
The ring is designed to retain all structural integrity throughout flight loads and silo overpressures.

For additional details on the ordnance used in this joint, refer to Section 5.1.
INTERSTAGE LONGITUDINAL JOINT

Fitting
Tension Tie
Filler
Interstage Skin

Linear Explosive

Cork
PR-1910

Design Load
3000 #/in. tension (staging pressure)

Average Diameter - (N.A.)
Average Length - 42.2 in. (23.2 in.)

Cross Sect. Area - 0.64 sq. in.

Material - 2024 Al.

FIGURE 3.2.2-1

REFERENCES: MINUTEMAN ENGINEERING DWG: 25-37645 25-37647
4. SMALL MISSILE JOINTS

To facilitate the task of the designer whose joint concept application is limited to the non-strategic missiles, this section is restricted to joint designs for missiles of 40 inch diameter or less.

Because so much of the total effort of missile design involves this size range, this section permits the designer to investigate joint concepts related by design loads, function and environmental considerations similar to his own requirements exclusive of the larger strategic vehicles.

A look in greater depth than usual, is taken at the joints used on AGM-69A, both because it represents current developments in the state-of-the-art and because it provides an overall picture of an approach to joint design as applied to a particular vehicle.

Supplementing the AGM-69A concepts, are representative joints used on other tactical and research missiles.

4.1 AGM-69A JOINT DESIGN

The AGM-69A was configured into four sections to facilitate manufacture, assembly and maintenance. These sections are the Payload, Guidance, Propulsion and Control sections (Reference Figure 4.1).

4.1.1 THE PAYLOAD SECTION

This section, of monocoque construction, is provided a circumferential ring at each of three separation joints. Its structural parts are:

1. Impact Fuse Body
2. Forward Nose Shell
3. Warhead Section

4.1.1.1 IMPACT FUSE BODY JOINT (Figure 4.1.1-1)

The Impact Fuse Body interfaces with the Forward Nose Shell. The aft end of the fuse body has external interrupted threads to permit installation and removal from the Forward Nose Shell by rotating the impact fuse a quarter turn.
Riveted to the forward end of the Forward Nose Shell is a steel ring designed to accept the impact fuse interrupted threads. The ring is assembled to the shell using a sealant on the faying surfaces and fastened with monel rivets installed using a wet primer. A nylon insert is installed in a longitudinal groove in the steel ring for locking the impact fuse.

The joint is sealed by means of a synthetic rubber O-ring located in an annular groove provided at the base of the fuse body. Fuse body is torqued to 96 to 110 inch pounds.
IMPACT FUSE BODY JOINT

Reference: AGM-84A Program
DAGM 20151-1, Para. 4.2.1

Figure 4.1.1-1
<table>
<thead>
<tr>
<th>PART NAME/NUMBER</th>
<th>MATERIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Monel Rivet (8 places)</td>
<td>MS 20427 NS</td>
</tr>
<tr>
<td>3. Impact Fuse Body</td>
<td>2024-T4 Aluminum</td>
</tr>
<tr>
<td>4. Front Nose Ring Insert</td>
<td>General Purpose Nylon 6/6, Per L-P-410</td>
</tr>
<tr>
<td>5. "O" Ring</td>
<td>MS 28775-140</td>
</tr>
<tr>
<td>6. Radar Absorber</td>
<td>Radar Absorber</td>
</tr>
<tr>
<td>7. Forward Nose Section Ring</td>
<td>4330M, MIL-S-8699, Normalized & Tempered, R.H. C33 MAX, H.T. 160-180 KSI</td>
</tr>
<tr>
<td>8. Collar, Thermal Nose Cap</td>
<td>Reinforced Phenolic Molding, BMS 6-72</td>
</tr>
<tr>
<td>9. Sealant</td>
<td>MIL-S-8832 or BMS 5-44</td>
</tr>
<tr>
<td>10. External Insulation</td>
<td>23-078 Silicone Rubber, W/7% Quartz Micro Crystals, Dow-Corning Corp.</td>
</tr>
</tbody>
</table>

Table 4.1-1
4.1.1.2 BALLAST SUPPORT BULKHEAD JOINT (Fig. 4.1.1-2)

To the inside of the forward flange of the circumferential Forward Warhead Ring is bolted the Ballast Support Bulkhead Ring. Three 1/4 inch diameter shear bolts are assembled through the ballast and warhead bulkhead flanges only, and fifteen are assembled through the nose section shell as well. Nut plates are riveted to the inside of the ballast support bulkhead ring to receive these bolts. About the outside surface of the aft flange of the Forward Warhead Ring, is riveted the Warhead Section Shell using 24 monel rivets. Access to the eighteen bolt fasteners is provided by a plug in the silicone insulation over the bolt heads.
For Design Considerations & Materials
Data see Table 4.1.2

BALLAST SUPPORT BULKHEAD JOINT

References: AGM-69A Program
DG AGM 20151-1, Para. 4.2.3

Figure 4.1.1-2
<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Material/Specs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Shell, Warhead Section</td>
<td>2024-0 Aluminum, QQ-A-250/4, H.T. -T62</td>
</tr>
<tr>
<td>2</td>
<td>Rivet (24 places)</td>
<td>MS 204-27M6</td>
</tr>
<tr>
<td>3</td>
<td>Ring, Fwd Warhead Section, Station 34.70 (25A29548)</td>
<td>7075-T73 Aluminum, BMS 7-186 Class III</td>
</tr>
<tr>
<td>4</td>
<td>Rivet (2 places)</td>
<td>MS 20426D3</td>
</tr>
<tr>
<td>5</td>
<td>100° Reduced Head 1/4" Bolt & nut plate</td>
<td>BAC B39EL4, NAS 10644</td>
</tr>
<tr>
<td>6</td>
<td>Rivet</td>
<td>MS 20426D3, 2017-T4</td>
</tr>
<tr>
<td>7</td>
<td>Ring, Ballast Support Bulkhead</td>
<td>AISI 1026, Cold Rolled Annealed MIL-S-7952</td>
</tr>
<tr>
<td>9</td>
<td>Sealant</td>
<td>Eccobond 211</td>
</tr>
<tr>
<td>10</td>
<td>Silicone Insulation (P/N to be added)</td>
<td>93-078 Silicone Rubber, W/7% Quartz MicroCrystals Dow Corning Corp.</td>
</tr>
<tr>
<td>11</td>
<td>Sealant</td>
<td>MIL-S-3812 or BMS5-44</td>
</tr>
</tbody>
</table>

B. Design Consideration

Nose Shell sized by missile ejection condition producing the following ultimate shell loads:

- a. 4,350 lbs transverse shear
- b. 52,500 inch pounds bending moment
- c. 150 in-lb torsion moment
- d. 30.6 psi max external pressure
- e. Design temp. 260°F

-5, 15 Req'd (Through 3, 7 & 8)
-5, 3 Req'd (Through 3 & 7 only)

Table 4.1-2
4.1.1.3 DOUBLE TAPERED SPLINE JOINT (Figure 4.1.1-3)

This joint was designed to support the warhead and to mechanically interface with the missile at the forward end of the electronics section by means of a quick disconnect joint. The joint carries the loads associated with supporting the aft end of the warhead. In addition it satisfies the design considerations shown on Figure 4.1.1-3.

This joint configuration uses internal involute splines to transfer shear and torsion loads to matching external involute splines of the forward Electronics Section. Axial loads are transferred by removable circumferential splines which seat themselves in an annular groove formed after the Payload Section is joined to the Electronics Section. These removable splines are installed through an aperture provided in the aft steel ring at azimuth 45 degrees.

An arrangement is provided for indexing one spline and the other is driven into position using an axial force of 100 lbs. To prevent spline backup, a tang on the spline cover plate engages the transverse serration provided at the end of the spline. The spline access cover plate is bolted to the forward Electronics Section Ring by a single A-266 bolt. An O-Ring in the aft Warhead Section Ring forms an environmental seal after the Payload Section is combined with the Electronics Section.
For Design and Materials Data
See Table 4.1-3

DOUBLE TAPERED SPLINE JOINT

Reference: AGM-67A Program
DO AGM67A-1, Para. 4.2.1.2

Figure 4.1.1-3
A. PART NAME/NUMBER

<table>
<thead>
<tr>
<th>Number</th>
<th>Part Description</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Electronics Section Shell</td>
<td>Steel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4330 M, MIL-S-8699</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H.T. 160-180 Ksi</td>
</tr>
<tr>
<td>2</td>
<td>Involute Splines (Part of 5)</td>
<td>Steel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4130 MIL-S-18729 Normalized</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H.T. 135-145 Kpsi</td>
</tr>
<tr>
<td>3</td>
<td>Double Tapered Splines (2)</td>
<td>Silicon Rubber</td>
</tr>
<tr>
<td>4</td>
<td>"O" Ring</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Aft Warhead Section Ring</td>
<td>Steel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4330 M, MIL-S-8699</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H.T. 160-180 Ksi</td>
</tr>
<tr>
<td>6</td>
<td>Monel Rivet (60 places)</td>
<td>MS 20427M6</td>
</tr>
<tr>
<td>7</td>
<td>Sealant</td>
<td>MIL-S-8802 or BMS 5-44</td>
</tr>
<tr>
<td>8</td>
<td>Shell, Warhead Section</td>
<td>Aluminum</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2024-T3, QQ-A-250/4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H.T. -T6</td>
</tr>
<tr>
<td>9</td>
<td>Plate, Raceway Extension</td>
<td>Aluminum</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2024-T4, QQ-A-250/11</td>
</tr>
<tr>
<td>10</td>
<td>Monel Rivet</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>External Insulation</td>
<td>93-078 Silicone Rubber</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3/7% Quartz Micro-crystals</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dow-Corning Corp.</td>
</tr>
</tbody>
</table>

B. DESIGN CONDITIONS

a. Transfer 270 K in-lb ultimate body bending load, 10 K lb ultimate transverse shear load, and 700 in-lb ultimate torsion load.

b. Design temperature for (a.) is 250°F.

c. Joint to have Payload Section interchange capability within 30 minutes while missile is in carrier rack.

d. Minimized surface steps and gaps to satisfy radar cross section and aerodynamics requirements.

e. Design must not compromise volumetric requirements imposed by warhead and electronics components.
4.1.2 ELECTRONICS SECTION (Figure 4.1.2-1)

This section is actually an assembly of two sections; the Electronics Shell forward and the Motor Skirt Extension aft. The structural joint components are identified as follows:

1. Electronic Section Shell with an integrally machined fitting at the forward end to accept payload sections by means of a quick disconnect joint.
2. Motor Skirt Extension
3. Raceway Fairing and Umbilical Cover

4.1.2.1 ELECTRONICS SECTION FORWARD JOINT (Figure 4.1.1-3)

The internally machined ring at the forward end of the Electronics Section Shell is designed to mechanically interface with the Payload Section as part of the Double Tapered Spline Joint described in paragraph 4.1.1.3.

4.1.2.2 MOTOR SKIRT EXTENSION (Figure 4.1.2-2)

At the interface of the Electronics Shell forward and the Motor Skirt Extension is located the Electronic Support Fitting (see Item No. 3). This structural member provides a mounting surface for electronic equipment and is machined as an integral part of the environmental and umbilical systems. Its circumferential flange is fitted with nut plates to permit attachment of a conventional bolted spline joint. A similar joint less the support fitting provides the interface between the Motor Skirt Extension and the Propulsion Section.
For design considerations & materials data see Table 4.1-4.

MOTOR SKIRT EXTENSION
FORE AND AFT ASSY JOINTS

Reference: ADM-0404
DEADM-014E-1, Para. 4.2.1-3

Figure 4.1.2-2
A. PART NAME/NUMBER

<table>
<thead>
<tr>
<th>Part Name/Number</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Motor Case, Fwd Dome & Skirt</td>
<td>Steel</td>
</tr>
<tr>
<td>(20A14004)</td>
<td>4330V</td>
</tr>
<tr>
<td></td>
<td>Air Melt</td>
</tr>
<tr>
<td></td>
<td>Vacuum Degassed</td>
</tr>
<tr>
<td></td>
<td>Hit. 205-225 kps</td>
</tr>
<tr>
<td>2) Motor Skirt Extension</td>
<td>Steel</td>
</tr>
<tr>
<td>(25A28087)</td>
<td>4330M</td>
</tr>
<tr>
<td></td>
<td>MIL-S-8699</td>
</tr>
<tr>
<td></td>
<td>Hit. 160-180 ksi</td>
</tr>
<tr>
<td>3) Electronic Support Casting</td>
<td>Aluminum</td>
</tr>
<tr>
<td>(25A28296)</td>
<td>Al-6.6</td>
</tr>
<tr>
<td></td>
<td>QQ-A-601</td>
</tr>
<tr>
<td>4) Electronics Section Shell</td>
<td>Steel</td>
</tr>
<tr>
<td>(25A28511)</td>
<td>4330M</td>
</tr>
<tr>
<td></td>
<td>MIL-S-8699</td>
</tr>
<tr>
<td></td>
<td>Hit. 160-180 ksi</td>
</tr>
<tr>
<td>5) 5/16 inch Bolts</td>
<td>BAC B30EL5-16</td>
</tr>
<tr>
<td></td>
<td>(2 places)</td>
</tr>
<tr>
<td>6) 1/4 inch Bolts</td>
<td>NAS 1504-4</td>
</tr>
<tr>
<td></td>
<td>(43 places)</td>
</tr>
</tbody>
</table>

B. DESIGN CONSIDERATION

Critical condition is missile ejection which produces:

1. Ultimate bending load of 375,000 in lb
2. Ultimate transverse shear load of 10,000 lb at 28°OF

Shell temp.
4.1.3 Control Section

This section interfaces with the Propulsion Section forward and the Tail Cone Section aft.

4.1.3.1 Aft Motor Case Assembly Joint (Fig. 4.1.3-1)

This joint provides the mechanical interface for attaching the Control Section to the Propulsion Section. It consists of a forged ring welded to the aft end of the motor casing. The Hydraulic Manifold is mounted on the inside of the forged ring aft flange and the Control Section Fairing is mounted on the outside of the same flange. In addition, the Nozzle Shell is mated to the Aft Motor Case Ring and mechanically held by a threaded retaining ring.

4.1.3.2 Nozzle Closure (Fig. 4.1.3-2)

A nozzle closure is included on the aft end of the nozzle shell which seals the motor to maintain the propellant in a controlled environment prior to motor firing. The closure is designed to rupture cleanly when the motor chamber pressure rises to 175 ksi at first pulse ignition. The closure is bonded to the nozzle shell with an epoxy adhesive. The surface which forms the outer periphery of the nozzle closure forms an interface with the Control Section Fairing.

4.1.4 Tail Cone Section

The single joint of the Tail Cone Section provides the mechanical interface with the Control Section.
APT MOTOR GASKET ASSEMBLY JIG

Reference: AGM-41
AGM-610-1, Rev. D, 9-1

FIGURE 4.1.3-1
A. Part Name/Number

1. Hydraulic Manifold Forging

2. Firing Shell Control Section ("SA:4080-110-11")

3. 1/4" Bolts

4. Silicone Insulation "..."

5. Motor Case Aft Ring ("CA14004")

6. Nozzle Shell

7. Motor Case Retaining Ring

8. "... Ring Seal

B. Design Considerations

(To be added)

Material

1. Aluminum
 6061-T6
 QQ-A-367

2. Aluminum
 6061-0
 QQ-A-250/11
 Wt. -T6

3. 1/2 BAC30F24-7
 (thru 1, 2, & 5)

4. Steel
 4335V, Air Melt
 Vacuum Degassed
 Wt. 705-705kn

5. Same as (5)

6. Same as (5)

TABLE 4.1-5
A. Part Name/Number

<table>
<thead>
<tr>
<th>Part Name/Number</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Nozzle Closure</td>
<td>Steel 6061-T6</td>
</tr>
<tr>
<td>2. Aft Closure Shell</td>
<td>Steel 4335V Air Melt Vacuum Degassed Hit. 205-225Ksi</td>
</tr>
<tr>
<td>3. Engine Exhaust Seal (26413528)</td>
<td>Silicone Rubber BMS 1-45</td>
</tr>
<tr>
<td>6. Epoxy Adhesive</td>
<td></td>
</tr>
</tbody>
</table>

B. Design Considerations:
(To be added)
4.1.4.1 TAIL CONE SEPARATION JOINT (Figure 4.1.4-1)

The Tail Cone is an aerodynamic fairing attached to the aft end of the AGM-69A missile to reduce drag force during external carry by the carrier aircraft. The tail cone remains attached to the missile until rocket motor ignition occurs during launch. Motor ignition causes over-pressurization of the tail cone shell, and at approximately 33 pounds per square inch (psi) internal pressure. The Tail Cone attachment bushing shear out, resulting in separation of the tail cone from the missile.

Through-drilled holes in each of three longitudinal depressions in the forward portion of the spun shell, provide access to tail cone fasteners at 60, 180 and 300 degrees azimuth, for the assembly/disassembly function.
For Design Considerations and Materials
Data See Table 4.1-7
A. PART NAME/NUMBER

<table>
<thead>
<tr>
<th></th>
<th>PART NAME/NUMBER</th>
<th>MATERIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Doubler, Tail Cone (25A258288-101-11)</td>
<td>2024-0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QQ-A-250/5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H.T. -T6</td>
</tr>
<tr>
<td>2</td>
<td>Retainer, Tail Cone (29A17190-101-11)</td>
<td>6061-0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QQ-A-250/11</td>
</tr>
<tr>
<td>3</td>
<td>Bushing, Tail Cone Attachment (29A17191-101-11)</td>
<td>6061-T6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QQ-A-250/11</td>
</tr>
<tr>
<td>4</td>
<td>Plate, Filler, Tail Cone (26A13529-101-11)</td>
<td>6061-T6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QQ-A-250/11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H.T. -T6</td>
</tr>
<tr>
<td>5</td>
<td>Ring, Tail Cone (25A28239-101-11)</td>
<td>2024-0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QQ-A-250/4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H.T. -T6</td>
</tr>
<tr>
<td>6</td>
<td>Tail Cone Attach Fitting (25A17132)</td>
<td>2024-T6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QQ-A-250/4</td>
</tr>
<tr>
<td>7</td>
<td>Attachment Screw (3 places)</td>
<td>MS 16998-20</td>
</tr>
<tr>
<td>8</td>
<td>Nut Plate</td>
<td>BACNOEN</td>
</tr>
<tr>
<td>9</td>
<td>Shell, Tail Cone (25A28291-101-11)</td>
<td>6061-0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QQ-A-250/11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H.T. -T6</td>
</tr>
</tbody>
</table>

B. DESIGN CONSIDERATIONS:

Fairing to withstand local aerodynamic ultimate loads of 21.3 psi and Tail Cone jettison ultimate load of 4130 lbs.
4.2 SELECTED SMALL MISSILE JOINTS

Small missile joint applications which differ from approaches used for AGM-69A are presented in this section together with such design data as was available.

4.2.1 The Exos

A three-stage sounding vehicle, the Exos started with the Honest John for its first stage. A ground-to-ground artillery rocket, Honest John yields very high thrust for over four seconds. The second stage used a Nike booster. Third stage was provided by a version of the Thiokol Recruit known as the Yardbird, which had an acceleration capability of approximately 60 g's. The joint used between the second and third stages serves both as an assembly and as a separation joint.

The flared skirt on the forward stage and the coupling casting bolted to the aft stage (reference Fig. 4.2-1) are both threaded on the outside of the blast diaphragm. Upon forward (third) stage ignition, the pressure of the exiting gas bows the diaphragm so that the threads become disengaged from the flared skirt, and a clean rapid separation occurs.

This system is generally used between stages which are fired in succession without a coast period, to avoid large drag losses caused by the relatively large skirt diameter and the burned out preceding stage.
4.3 The Joint Selection Process

4.3.1 An example of the process which permits selection of a candidate joint for a particular application was the selection of the Double Tapered Spline Joint (Reference Fig. 4.1.1-3) for the payload/electronic section interface on AGM-65A.

4.3.2 In the study shown by Figure 4.3.1, nine candidate joint concepts were compared against a weighted list of design considerations. The primary candidate from this and similar studies was then compared in the trade study of Figure 4.3.2, which enabled the designer to determine which concept best suited his application.

Notice that the requirement (Reference Table 4.1-3) that the joint permit exchange of the payload while the missile is installed in the carrier rack, had a significant impact on the choice, since the spline joint required only limited access to the missile body to permit the exchange function.
<table>
<thead>
<tr>
<th>ITEM</th>
<th>COLUMN</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>STA 62.3U BODY JOINT (REF: CONFIG 29)</td>
<td>WEIGHT LB</td>
<td>COST</td>
<td>EASE OF OPERATION</td>
<td>WITHIN SPACE LIMITATION</td>
<td>COMPATIBILITY WITH AEC W/H</td>
<td>MFG COMPLEXITY</td>
<td>EAC CO</td>
</tr>
<tr>
<td>SNAP WIRE (D2AGM12209-5)</td>
<td>13.2 WT IS LOW BECAUSE NO ADDITIONAL SPACE IN GROOVE WAS PROVIDED FOR LOCK RING EXP</td>
<td>$111.00 AVE COST</td>
<td>1. REMOVE COVER</td>
<td>NO LOAD REQMT CAUSES JOINT TO EXCEED SPACE AVAILABLE</td>
<td>CURRENT W/H MTG TECHNIQUES OF AEC ARE NOT ADAPTABLE</td>
<td>4.44 M/H (FAB/COST ACCT)</td>
<td></td>
</tr>
<tr>
<td>COLLET (D2AGM12209-5)</td>
<td>19.8</td>
<td>$214.00 AVE COST</td>
<td>1. LOOSEN 3 SET SCREWS</td>
<td>NO LOAD REQMT CAUSES JOINT TO EXCEED SPACE AVAILABLE</td>
<td>CURRENT W/H MTG TECHNIQUES ARE NOT ADAPTABLE</td>
<td>8.49 M/H (FAB/COST ACCT)</td>
<td></td>
</tr>
<tr>
<td>BOLTED</td>
<td>6.3</td>
<td>$85.00 AVE COST</td>
<td>1. REMOVE 26 BOLTS (10 MIN. OPERATION)</td>
<td>YES</td>
<td>AEC W/H MTG REQMT CAN BE INCORPORATED INTO THIS JOINT</td>
<td>3.52 M/H (FAB/COST ACCT)</td>
<td></td>
</tr>
<tr>
<td>TAPERED SPLINE</td>
<td>10.1</td>
<td>$98.00 AVE COST</td>
<td>1. REMOVE COVER</td>
<td>YES</td>
<td>AEC W/H MTG REQMT CAN BE INCORPORATED INTO THIS JOINT</td>
<td>3.62 M/H (FAB/COST ACCT)</td>
<td></td>
</tr>
</tbody>
</table>

- **1** JOINT INTERFERES WITH CONFIG NO. 29 W/H
- **2** AEC USES FLANGE MTG, RADIAL BOLTS, LARGE THD NUT OR INTEGRAL CASE - W/H
- **3** MAX WIDTH OF CRACK DESIRED .001 WHEN DEPTH EXCEEDS .10
- **4** MARGINS CANNOT BE REDUCED BECAUSE MAT'L REQD FOR FAB
- **5** EXCLUDES TOOL DESIGN ENGR DESIGNED TO TOOL FAB COSTS & OPERATIONS CO TO ALL JOINTS
<table>
<thead>
<tr>
<th>DESIGN & TOOLING COSTS</th>
<th>REPAIR ABBREVIATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEEL WEDGING</td>
<td>NOT RECOMMENDED</td>
</tr>
<tr>
<td>BOLTS</td>
<td>REPLACE</td>
</tr>
<tr>
<td>SPINNERS</td>
<td>REMOVE</td>
</tr>
<tr>
<td>RIVETS</td>
<td>REPLACE</td>
</tr>
<tr>
<td>GASKETS</td>
<td>REPLACE</td>
</tr>
<tr>
<td>SEALING METHODS</td>
<td>MOUNTING</td>
</tr>
<tr>
<td>JOINT GAPPING</td>
<td>REPLACE</td>
</tr>
<tr>
<td>FINISHING MATERIALS</td>
<td>MOUNTING MEASUREMENTS</td>
</tr>
</tbody>
</table>

Table Explanation:
- Design and tooling costs are crucial for the efficient fabrication of steel wedges, bolts, spinners, and rivets, which are essential for joint gapping and sealing measurements.
- The repair abbreviations highlight the importance of replacing damaged or worn parts to ensure optimal performance.

关键技术应用：
- 设计和工具成本对于钢楔、螺栓、旋钮和铆钉的高效制造至关重要。
- 损坏或磨损的部件的更换对于接头间歇和密封测量至关重要。
<table>
<thead>
<tr>
<th>NG</th>
<th>IMPL. EFFECTS ON CORK</th>
<th>NUMBER OF FAB PARTS</th>
<th>HARDWARE COMPONENTS</th>
<th>JOINT COMPLEXITY</th>
<th>INTERCHANGEABILITY</th>
<th>RADAR CROSS SECTION</th>
<th>TYPE FAB TOOLS REQ'D</th>
<th>CAPITAL INVESTMENT</th>
<th>STRESS LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>ACCESS OPENING</td>
<td>5-REQD</td>
<td>2-REQD</td>
<td>SIMPLE</td>
<td>SIMPLE LOCK RING GROOVE ALIMENT IS CRITICAL</td>
<td>LATHE GRINDERS MOUNT ASSEMBLY 34</td>
<td>$655K</td>
<td>1. POSITIVE MARGIN 2. OK PER STRESS UNIT</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>COLLET REQUIRES</td>
<td>3-REQD</td>
<td>4-REQD</td>
<td>MOST COMPLICATED</td>
<td>LUG ALIGNMENT CRITICAL</td>
<td>2-CRACK</td>
<td>LATHE GRINDERS MILL DRILL JIGS ASSY 29</td>
<td>$682.7K</td>
<td>1. POSITIVE MARGIN 2. OK PER STRESS UNIT</td>
</tr>
<tr>
<td>3.</td>
<td>HOLE IN CORK</td>
<td>2-REQD</td>
<td>52-REQD</td>
<td>COMPLICATED</td>
<td>26 MATCHED RADIAL BOLT HOLES DRILL JIGS & GAGES REQD</td>
<td>1-CRACK</td>
<td>LATHE MILL BROACH DRILL JIGS ASSY 20</td>
<td>$334.6K</td>
<td>NO STRESS CHECK BOLTS UNACCEPTABLE</td>
</tr>
<tr>
<td>4.</td>
<td>COVER BOLT PLUG</td>
<td>5-REQD</td>
<td>2-REQD</td>
<td>SIMPLEST</td>
<td>SIMPLEST NO CRITICAL TOLERANCES PERPENDICULARITY OF MATING SURFACE TO BE CRITICAL</td>
<td>BEST</td>
<td>2-GROOVES REQUIRE FILLING NO CRACK</td>
<td>FORMING ROUTER DRILL JIGS ASSY 11</td>
<td>$561.7K</td>
</tr>
</tbody>
</table>

BODY JOINT TRADE STUDY CALARSON 4/25/6
4.4 AN ORIGINAL JOINT CONCEPT

This section presents a joint concept for a missile of approximately 16
to 17 inches in diameter. Its primary purpose is to provide attachment of a pay-
load section to the main body of the missile. Its capability is intended to provide
the following:

I. Transfer:
 a. 270,000 in-lb. ultimate bending load.
 b. 10,000 lb. ultimate transverse shear load.
 c. 900 in-lb. ultimate torsion load.

II. Thirty minute assembly/disassembly of payload section while missile
 is attached to carrier aircraft.

III. Minimize surface gaps and steps to satisfy radar cross section and
 aerodynamic requirements.

IV. Maximum possible internal volume for warhead and electronic equip-
 ment.

V. Satisfy I through IV at a design temperature of 270°F.

4.4.1 DESCRIPTION

The joint consists of a forward ring attached by rivets to the nose
section, and an aft ring similarly attached to the main body shell. The aft ring
is assembled inside the forward ring so that twelve bayonets on the aft ring pass
through twelve slots in the main flange of the forward ring. (Reference Figure
4.4.1-1). As viewed from the rear, the aft ring is rotated clockwise through
approximately six degrees (6°). This draws the inclined bayonet surfaces of the
aft ring flange against matching surfaces on the forward ring flange, while
forcing the principal circumferential flanges of each to bear on one other. While
thus held, the assembly is locked by installing a lock bolt through lugs, one on
each ring, which have been drawn together by the rotation. Access is provided
4.1 AN ORIGINAL JOINT DESIGN

This section presents a joint concept for a missile of approximately 16 to 17 inches in diameter. Its primary purpose is to provide attachment of a payload section to the main body of the missile. Its capability is intended to provide the following:

I. Transfer:
 a. 270,000 in-lb. ultimate bending load.
 b. 10,000 lb. ultimate transverse shear load.
 c. 200 in-lb. ultimate torsion load.

II. Thirty minute assembly/disassembly of payload section while missile is attached to carrier aircraft.

III. Minimize surface gaps and steps to satisfy radar cross section and aerodynamic requirements.

IV. Maximum possible internal volume for warhead and electronic equipment.

V. Satisfy I through IV at a design temperature of 270° F.

4.4.1 DESCRIPTION

The joint consists of a forward ring attached by rivets to the nose section, and an aft ring similarly attached to the main body shell. The aft ring is assembled inside the forward ring so that twelve bayonets on the aft ring pass through twelve slots in the main flange of the forward ring. (Reference Figure 4.4.1-l). As viewed from the rear, the aft ring is rotated clockwise through approximately six degrees (6°). This draws the inclined bayonet surfaces of the aft ring flange against matching surfaces on the forward ring flange, while forcing the principal circumferential flanges of each to bear on one another. While thus held, the assembly is locked by installing a lock bolt through lugs, one on each ring, which have been drawn together by the rotation. Access is provided
CONCEPTUAL JOINT ASSEMBLY/DISASSEMBLY TOOL CONCEPT
<table>
<thead>
<tr>
<th>ARRANGEMENT NO.</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOTE:</td>
<td>The purpose of these early and preliminary joint arrangements is to provide examples for the trades exercise of this section. Their principal value as design concepts is probably that they illustrate features most to be avoided in joint design considerations. (See text.)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Joining Joint Concepts

AND CLEVIS

<table>
<thead>
<tr>
<th>CASE</th>
<th>GLASS CASE</th>
<th>STEEL CASE</th>
<th>GLASS CASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIN</td>
<td>TAPERED PIN</td>
<td>TAPERED PIN</td>
<td></td>
</tr>
<tr>
<td>(TREMA-1)</td>
<td>ROCKET LIFTER</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCKSTRIP

- Art. 3
- Art. 1
- Art. 6

Figure 5.2.1-1

BOEING No. DZ-125911-1

SH 8-2
4.4.1 (Continued)

by slots and holes in the respective rings which are then covered by a single plate which restores the external contour of the body shell. Tapped surfaces on each ring permit the assembly of a special tool (Reference Figure 4.4.1-7) required to assemble or disassemble the sections externally. The joint is fabricated from 4330 MOD steel, heat treated to 160,000 to 180,000 psi.

4.4.2 EVALUATION

The concept was submitted to Organization 7-5400 for a preliminary evaluation, the results of which are provided on the following page.
GROUP INDEX Air Carried Missiles - Structures

SUBJECT Structural Feasibility of Bayonet Missile Joint Concept

REFERENCE: (a) 2-5167-0-201 Missile Joint Concept Compendium of Missile Joints

In a preliminary qualitative structural evaluation of the missile joint concept of Ref. (a), the concept was found to be basically feasible from a structural point of view.

In the analysis of a typical missile joint application, the maximum stress in the joint was found to be in the order of 40% higher than the maximum stress in a normal cylindrical section of the missile. Also, a missile with this joint compared to one without has approximately a 20% decrease in bending frequency.

A recommended change in the joint from a structural point of view is the elimination of all sharp corners to prevent local stress concentrations.

A more detailed stress analysis of this joint concept would depend on the specific configuration, weight distribution, and stiffness of the missile in which the joint is to be used. From this the mode shapes and frequencies could be found and, thus, the effect of the joint on dynamic loads, control interaction, and terminal guidance effectiveness could be determined.
5.0 DESIGN CONSIDERATIONS

There are many design requirements and considerations which must be kept in mind when selecting a joint design for missiles. These are usually unique for each application but usually fall into one or more of the following categories:

(1) Ordinance Separation
(2) Raceways
(3) Sealing Joints
(4) Extrusion Requirements
(5) (To be added if necessary)

Each of these areas can be the subject of an entire document by itself. Consequently, no attempt is being made to tell a complete story. However, certain general information is useful for the design engineer to consider when making his selection and justifying its feasibility.

5.1 ORDNANCE SEPARATION

Information presented in this section is largely derived from the Boeing Research document RL-34013-1, Ordnance Components and Subsystems, Design Guide. This document should be referred to for additional details or expansion.

5.1.1 TYPICAL ORDNANCE TRAIN

Figure 5.1.1-1 shows schematically an ordnance train used to stage an expended booster and remove the upper stage booster skirt. (Refer also to Figure 3-1). This figure also identifies some of the ordnance components involved. They are discussed in Section 5.1.2 and pictorially shown on Figure 5.1.1-2.
STAGE SEPARATION AND SKIRT REMOVAL

NOTE: FOR COMPONENT IDENTIFICATION CITE FIGURE 5.1.1-2

1. Safety and Arming Device
2. Detonator
3. Booster
4. Safety and Arming Device
5. Booster
6. Delay Booster
7. Linear Charge

FIGURE 5.1.1-1
STAGE SEPARATION AND CIRCULAR REMOVAL COMPONENTS
(With Known Reliability)

1. SAFETY & ARMING DEVICE
 (.000; Contaminated Level Being Determined)

2. DETONATOR
 (197 AT 56 k)

3. H BOOSTER
 (197 AT 56 k)

4. SAFE & ARM MECHANISM
 (199 AT 60 k)

5. INSTANTANEOUS BOOSTER
 (197 AT 56 k)

6. DELAY BOOSTER
 (197 AT 56 k)

7. LINEAR CHARGE
 (199 AT 60 k)

FIGURE 5.1.1-2
This train is a unique configuration for one application and is not meant to be universal. It gives an idea of the influencing factors involved in an ordnance separation joint design.

The sequence of events which take place in this particular design is as follows:

a. Electrical signal activates the Safe and Arm Device (1) which ignites the detonators (2).

b. The detonators (2) explode and ignite the linear charge (7).

c. The linear charge (7) explodes and stages the lower stage booster from the skirt.

d. As the lower stage pulls away, it pulls the lanyard on the Safe and Arm Device (4), arming it.

e. Safe and arm device (4) ignites the delay boosters (6).

f. After a delay period, the delay boosters (6) ignite the primary booster (3).

g. Booster (3) explodes and ignites the linear charge (7).

h. The linear charge (7) explodes thereby igniting the boosters (5).

i. The boosters (5) ignite the charge (7) which explodes and breaks the skirt into four panels which are ejected by the force of the explosion.
5.1.2 TYPICAL ORDNANCE COMPONENTS

5.1.2.1 Safety and Arming Device

Description

The Safety and Arming (S & A) device is a mechanism which controls the make and break of continuity of electrical firing circuits and the make and break of continuity of the explosive train of an ordnance subsystem. One variation of this description is for a similar device containing no explosive or pyrotechnic inertial. Such a device has been identified as Safe and Arm Switch, Arm-Dingarm Mechanism and Safety Switch, all performing the same function of make and break of electrical firing circuits.

Application

The S & A device is incorporated into an ordnance subsystems which, if inadvertently activated, would result in a catastrophic incident with possible loss of life and property.

The following represents a sampling of subsystems which normally do not require an S & A device:

a. Battery activation
b. Cartridge activated devices (crushed piston)
c. Explosive valves
d. Explosive cable cutters
e. Explosive switches

The above noted subsystems are often referred to as "secondary" or "Class II" ordnance subsystems because the ordnance reaction is completely self-contained when activated. These subsystems must be evaluated individually for S & A requirements, however, since a feedback or chain reaction from an activated secondary subsystem can lead to a catastrophic incident.

The application of an S & A device to an ordnance subsystem should provide for the S & A installed into the final ordnance charge or provide for a low energy detonating cord connecting link. This will allow interruption of the explosive train within the S & A and assist in maintaining system safety.

In some cases, where direct installation of the S & A or connecting explosive link is not possible because of space or configuration restrictions, it is permissible to use an S & A device containing a firing, load output connector, located as close to the ordnance as possible. In this configuration, the ordnance initiating component (e.g., trigger or detonator) would be installed on the ordnance charge and...
Determined the following data, and it is noted that the SAA device as offered to date (identification number 41-01-10-21-1) on a "Sheet B" sheet indicates that the SAA device is rated "able to handle 5000A". Conversely, the SAA device is rated "able to handle 10000A" on a "Sheet A" sheet.

Hence, the data on a power supply, system interconnection, etc., must be evaluated for application to the particular system.

a. Identified serial
b. Manufactured serial
c. Identified serial
d. Identified serial
e. Identified serial
f. Identified number by function of a serial pin

g. Identified number by serial number on special tool

h. Identified number by serial number on mechanical tool (by serial pin)
i. Identified number by serial number on mechanical tool (by serial pin)
j. Identified number by serial number on mechanical tool

k. Identified number by serial number on mechanical tool

l. Identified number by serial number on mechanical tool

m. Identified number by serial number on mechanical tool

n. Contains explosive or pyrotechnic material

o. Non-powdered, current cannot be set in safe position (heavy only load available before firing limbs)

Assume required when SAA is installed.

Typical Sources

Manufacturers with experience in design and development of SAA devices are noted below:

a. Quantico Industries, United Division
b. United States Army
The use of the SSA device is permitted to be accomplished in accordance with the established procedures and methods of the SSA device itself. The SSA device itself is designed to be used in a controlled environment to prevent any unauthorized access or tampering. The SSA device shall be operated in a manner that ensures its safety and integrity.

Electrically initiated ordnance components within the SSA device will meet the requirements of 5.1.2.6 Initiators.
The testing, adjustment, and prior to installation, are controlled by the
N/A configuration, as follows (start with N/A in safe position):

a. Analog circuit resistance

b. Digital circuit resistance (shall read open circuit)

c. d.d.d. (initial volume)

d. Test to arm

e. Arm monitor circuit resistance

f. Indicator on analog display, digital resistance (for N/A
digital equipment only, with a digital lead output connector, a
special test plug is required)

g. Analog circuit resistance

h. Analog circuit resistance (shall read open circuit)

i. N/A (initial volume)

j. Safe monitor circuit resistance

k. Arm N/A (maximum volume)

l. Analog test

m. Indicator on analog display, firing circuit resistance (for N/A
digital equipment only, with a digital lead output connector, a
special test plug is required)

n. Safe N/A (manual safe)

p. Safe monitor circuit resistance
For longed operated S/A devices the following tests are normally conducted:

a. Arming force and travel
b. Initiator bridgewire firing circuit resistance
c. S/A's S/A (push or manual safe)

The S/A will not be tested after installation and connection to the electrical system. On the maintenance program however, the firing circuit is checked after installation while the missile is in the launcher, with S/A devices in the safe position. This is accomplished with a load resistor across the firing leads within the S/A device.

Test Equipment

Electrical equipment used to test ordnance firing circuits shall be current limited to an output not to exceed 100 milliamperes for one second in order to avoid degrading the performance of initiating elements. Automatic cutoff should be considered if test current exceeds 10 milliamperes. For more detail information see 5.1.2.4 Initiators.

Safety

The S/A device may contain the following safety features to prevent inadvertent firing:

a. Break continuity of ordnance firing leads
b. Break continuity of ordnance train (ordnance incorporated)
c. Provide mechanical lock in safe position
d. Provide shunt across ordnance initiator firing leads when in the safe position

To assure maximum in personal safety, the following must be considered during handling, installation and checkout of S/A devices:

a. Shop personnel training and familiarization with the S/A devices.
b. Proper use of protective equipment during functional test.
c. Prohibit sensing pin removal except during functional test in test area and when ready to launch.
d. Prohibit arcing of SAD device after installation except during launch countdown.

e. Conduct a firing lead hazardous current (no voltage) test prior to connecting firing lead to SAD device.
3.2.9.2 Explosive Release Mechanisms

General

Explosive release mechanisms affect release of structural sections, panels, doors, hatches, etc., by explosive or gas pressure failure of retaining hardware. The common release hardware used in explosive releases are explosive bolts, separation tabs (gas or explosive actuated), linear charge and linear shaped charge. The description of each type of release hardware, and common application of each type is noted below.

a. Explosive Bolt

1. Description

The explosive bolt is a special hollow bolt which is fractured by an internal explosive charge. The explosive charge is normally a high order detonation material either permanently loaded within a cartridge or inserted later in the form of a cartridge. There are many different configurations of explosive bolts, most of which have considerable blast and fragmentational effects. A few manufacturers do state that their explosive bolt will operate with no blast or fragmentational effects.

2. Application

Explosive bolts are used to release panels or shear loads. The application of explosive bolts requiring simultaneous actuation of more than four release points is not recommended because of reliability problems.

Design for explosive bolt application should include evaluation of load radius, weight and envelope of the bolt, weight and envelope of structure and for shock and blast effects of the particular bolt being considered. Design for installation of explosive cartridge after bolt installation is complete.

3. Typical Sources

a. Technum and Whitham Inc.
b. Holix Inc.
c. Tedrine Inc., McDonnel Dulph Division
d. Cartridge Actuated Devices Inc.
e. Precision Technology Inc.
8. Convex Corp.

9. Quantec Industries, Police Division

10. Space Ordnance Systems Inc.

11. Corona Precision Inc.

12. Alinal Co., Alinal Components Inc. Division

13. Explosive Technology Inc.

15. Olin Mathieson Chemical Corp., Winchester-Western Division

4. Initiators

For information on the firing system, see 5.1.2.4, Initiators.

5. Test Methods

See 5.1.2.4, Initiators.

6. Test Equipment

See 5.1.2.4, Initiators.

7. Safety

Design for installation of explosive or pressure cartridge after bolt installation. For initiator safety, see 5.1.2.4, Initiators.

8. Separation Nut

1. Description

The separation nut is a special nut, designed for installation in a manner similar to a regular nut in structural joining except that it will release the load when actuated by an explosive or gas generator charge. In the preferred configuration the explosive or gas generator charge is contained in a separate component to be installed after the assembly operation is complete.

There are several configurations of release nuts ranging between the release of gas and fractured sections of the nut to those which release no gas or fractured sections when actuated. Each type will perform a satisfactory release.
2. **Application**

The release nut must be used only to release tension loads. Clearance holes for the setting bolts are required to allow bolt pull-out when the release nut is actuated. Shear loads must be controlled by shear pins or similar means.

Release nuts actuated by high order detonation will, in most cases, release some explosive blast to the surrounding area but are relatively free from harmful fragmentation. In one application such a device has been enclosed in a lightweight container and qualified for use in an explosive atmosphere. Release nuts actuated by gas pressure will release very little, if any, gas and will generate no shock.

Release nuts will normally be load rated in accordance with the load rating of the setting standard bolt.

Release nut application to release tasks which require simultaneous actuation of more than four points is not recommended because of reliability penalties.

3. **Typical Sources**

 a. Hi-Shear Corp.
 b. Quantec Industries, Precision Division
 c. Helix Inc.
 d. E. I. DuPont De Nemours & Co.
 e. Space Ordinance Systems Inc.
 f. Conax Corp.
 g. The Boeing Company
 h. Omega Precision Inc.

4. **Subsystems**

 For information concerning the firing subsystem see 5.1.2.4, Initiators.

5. **Test Methods**

 See 5.1.2.4, Initiators.

6. **Test Equipment**

 See 5.1.2.4, Initiators.
7. Initiation

Design for installation of cartridge after initialization. For initiation safety see 5.1.2.4, Initiators.

8. Linear Charge

1. Description

Linear charges are relatively lightly loaded, continuous, explosive charges housed in metallic or plastic tubular containers. The linear charge is also known as Mild Detonating Fuse (MDF), Print Cord, and Low Energy Detonating Cord (LED). The explosive specified for most installations in lead or aluminum encased HX or PMN because of high reliability, low cost, temperature tolerance, safety and a high detonation velocity with resultant high energy shock wave release.

2. Application

Linear explosive is used to rupture structural fittings for separation of missile sections and for propagation of detonation from one point to another in an explosive subsystem. HX explosive has been qualified for use at altitudes above 10,000 feet in the minimum stage separation system. There has been no work done, however, to verify performance of any linear explosive after long exposure, (up to one year), to space environments. The application of explosives to any task while exposed to cryogenic temperature, may cause extreme performance variation, see reference d.

3. Typical Sources

a. The E stabbed Co.

b. Explosive Technology Inc.

c. E. I. DuPont Defense Co.

4. Subsystem

Linear explosive application to such tasks as stage separation or panel ejection must be properly integrated with structure and surrounding equipment. Consider such parameters as shock, fragmentation, explosive blast and the ejection of separated sections.
The following is a dimension equation for determining an explosive loading required to rupture a Mimouna type joint. This equation contains three potential variables: explosive quantity, cavity size, and fitting strength. The final sizing of explosive load and structural compatibility can only be determined by development testing.

\[P = \left(\frac{H_2}{V} \right) (2.39) \left(\frac{W}{V} \right) \]

where

- \(P \) = Pressure to rupture explosive cavity (PSI)
- \(H_2 \) = Heat of explosion (\(H_2 \) of RDX = 1260 Cal/gm)
- \(W \) = Explosive weight per foot of joint (grains)
- \(V \) = Volume of explosive cavity (cubic inches per foot of joint)
- 2.39 = Conversion constant

The linear charge may be installed into a Mimouna type joint after completion of structure assembly through access panels. Care must be exercised to avoid sharp bends and corners in the explosive installation. Design to avoid difficult installation procedures to minimize explosive handling which could result in kinks or other physical damage to the explosive.

The linear charge is detonated by a detonator most ideally located to fire into the end of the explosive core of the charge.

5. Test Methods

The only testing possible on linear charge is x-ray inspection of explosive core size, laboratory test of core loading and an explosive output test. The laboratory and output test are both destructive in nature and will give only an indication of the explosive loading of a sample. Uniformity of explosive loading can be verified only by destruction and measurement of the total length. X-ray or gamma ray inspection of linear charge shall be accomplished only by authorized operators in an approved location. The inspection will verify continuity of the explosive cavity, the presence of explosive can not be verified.
Laboratory analysis of linear charge will require may short samples (1 to 3 inches long) taken at regular intervals throughout the total linear charge length. The short lengths are weighed individually then submerged in the proper solution to dissolve the explosive from the encasing material. The encasing material is then weighed and the weight difference is recorded as the weight of explosive removed.

The explosive gauge is a precision产业集聚 device which has been developed to rupture and open to a given dimensional range when a length of linear charge of proper explosive load is detonated within the tube. The measurement of the ruptured gauge is the indication of explosive output.

The X-ray and laboratory test will normally be accomplished by the linear charge manufacturer. The gauge test may be used as an acceptance test, using a sample length of linear charge from each end of a production length.

6. Test Equipment

X-ray and laboratory equipment should be specified by the explosive charge manufacturer. The explosive output gauge, if required, will be developed by the linear charge consumer to be compatible with the explosive output required. For a sample gauge, see Boeing Drawing 97-15250 which is used to measure the output of the Minuteman Stage Separation linear charge.

7. Safety

All handling and testing of linear charge will be accomplished in accordance with standard explosive handling procedures. Testing will be accomplished only in approved isolated areas. (See reference b 11).d. Linear Shaped Charge

1. Description (Ref. FIGURE 5.1.2.2-1)

Linear shaped charges are similar to item Linear Charge, except that the cross section is shaped to focus a high energy stream in a predetermined direction to produce a cutting action. The linear shaped charge is also known as "Flexible Linear Shaped Charge (FLSC)".

2. Application

Linear shaped charges (FLSC) is used to cut a structural material for vehicle destruction and to separate sections from a vehicle. The explosive cutting performance is predictable for any of the common explosive loads except at cryogenic temperatures. (For
PRODUCT DATA SHEET

RDX #25 LEAD CONFIGURATION IN FLSC

REFERENCE
E. B. CO. DRAWING 2-3-27
E. B. CO. SPECIFICATION T-007-00

CONSTRUCTION
SHEATH 6% ANTIMONIAL LEAD (10.5% Sb)
CORE RDX (MIL-R-306) 25 GR/FT +10%
GROSS WT 20.2 GR/FT²; 44.6 GR/100 FT

AVAILABILITY: MANUFACTURED IN 40 FT. LENGTHS AND SHIPPED IN STRAIGHT LENGTHS OF UP TO 20 FT.

Dimensions
A 0.007" MINIMUM
B 0.148" ±0.003"
C 0.196" ±0.006"
D 0.069" ±0.007"
E 0.012" MINIMUM
F 0.054" REFERENCE
X 92.5° ±6°

NOTE: RADIUS OF ALL SHARP CORNERS IS LESS THAN 0.002

THE ENSIGN-BICKFORD CO.
SIMSBURY, CONN.

FIGURE 5.1.2.2-1
The application of fluid in relatively light loads, less than 1000 lbf of explosive per foot, to accomplish structural separation should be evaluated carefully. In many cases, a linear charge (or slurry) of the same explosive load can be applied in a Blunt-combustion joint without the physical complications of matching fluids.

One common application of FG is the destruction of missile propulsion units, both liquid and solid fueled. In this application a dual (coaxial) system is used, each side independent and separated from the other except for crossover lines. Another common application is the separation of explosive missiles, stages or sections from the active stages to reduce weight.

3. Typical Systems
a. The Design-Build Joint Co.
b. Jet Research Center Inc.
c. Explosive Technology Inc.

4. Caution
The application of FG to the cutting of structure for separation of missile sections will be aided by consulting the manufacturer’s data. The cutting, location of the installation should be verified by tests and back blast effects, if important, should be evaluated. (The blast protection may in some cases be minimized by attenuating the jet stream after cutting is complete instead of attempting to control the back blast.)

5. Test Methods
Development testing only.

6. Test Equipment
As required to support development.
7.

This will be handled and installed in accordance with general operating procedures for explosives as supplemented by specific procedures for the particular system. (See Reference 6.)
5.1.2.3 Booster

Description

The booster is an ejection explosive or pyrotechnic component of moderate sensitivity, which is used in the explosive or pyrotechnic train to step-up the energy output of the primary material to initiate the comparatively insensitive main charge. The booster may be in the form of pressed pellets or in shaped containers as required by a particular system, see page 63 for additional example.

Application

Boosters will be applied to the initiation train of explosive components to step-up the detonation rate and energy release of the initiating or donor component to a level required to detonate the base charge or receiver component of an explosive train.

Boosters may also be applied to the initiation train of a gas generator or solid propellant motor to step-up the release of hot gases and burning particles into the main charge for more rapid build up of main charge gas pressure.

In both of the above systems, the booster may be incorporated only to reduce the total quantity of sensitive, primary explosive in the initiation components.

In the development of new explosive or gas generating systems, it is often possible to use an off-the-shelf booster in the initiating train. This must be done, however, with full cooperation of the booster manufacturer since an incorrect selection could compromise system performance.

Typical Co

a. E. I. du Pont DeNemours & Co.
b. Hercules Powder Co.
c. Universal Match Co.
d. Jet Research Center Inc.

Subsystem

Incorporating a booster into a subsystem requires that it be sensitive enough to be initiated by the initiator or donor and provide the correct output for initiating the next step of the initiating train. There is no firm ground rule for applying a booster to an initiating train, it is dependent on the explosive or propellant material and configuration. Each subsystem requirement will be determined during development.
Text Material

Tested only during development and acceptance testing in conjunction with the Initiator or donor and the main charge or receiver.

Test Equipment

Simulated system, pressure chamber, pressure and time instrumentation.

Safety

Use normal handling procedures in accordance with reference b and special procedures required for the particular system.
Initiators

Introduction

An initiator is the element or component used to cause or start an event. It is delivered by electrical or mechanical means to start the chain of events which results in detonation or deflagration of the main charge. The term "initiator" is also used to identify some components in a pyrotechnic system which may not be the first unit fired; however, the function is basically the same as noted above.

Initiators are identified by the following common names:

a. Detonator - An initiator located with a high order detonation material to initiate detonation in an explosive charge.

b. Squib - An initiator located with a flash and gas producing material to initiate a detonation type device such as gas generators and electric motor initiators. The term "squil" is also a correct slang term used conversationally by some people to identify any initiating device or small charge cartridge. (This use creates some confusion.)

c. Primer - The moisture used by manufacturers for electrical or mechanical fixed initiators which accomplish the new function described in 1 and 2 above.

There are two basic types of electrically fired initiators, the conventional hot wire and the explosive bridge wire (EBW) types. The operational and function of each type are quite similar, however, the control subsystems differ considerably.

Application

An initiator is used to start every detonating or deflagrating function. It may be permanently embedded in the pyrotechnic or explosive train (such as a primer in a rifle cartridge) or externally designed for installation after the remainder of the subsystem has been installed or assembled.

Every precaution should be taken to prevent the chance of a mix-up between detonating and deflagrating type initiators in any installation. The two functions are not interchangeable and will probably result in a malfunction if improperly applied.

The application of initiators to systems that will be exposed to space environments for long periods prior to actuation, can only be accomplished with some risk. There has been no testing accomplished to verify explosive or propellant performance after such exposure.
Typical Sources

- a. Kellogg Industries
- b. Beckman & Military Inc.
- c. Quantic Industries Inc., Nuclear Division
- d. Hollex Inc.
- e. Teledyne Inc., Moderate Sulph Division
- f. Ordnance Engineering Associates Inc.
- g. Cartridge Actuated Devices Inc.
- h. Hercules Powder Co.
- i. Hi-Shear Corp.
- j. Special Devices Inc.
- k. Explosive Technology Inc.
- l. Frankford Arsenal
- m. Precision Technology Inc.
- n. Aircraft Armaments Inc.
- q. Space Ordnance Systems Inc.
- r. Arlind Co., Arlind Components Inc. Division
- s. Olin Mathieson Chemical Corp., Winchester-Western Division
- t. General Precision Inc., Link Ordnance Div.

Subsystem

The firing of detonating or deflagrating initiators may be accomplished in the same basic subsystem. Mechanical or electrical initiation may be applied; the mechanical approach utilizing a percussion primer with a lanyard or gas triggered firing pin, is used mostly on crew escape systems. Other applications will most often use electrical initiation because of reduced sensitivity to environmental conditions.
Electrically fired initiators are normally incorporated into a subsystem in such a manner that no loss of redundancy is achieved. The redundancy test often includes dual sources of power, dual switching, dual firing and dual initiating. The dual bridgewise may be incorporated as two individual initiators or two single bridgewise initiators. In the case of two single bridgewise initiators, either initiator must be capable of performing the complete function.

The following data represents conventional initiator electrical characteristics considered to be acceptable by most customer agencies, (see reference e and f). These characteristics will assure a reasonable level of safety and reliability. For information on procedures for statistical analysis of performance parameters of initiators, see Reference c.

a. The initiator shall not fire, nor shall performance be degraded, by the application of 1 ampere/1 watt power to the bridgewise circuit for 5 minutes.

b. The initiator shall not fire when an electrostatic discharge of 25,000 volts is applied between the bridgewise circuits and the initiator case from a 500 microfarad capacitor.

c. The resistance between the bridgewise circuit and case shall be 50 megohms minimum when measured with a potential of 1000 volts ac or 500 volts dc.

d. Minimum recommended firing current shall be 5 amperes.

e. Initiator time to fire shall be specified in accordance with system requirements, (maximum time to fire: - for detonators, less than 5 milliseconds; for gas generator time to pressure rise less than 10 milliseconds).

f. Initiator firing systems shall be dual floating (2 wire) systems, (chassis return paths shall not be used).

Initiators shown as examples which do not meet these requirements are presented as envelope samples only, performance can be varied to meet requirements.

For complete details of both conventional and bridgewise (SBW) firing systems, see Reference a.

Test Methods

The initiators shall be tested for bridgewise resistance prior to making final connection to the firing system. The test shall be accomplished with the initiator installed in a protective chamber to prevent a catastrophic reaction or injury to personnel in case of inadvertent firing.
In addition to the bridge wire resistance test on the initiator, the initiator firing system will be tested individually prior to connection to the initiator, to verify that no abnormal voltage is present. The test will check each wire in the connector against every other wire on the shield.

Test Requirements:

Test equipment required is as follows:

a. A protective chamber to control the effects of inadvertent initiation.

b. A resistance meter with a power supply short circuit output of less than 100 milliamperes and a test set direct output of less than 10 milliamperes. Certification for use on ordnance components will be required. (See Boeing meter 10-29944 or equivalent.)

c. A low impedance AC-DC voltage meter capable of detecting and indicating voltage within the equivalent range of 5 to 150 milliamps within the frequency range of 0 to 15 cycles. A gross indication (circuit breaker, light, etc.) of voltage above this level is recommended. (See Boeing meter 10-2994b, and Boeing Wichita meter 7-30136, or equivalent.)

Safety:

a. Handling, testing, and installation will be accomplished in accordance with reference b and any specific procedures required for the particular system.

b. A protective chamber will be used during electrical testing.

c. Bridge wire resistance measurement, except HSS initiators, will be accomplished only with current limiting test equipment approved for use on ordnance components. (The bridge wire resistance measurement may not be possible on HSS initiator circuits.)

d. The electrical firing leads will be checked to verify that no extraneous voltage is present, prior to connection to initiators.

e. A shorting plug will be installed on all initiator firing lead connectors, or firing lead wires will be twisted together on initiators not equipped with connectors, at all times during shipping, storage and installation. (HSS initiators do not require a shorting plug.)
LIST OF REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>b. AFM 177-100</td>
<td>Explosives Safety Manual (Air Force Manual)</td>
</tr>
<tr>
<td>c. ORDP 20-270</td>
<td>Propellant Actuated Devices (Library File No. U85 P 20-270)</td>
</tr>
<tr>
<td>d. T5-6025</td>
<td>Test Report, Explosive Performance in Extreme Cold (Saturn)</td>
</tr>
<tr>
<td>e. MIL-1-23659</td>
<td>(U. S. NAVY - BU-WEAP) Initiators, Electric, Design and Evaluation of</td>
</tr>
<tr>
<td>f. AFETRP 80-2</td>
<td>General Range Safety Plan (Air Force Eastern Test Range Pamphlet)</td>
</tr>
</tbody>
</table>
5.2 JOINT TRADES EXERCISE

Frequently the designer is faced with the selection of a joint concept from a number of available alternatives. The use of a manufacturing approach to make the decision is demonstrated by the following example which uses case segmented joint concepts developed in the Minuteman Program.

5.2.1 MANUFACTURING CONSIDERATIONS

The six joints shown on Figure 5.2.1-1 have been evaluated on the basis of producibility in terms of fabrication time and the relative importance of the two. All joints are considered to be interchangeable and ultimately producible.

5.2.1.1 SUMMARY

Of the joint concepts considered, the taper pin and clevis joint has been selected as being the most desirable in terms of producibility. The joint requires more installation effort than some of the others, however, the findings indicated that initial fabrication time far outweighed field assembly time for the program concept of which this study was a part.

The primary advantage of the taper pin and clevis joint design concept is that it somewhat relieves the requirement for close hole alignment that most other designs require. This, of course, reduces part fabrication.

5.2.1.2 DESCRIPTION

5.2.1.2.1 STRAIGHT PIN JOINT

Joint Concept No. 1, the clevis and straight shear pin, would require both the highest fabrication time and the highest assembly time of all the joints examined. The reasons for this are the extraordinary dimensional tolerances that would have to be maintained in making the rings, and the level of alignment precision required in the joining operation. The joint is unlike the present Minuteman joint in that the fasteners carry the compression load. This requires that there be a close (Class I) fit between pin and matching holes. The joint is
Basic Joint Ty Lockstrip

To Join: Steel Case, Glass Case

Joint Variatic: Arrangement

<table>
<thead>
<tr>
<th>Arrangement</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
</table>

NOTE: The purpose of these is to provide examples. Their principal value illustrate features (See text.)

Figure 5.21.1
CASE SEGMENTING

<table>
<thead>
<tr>
<th>BASIC JOINT TYPE</th>
<th>PIN AND STEEL CASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TO JOIN</td>
<td></td>
</tr>
<tr>
<td>JOINT VARIATIONS</td>
<td>STRAIGHT PIN U.T.C.</td>
</tr>
<tr>
<td></td>
<td>TAPERED PIN THIONUXKIFEI</td>
</tr>
<tr>
<td></td>
<td>TAPERED PIN (With retaining ring)</td>
</tr>
</tbody>
</table>

ARRANGEMENT NO.

<table>
<thead>
<tr>
<th>Arrangement No.</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
</table>

NOTE:
The purpose of these early and preliminary joint arrangements is to provide examples for the trades exercise of this section. Their principal value as design concepts is probably that they illustrate features most to be avoided in joint design considerations. (See text.)
<table>
<thead>
<tr>
<th>CASE</th>
<th>GLASS CASE</th>
<th>STEEL CASE</th>
<th>GLASS CASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) PIN (Cocktail)</td>
<td>TAPERED PIN (Threaded)</td>
<td>TAPERED PIN ROCKETYNE</td>
<td>ARROW</td>
</tr>
</tbody>
</table>

Figure 5.2.1-1

BOEING

NO: D2-1259/1-1

SH 88
5.2.1.2.1 (Continued)

similar in concept to the type of shear joint used for Bomarc, but Bomarc had a 3 foot diameter where this design is for a 10 foot diameter. Of even greater significance is the method of assembly. Where Bomarc joints were assembled only with the aid of elaborate holding fixtures and the most careful attention, it would be necessary to assemble the joint here considered with a minimum of mechanical aids and in a suspended mode.

To insure success of assembly, the dimensional accuracy of the related parts must be near perfect. Normal tolerances for master tool construction, hole coordination, axial alignment and closeness of fit between pin and holes must be abandoned in favor of super precision work. Increasing accuracy requirements from thousandths of an inch to ten-thousandths of an inch would have a marked effect on fabrication costs.

5.2.1.2.2 TAPER PIN JOINT

Although at first appearance this design concept appears to be about equal in complexity to the straight pin concept, in reality they represent opposite ends of the producibility spectrum in terms of fabrication costs. Although there remains some question as to whether or not the taper pin design here considered can be made interchangeable, it was assumed that a satisfactory design can be achieved. Such a design would provide for a positive fit, with no allowance, while at the same time the individual part tolerance could be relatively large. It is this less precise dimensional control that brings the cost of fabrication down, and the positive seating of one joint ring on the other (as on present Minuteman) that reduces the assembly time.

5.2.1.2.3 TAPER PIN, THREADED

The threaded pin concept is more expensive to fabricate than the simple taper pin, because of the threads, tops and the need for a separate tapered insert.
Threaded parts are, of course, more subject to damage than most other kinds of fasteners and the inserts would have to be replaced if the threads were to be damaged.

Assembly time for the threaded taper pin is greater than that for the simple tapered pin because a more precise alignment relationship must be achieved prior to pin insertion. On the other hand, disassembly should require less time because the pins can be extracted directly. The simple taper pins may have to be freed by a puller device. Finally, the effectiveness of a tapered threaded bolt particularly in vibration, is highly questionable.

5.2.1.2.4 TAPER PIN (GLASS CASE)

There would be a slight increase in fabrication costs for this design over a similar joint type in a steel case. The difference would be due to a requirement for special drilling procedures using high speed, diamond impregnated cutting tools, and an expected higher frequency of part rejection. Assembly time should be identical with that required for the steel case application.

5.2.1.2.5 LOCKSTRIP JOINT

The lockstrip design is moderately more expensive to produce than the taper pin. Although, like the taper pin design, it can be produced using normal fabrication tolerances, it has more surfaces and more complicated surface relationships that necessitate the higher fabrication costs. Because of its self-aligning characteristics, it requires the least assembly time of all the designs considered. If the frequency of assembly and disassembly were to be relatively high, the lockstrip would be a good design choice. The application being considered here, however, would probably not warrant its selection.

5.2.1.2.6 LOCKSTRIP (GLASS CASE)

As can readily be seen from the drawings, the additional complexity associated with attaching metal rings to fiberglass case structure would substan-
Finally contribute to the cost of this design concept. The assembly time would, of course, be the same as that for the other lockstrip joint.

ANALYSIS

RELATIVE PRODUCIBILITY

The direct factory manhours associated with the actual fabrication of the various joint ring design concepts tend to vary over a rather wide range: From 340 manhours to 700 manhours. This is a ratio of 2.06 between the costs of the most expensive design and the least expensive. Tooling costs were not included because of the uncertainty of amortization factors, but if they had been considered, the spread would be even greater. The design concept considered to have the highest fabrication costs would also require the most expensive tooling. A more detailed explanation of these statements appears later.

RELATIVE PRODUCIBILITY OF ENGINE CASE SEGMENTING JOINT CONCEPTS

<table>
<thead>
<tr>
<th>Joint Type</th>
<th>Parts Fabrication</th>
<th>Estimated Manhours</th>
<th>Relative Productivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Straight Pin</td>
<td>900</td>
<td>340</td>
<td>2.06</td>
</tr>
<tr>
<td>2. Taper Pin</td>
<td>500</td>
<td>40</td>
<td>1.47</td>
</tr>
<tr>
<td>3. Taper Pin, Threaded</td>
<td>500</td>
<td>1.00</td>
<td>1.18</td>
</tr>
<tr>
<td>4. Taper Pin (Glass Case)</td>
<td>400</td>
<td>500</td>
<td>1.12</td>
</tr>
<tr>
<td>5. Lockstrip</td>
<td>380</td>
<td>700</td>
<td>2.06</td>
</tr>
<tr>
<td>6. Lockstrip (Glass Case)</td>
<td>700</td>
<td>1.12</td>
<td></td>
</tr>
</tbody>
</table>

Based on the establishment of 1.00 for baseline and assigning this value to the least expensive design.
5.2.1.3.2 RELATIVE ASSEMBLY EASE

The manhours associated with assembly and disassembly functions, although much smaller in magnitude, vary over a range almost as great as that required for part fabrication. Here the ratio is 1 : 2.26 between the least and the most time consuming concepts. This could be of real significance if assembly and disassembly became a frequent occurrence, and in any case is important from the standpoint of possibly prolonging the field assembly operation.

RELATIVE ASSEMBLY EASE ASSOCIATED WITH ENGINE CASE SEGMENTING JOINT CONCEPTS

<table>
<thead>
<tr>
<th>Joint Type</th>
<th>Estimated Manhours</th>
<th>*Relative Assembly Ease</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Assembly</td>
<td>Dis-Assembly</td>
</tr>
<tr>
<td>1. Straight Pin</td>
<td>7.5</td>
<td>7.0</td>
</tr>
<tr>
<td>2. Taper Pin</td>
<td>4.0</td>
<td>6.0</td>
</tr>
<tr>
<td>3. Taper Pin Threaded</td>
<td>6.7</td>
<td>4.7</td>
</tr>
<tr>
<td>4. Taper Pin (Glass Case)</td>
<td>4.0</td>
<td>6.0</td>
</tr>
<tr>
<td>5. Lockstrip</td>
<td>3.0</td>
<td>3.4</td>
</tr>
<tr>
<td>6. Lockstrip (Glass Case)</td>
<td>3.0</td>
<td>3.4</td>
</tr>
</tbody>
</table>

* Based on the establishment of 1.00 for baseline, and assigning this value to the design requiring the least assembly and disassembly time.

5.2.1.3.3 CONCLUSIONS

It can be seen from Figure 5.2.1-2 that the taper pin joint concept is the easiest to fabricate, and from Figure 5.2.1-3 that the lockstrip joint concept is the easiest to assemble. The lockstrip is somewhat more costly to fabricate than the taper pin concept, while the latter is about 1 1/2 times more time consuming to assemble.
5.2.1.3.3 (Continued)

There are no doubt several criteria by which the relative importance of these different manufacturing operations might be measured. In the absence of specific direction in this matter, however, cost was assumed to be the primary factor. On the basis of cost above, it would be necessary to perform the assembly and disassembly operation 12 times before installation costs would exceed initial fabrication costs. Since the operational concept being considered calls for only 8 removals per wing per year after initial emplacement, it would be about 10 years before assembly costs associated with joint design equaled the initial cost of joint fabrication.
5.3 SEALING JOINTS

When joints must act as efficient seals as well as structural members, certain general practices must be followed. The following is a "check list" which the engineer can use in his design development. It does not cover metal seals.

(a) Sealing material should never "work" from the loads passing through the joint.

(b) Shear loads carried by the joint should bypass the seal if possible.

(c) The seal is subjected to the same thermal, chemical, and pressure environment as the rest of the joint. It must be designed for such.

(d) Avoid thin, narrow gaskets. Their reliability is poor.

Reliability is sensitive to pressure required to achieve seal which is proportional to gasket area. It is also proportional to the width to thickness ratio as shown in Figure 5.3-1. This figure shows the minimum sealing stress required for a cork and rubber gasket material. The curve is essentially the same for any material, the only difference being a vertical shift. Figure 5.3-2 indicates the relative differences between many materials.
MINIMUM SEALING STRESS FOR REPRESENTATIVE NONMETALLIC GASKETS

CORK AND RUBBER
- SOFT
- MEDIUM
- FIRM

CORK COMPOSITION/DENSITY
- LOW
- MEDIUM
- HIGH

CELLULOSE AND RUBBER/COMPRRESSIBILITY
- MEDIUM

ASBESTOS AND RUBBER/COMPRRESSIBILITY
- LOW
- MEDIUM

FLANGE PRESSURE (PSI)

FIGURE 9.3-1

MINIMUM SEALING STRESS (PSI)

WIDTH/THICKNESS RATIO (W/T)

FIGURE 9.3-2

SHEET 93
6.0 JOINT DESIGNS FOR LARGE, SEGMENTED, FILAMENT WOUND MOTOR CASES

Because their potential is so great, much emphasis is currently being placed on developing large segmented rocket motor cases. To realize weight and cost savings from the use of fiberglass in such applications, a lightweight reliable mechanical joint is required. However, the low bearing and shear strength of resin laminates force the engineer to develop unique joint designs encompassing metal to fiberglass or even fiberglass to fiberglass laminates, capable of developing the full strength of the basic fiberglass structure.

6.1 MOTORCASE CONCEPTS CONSIDERED

6.1.1 In this section, joint designs are considered for the two promising concepts for segmenting filament wound rocket motor cases, illustrated in Figure 6.1.1-1. These are (a) the circumferentially segmented case (or segmented concept), and (b) the longitudinally segmented case (or modular concept). The segmented concept consists of a forward closure, aft closure, and cylindrical center segments connected by lightweight pinned joints. The modular concept is an assembly of several modules, composed of filaments oriented on meridional lines, that form portions of the forward and aft closures and are mechanically fastened to the forward and aft polar rings. The outer cylinder is of prefabricated hoop rings or circumferential windings.

6.1.2 SEGMENTED CASE LIGHTWEIGHT JOINT

6.1.2.1 Since mechanically fastened joints are necessarily thicker than the case, they offer greater restraint to radial growth than does the case. If the joints are reinforced with steel, the differential growth is further exaggerated by the contrast in elastic moduli (10.5 x 10^6 psi for glass vs 30 x 10^6 psi for steel). To minimize the contrast, use was made of the ability of the filaments to orient themselves. If the joint is located at the tangent point of the closure and the cylinder, the closure contour and its filament path can be readily calculated to
A CLEVIS JOINT FOR FILAMENT WOUND CASIES

FIGURE 6.1.2-1
6.1.2.1 (Cont'd)

obtain the radial growth required to eliminate discontinuity forces. The case growth can be made to coincide with the joint growth by using the critical angle principle; that is, as the wrapping angle exceeds 54 3/4 degrees, the ratio of hoop strain to helical strain decreases.

Because rocket motor performance requirements for most applications, dictate joint locations and winding parameters, the joint concept developed was designed to provide the same radial restraint as the case. Trade studies indicated the clevis type joint of Figure 6.1.2-1 to be the most efficient concept. The clevis joint is composed of thin, high strength steel shims, laminated between the helical layers of the case with the hoop windings wound outside the joint region. It should be noted that the hoop and helical windings are interspersed in the case and that the hoop layers terminate at the start of the shims. The interspersion of hoop and helical windings requires an external skirt attachment. A design analysis of the joint is provided in the Reference(s.) document. (See 6.3).

6.1.2.2 SKIRT ATTACHMENT JOINT

Experience has indicated that under the influence of high longitudinal strain in the case and compressive strain in the skirt, a pure resin bond between skirt and case is unsatisfactory, or at best unreliable. To circumvent this problem, a concept was developed which uses a layer of elastomeric material between skirt and case to reduce shear stresses and improve reliability. This joint is shown schematically in Figure 6.1.2-2. A free body representation of the effect of both skirt compression and case growth on the joint is shown on Figure 6.1.2-3. An analysis of such a joint together with a discussion of its fabrication problems is included in Reference (a.).
ELASTOMERIC SKIRT ATTACHMENT

FIGURE 6.1.2-2

SHEAR STRESS IN AN ELASTIC BOND

FIGURE 6.1.2-3
6.1.3 MODULAR MOTOR CASE CONCEPT

6.1.3.1 The two basic elements of the modular concept are the module and the hoop ring. The modules are preformed and precured with all fibers oriented in the longitudinal direction, extending beyond the tangent lines to form either or both domes. The domes described by the modules consist of only longitudinal fibers, hence, their contours must describe a "no hoop load dome" which is discussed in greater detail in the "Dome Analysis" section of Reference (a). The circumferential strength of the cylindrical section is supplied by hoop rings which are fitted over the assembled modules. These hoop rings also consist of precured and preformed unidirectional fibers.

6.1.3.1.1 MODULE JOINT (TYPE A)

The tension load in the module is transferred by shear into steel foil which is integrally wrapped with the module. The foil in turn carries the load into a bolted joint connecting the adapter ring (Reference Figure 6.1.3-1). The analysis is basically similar to that presented for the segmented joint referenced in 6.1.2.1.

6.1.3.1.2 MODULE JOINT (TYPE B)

This lightweight clevis joint provides a unique design which eliminates bending and assures strain compatibility at the polar ring equal to that carried by the outer plate.

6.1.3.1.3 FABRICATION PROBLEMS

Steel sheets designed to carry bearing loads in the joint areas are laminated between the glass. Any necessary reinforcement or filler cloths are added in conjunction with the steel laminates. When loading permits, the skirts are wrapped as an integral part of a hoop ring instead of using the elastomeric bond discussed in 6.1.2.2.1 (Reference Figure 6.1.3-3). The following requirements demand extreme care in laminating the steel with the modules.
Module Joint (Type A)

- **N**: Longitudinal force
- **R**: Any Radius

Module Joint (Type B)

- **R_P**: Radius to top of Dome
- **R_u**: Radius Coordinate to Polar Shell

FIGURE 6.1.3-1

FIGURE 6.1.3-2
FIGURE 6.1.3-3
6.1.3.3.1.3 (Cont'd)

A. Positive positioning and holding of the foil from winding through cure.

B. A smooth transition into the joint maintained to prevent bridging or winding material.

C. Provisions to guarantee that during the cure cycle, the greater coefficient of thermal expansion of the foil is recognized and that steps are taken to minimize the difference.

D. The foil shall be cleaned and primed in order to provide a bond capable of carrying large shear loads.
6.2 RECENT STATE OF THE ART DEVELOPMENTS IN THE SHIM JOINT CONCEPT

Building on earlier technology, the Bendix Corp. conducted a study, the results of which are presented in this section. It is considered typical of similar efforts conducted by other sources and represents an advance in the state of the art of Shim Joint Concept development. The information source is identified by reference b., together with related references a., and c. through 1. of paragraph 6.3.

6.2.1 ABSTRACT

This paper describes a shim joint concept that was developed to improve the efficiency of joints for attaching to composite material structural members. The shim joint concept reinforces the composite material in the region of the joint with thin metallic layers which permits employing a conventional shear pin joint between the composite members and a mating fitting. Design parameters are defined and design data are established. Improved methods for fabricating the reinforced tube ends and improved testing fixtures are developed. An advanced optimization technique has been applied to the design of the shim joints. It is shown that design parameters can be optimized conveniently by the structural synthesis approach in determining the minimum weight configuration. The results indicate that the shim joint concept can be successfully applied to composite members without prohibitive attachment weight penalties.

6.2.1.1 INTRODUCTION

It has been determined that structural tubes fabricated of composite materials would be lighter than tubes made from more conventional materials such as steel, aluminum, or titanium alloys. However, even though structural members can be made lighter with composite materials than with the more common metal alloys, the weight of reinforcing composite tube ends and joining them to end fitting will impose penalties. As a result, the significant weight saving potential of composite materials may tend to be offset somewhat by the weight
penalties imposed by joining the tubes to end fittings. The design of efficient, lightweight joints between composite tubes and end fittings is, therefore, a necessary element in the development of composite structural components and requires formulation of design criteria and analysis techniques.

The development of joints for composite material structural members has been studied extensively by a number of investigators. Most of the previous efforts have been confined to either bonded or mechanical joints. However, both of these joint types possess inherent limitations.

This paper describes a shim joint concept which considerably reduces these limitations and improves the efficiency of the joints. The basic geometry of the shim joint is presented in Figure 6.2.1-1. The shim layers are of uniform thickness and constant length in the longitudinal direction. The composite tube end is separated into several layers and bonded to the shim layers by an adhesive. A single circumferential row of conventional shear pins is used to transfer loads from the composite tube, through the shim layers, to the mating part.

Most of the information presented thereafter refers to fiber glass composite tubes subjected to tensile load. However, this shall not be interpreted as the limitation of the shim joint concept.

The composite material used to establish design data consisted of AF-904 glass filament and Shell Chemical Company's 58-688 resin system. The shim material was AISI 355 steel (ultimate tensile strength 260,000 psi).

6.2.1.2 ANALYSIS OF ATTACHMENT AREA

Analysis of the configuration in Figure 6.2.1-1 resulted in an extensive list of potential design parameters. Most of the geometric variables are defined in Figure 6.2.1-1. A complete listing of geometry variables is presented below.

\(a \) = distance from pin row centerline to tube end

\(D_0 \) = outside (inside) tube diameter

\(D_{ij} \) = outside (inside) tube diameter in attachment area
Figure 6.4.1-1
\(D_{op} (D_{op}) \) = outside (inside) pin diameter

\(\delta \) = distance from pin row centerline to back edge of shims

\(L_{j} \) = total length of reinforced attachment area \((L_s + L_t)\)

\(L_{t} \) = length of reinforcing ring

\(L_{s} \) = longitudinal length of metallic shim layer \((L + a)\)

\(L_{t} \) = wall thickness transition zone

\(N_c \) = number of filament layers in tube wall that do not extend into the attachment area

\(N_p \) = number of pins along the tube circumference

\(N_s \) = number of metallic shim layers

\(t_a \) = thickness of the adhesive layer joining the metallic shim to the composite material

\(t_c \) = thickness of composite layers which do not extend between shims

\(t_i \) = thickness of composite layers between shims

\(t_r \) = maximum thickness of the transition length circumferential reinforcing rings

\(t_s \) = thickness of metallic shim layers

\(\alpha \) = circumferential distance between pin centerlines

And the material weight densities are denoted in the design procedure as follows:

\(\rho_c \) = density of the composite material

\(\rho_a \) = density of the adhesive material

\(\rho_f \) = density of the filler material

\(\rho_p \) = density of the pin material

\(\rho_s \) = density of the metallic shim material

Mechanical fasteners in shim reinforced composite materials produce much the same failure modes as in metals. The following analysis considers those potential failure modes resulting from axial tension loads on the joint. Net
area tensile failure, pin hole bearing failure, hoop tension failure, shear bearing
tear-out failure, and pin shear failure can all be produced by variation of design
parameters. Failure can also occur due to excessive shear in the bend joint
between the shim and the composite material, or by delamination of the fibrous
layers in the tube wall thickness transition length.

6.2.1.2.1 NET AREA TENSION

Joint failure may occur in tension along the pin row centerline if
the net tension area becomes sufficiently small. The ultimate strength of the
net tension area depends on the ductility of the metallic shim material when a
low elastic modulus composite is used. The composite material in the net tension
area can support high stress if the shim can be strained sufficiently. For this
reason, the combined steel and composite areas were utilized in calculating the
net tension area stress.

\[
A_t = (W - D_{op}) \left(\frac{D_0 - D_1}{2} - 0.006N_c + N_s \right)
\]

(1)

where \(W = \pi D_{op}^2 / 4 \). The ultimate tension load is given by:

\[
P_{ult} = N_{p} K_{tu} A_t F_{tu}
\]

(2)

where \(K_{tu} \) is the ultimate tensile efficiency factor and \(F_{tu} \) is the ultimate
tensile strength of the metal.

The allowable tensile stress is a function of the \(D_{op}/W \) ratio as in
the following strength study. Flat plate tests were conducted to determine tensile allow-
able stress and results are presented in Paragraph 6.2.1.3 of this paper.

6.2.1.2.2 PIN HOLE BEARING

Test results have indicated that bearing failure of shim reinforced
composites normally occurs as a result of shim buckling. Buckling strength is a
function of individual shim thickness, \(t_s \), and the unsupported metal span length,
The bearing allowables are presented in Paragraph 6.2.1.3 of this paper as a function of the ratio \(D_{op} / s \). The allowable pin bearing area and the ultimate tension load are:

\[
A_{br} = N_s s_{op} \tag{3}
\]

\[
P_{ult} = N K_A A_{br} F_{tu} \tag{4}
\]

where \(K_{br} \) is the bearing efficiency factor.

Since the failure mode is actually one of stability, the degree of restraint due to clamping must also be considered in establishing allowables for this failure mode. A joint which is tightly clamped by a threaded nut on the pin will produce much higher bearing stresses than an identical joint which is not clamped or restrained. Clamping of the flat plate tests were adjusted to duplicate that expected in the composite tube attachment.

6.2.1.2.1 \text{HOOP TENSION}

Hoop tension can occur when the pin row is placed too close to the tube end. For unidirectional composite plies, the tensile strength of the glass epoxy system is quite low in the transverse directions, therefore, the composite material was not considered to be effective in transmitting hoop stress during the establishment of allowables. Further testing would be required to establish allowables for attachments which incorporate plies oriented at an angle to the member axis. The allowable is defined in terms of the skin material ultimate tensile strength and is a function of the \(a / D_{op} \) ratio. The hoop tension area is given by the following expression:

\[
A_{ht} = N_s s_{ht} a \left(\frac{D_{op}}{2} \right) \tag{5}
\]

The ultimate load for the joint is

\[
P_{ult} = N K_A A_{ht} F_{tu} \tag{6}
\]
where k_{sh} is the hoop tension efficiency factor, further explained in Paragraph 6.2.1.4.

6.2.1.4 SHEAR BEARING

Past experience with lug design would indicate that shear bearing failure could also occur if the pin row is placed too close to the end. There were no clearly defined occurrences of shear bearing failure during the flat plate test series of this study. It has been suggested that the tubular members may be more susceptible to shear bearing failures since the tubular geometry possesses more lateral constraints than the flat plate specimens. Only tubular test data can ascertain this fact.

6.2.1.2.5 BOND

To design a bonded shim joint for ultimate loading, it was necessary to use average shear strength allowables from flat plate tests. The shim area which was considered to be effective in bond is shown in Figure 6.2.1-2 to be a function of both a and b. An effective bond length L_e, was defined by dividing the shaded bond area by the width, W.

$$ L_e = \frac{W (L + a) - N \left(a \frac{D}{op} + \frac{\pi}{8} \frac{D^2}{op} \right)}{W} $$

The ultimate load for a shim joint is given by

$$ P_{ult} = 2N A_s N_s $$

where $A_s = \frac{1}{W}$, and N_s is the allowable shear stress, defined in terms of the effective bond length L_e.

6.2.1.2.6 WALL THICKNESS TRANSITION ZONE

From a weight standpoint, it is desirable to make the transition length as short as possible. As the transition length becomes shorter, however, the radial force component which tends to separate the fibrous layers (delaminate) at the base of the transition length becomes greater. These radial forces create
$$t_y = \frac{1}{2} \left(D_i + \frac{1}{\alpha} \right)$$

Transition Length

$$(L_j - L_s)$$

Figure 0.2.1-3
Tensile strain concentrations at the region of separation point of adjacent layers which must not exceed the ultimate tensile strain of the resin in the composite. The tensile strain at the separation point can be controlled by designing circumferential reinforcement rings at both the inside and outside diameters to restrict radial movement. The transition zone was analysed by using a finite element model of beams and springs. The thickness of the required reinforcing ring is

\[
t_p = \frac{p_i - (p_i)_{\text{ult}}}{4\mu \gamma_n}
\]

where \(p_i\) is the radial force on the exterior layer, \((p_i)_{\text{ult}}\) is the allowable radial force on the exterior layer and \(\gamma_n\) the allowable radial displacement of the exterior layer. Both \((p_i)_{\text{ult}}\) and \(\gamma_n\) values may be established through analytical-experimental studies (Reference 6, pp. 33-99).

6.2.1.2.7 PIN SHEAR

The pins are loaded in double shear and the design requires simply that the cross-sectional area be large enough to ensure that the shear stress does not exceed the ultimate shear strength of the material. If hollow pins are used, the ratio \(A_p / p_{\text{op}}\) must be low enough to ensure that the pins will not crush or buckle. The ultimate load for the pinned joint is governed by pin shear is given by:

\[
(p_i)_{\text{ult}} = \frac{2A_p f_{\text{ult}}}{p_{\text{op}}}
\]

where \(A_p\) is the pin area, and \(f_{\text{ult}}\) the ultimate shearing strength of the pin material.

6.2.1.3 FLAT PLATE TESTS

The flat plate test specimen (Figure 6.2.1-4) was developed to enable inexpensive determination of ultimate strength design allowables for the various failure modes in a shim joint. The presence of free edges on the sides of the flat plate configuration prevents exact simulation of the tubular joint.
TYPICAL FLAT PLATE SPECIMEN

Figure 6.2.1-4
but it is felt to be adequate for most failure modes.

The flat plate specimen used in this study is best described by Figure 6.2.1-5. Five 0.02 inch steel shim layers were used in each of the flat plate specimens, but other materials were included in varying quantities to produce failure modes which were of interest. The composite material was composed of 65 percent glass, by volume, and 35 percent resin. The W dimension was fixed at 1.0 inch. Also tests conducted during this study have included only longitudinal fibers between the shims. Further testing will be required to determine design allowances for shim joints in laminates having fibers oriented at an angle to the loading direction.

The specimens were loaded by a pin through the shim joint and by a friction grip on the opposite end. The shim pack was clamped lightly during the test to simulate the clamping action expected from a metal fitting mating with the reinforced tube end. The specimens were loaded to rupture to obtain ultimate strength design allowances.

6.2.1.1 NET AREA TENSION

The net area tension data is shown in Figure 6.2.1-5. The calculated stress values were divided by the ultimate tensile strength of the shim material to form the net tension efficiency factor, K_{tu}. A mean allowable curve is shown superimposed on the test data. The mean allowable is defined in terms of D_{op}/W by the expression:

$$K_{tu} = \frac{79.33}{143.75 - 100 \times D_{op}/W} \quad (11)$$

which was used in the net tension area failure envelope in the design.

Data points denoted as "lower bound" values arise from tests in which failure occurred either in a different mode, or in a combination of modes which included the one of interest.
\[K_{bf} = 3.0 - \frac{123.8}{107 - D_{op}/t_s} \]

Figure 6.2.1-6: PIN BEARING TEST RESULTS VS. \(D_{op}/t_s \)
6.2.1.2 PIN BEARING

Figure 6.2.1-6 shows the flat plate pin bearing strength data plotted versus the $\frac{\sigma_{op}}{t_s}$ ratio. The bearing ultimate stress values have been divided by the ultimate tensile strength of the skin material to form the pin bearing efficiency factor, K_{br}. The curve was derived empirically and is defined by

$$K_{br} = 3.0 - \frac{123.8}{107\cdot\frac{\sigma_{op}}{t_s}}$$

(12)

Equation 12 was used as the pin bearing failure envelope in the optimum design procedure.

Pin bearing failure is of special interest because it is more ductile than other failure modes. When structural members are fabricated from brittle materials such as fiber glass, it may be desirable to design the assembly such that initial failure occurs in the attachment by pin bearing to avoid catastrophic failure of the assembly.

6.2.1.3.3 HOOP TENSION

The hoop tension test results are plotted in Figure 6.2.1-7 as a function of the $\frac{a/D_o}{D_o}$ ratio. Again a mean allowable curve has been derived to fit the test data. The mean allowable curve is obtained by

$$K_{ht} = \frac{2.173}{a/D_o + 0.65}$$

(13)

which was used as the hoop tension failure envelope in the design procedure.

6.2.1.3.4 BOND

The effective length of bond for flat plates, l_e, was defined in terms of both "$t\)$ and "$a\)$ by

$$l_e = (t + a) - a D_o - \frac{a^2}{8 D_o}$$

(14)

Figure 6.2.1-8 shows the test data plotted versus the effective...
Figure 3.2.1-7:

Hoop Tension Test Results vs. a/D_{op}

$K_{ht} = \frac{-3.173}{D_{op}} + 0.65$
Table

<table>
<thead>
<tr>
<th>Joint Length (in.)</th>
<th>Average Adhesive Shear Stress (PSI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.0045</td>
</tr>
<tr>
<td>1.2</td>
<td>0.009</td>
</tr>
<tr>
<td>1.4</td>
<td>0.013</td>
</tr>
<tr>
<td>1.6</td>
<td>0.017</td>
</tr>
<tr>
<td>1.8</td>
<td>0.021</td>
</tr>
<tr>
<td>2.0</td>
<td>0.025</td>
</tr>
<tr>
<td>2.2</td>
<td>0.029</td>
</tr>
</tbody>
</table>

Notes

- **BR-1009-49 Adhesive:**
 \[f_s = \frac{f_e}{5.130} + 1.95 \]
- **AF-III Adhesive:**
 \[f_s = \frac{f_e}{5.30} + 1.95 \]

Diagram

- Effective Joint Length
- Average Adhesive Shear Stress
- Joint Load Capacity
- Effective Adhesive Shear Stress

Figure 6.2.1-8
length. The solid line curve represents the bond strength of the AF-11 (3M Corporation) adhesive tape, and the dashed line curve shows the bond strength for the BR-1009-49 tack primer (American Cyanimid Corporation). An algebraic equation was derived to fit the AF-11 shear strength. The curve is defined by

$$ f_s = \frac{5130}{d + 1.95} $$ \hspace{1cm} (15)

where f_s is the average adhesive shear stress.

The AF-11 adhesive film produces thicker adhesive layer than the BR-1009-49 tack primer. It can be shown (Reference b, pp. 10-12, pp. 75-87) that thicker adhesive layer does reduce the shear stress concentration factor.

6.2.1.3.5 Transition Zone

Two flat plate specimens were fabricated without the excess transverse fiber glass layer to study the delamination failure mode in the thickness transition zone. The specimens did fail by delamination as expected, and the data were used to establish allowable stress level in the circumferential, reinforcing ring, design procedure.

6.2.1.4 Optimum Design

A feasible design is one that behaves satisfactorily under the specified conditions. In general, it is possible to find more than one feasible shim joint design for a given composite tube. If one of the design features is taken as the design objective, it is possible to find a feasible design which is most favorable as judged by the design objective. In the present study, weight was chosen as the design objective.

6.2.1.4.1 Design Constraints

A shim joint is considered feasible if it satisfies the following design constraints:

1. Net section tension:
\[
\begin{align*}
&\left[\frac{2}{3} (D_0 + D_L) \cdot \Phi_{P_{op}} \right] \left[\frac{1}{3} (D_0 - D_L) \cdot \Phi_{C} + N \Phi_{t_e} \right] \\
&= K_{tu} F_{tu} \geq F_{ult} \\
&\text{(16)}
\end{align*}
\]

1. Bearing

\[N_{op} P_{op} F_{Rtu} = F_{ult} \]
\[\text{(17)}\]

2. Hoop tension

\[N_{pu} (a - \frac{1}{2} D_{op}) F_{Rtu} \geq F_{ult} \]
\[\text{(18)}\]

3. Bond

\[N_{q} (D_{op} + D_{L}) F_{Rtu} \geq F_{ult} \]
\[\text{(19)}\]

4. Girc reinforcing ring

\[r_{f} = \frac{P_{op}^{2} (P_{1} - (P_{2})_{ult})}{4E_{y} v_{a}} \]
\[\text{(20)}\]

5. Pin

\[\frac{\pi}{2} p_{p}^{2} \Phi_{P_{op}} \left[1 - \left(\frac{P_{op}}{P_{p}} \right)^{2} \right] F_{su} \geq F_{ult} \]
\[\text{(21)}\]

6.2.1.3.2 OBJECTIVE FUNCTION

To write the objective function, the weight of each joint component is expressed in terms of the design variables:

1. Fiber glass composite:

\[W_{fg} = \pi \left(\frac{D_0}{2} - D_L \right) L_{j} - \frac{\pi}{4} D_{op}^{2} N_{p} \left(\frac{D_0 - D_L}{2} - N_{c} \Phi_{t_e} \right) \]
\[= -N_{c} \Phi_{t_e} \left(\frac{D_0 + D_L}{2} \right) L_{j} \]
\[\text{(22)}\]
2. Shim

\[W_s = N_s l_s \left[\left(\frac{D_0^2 + D_1^2}{2} \right) l_s - \frac{\pi}{4} D_{op}^2 N_p \right] \omega_s \] \hspace{1cm} (23)

3. Cine wrap ring:

\[W_r = \left[\pi (D_0 + D_1) L_r \tan \frac{\theta}{2} \right] \omega \] \hspace{1cm} (24)

4. Filter

\[W_f = \frac{\pi}{4} (D_0 + D_1) N_f l_f (t_s + 2 t_a) \omega_f \] \hspace{1cm} (25)

5. Pin

\[W_p = \pi \frac{p}{4} N_p \left[1 - \left(\frac{D_0}{D_{op}} \right)^2 \right] N_p \left[\left(\frac{D_0 + D_1}{2} - N_c t_c \right) \right. \\
\left. \hspace{1cm} + N_s (t_s + 2 t_a) + l_p \right] \omega_p \] \hspace{1cm} (26)

where \(l_p \) is the pin length required outside shim pack to connect the mating fixture.

As a structural member, the total length of the composite tube is fixed. An increase in the joint length naturally causes a decrease in the uniform section portion of the composite tube. Consequently, the increase of weight due to longer joint length is partially compensated by a shorter basic tube section. Since the joint length is a design parameter, the total joint weight does not reflect the additional weight superimposed to the tube.

For this reason the shim joint objective function is defined as:

\[W_o = W_{fg} + W_s + W_r + W_f + W_p \\
\hspace{1cm} - \frac{\pi}{4} (D_0^2 - D_1^2) L_d \omega_{fg} \] \hspace{1cm} (27)

which is the weight added to the structural member by the attachment.
6.2.14.3 OPTIMUM DESIGN

Now the design problem may be stated as to find the minimum of equation 27 subjected to the condition of equations 16 through 21. There are a number of directly applicable mathematical methods for the solution of this type problem. The method selected in this study was the steepest descent. The net attachment weight was taken as the objective function and the conditions equations 16 to 21 were treated as constraints. Then the objective function was minimized under the constraints.

The method used is a descent routine. Starting with an initial solution, steps are taken towards new points at which the value of the objective function is improved. The iteration process continues until a minimum is reached. (Reference b, p. 95)

The procedure described above has been programmed in Fortran IV to form a basic optimization routine. The routine has been successfully used for numerous design problems. When applied to the design of shim joints, the input consists of:

1. Number of design parameter, number of constraints.
2. Limit of interactive cycles.
3. Initial step length.
4. Tolerance range for each constraint.
5. Applied load.
6. Tube geometry.
7. Mechanical properties of materials.
8. Design constraints.
9. Initial design parameters.
10. Optimal information.

If allowable stress is expressed as a function of design parameters, it is convenient to incorporate allowable stress expressions in the program.

The program output consists of:

1. Design parameter.
1. Information concerning any violation of constraints.

2. Direction of movement.

3. Weight of each shim joint component.

4. Value of the objective function.

The program was executed on an IBM 360/44 computer. Artificial constraints may be added to improve convergence. For example, the minimum practical values of a, t_w, and t_r may be treated as artificial constraints. For six design variables and eleven constraints (including artificial constraints for convenience) the average running time was five to six minutes. It was observed that usually after twenty-five iterations the variation of objective function was in the order of one thousandth of a pound. It was also observed that different sets of reasonable initial conditions all lead to practically identical objective function and design parameters. For all practical purpose the objective function obtained in twenty-five iterations may be taken as the minimum and the corresponding design parameters the optimum design.

6.2.1.4.4 EXAMPLE

The optimization procedure was used to design the tubular joint for the final structural test of this program. The design allowable expressions obtained from the flat plate data were used in the constraint equations 16 through 21. The design was performed with the following parameters fixed:

- $D_o = 3.0$ in.
- $D_{ij} = 3.095$ in.
- $D_{op}/D_{op} = 0.8$
- $F_{tu} = 260$ ksi
- $t_a = 0.009$ in.
- $w = 0.074$ lb./in.
- $w_s = 0.283$ lb./in.
- $F_{su} = 110$ ksi
- $t_c = 0.006$ in.
- $t_s = 0.040$ lb./in.
- $w_s = 0.283$ lb./in.
<table>
<thead>
<tr>
<th>No. of</th>
<th>Peop.</th>
<th>D</th>
<th>a.</th>
<th>Ir.</th>
<th>&s</th>
<th>tr.</th>
<th>Objective</th>
<th>Total</th>
<th>Joint</th>
<th>Sheet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>in.</td>
<td>in.</td>
<td>in.</td>
<td>in.</td>
<td>in.</td>
<td>in.</td>
<td>ft.</td>
<td>in.</td>
<td>lb.</td>
<td>lb.</td>
</tr>
<tr>
<td>8</td>
<td>0.549</td>
<td>0.685</td>
<td>0.626</td>
<td>0.401</td>
<td>0.921</td>
<td>0.944</td>
<td>0.429</td>
<td>0.516</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.518</td>
<td>0.689</td>
<td>0.631</td>
<td>0.447</td>
<td>0.919</td>
<td>0.929</td>
<td>0.389</td>
<td>0.477</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.491</td>
<td>0.702</td>
<td>0.667</td>
<td>0.434</td>
<td>0.917</td>
<td>0.912</td>
<td>0.362</td>
<td>0.447</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.468</td>
<td>0.722</td>
<td>0.661</td>
<td>0.469</td>
<td>0.916</td>
<td>0.910</td>
<td>0.347</td>
<td>0.436</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.448</td>
<td>0.740</td>
<td>0.663</td>
<td>0.414</td>
<td>0.917</td>
<td>0.915</td>
<td>0.373</td>
<td>0.481</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.431</td>
<td>0.733</td>
<td>0.684</td>
<td>0.422</td>
<td>0.919</td>
<td>0.923</td>
<td>0.414</td>
<td>0.562</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RESULTS OF PIN NUMBER VARIATION STUDY

Table 1:
With exception of \(N_p \) (number of pins), the remaining design parameters were allowed to vary in the optimization routine.

The routine does not handle discrete variables and it was impractical to treat \(N_p \) as a continuous variable. To determine the optimum number of pins, the number of \(N_p \) was varied in consecutive runs having otherwise identical input. The resulting joint designs are shown in Table I. The table includes both, a) the weight added to the basic tube by the reinforcement and pins (objective function) and b) the total weight of the joint section. The pins were considered to be hollow and made from 180 ksi ultimate tensile strength steel.

The objective function is plotted as a function of \(N_p \) in Figure 6.2.1-9. As the plot indicates, the eleven pin configuration is clearly the optimum one for the specified problem.

6.2.1.4.5 EFFICIENCY OF THE SHIM JOINT CONCEPT

A comparison can be made by studying a composite tube having shim joints with tubes of other materials designed to meet the same loading requirement. In Figure 6.2.1-10 the weights of constant strength tubes have been plotted versus tube length. The metal tubes are assumed to have identical strength in tension and compression. Two curves are shown to reflect the different tensile and compressive strengths of 5,000 ksi 900 fiber glass. Thin wall buckling and column buckling are not considered. The fiber glass tube weights include 0.7 pound to reflect the weight added to both ends of the tube by the minimum weight eleven pin attachment of the previous section.

Examination of Figure 6.2.1-10 reveals that for design governed by tensile strength, fiber glass tubes are more efficient than aluminum for tube length of 5.0 inches or larger and lighter than steel or titanium for tube lengths exceeding 7.5 inches. If compressive strength governs the tube design, fiber...
Figure 6.2.1-9:

Increase in weight of structural member due to joint number of
PINS used at joint.

OBJECTIVE FUNCTION

USE FOR DRAWING AND HANDWRITING — NO TYPED OR TYPED MATERIAL
Weight comparison of constant strength tubes vs. tube length

Figure 6.2.1-10:
glass is more efficient than aluminum for lengths greater than 6.5 inches, and lighter than steel or titanium tube lengths exceeding 12.0 inches.

6.2.1.5 MATERIALS AND FABRICATION

Materials

The filament composite materials employed in this study consisted of AF-994 glass filaments and Shell Chemical Company's 58-68R resin system.

The metal shim was made of AM-335 steel coil, eight inches wide, 0.02 inch thick, and of continuous length. The shim cleaning procedure employed was originally developed and reported in Reference e.

The bond between the corrosion resistant steel shims and the filament composite material was provided by a structural adhesive. Two types of adhesives were evaluated. The first was BR-1009-49 tack primer as supplied by the American Cyanimid Corporation, and the second was AF-111 structural adhesive fiber furnished by the 3M Corporation. BR-1009-49 tack primer was utilized during the early phase of the program. A primer coating of uniform thickness of approximately 0.005 inch was obtained, and was oven cured for 60 minutes at 315°F. AF-111 structural film was utilized during the later phase of the program. The adhesive film was applied to the steel shim and stored at 40°F until ready for use.

Holes were drilled through the fiber-resin-shim-composite to permit insertion of shear pins. Carbide-tipped or full carbide drills were used. Holes larger than 0.250 inch diameter can be drilled in successive steps of approximately 0.375 inch diameter increase per step.

6.2.1.5.1 FLAT PLATE SPECIMENS

The flat plate filament composite specimens utilized in this program were specially wound on a winding machine. The test specimens were wound over twelve-inch by two-inch aluminum mandrels.
Guide blocks were provided on one end of the mandrels to facilitate locating the metal shims as they were wound into the ends of the specimens. Two specimens were wound simultaneously by utilizing both sides of the mandrel. The wrapped mandrels were then cured for four hours at 350°F. The specimens were removed from the mandrel by cutting the glass composite along the edges with a high speed cutting disk. The sides and ends were trimmed with a hand saw and flat plate disk sander.

6.2.1.5.2 TUBES

Open end cylinders were fabricated two at a time by winding a double length cylinder and then cutting it into two cylinders. The cylinders were wound over mandrels machined from salt block which was later removed by dissolving in hot water. Thin corrosion resistant steel shims, in the form of narrow circumferential bands, were wound into the cylinders on each side of the planned cut which would separate the two cylinders. Subsequent to removal of the salt mandrel, a circumferential row of holes was drilled through the wall of each cylinder in the shim area for later insertion of shear pins.

6.2.1.6 STRUCTURAL TEST

6.2.1.6.1 TEST FIXTURES

Ultimate strength testing of the final tubular joint design required the fabrication of two separate test fixtures. One fixture is a clevis-type which mates with the reinforced attachment area of the tube to form the pin joint. The fixture was fabricated in two pieces to avoid the expensive machining which would be required by a monolithic assembly. The two pieces were held together by a nut during drilling of the pin holes. The nut was used to insure that equal loads would be applied to the pins on the inside and outside diameter of the tube.

The second test fixture (Reference b, pp 97-100) held the opposite end of the tubular specimen which was reinforced only by four additional layers of filament material. The fixture employed a friction gripping technique. A schematic
Figure 6.2.1-11: TENSION FIXTURE ASSEMBLY

- Cerrobend (Expander)
- Jacket
- Retaining Nut
- Spacer Ring
- Plug
of the fixture is shown in Figure 6.2.1-11.

6.2.1.6.2 TENSION TEST OF TUBULAR JOINT

A 3.0 inch outside diameter tube was fabricated with steel reinforced end to test the shim joint concept in a full scale structural member. The test specimen was designed to fail in the attachment area since the program is oriented to refinement of shim joint design technology. The basic tube was fabricated with a 5,1 90° wrap pattern to a wall thickness of 0.072 inches. The ultimate tensile load for the tube was found to be 150 kips (Reference c, pp 2-19). The specimen was loaded in an Olsen Machine to an ultimate tension load of 135.5 kips. Fracture occurred in the outer fiber glass layer at the edge of the outside shim. It is felt that both the test fixtures and the shim joint did perform well.

6.2.1.6.3 COMPRESSION TEST OF TUBULAR JOINT

The tension clevis fixture and the jacket of the friction grip fixture was used to conduct the compression test. A cerrobend plug was cast to reinforce the inside diameter of the nonreinforced tube end. The test specimen was identical to the tension specimen. The ultimate compressive load for the tube was found to be about 51.0 kips. The attachment area suffered no discernible damage.

6.2.1.7 CONCLUSIONS

The following conclusions may be made:

1. Design parameters can be optimized conveniently by the structural synthesis approach in determining the minimum weight configuration.

2. The shim joint concept can be successfully applied to composite members without prohibitive attachment weight penalties.

6.3 REFERENCES

7.0 JOINT CONSIDERATIONS FOR REDUCED SCALE MODEL VEHICLES

7.1 The use of scale model replicas for vehicle structural dynamics studies can provide the designer with valuable information on proposed designs early in their development cycle. By their use, structural modifications and payload changes can be evaluated without expensive full-scale construction and testing, particularly for the large, complex vehicle.

This Section discusses the 1/10 scale structural replica of the Apollo/Saturn V and is intended to provide designers with some insight to the compromises which can dictate deviations from true replica reproduction in the area of missile joints.

The decision to provide a scaled-down replica of the prototype joint, or to simulate it by its dynamic and dampening equivalent is dictated by the following considerations:

a. Present fabrication practices and limitations.

b. Access requirements unique to the model.

c. Assembly problems created by the size reduction.

d. Requirement for equivalent dynamic properties.

e. Fabrication properties of alternative alloys.

f. Size of scaled-down fastener components.

g. Economic alternatives of simulation vs scale duplication of the joint.

7.1.1 Structural Joints

7.1.2 The joint illustration in Figure 7.1.2-1 is typical of a design variation required to permit assembly of the structural components. This joint depicts the S-IV-B aft-bulkhead-common-bulkhead joint. In full scale (Figure 7.1.2-1a), the fabrication is by rivets and welds. The 1/10 scale model permits the final closure to be effected externally. The bulkhead structure near the joint was
(a) PROTOTYPE (FULL SCALE)

(b) 1/10 - SCALE MODEL

FULL SCALE PROTOTYPE & 1/10 SCALE MODEL S-IVB COMMON BULKHEAD

FIGURE 7.1.2-1
7.1.2 (Continued)
locally modified by adding a relatively heavy adapter ring to which the bulkhead was riveted. This ring was then bolted to the skin from the outside and a bead of sealant compound applied at the intersection of the common bulkhead and the \(\text{LH}_2 \) tank wall. The resultant joint therefore, is not a true representation of the full-scale component.

7.1.3 An indication of the degree to which the prototype is duplicated is indicated by examination of the joints of Figure 7.1.3.2 The location of the joints detailed in this Figure is shown on Figure 7.1.3-1 by the lettered circles on the left side of the model drawing. The joints of Figure 7.1.3-2 carry corresponding letter identifications.

7.1.3.1 Figure 7.1.3-2a is the junction of the S-IC fuel tank and the intertank section. The fuel-tank upper bulkhead, the fuel tank wall, and the intertank section are joined by a Y-ring assembly. There exists a deviation from replica scaling in that one leg of the Y-ring is attached by a bolted flange to allow access to the intertank interior areas. The intertank Y-ring connection is an unusual joint, made necessary by the complex corrugated intertank skin, and consists of channelled strips attached alternately to the inside and outside surfaces of the Y-ring leg from the corrugated intertank surface. A similar joint (Figure 7.1.3-2b) is used at the intersection of the lower LOX tank-bulkhead-LOX-tank-wall and intertank structure. This joint, however is closed by a weld rather than by the bolted flange connection. At the junction of the S-IC LOX tank upper bulkhead and tank-wall-forward-skirt interface shown in Figure 7.1.3-2c, a variation was utilized in the model structure. In order to complete the final weld in the joint, the Y-ring was fabricated in two pieces and the shorter leg was spotwelded to the locally thickened forward-skirt skin. The closure was then effected by an external weld. The resultant hardware has the
(a) JOINT A
(b) JOINT B
(c) JOINT C

*Ref Figure 7.1.3-1 and Paragraph 7.1.3-1
7.1.3.1 (Continued)

same basic dimensional properties as would have resulted from direct geometric scaling.

7.1.3-2 The model joints shown in Figures 7.1.3-2d and 7.1.3-2e are scaled duplicates of prototype joints with the exception that the number of fasteners used in the model is less than the number required on the prototype. The fasteners however, are sized so that the total fastener area was a scaled quantity. The application of replica scaling to the joint of 7.1.3-2d was judged to be the most expedient approach since considerable engineering time would have been required to properly design a more easily manufactured connection with comparable dynamic properties. Further, the scaling laws applicable to a joint of this type are not sufficiently defined to permit evaluation of any alternate design, particularly the effect of the pinned-truss ring frame braces.

7.1.3-3 The remaining structural joints of Figures 7.1.3-2b through 7.1.3-2l are essentially scaled duplicates of the full-scale structure except for deviations in wing-frame and bulkhead construction dictated by fabrication time and cost considerations. The alternative design approach permitted the use of manufacturing procedures which produced geometrically similar structural components with fewer and less intricate machine processes. The resultant structures have the same structural dynamic properties as the more complex exact miniaturizations of the full scale structure.

7.2 Fabrication Problems

7.2.1 Other fabrication problems, not classified as design deviations, include machining processes, metal forming procedures, machine and chemical milling tolerances, fastening methods, and welding techniques. Not only can the solution of these problems dictate the degree to which a given launch vehicle can be reproduced to a specified reduced scale, but they also can be significant factors in
USE FOR DRAWING AND HANDWRITING — NO TRANSMISSION MATERIAL

FIGURES 7.1.3-2 (cont.)

(a) JOIN H

(b) JOIN P

(c) JOIN Q

(d) JOIN P

(e) JOIN P

(f) JOIN P

Paragraph 7.1.3-2

Set Figure 7.1.3-1 and
Use for drawing and handwriting — no typewritten material

Ref Figure 7.1.3-1 and Paragraph 7.1.3-3

FIGURE 7.1.3-2 (Cont)
7.2.1 (Continued)

establishing the economic feasibility of acquiring a dynamic model such as the
1/10 scale Apollo/Saturn V. If the resulting fabrication limitations are practi-
cal, it may be possible to duplicate the full-scale structure at a predetermined
reduced size at less cost than would be needed to simulate the structure by em-
ploying corresponding expensive engineering time.

A factor found to be beneficial for fabricating the model joints included
methods employed to make the required assembly attachments. The full-scale
joints were fabricated with appropriate weldments, bolts, nuts and rivets.
Obviously the components of the smaller model must be assembled by other methods
because of the impracticability of the reduced scale attachment hardware. There
must be a compromise both in type and the number of simulated fasteners. Also,
it is generally accepted that whenever an effort is made to approximate the
structural dynamic properties of a complex structure, the detail design of the
joints and attachment hardware should be conservative with a resulting exces-
ively stiff component since any effort to scale directly the size and number of
bolts and rivets would be impractical both from a manufacturing and assembly
viewpoint.

In addition, although it is true that there can be some conservative dis-
tortion of the joint stiffness properties, there can be little hope of achieving
any degree of success in reproducing desired damping characteristics when rivets
and bolts are replaced by spot welds. Generally, bolted joints can be repre-
sented by using convenient, commercially available fasteners, such as 0-80
screws, a lesser number of fasteners being used, the number of which is determined
from the correctly scaled fastener area. This design approximates the proper
stiffness and damping.
7.3 Conclusions

7.3.1 Replica scaling of the main load carrying structural joints, which together with other structural components, necessitated an extension of the state-of-the-art in fabrication techniques, was employed and resulted in a model which duplicates the full-scale structure to a high degree. Extreme full scale design details, such as joint reproduction, were duplicated in the fabrication of the 1/10 scale model.

A careful analysis of the prototype structural details was required to ascertain the practical and economic feasibility of duplicating component hardware to the chosen scale factor. Where model joint design dictated sizes too small to be duplicated, an acceptable design required that only the correct mass and stiffness distributions be retained in the model. Some joints could not be adequately defined by the most rigorous present-day dimensional analysis and therefore were built as scaled duplicates of the full scale members. If the joints were of secondary importance from a dynamic viewpoint, they were a scaled replica because they required less expenditure of effort with duplicate fabrication than with dynamic simulation. All substitutions were carefully considered, however, lest their inclusion degrade the usefulness of the total structure through either introduction of misleading response data or the suppression of critical responses.

With proper care in the selection of the scale factor and methods of manufacture and with judicious evaluation of deviations from direct scaled duplication, the replica models are considered technically and economically feasible for studies of the structural dynamic characteristics of large complex vehicles.

An in-depth description of the project is available in Reference 2, from which the information presented herein was derived.
REFERENCES

1. D2-11165 - Structural Development Note #9 - Sandwich Material, Rev. 3-31-98
 Presents design criteria and allowables for structural design
 and stress analysis of sandwich components for aircraft application.
 Provides background in this type of construction for designers.

2. NASA TN D-4138 - Design and Fabrication Considerations for a 1/10 - Scale
 (ASTIC 056062)
 Replica Model of the Appolo/Saturn V.
8.0 DOCUMENT OPTION FOR FUTURE WORK

8.1 Originally planned as a one year effort, the joint study was reduced by six months due to budgetary and manpower requirements. While it is recognised that a great deal more information might be included in this document, it is felt that in its present form it provides a useful tool to the designer faced with the problem of missile or space vehicle joint design.

Should a decision be foreseen to continue the effort, the immediate direction taken will be to investigate raceway and other non-structural joints. Follow-on effort will be a report on the latest state-of-the-art in joint design concepts, missile carrier interface joints, joint fastener hardware, plumbing and electrical joint interfaces and recent advances in materials and process technology as applied to missile joints.
<table>
<thead>
<tr>
<th>SHEET NUMBER</th>
<th>NUM</th>
<th>REVISION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>11</td>
<td></td>
<td></td>
<td>111</td>
<td></td>
<td></td>
<td>11</td>
<td></td>
<td></td>
<td>1110</td>
<td></td>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>12</td>
<td></td>
<td></td>
<td>16</td>
<td></td>
<td></td>
<td>161</td>
<td></td>
<td></td>
<td>1611</td>
<td></td>
<td></td>
<td>26</td>
<td></td>
<td></td>
<td>261</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>17</td>
<td></td>
<td></td>
<td>171</td>
<td></td>
<td></td>
<td>27</td>
<td></td>
<td></td>
<td>2711</td>
<td></td>
<td></td>
<td>28</td>
<td></td>
<td></td>
<td>281</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>18</td>
<td></td>
<td></td>
<td>181</td>
<td></td>
<td></td>
<td>29</td>
<td></td>
<td></td>
<td>2911</td>
<td></td>
<td></td>
<td>30</td>
<td></td>
<td></td>
<td>301</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>19</td>
<td></td>
<td></td>
<td>191</td>
<td></td>
<td></td>
<td>3011</td>
<td></td>
<td></td>
<td>52</td>
<td></td>
<td></td>
<td>32</td>
<td></td>
<td></td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>20</td>
<td></td>
<td></td>
<td>201</td>
<td></td>
<td></td>
<td>411</td>
<td></td>
<td></td>
<td>42</td>
<td></td>
<td></td>
<td>421</td>
<td></td>
<td></td>
<td>51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td>211</td>
<td></td>
<td></td>
<td>521</td>
<td></td>
<td></td>
<td>60</td>
<td></td>
<td></td>
<td>601</td>
<td></td>
<td></td>
<td>69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>22</td>
<td></td>
<td></td>
<td>221</td>
<td></td>
<td></td>
<td>611</td>
<td></td>
<td></td>
<td>77</td>
<td></td>
<td></td>
<td>771</td>
<td></td>
<td></td>
<td>781</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>23</td>
<td></td>
<td></td>
<td>231</td>
<td></td>
<td></td>
<td>761</td>
<td></td>
<td></td>
<td>8411</td>
<td></td>
<td></td>
<td>86</td>
<td></td>
<td></td>
<td>861</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SHEET 146
ACTIVE SHEET RECORD

<table>
<thead>
<tr>
<th>SHEET NUMBER</th>
<th>REV</th>
<th>SHEET NUMBER</th>
<th>REV</th>
<th>SHEET NUMBER</th>
<th>REV</th>
<th>SHEET NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>87</td>
<td></td>
<td>132</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td></td>
<td>133</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>89</td>
<td></td>
<td>134</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td>135</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td></td>
<td>136</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td></td>
<td>137</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>93</td>
<td></td>
<td>138</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>94</td>
<td></td>
<td>139</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
<td>140</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td></td>
<td>141</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td></td>
<td>142</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98</td>
<td></td>
<td>143</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td></td>
<td>144</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>145</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td></td>
<td>146</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>102</td>
<td></td>
<td>147</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103</td>
<td></td>
<td>148</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>107</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>109</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>114</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>116</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>118</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>119</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>121</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>122</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>123</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>124</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>126</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>127</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>128</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>129</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>131</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SHEET 147