LIMITATION CHANGES

TO:
Approved for public release; distribution is unlimited. Document partially illegible.

FROM:
Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; SEP 1963. Other requests shall be referred to Army Materiel Command, Alexandria, VA. Document partially illegible.

AUTHORITY

USAMC ltr, 2 Jul 1973
RESEARCH AND DEVELOPMENT OF MATERIEL

ENGINEERING DESIGN HANDBOOK

AMMUNITION SERIES

SECTION 1, ARTILLERY AMMUNITION—GENERAL

WITH TABLE OF CONTENTS, GLOSSARY AND INDEX FOR SERIES

HEADQUARTERS, U. S. ARMY MATERIEL COMMAND

SEPTEMBER 1963
AMCP 706-244, Section 1, Artillery Ammunition--General, forming part of the Ammunition Series of the Army Materiel Command Engineering Design Handbook, is published for the information and guidance of all concerned.

(AMCRD)

FOR THE COMMANDER:

SELWYN D. SMITH, JR.
Major General, USA
Chief of Staff

OFFICIAL:

R. O. DAVIDSON
Colonel, GS
Chief, Administrative Office

DISTRIBUTION: Special
FOREWORD

The ARTILLERY AMMUNITION SERIES is being issued as an interim publication of the Ordnance Engineering Design Handbook, a comprehensive sequence of publications planned to treat the entire field of Ordnance design. When the Handbook was begun it was found to be impractical to integrate into it the series relating to Artillery Ammunition already in preparation under the direction of Picatinny Arsenal. Although they were similar, the objectives of the two projects were not identical. The subject breakdown adopted for the Handbook would have necessitated redistribution of the material of this series throughout several of the planned volumes of the Handbook, with consequent delay in publication of much of the material. It was therefore decided to issue this material intact as an interim publication to make it available as early as possible. The material appearing in this series will be gradually superseded as pertinent volumes of the Ordnance Engineering Design Handbook become available.

Material for this series was prepared by the Technical Writing Service of the McGraw-Hill Book Company, under Contract DAI-28-017-501-ORD-(P)-912. Technical supervision and much of the basic information were furnished by Picatinny Arsenal. Engineers from other Ordnance Design Centers also supplied much information, and aided in the review. In fact, so many persons have given time and energy to this project that it has been difficult to compile a complete list of acknowledgements.

The following were responsible for the conception and direction of the project.

ARTILLERY AMMUNITION SECTION, ARTILLERY AMMUNITION AND PACKING DEVELOPMENT LABORATORY, SAMUEL FELTMAN AMMUNITION LABORATORIES, PICATINNY ARSENAL

Alfred F. Teitscheid
Chief, Artillery Ammunition Branch

Wilder R. Carson
Chief, Artillery Ammunition Branch

Roy H. Wood
Chief, Artillery Ammunition Laboratory A
MAJOR CONTRIBUTORS

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>George Demitrack</td>
<td>Picatinny Arsenal</td>
<td>Interior Ballistics, Propellants</td>
</tr>
<tr>
<td>Lars Enequist</td>
<td>Ballistics Research Laboratory</td>
<td>Lethality Criteria</td>
</tr>
<tr>
<td>Henry P. Hitchcock</td>
<td>Ballistics Research Laboratory</td>
<td>Exterior Ballistics</td>
</tr>
<tr>
<td>Dr. Robert H. Kent</td>
<td>Ballistics Research Laboratory</td>
<td>Exterior Ballistics</td>
</tr>
<tr>
<td>Charles Lenchitz</td>
<td>Picatinny Arsenal</td>
<td>Thermodynamics of Explosive Materials</td>
</tr>
<tr>
<td>Prof. Arthur F. MacConochie</td>
<td>Prof. of Mechanical Engineering, University of Virginia</td>
<td>Manufacturing Methods</td>
</tr>
<tr>
<td>Arnold O. Pallington</td>
<td>Picatinny Arsenal</td>
<td>Physical Testing of Explosive Materials</td>
</tr>
<tr>
<td>Richard E. Todd</td>
<td>Picatinny Arsenal</td>
<td>Quality Control</td>
</tr>
<tr>
<td>Col. Herman U. Wagner, USA (Retired)</td>
<td>Picatinny Arsenal</td>
<td>General Contributor and Consultant</td>
</tr>
<tr>
<td>Murray Weinstein</td>
<td>Picatinny Arsenal</td>
<td>Physical Testing of Explosive Materials</td>
</tr>
<tr>
<td>Dr. Lewis Zernow</td>
<td>Ballistics Research Laboratory</td>
<td>Shaped Charge Theory, Blast</td>
</tr>
<tr>
<td>Col. Herman H. Zornig, USA (Retired)</td>
<td>Ballistics Research Laboratory</td>
<td>Ordnance Specialist and Consultant</td>
</tr>
</tbody>
</table>

GENERAL ASSISTANCE

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kenneth H. Abbott</td>
<td>Watertown Arsenal</td>
<td>Kinetic Energy Ammunition</td>
</tr>
<tr>
<td>Theodor Advokat</td>
<td>Picatinny Arsenal</td>
<td>Special Purpose Shell</td>
</tr>
<tr>
<td>Norman E. Beach</td>
<td>Picatinny Arsenal</td>
<td>Chemical Testing of Explosive Materials</td>
</tr>
<tr>
<td>Donald R. Beeman</td>
<td>Picatinny Arsenal</td>
<td>Head Ammunition Design Branch</td>
</tr>
<tr>
<td>Name</td>
<td>Arsenal</td>
<td>Research Area</td>
</tr>
<tr>
<td>---------------------------</td>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>Willard R. Benson</td>
<td>Picatinny Arsenal</td>
<td>Lethality Theory</td>
</tr>
<tr>
<td>Warren Blittersdorf</td>
<td>Frankford Arsenal</td>
<td>Cartridge Case Design, Manufacturing Methods</td>
</tr>
<tr>
<td>Joseph I. Bluhm</td>
<td>Watertown Arsenal</td>
<td>Rotating Bands</td>
</tr>
<tr>
<td>William Byrne</td>
<td>Frankford Arsenal</td>
<td>Cartridge Case</td>
</tr>
<tr>
<td>John E. Capell</td>
<td>Picatinny Arsenal</td>
<td>Ammunition Design Standards</td>
</tr>
<tr>
<td>Herbert N. Cohen</td>
<td>Picatinny Arsenal</td>
<td>Pyrotechnics</td>
</tr>
<tr>
<td>Corwin S. Davis</td>
<td>Picatinny Arsenal</td>
<td>Chief Propellant Section</td>
</tr>
<tr>
<td>Abraham L. Dorfman</td>
<td>Picatinny Arsenal</td>
<td>Pyrotechnics</td>
</tr>
<tr>
<td>Cyrus G. Dunkle</td>
<td>Picatinny Arsenal</td>
<td>Shaped Charge Ammunition</td>
</tr>
<tr>
<td>Leonard H. Eriksen</td>
<td>Picatinny Arsenal</td>
<td>Explosives Chemistry Laboratory</td>
</tr>
<tr>
<td>Harold N. Euker</td>
<td>Frankford Arsenal</td>
<td>AP Shell</td>
</tr>
<tr>
<td>Patrick Falivene</td>
<td>Picatinny Arsenal</td>
<td>Propellant Ignition</td>
</tr>
<tr>
<td>Arthur P. Field</td>
<td>Picatinny Arsenal</td>
<td>Inspection</td>
</tr>
<tr>
<td>Al Fox</td>
<td>Frankford Arsenal</td>
<td>Manufacturing Methods</td>
</tr>
<tr>
<td>Leo J. Frey, Jr.</td>
<td>Picatinny Arsenal</td>
<td>Special Purpose Shell</td>
</tr>
<tr>
<td>Robert Frye</td>
<td>Picatinny Arsenal</td>
<td>Head Chemical Branch</td>
</tr>
<tr>
<td>Andrew J. Galko</td>
<td>Picatinny Arsenal</td>
<td>GB Shell</td>
</tr>
<tr>
<td>Thomas Hall</td>
<td>Picatinny Arsenal</td>
<td>HEP Shell</td>
</tr>
<tr>
<td>Dr. David Hart</td>
<td>Picatinny Arsenal</td>
<td>Head Pyrotechnics Laboratory</td>
</tr>
<tr>
<td>Floyd Hill</td>
<td>Ballistics Research Laboratory</td>
<td>Tank Vulnerability</td>
</tr>
<tr>
<td>Sidney Jacobson</td>
<td>Picatinny Arsenal</td>
<td>Kinetic Energy Ammunition</td>
</tr>
<tr>
<td>Name</td>
<td>Location</td>
<td>Duties/Position</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>William Josephs</td>
<td>Picatinny Arsenal</td>
<td>Propellants</td>
</tr>
<tr>
<td>Kurt Kupferman</td>
<td>Picatinny Arsenal</td>
<td>Shaped Charge Ammunition</td>
</tr>
<tr>
<td>Robert G. Leonardi</td>
<td>Picatinny Arsenal</td>
<td>Primer Ignition</td>
</tr>
<tr>
<td>William L. Lukens</td>
<td>Picatinny Arsenal</td>
<td>Formerly in charge of Ammunition Design Branch, Picatinny Arsenal</td>
</tr>
<tr>
<td>Ulysses S. MacDonald</td>
<td>Picatinny Arsenal</td>
<td>Inspection</td>
</tr>
<tr>
<td>James R. McKay</td>
<td>Picatinny Arsenal</td>
<td>Special Purpose Shell</td>
</tr>
<tr>
<td>Harold Markus</td>
<td>Frankford Arsenal</td>
<td>AP Shell</td>
</tr>
<tr>
<td>Anthony Muzicka</td>
<td>Watervliet Arsenal</td>
<td>Rifling and Gun Chambers</td>
</tr>
<tr>
<td>Jacob H. Niper</td>
<td>Picatinny Arsenal</td>
<td>Inspection</td>
</tr>
<tr>
<td>Karl G. Ottoson</td>
<td>Picatinny Arsenal</td>
<td>Asst. Chief, Chemical Test Section</td>
</tr>
<tr>
<td>Lawrence W. Pell</td>
<td>Picatinny Arsenal</td>
<td>High Explosives</td>
</tr>
<tr>
<td>Ballard E. Quass</td>
<td>Picatinny Arsenal</td>
<td>Special Purpose Shell</td>
</tr>
<tr>
<td>Lt. Richard Rhiel</td>
<td>D & P S Aberdeen Proving Grounds</td>
<td>Plate Penetration Monograms</td>
</tr>
<tr>
<td>Dr. William H. Rinkenbach</td>
<td>Picatinny Arsenal</td>
<td>Formerly in charge of Picatinny Arsenal</td>
</tr>
<tr>
<td>Gilbert E. Rogers</td>
<td>Picatinny Arsenal</td>
<td>General Artillery Ammunition Design</td>
</tr>
<tr>
<td>Max Rosenberg</td>
<td>Picatinny Arsenal</td>
<td>Ammunition Design</td>
</tr>
<tr>
<td>William M. Rowe</td>
<td>Picatinny Arsenal</td>
<td>HEP Shell</td>
</tr>
<tr>
<td>Samuel Sage</td>
<td>Picatinny Arsenal</td>
<td>Chief, High Explosives Section</td>
</tr>
<tr>
<td>Marvin B. Schaffer</td>
<td>Picatinny Arsenal</td>
<td>Canister Shell</td>
</tr>
<tr>
<td>Arthur B. Schilling</td>
<td>Picatinny Arsenal</td>
<td>Foreign Ammunition</td>
</tr>
</tbody>
</table>
GENERAL ASSISTANCE (cont)

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robert M. Schwartz</td>
<td>Picatinny Arsenal</td>
<td>General Ammunition Design</td>
</tr>
<tr>
<td>William F. Shirk</td>
<td>Picatinny Arsenal</td>
<td>Canister Shell</td>
</tr>
<tr>
<td>Morgan Smith</td>
<td>Ballistics Research Laboratory</td>
<td>Aircraft Vulnerability</td>
</tr>
<tr>
<td>Joseph V. Sperazza</td>
<td>Ballistics Research Laboratory</td>
<td>Blast Theory</td>
</tr>
<tr>
<td>Joseph Sterne</td>
<td>Ballistics Research Laboratory</td>
<td>Lethality, Fragmentation</td>
</tr>
<tr>
<td>Theodore W. Stevens</td>
<td>Picatinny Arsenal</td>
<td>High Explosives</td>
</tr>
<tr>
<td>Noah A. Tolch</td>
<td>Ballistics Research Laboratory</td>
<td>Lethality, Fragmentation</td>
</tr>
<tr>
<td>Paul B. Tweed</td>
<td>Picatinny Arsenal</td>
<td>High Explosives</td>
</tr>
<tr>
<td>Robert J. Vogel</td>
<td>Picatinny Arsenal</td>
<td>Assistant, Research and Development Section</td>
</tr>
<tr>
<td>Leo Volkheimer</td>
<td>Picatinny Arsenal</td>
<td>WP Shell</td>
</tr>
<tr>
<td>Stanley Wachtell</td>
<td></td>
<td>Chief, Physical Test Section</td>
</tr>
<tr>
<td>Garry Weingarten</td>
<td>Picatinny Arsenal</td>
<td>Head, Chemical Research Section Pyrotechnics Laboratory</td>
</tr>
<tr>
<td>Edward Wurzel</td>
<td>Picatinny Arsenal</td>
<td>Interior Ballistics</td>
</tr>
</tbody>
</table>
PREFACE

This series is a compilation of available data on the design of artillery ammunition. It is intended to introduce the graduate engineer to the art of ammunition design and to serve as a ready reference for the practicing artillery ammunition designer.

Information contained in these publications has been obtained from development reports and drawings of ammunition items, from proof firing records, and from research reports by United States and British government agencies. The information obtained from these sources was corroborated and supplemented by means of direct interviews and correspondence with personnel of U. S. government and private research and design agencies.

This series consists of six sections. Section 1 is an introduction to the general subject of ammunition and its design. It is primarily intended to familiarize newcomers to the field with the nomenclature and classification of ammunition items. For convenience in publication, the features applying to the entire series, such as Table of Contents, Glossary and Index, have been bound with Section 1.

Section 2 is concerned with terminal ballistics, or the production of effect by the various types of ammunition. Section 3 deals with the control of flight, and exterior ballistic design of both fin-stabilized and spin-stabilized rounds.

Section 4, on design for projection of ammunition, includes the design of propellants for desired interior ballistic characteristics, stress analysis, and the design of cartridge case, gun chamber, and rifling and rotating bands.

Section 5 describes the inspection aspects of artillery ammunition design. It is included to acquaint the designer with dimensioning practices and the nature of the limitations placed on design by the requirements of gaging and quality control.

Section 6, on manufacturing methods, has been included to give the neophyte designer some insight into the overall problem of the manu-
facture of metal parts of ammunition items, since methods of manu-
ufacture impose limitations upon the design of such items.

Much effort has been spent in locating and verifying this data. How-
ever, in spite of this, it is probable that valuable sources have been
overlooked and that a certain percentage of the information is already
obsolete because of the rapid advances being made in the field. It
is hoped that the users of the Artillery Ammunition Series will inform
the Office of Ordnance Research, Box CM, Duke Station, Durham, North
Carolina, of any omissions or errors that they may notice.
table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
<th>Paragraphs</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOREWORD</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>PREFACE</td>
<td>ix</td>
<td></td>
</tr>
<tr>
<td>1 ARTILLERY AMMUNITION —</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GENERAL</td>
<td>1-1</td>
<td></td>
</tr>
<tr>
<td>Types and Classification of Complete Rounds</td>
<td>1-1</td>
<td>1-1 to 1-12</td>
</tr>
<tr>
<td>Types of Projectiles</td>
<td>1-2</td>
<td>1-13 to 1-21</td>
</tr>
<tr>
<td>Projectile Components</td>
<td>1-3</td>
<td>1-22 to 1-28</td>
</tr>
<tr>
<td>Fuzes, Boosters, and Detonators</td>
<td>1-4</td>
<td>1-29 to 1-37</td>
</tr>
<tr>
<td>Explosives for Ammunition</td>
<td>1-6</td>
<td>1-38 to 1-41</td>
</tr>
<tr>
<td>Propelling Charges</td>
<td>1-6</td>
<td>1-42 to 1-50</td>
</tr>
<tr>
<td>General Design Requirements</td>
<td>1-8</td>
<td>1-51 to 1-54</td>
</tr>
<tr>
<td>References and Bibliography</td>
<td>1-8</td>
<td></td>
</tr>
<tr>
<td>2 DESIGN FOR TERMINAL EFFECTS</td>
<td>2-1</td>
<td>2-1 to 2-16</td>
</tr>
<tr>
<td>Introduction</td>
<td>2-1</td>
<td></td>
</tr>
<tr>
<td>Blast Effect</td>
<td>2-7</td>
<td>2-17 to 2-49</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
<td>Paragraphs</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>------------</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DESIGN FOR TERMINAL EFFECTS (cont)</td>
<td>2-20</td>
<td></td>
</tr>
<tr>
<td>References and Bibliography</td>
<td>2-50 to 2-70</td>
<td></td>
</tr>
<tr>
<td>Characteristics of High Explosives</td>
<td>2-22</td>
<td></td>
</tr>
<tr>
<td>Shaped Charge Ammunition</td>
<td>2-30</td>
<td></td>
</tr>
<tr>
<td>Fragmentation</td>
<td>2-93</td>
<td></td>
</tr>
<tr>
<td>References and Bibliography</td>
<td>2-113</td>
<td></td>
</tr>
<tr>
<td>Kinetic Energy Ammunition for the Defeat of Armor</td>
<td>2-117</td>
<td></td>
</tr>
<tr>
<td>References and Bibliography</td>
<td>2-148</td>
<td></td>
</tr>
<tr>
<td>Canister Ammunition</td>
<td>2-150</td>
<td></td>
</tr>
<tr>
<td>References and Bibliography</td>
<td>2-155</td>
<td></td>
</tr>
<tr>
<td>High-Explosive Plastic (HEP) Shell</td>
<td>2-156</td>
<td></td>
</tr>
<tr>
<td>References and Bibliography</td>
<td>2-159</td>
<td></td>
</tr>
<tr>
<td>Special Purpose Shell</td>
<td>2-160</td>
<td></td>
</tr>
<tr>
<td>References and Bibliography</td>
<td>2-199</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DESIGN FOR CONTROL OF FLIGHT CHARACTERISTICS</td>
<td>3-1</td>
<td></td>
</tr>
<tr>
<td>Design for Precision</td>
<td>3-1</td>
<td></td>
</tr>
<tr>
<td>References and Bibliography</td>
<td>3-33</td>
<td></td>
</tr>
<tr>
<td>Design for Maximum Range or Minimum Time of Flight</td>
<td>3-38</td>
<td></td>
</tr>
<tr>
<td>References and Bibliography</td>
<td>3-77</td>
<td></td>
</tr>
<tr>
<td>Projectile Geometry</td>
<td>3-81</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DESIGN FOR PROJECTION</td>
<td>4-1</td>
<td></td>
</tr>
<tr>
<td>Propellants and Interior Ballistics</td>
<td>4-1</td>
<td></td>
</tr>
<tr>
<td>Cartridge Case and Gun Chamber Design</td>
<td>4-117</td>
<td></td>
</tr>
<tr>
<td>References and Bibliography</td>
<td>4-137</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Design for Projection (cont)</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>----------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Rotating Band and Rifling Design</td>
<td>4-149</td>
<td>4-117 to 4-154</td>
</tr>
<tr>
<td>References and Bibliography</td>
<td>4-176</td>
<td></td>
</tr>
<tr>
<td>Stress in Shell</td>
<td>4-177</td>
<td>4-155 to 4-177</td>
</tr>
<tr>
<td>References and Bibliography</td>
<td>4-190</td>
<td></td>
</tr>
<tr>
<td>Inspection Aspects of Artillery Ammunition Design</td>
<td>5-1</td>
<td></td>
</tr>
<tr>
<td>Quality Assurance Aspects of Ammunition Design</td>
<td>5-1</td>
<td>5-1 to 5-21</td>
</tr>
<tr>
<td>References and Bibliography</td>
<td>5-12</td>
<td></td>
</tr>
<tr>
<td>Effect of Dimensioning and Tolerancing on Inspection</td>
<td>5-13</td>
<td>5-22 to 5-28</td>
</tr>
<tr>
<td>Manufacture of Metallic Components of Artillery Ammunition</td>
<td>6-1</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>6-1</td>
<td>6-1 to 6-10</td>
</tr>
<tr>
<td>Forging of HE Shell</td>
<td>6-4</td>
<td>6-11 to 6-33</td>
</tr>
<tr>
<td>Machining of HE Shell</td>
<td>6-14</td>
<td>6-34 to 6-56</td>
</tr>
<tr>
<td>Cold Extrusion of HE Shell</td>
<td>6-21</td>
<td>6-57 to 6-68</td>
</tr>
<tr>
<td>Compromise Method of Shell Forming</td>
<td>6-25</td>
<td>6-69 to 6-70</td>
</tr>
<tr>
<td>Manufacture of High-Explosive Plastic Shell</td>
<td>6-26</td>
<td>6-71 to 6-77</td>
</tr>
<tr>
<td>Manufacture of Armor-Piercing Shot and Caps</td>
<td>6-29</td>
<td>6-78 to 6-86</td>
</tr>
<tr>
<td>The Manufacture of Hypervelocity Armor-Piercing (HVAP) Shot</td>
<td>6-35</td>
<td>6-87 to 6-91</td>
</tr>
<tr>
<td>The Manufacture of Tungsten Carbide Cores</td>
<td>6-36</td>
<td>6-92 to 6-95</td>
</tr>
<tr>
<td>The Manufacture of Brass Cartridge Cases</td>
<td>6-37</td>
<td>6-96 to 6-103</td>
</tr>
<tr>
<td>The Manufacture of Drawn-Steel Cartridge Cases</td>
<td>6-41</td>
<td>6-104 to 6-122</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
<td>Paragraphs</td>
</tr>
<tr>
<td>--------------</td>
<td>--------</td>
<td>------------------</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>MANUFACTURE OF METALLIC COMPONENTS OF ARTILLERY AMMUNITION (cont)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The Manufacture of Trapezoidal-Wrapped Steel Cartridge Cases . . . 6-45 6-123 to 6-131</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The Manufacture of Perforated Cartridge Cases 6-48 . . 6-132 to 6-133</td>
</tr>
<tr>
<td></td>
<td></td>
<td>References and Bibliography 6-49</td>
</tr>
<tr>
<td>GLOSSARY</td>
<td>G-1</td>
<td></td>
</tr>
<tr>
<td>INDEX</td>
<td>I-1</td>
<td></td>
</tr>
</tbody>
</table>
GLOSSARY

A

ABSOLUTE DEVIATION: The shortest distance between the center of the target and the point where a projectile hits or bursts.

ABSOLUTE ERROR: Shortest distance between the center of impact or the center of burst of a group of shots and the point of impact or burst of a single shot within the group.

ACCURACY LIFE: The estimated average number of rounds that a particular weapon can fire before its tube becomes so worn that its accuracy tolerance is exceeded.

ACCURACY OF FIRE: The measurement of the precision of fire expressed as the distance of the center of impact from the center of the target.

ADIABATIC FLAME TEMPERATURE: The temperature a combustible system would attain if all the energy of combustion went into the formation of gas without energy loss to the surroundings.

AMATOL: High explosive made of a mixture of ammonium nitrate and trinitrotoluene; sometimes used as a bursting charge in high-explosive projectiles.

AMMONAL: High-explosive substance made of a mixture of ammonium nitrate, trinitrotoluene, and flaked or powdered aluminum. Ammonal is sometimes used as a bursting charge in high-explosive projectiles, and produces bright flashes on explosion.

AMMUNITION DATA CARD: Identification card prepared for each individual lot of ammunition manufactured, giving the type and composition of the ammunition, and identifying its components by lot number and manufacturer. When necessary, it may also include instructions for handling the ammunition.

AMMUNITION IDENTIFICATION CODE: Code symbol (for example, P5HBA) assigned to each ammunition item for identification and to facilitate the supply of ammunition to the field. The first two characters refer to the pertinent ordnance catalog, and the remaining three characters to the weapon group, type and model, and packaging. In small arms ammunition the grade is indicated.

AMMUNITION LOT NUMBER: Code number that identifies a particular quantity of ammunition from one manufacturer. The number is assigned to each lot of ammunition when it is manufactured.

ANGLE OF DEPARTURE: Angle between the line of sight and the axis of the bore of a gun at the instant the projectile leaves the muzzle. Angle of departure is the sum of the angles of site, elevation, and vertical jump.

ANGLE OF FALL: Angle between the horizontal and the tangent to the trajectory at the point at which a projectile falls.

ANGLE OF IMPACT: Acute angle between the tangent to the trajectory at the point of impact of a projectile and the plane tangent to the surface of the ground at the point of impact; angle at which a projectile strikes the ground or a target.

ANGLE OF INCIDENCE: Angle at which a projectile strikes a surface; acute angle between the tangent to the line of impact of a projectile and the perpendicular to the surface of the ground at the point of impact. It is the complement of the angle of impact.
AREA TARGET: Target for gunfire or bombing covering a considerable space, such as ammunition factory, airport, or freight yard. An area target differs from a point target, which is a particular object or structure.

ARMING: As applied to fuzes, the changing from a safe condition to a state of readiness for initiation. Generally a fuze is caused to arm by acceleration, rotation, clock mechanism, or air travel, or by combinations of these.

ARMOR: Protective covering, especially metal plates used on ships, tanks, motor vehicles, etc.

ARMOR-PIERCING: A term applied to bullets and projectiles designed to pierce armor plate.

ARMOR-PIERCING CAPPED: Term applied to armor-piercing projectiles which have a steel cap in front of the projectile point, to assist in defeating face-hardened armor plate.

AUTOMATIC (Self-Acting): Moving or acting by itself. After the first round is fired, an automatic weapon fires, extracts, ejects, and reloads without application of power from an outside source, repeating the cycle as long as the firing mechanism is held in the proper position. Automatic action involves repeating the cycle of operation, as distinguished from semi-automatic, which is restricted to one complete cycle at a time.

AUTOMATIC FEED MECHANISM: Mechanism in an automatic gun that puts fresh shells into the chamber in position for firing.

BALLISTIC CONDITIONS: Conditions which affect the motion of a projectile in the bore and through the atmosphere, including muzzle velocity, weight of projectile, size and shape of projectile, rotation of the earth, density of the air, elasticity of the air and the wind.

BALLISTIC CURVE: Actual path or trajectory of a bullet or shell.

BALLISTIC DENSITY: Computed constant air density that would have the same total effect on a projectile during its flight as the varying densities actually encountered.

BALLISTIC EFFICIENCY: Ability of a projectile to overcome the resistance of the air. Ballistic efficiency depends chiefly on the weight, diameter, and shape of the projectile.

BALLISTIC LIMIT: Velocity at which a given type of projectile will perforate a given thickness and type of armor plate at a specified obliquity.

BALLISTIC MORTAR: Instrument used to determine the relative energy obtainable from explosive materials.

BALLISTICS: The science of the motion of projectiles.

BALLISTIC TEMPERATURE: A computed constant temperature that would have the same total effect on a projectile traveling from the gun to the target as the varying temperatures actually encountered.

BALLISTIC WAVE: Audible disturbance or wave caused by the compression of air ahead of a projectile in flight.

BALLISTIC WIND: Assumed constant wind that would have the same total effect on a projectile traveling from the gun to the target as the varying winds actually encountered.

BALLISTITE: Smokeless powder used as a propelling charge in small-arms and mortar ammunition.

BALLOTING: The bounding from side to side of a projectile in the bore of a gun.
BASE EJECTION SHELL: A type of special-purpose shell which functions by expelling its filler out of the base of the shell. Expulsion is usually achieved by a small charge of propellant, called an expelling charge.

BASE LINE: A line of known length and direction between two points whose locations are known; used in fire control.

BASE PLUG: Seal in base of projectile.

BASE OF TRAJECTORY: A straight horizontal line from the center of the muzzle of a weapon to the point in the downward curve of the path of a projectile that is level with the muzzle.

BASE SPRAY: (See SPRAY.)

BIOLOGICAL AGENT: Viruses, any of certain classifications of micro-organisms and toxic substances, derived from living organisms used to produce death or disease in man, animals, and growing plants.

BIOLOGICAL WARFARE: Tactics and techniques of conducting warfare by use of biological agents.

BLACK POWDER: A sensitive, easily ignitable explosive mixture, which produces dense smoke; few remaining military uses, such as igniters, expelling and blank-fire charges. Black powder was used as a propellant before the advent of so-called smokeless powder.

BLANK AMMUNITION: Ammunition containing power but no projectile. Blank ammunition is used in training, in signaling, and in firing salutes.

BLAST: Sudden air pressure created by the discharge of a gun or the explosion of a charge.

BLASTING CAP: Small cylindrical case with a thin wall in which is enclosed a sensitive explosive, such as mercury fulminate, used as a detonator to set off another explosive charge. The explosive in the blasting cap is fired either by a burning fuse or by electricity. Also called a detonator.

BLAST CUBE: An angle iron frame covered with aluminum sheets; used for testing effectiveness of blast.

BLAST TUBE: Device used for the study of shock waves, and for calibration of airblast gages.

BLASTING MACHINE: Small hand-powered generator for electrically firing one or more detonators or squibs to explode or ignite munitions or series of munitions.

BLOWBACK: Escape, to the rear and under pressure, of gases formed during the firing of a gun. Blowback may be caused by a defective breech mechanism, a ruptured cartridge, or a faulty primer.

BOAT-TAIL: Rear end of a projectile that is tapered or cone-shaped, and not cylindrical, as in a projectile having a square base.

BOOBERLET: Finely machined band or ring of metal just behind the ogive of a projectile, designed to support the front portion of the projectile by riding the lands as the projectile travels through the bore of a gun.

BORESAFE FUZE: Type of fuze having an interrupter in the explosive train that prevents a functioning until after the projectile has cleared the muzzle of a weapon.

BORE IMPRESSION: Impression of the bore of a gun tube, made with a plastic substance in order to determine the condition of the rifling.

BORE IMPLANT: Ammunition containing a high-explosive element, sufficiently sensitive to be actuated by small explosive elements in a fuze, and powerful enough to cause detonation of the main explosive filling.

BORE: The cylindrical, and usually rifled, portion of the gun tube, or barrel interior, extending from the forcing cone to the muzzle. Bore is used both for the inside surface of the barrel or tube of a gun, with its rifling, and for the cylindrical space enclosed by that portion of the tube.

BOW WAVE: (See BALLISTIC WAVE.)
BREECH: The rear part of the bore of a gun, especially the opening that permits the projectile to be inserted at the rear of the bore.

BREECH-BLAST: (See BACK-BLAST.)

BREECHBLOCK: Movable steel block that closes the rear part of the barrel in a firearm.

BRIDGE WAVES: Mach waves caused by the interaction of two shock waves to form a third that bridges the volume between the original two.

BRISANCE: Shattering power of high explosives.

BURNING (of propellant): (See LINEAR BURNING RATE.)

BURST: Explosion of a projectile in the air, or when it strikes the ground or target.

BURSTER: Explosive charge used to break open and spread the contents of chemical projectiles, bombs, or mines.

BURSTER TUBE: Tube that holds the burster in a chemical projectile.

BURSTING CHARGE: Quantity of explosive which breaks the casing of a projectile to produce demolition, fragmentation, or chemical action. (See EXPLOSIVE CHARGE.)

CALIBER: (1) Diameter of the bore of a gun. In rifled gun bores the caliber is obtained by measuring between opposite lands. A caliber .45 revolver has a barrel with a land diameter 45/100 of an inch. (2) Diameter of a projectile. (3) Unit of measure used to express the length of the bore of a weapon. The number of calibers is determined by dividing the length of the bore of the weapon, from the breech face of the tube to the muzzle, by the diameter of its bore. A gun tube whose bore is 40 feet (480 inches) long and 12 inches in diameter is said to be 40 calibers long.

CANISTER: (1) Metal cylinder containing metal fragments which are scattered when the cylinder breaks. (2) Cylinder containing materials for special terminal effects, such as smoke, propaganda leaflets, chaff, etc.

CANNISTER AMMUNITION: Shell containing preformed metal fragments which are dispersed by the centrifugal force caused by the shell's rotation.

CANNELURE: (1) A ring-like groove in the jacket of a bullet which provides a means of securely crimping the cartridge case to the bullet; analogous to the crimping groove in artillery ammunition. (2) Ring-like groove for locking the jacket of an armor-piercing bullet to the core. (3) Ring-like groove in the rotating band of a projectile, intended to lessen the resistance offered to the gun riflings. (4) Groove around the base of the cartridge case, where the extractor takes hold.

CANNON: (1) Fixed or mobile weapon, larger than small arms, that ejects its projectile by the action of an explosive. Cannon include guns, howitzers, and breech-loading mortars. (2) That portion of such a weapon required to fire a projectile (that is, tube, breech mechanism, and firing mechanism), as contrasted to that portion which supports the weapon and which is called the carriage or mount.

CANT: A leaning or tilt, to one side, of any object; militarily, the sidewise tilting of a gun.

CAP: (1) Nosepiece on a projectile. (2) (See BLASTING CAP.)

CARTRIDGE: Round of ammunition wherein the propellant and primer are contained in a casing and in which the propellant, primer, and projectile are assembled, stored, shipped, and issued as a complete unit.

CARTRIDGE BAG: Cloth bag holding the propelling charge for some types of cannon.

CARTRIDGE CASE: Container that holds the primer and propellant, and to which the projectile may be affixed.
CAST LOADING: Loading of HE shell by the pouring of molten high-explosive filler into shell body.

CAVITY CHARGE: (See SHAPED CHARGE.)

CENTER OF BURST: Point in the air about which the bursts of several projectiles, from rounds fired under like conditions, are evenly distributed.

CENTER OF BURST ERROR: Distance between the target and center of burst.

CENTER OF DISPERSION: Theoretical center of hits or bursts that would have been made if an unlimited number of shots had been fired with the same data. Actually it has to be considered the center of impact or bursts of all shots already fired.

CHAFF: Electromagnetic-wave reflectors in the form of narrow metallic strips, used for creating echoes with which to confuse the enemy; also called window.

CHAFF SHELL: Hollow projectile containing a filler of chaff. (See CHAFF.)

CHAMBER: Part of a gun in which the charge is placed; in a cannon, that space between the obturator or breechlock and the forcing cone. Nominally it is the space occupied by the cartridge case.

CHAMBER CAPACITY: Space available for gas expansion when the projectile is seated in position; measured from the face of the closed breechblock, around the base of the projectile, to the rear of the rotating band (or obturator). In fixed ammunition, it is the volume of the cartridge case behind the projectile.

CHEMICAL AGENT: Solid, liquid, or gas whose chemical properties produce lethal, injurious, or irritating effects; a screening or colored smoke; or an incendiary agent. (War gases, smokes, and incendiaries are the three main groups.)

CHOKING GAS: Casually producing gas which causes irritation and inflammation of the bronchial tubes and lungs. Phosgene is an example of this type of gas.

CHORD: Straight line parallel to the centerline of the projectile from the leading edge to the trailing edge of a fin; the length of that line.

CHRONOGRAPH: Instrument for measuring and graphically recording small intervals of time; frequently used for measuring velocity of projectiles.

CLASSIFICATION OF DEFECTS: Enumeration of possible defects of a product classified according to their importance.

CLOSED BOMB: Apparatus used for determining the thermochemical characteristics of combustible materials. Also called closed chamber; bomb calorimeter.

COEFFICIENT OF FORM: Factor introduced into the ballistic coefficient of a projectile, based on its shape.

COLORED MARKER SHELL: Projectile containing a colored dye which is ejected by a burster charge; used for spotting, marking, and signaling.

COMPLETE PENETRATION: (1) In the Army, penetration obtained when the projectile in the target or light through the target can be seen from the rear of the target. (2) In the Navy, penetration obtained when the projectile passes through the target intact or a major portion of the projectile passes through.

COMPLETE ROUND: (1) A complete round of separate-loading artillery ammunition consists of a primer, propelling charge, and (except for blank ammunition) a projectile. (2) A complete record of fixed or semi-fixed ammunition comprises a primer, propelling charge, cartridge case, and a projectile.

COMPUTED MAXIMUM PRESSURE: For any type of gun, the theoretical value of maximum pressure computed by interior ballistics formulas. When a new gun of the type in question is fired under standard conditions, with a propelling charge that will give a projectile its rated muzzle velocity, this is the pressure which should be developed.
CONFINEMENT: Degree of physical restriction to passage of detonation wave through explosive material.

COOK-OFF: Functioning of a chambered round of ammunition, initiated by the heat of the weapon.

COPPER CRUSHER GAGE: Device used to measure pressure developed in gun chamber by measuring the deformation of a copper cylinder.

COPPERING: Metal fouling left in the bore of a weapon by the rotating band or the jacket of a projectile.

CORDITE: Double-base powder in the form of cords, composed of guncotton, nitroglycerin, and mineral jelly, used by some foreign nations as a propellant in rounds of ammunition.

COUNTERRECOIL: Forward movement of a gun returning to firing position after recoil.

CROSS-WIND FORCE (LIFT): Component of air resistance in a direction perpendicular to the motion of the center of gravity, in the plane of yaw.

CRYSTAL DENSITY: Maximum density attainable for a given substance.

DECELERATOR: Device for slowing the rotation of parachute-containing projectile, before ejection of the parachute.

DEFLAGRATION: Rapid reaction (explosion) with evolution of considerable heat, accompanied by some disruptive effect but less violent than a detonation.

DEGRESSIVE GRANULATION: Propellant grain which burns with a continually decreasing surface until the grain is completely consumed.

DELAY FUZE: Fuze that has a delay element incorporated in the fuze train, permitting the missile to penetrate the target a distance corresponding to the delay. Such fuzes are used to permit penetration of the target before detonation, or for mining effect.

DESIGN PROCEDURE: Outline of steps to follow in designing an item.

DETERRENT: Material diffused into the surface of propellant grains to control burning.

DETONATE: Explode suddenly and violently.

DETONATING AGENT: Explosive used to set off another explosive. Fulminate of mercury and tetryl are used as detonating agents to set off other less sensitive explosives.

DETONATING CHARGE: Charge used to set off a high-explosive charge.

DETONATING CORD: Flexible fabric tube containing a filler of high explosive that is set off by a blasting cap or by an electric detonator. It has an extremely high rate of explosion, and is used to set off other high-explosive charges. The detonating cord currently in use is known commercially as primacord.

DETONATING EXPLOSIVE: (See HIGH EXPLOSIVE.)

DETONATION: Extremely rapid reaction with evolution of considerable heat accompanied by considerable violently disruptive effect and intense shock wave. (See also DEFLAGRATION.)

DETONATION FRONT: (See WAVE FRONT.)

DETONATION RATE: Velocity at which the detonation wave travels through an explosive material.

DETONATION WAVE: (See SHOCK WAVE.)

DETONATOR: Sensitive explosive used to set off an explosive train, as well as the mechanism and container connected therewith.

DEVELOPED MUZZLE VELOCITY: The actual muzzle velocity produced by any gun.

DOUBLE-BASE POWDER: (See DOUBLE-BASE PROPELLANT.)
DOUBLE-BASE PROPELLANT: Propellant whose principle active ingredients are nitrocellulose and nitroglycerin. (See PROPELLANT.)

DRAG: Component of air resistance in the direction opposite to that of the motion of the center of gravity of a projectile.

DRILL AMMUNITION: Ammunition without an explosive charge, used in training and practice.

DUMMY PROJECTILE: Shell that has no explosive charge. Dummy projectiles are used for practice and training purposes.

E. C. BLANK FIRE: (See E. C. SMOKELESS POWDER.)

E. C. SMOKELESS POWDER: Orange or pink explosive powder, resembling coarse sand. It is used as a charge in small arms, in blank cartridges. Also called blank-fire powder or E. C. blank fire.

ECCENTRICITY: Distance from center line to center of gravity of projectile.

ELASTIC STRENGTH PRESSURE: The computed internal gas pressure in a gun which, at the section under consideration, will stress the metal in some layer of the wall tangentially, up to the minimum elastic limit which is prescribed for the metal from which the member is made.

ELECTRIC PRIMER: Metallic device containing a small amount of a sensitive explosive or charge of black powder which is actuated by energizing an electric circuit. It is used for setting off explosive or propelling charges.

ELECTRIC SQUIB: Commercial flash-fuze device for electrical firing of burning type munitions such as smoke pots. It consists essentially of a small tube sealed with sulfur, containing a small charge of powder compressed around a fine resistance wire. There are three types: open-end, flash-vented, and closed-end.

EQUAL SECTION CHARGE: Propelling charge made up of a number of charges equal in size. The number of sections used determines the muzzle velocity and range of the projectile.

EQUATION OF STATE: An equation relating the volume, temperature, and pressure of a system.

EROSION: Wearing away of a bore due to combined effect of gas washing, scouring, and mechanical abrasion. Due to the high temperatures and velocities, and chemical action, the bore diameter becomes enlarged.

EXPPELLING CHARGE: Quantity of propellant used in special purpose shell to eject the contents of the shell.

EXPLOSIVE: Substance which, when subjected to heat, impact, friction, or other suitable initial impulse, undergoes an explosion that is a very rapid chemical transformation, forming other more stable products entirely or largely gaseous, whose combined volume is much greater than that of the original substance. Explosives are classified as high-explosive or low-explosive, according to the rate of the transformation. (See HIGH EXPLOSIVE and LOW EXPLOSIVE.)

EXPLOSIVE CHARGE: Predetermined quantity of explosive required to produce a specific effect. (See BURSTING CHARGE; EXPPELLING CHARGE; PROPELLING CHARGE.)

EXPLOSIVE D: Ammonium picrate, a high-explosive charge that is not easily set off in transportation, or in handling, etc. Sometimes it is used as a bursting charge in armor-piercing projectiles.

EXPLOSIVE TRAIN: That portion of a fuze or fuze system consisting of explosive components, such as primer, detonator, booster, etc., necessary to cause functioning of a warhead or destructor.

EXTERIOR BALLISTICS: The branch of ballistics which deals with the motion of the projectile after leaving the gun.

FIN: Light metal portion of a mortar shell, bomb, and some rockets, designed for stabilizing and controlling them while in flight.
FIN STABILIZATION: Method of stabilizing a projectile, bomb, or missile during flight by the fitting of fins.

FIXED AMMUNITION: Ammunition with primer and propellant powder contained in a cartridge case permanently crimped or attached to a projectile, that is loaded into a weapon as a unit.

FIXED ROUND: Round of fixed ammunition.

FLAME TEMPERATURE. (See ADIABATIC FLAME TEMPERATURE.)

FLASH REDUCER: Any material for use with a propelling charge to reduce its muzzle flash.

FLAT TRAJECTORY: Trajectory with little curvature, produced by a projectile with a high velocity.

FLECHETTE: Stabilized fragment having a pointed nose and finned tail; dart.

FORCE: A term, convenient in interior ballistics theory, which is defined as the product of the number of mols of gas per gram of propellant and the adiabatic-constant-volume flame temperature.

FORCING CONE: Tapered beginning of the lands at the origin of the rifling of a gun tube. The forcing cone allows the rotating band of the projectile to be gradually engaged by the rifling thereby centering the projectile in the bore.

FORM COEFFICIENT: Factor used in form functions to describe the ratio of burning surface to fraction burned.

FORM FUNCTION: Mathematical expression relating burning rate to propellant grain geometry.

FRAGMENTATION: The breaking and scattering in all directions of the pieces of a projectile, bomb, or grenade.

FULMINATE OF MERCURY: (See MERCURY FULMINATE.)

FUZE: Device used to initiate a detonation under the conditions desired.

GILDING METAL: Copper-zinc alloy (brass) used for rotating bands.

GRANULATION: Size and shape of grain of propellant.

GRAVIMETRIC DENSITY: Weight of the propellant (in lb per in.³) divided by the volume occupied by the propellant (includes the air space in and around propellant grains).

G-SERIES WAR GASES: Group of persistent blood and nerve poisons which are highly toxic and practically odorless. GA, GB, and GD are members of the G-series.

GUNCOTTON: Nitrocellulose containing 13 percent or more of nitrogen.

HANGFIRE: Temporary failure or delay in the action of a primer, igniter, or propelling charge. For a few seconds it cannot be distinguished from a complete failure, or misfire.

HANGFIRE TEST: Test to determine uniformity and promptness of fire of a type of ammunition.

HC MIXTURE: Solid, nonpersistent screening smoke that, when burning, produces a grayish white smoke having a sharp, acrid odor, which is toxic if released in sufficient quantities in enclosed places; used in bombs, shell, grenades, and smoke pots. The smoke is cool burning as contrasted with white phosphorous, and tends to cling to the earth.

HEAT OF COMBUSTION: Heat evolved in the complete oxidation of a substance at constant pressure and 25°C. The test is usually accomplished calorimetrically by burning a gram of sample in a combustion bomb containing one cc of water under a pressure of 30 atmospheres of pure oxygen.
HEAT OF EXPLOSION: Heat evolved in burning a sample in a combustion bomb under a pressure of 25 atmospheres of helium, or other inert gas. (Products of explosion vary with the oxygen balance of the sample.)

HEAT OF FORMATION: Heat of formation of a compound is equal to the sum of the heats of formation of the products of combustion, minus the heat of combustion of the compound. \(\Delta H_f (\text{reactants}) = \sum \Delta H_f (\text{products}) - \Delta H_c \).

HEAT OF REACTION: Heat evolved when a sample is burned in a combustion bomb in one atmosphere of helium or other inert gas. (Products of this reaction are dependent on the oxygen balance of the sample.)

HEAT SHELL: (See HIGH-EXPLOSIVE ANTI-TANK SHELL.)

HEAT TEST: Accelerated stability test of an explosive material.

HEP SHELL: (See HIGH-EXPLOSIVE PLASTIC SHELL.)

HIGH-ANGLE FIRE: Fire delivered at elevations greater than the elevation of maximum range, its range therefore decreasing as the angle of elevation is increased. Mortars deliver high-angle fire.

HIGH EXPLOSIVE: Explosive which undergoes an extremely rapid chemical transformation, thereby producing a high order detonation and shattering effect. High explosives are used as bursting charges for bombs, projectiles, grenades, mines, and for demolition.

HIGH-EXPLOSIVE ANTITANK (HEAT) SHELL: Ammunition for defeat of armour by use of a shaped charge.

HIGH-EXPLOSIVE PLASTIC (HEP) SHELL (or, SQUASH-HEAD SHELL): Shell with deformable nose, designed to contain a plastic explosive, for use against armor; shock transmitted through the armor causes the back of armor plate to spall.

HIGH-EXPLOSIVE SHELL: Projectile with a bursting charge of high explosive, used against personnel and materiel.

HYGROSCOPICITY: The tendency of a substance to absorb any available moisture from its surroundings; specifically the absorption of water vapor from the atmosphere.

HYPERVELOCITY: Muzzle velocity of an artillery projectile of 3,500 feet per second or more.

HYPERVELOCITY ARMOR-PIERCING (HVAP) AMMUNITION: Ammunition which embodies a core of hard, dense material (such as tungsten carbide) within a shell of light material, such as aluminum. Its light overall weight permits it to be fired safely at very high velocities. The velocity is rapidly lost, but at short ranges it is effective against armor.

HYPERVELOCITY ARMOR-PIERCING DISCARDING SABOT (HVAPDS) AMMUNITION: Ammunition which embodies a hypervelocity, armor-piercing, subcaliber projectile within a discarding sabot. (See SABOT.)

HYPERVELOCITY ARMOR-PIERCING DISCARDING SABOT FIN-STABILIZED (HVAPDSFS) AMMUNITION: Ammunition which embodies a hypervelocity, armor-piercing, subcaliber, fin-stabilized projectile within a discarding sabot. (See SABOT.)

IGNITER: Device containing a ready burning composition, usually a form of black powder, used to amplify the ignition of a propelling charge by a primer. Also sometimes used to amplify the initiation of a primer in the functioning of certain types of fuzes and burster charges.

IGNITER TRAIN: Step-by-step arrangement of charges in pyrotechnic bombs, shells, etc., by which the initial fire from the primer is transmitted and intensified until it reaches and sets off the main charge. An explosive bomb, projectile, etc., uses a similar series, called an explosive train.

IGNITIBILITY: Statement of the ease with which the burning of a substance may be initiated.
IGNITING MIXTURE: Explosive mixture used as a fuze in pyrotechnic signals.

IGNITING PRIMER: Primer designed to be initiated by flame from another primer. Sometimes used in subcaliber guns so as to permit drill or practice with the regular primer.

IGNITION CARTRIDGE: Igniter in cartridge form which may be used alone or with additional propellant increments as a propelling charge for certain mortar ammunition.

ILLUMINATING SHELL: Projectile with a time fuze that sets off a parachute flare at any desired height; used for lighting up an area.

IMPACT FUZE: Fuze designed to function on impact.

INCENDIARY: (1) Chemical agent used primarily for igniting combustible substances with which it is in contact by generating sufficient heat to cause ignition. (2) Filling for incendiary munitions such as shells, bombs, grenades, and flame throwers. (3) Munition with flammable filling and means of release and/or ignition.

INCREMENT: A package of propellant, forming part of the full propelling charge, which may be removed to reduce the velocity or range. (See MULTISECTION CHARGE.)

INITIAL AIR SPACE: Volume of gun chamber not occupied by propellant when gun is loaded for firing.

INITIAL VELOCITY: (See MUZZLE VELOCITY.)

INITIATOR: Small quantity of very sensitive and powerful explosive used to start the detonation of another less sensitive explosive. Mercury fulminate, lead azide, and tetryl are the principle high explosives used as initiators.

INSTANTANEOUS FUZE: One which will burst the projectile on the outside of a hard surface (such as a concrete emplacement) before penetration or ricochet. This fuze will give some crater on hard ground. (See SUPERQUICK FUZE.)

INTERIOR BALLISTICS: Subdivision of ballistics which deals with that part of the phenomena within the chamber and bore of a weapon associated with imparting kinetic energy to missiles. (See BALLISTICS.)

ISOBARIC ADIABATIC FLAME TEMPERATURE: Adiabatic flame temperature attained in a constant pressure system. (See ADIABATIC FLAME TEMPERATURE.)

ISOCHORIC ADIABATIC FLAME TEMPERATURE: Adiabatic flame temperature attained in a constant volume system. (See ADIABATIC FLAME TEMPERATURE.)

J

JOLT AND JUMBLE TESTS: Tests intended to simulate the shocks various components of ammunition are subjected to in transportation and handling.

JUMP: The movement which the tube of the gun describes under the shock of firing, but before the projectile leaves the muzzle. Usually expressed as an angle.

K

KINETIC ENERGY AMMUNITION: Ammunition whose effectiveness is dependent upon its high density (mass) and high velocity.

L

LANDS: Raised portion between grooves in the bore of a rifled gun.

LATERAL DEVIATION: Horizontal distance between the point of impact or burst and the gun-target line.

LEAD AZIDE: Very sensitive high explosive used in small quantities to initiate other less sensitive high explosives.

LEAFLET SHELL: Usually consists of standard-base ejection smoke shell, of any caliber, with smoke canisters removed and propaganda substituted therefor.

LIFTING PLUG: Threaded eyebolt which fits into the fuze cavity, permitting heavy shells to be handled by means of a winch.
LINEAR BURNING RATE: The distance normal to any burning surface of the propellant grain burned through in unit time. This property depends upon the chemical composition, and is not a function of geometry.

LINER: (1) Inner tube, in a cannon, which bears the rifling and which may be replaced when worn out. (2) Cone of material used as an integral part of shaped charge liner.

LIVE AMMUNITION: Ammunition containing explosives. This is in contrast to drill ammunition (dummy ammunition), which contains no explosives and is used in training.

LOADING DENSITY: Ratio of weight of propellant (in lb per in.\(^3\)) to available chamber volume.

LONG-DELAY FUZE: One which will burst the projectile after complete penetration into hard ground. There is a variation in the time element in long-delay fuzes required for different uses. (This is a question to be determined by the Ordnance Dept.)

LOW EXPLOSIVE: Explosive which undergoes a relatively slow chemical transformation, thereby producing a deflagration or an explosion, the effect ranging from that of a rapid combustion to that of a low order detonation. It is suitable for use in igniter trains and certain types of propellants. (See PROPELLANT.)

LOW ORDER DETONATION: Incomplete detonation of the explosive charge in a bomb, projectile, or other similar high explosive. (See DETONATION.)

LOWER ACCEPTABLE MEAN MAXIMUM PRESSURE: For any type gun, that value of the maximum pressure which is specified in the propellant specification as the lower limit for the average of the maximum pressures that are developed by an acceptable smokeless propellant in propelling charges which will impart the specified muzzle velocity to the specified projectile. Smokeless propellant in propelling charges which in acceptance tests develops an average maximum pressure lower than this value is considered as having failed to pass the test.

MACH NUMBER: Ratio of the velocity of a body to that of sound in the same medium.

MACH WAVE: Supersonic shock wave.

MAGNUS FORCE: (1) Force normal to the plane of yaw, caused by the spin. (2) Force arising from interaction of a spinning body and the wind stream when the body is yawing.

MAGNUS FORCE, CENTER OF: Vanishing point of Magnus moment.

MAXIMUM PRESSURE: The maximum value of the pressure exerted by the propellant gases on the walls of a gun during the firing of the round.

MAXIMUM SKY BRIGHTNESS: Worst possible sky condition for observing pyrotechnic signals; usually uniform clouds or overcast.

MEPLAT: Flat nose.

MERCURY FULMINATE: Sensitive explosive that is set off by friction, impact, or heat, and detonates. Mercury fulminate is used to set off other explosives in projectiles, mines, or bombs.

METAL FOULING: Deposit of metal, which collects in the bore of a gun, that comes from the jackets or rotating bands of projectiles.

MISFIRE: (1) Failure to fire or explode properly. (2) Failure of a primer or the propelling charge of a projectile to function, wholly or in part. Misfire may be contrasted with hangfire, which is delay in any part of a firing charge.

MULTISECTION CHARGE: Propelling charge in separate-loading or semifixed ammunition that is loaded into a number of powder bags. Range adjustments can be made by increasing or reducing the number of bags used, as contrasted with a single-section charge, in which the size of the charge cannot be changed.

MUZZLE BLAST: Sudden air pressure exerted in the vicinity of the muzzle of a weapon by the rush of hot gases and air on firing.
MUZZLE BRAKE (also called a RECOIL BRAKE): Device attached to the muzzle of a gun which utilizes escaping gases to reduce the effective recoil force of the gun tube on the carriage or mount. In some designs it eliminates or reduces muzzle flash.

MUZZLE FLASH: Undesirable luminous ignition of unburned propellant gases issuing from the muzzle of a gun. The gases ignite upon mixture with atmospheric oxygen.

MUZZLE VELOCITY: Speed of a projectile at the instant it leaves the muzzle of a gun.

MUZZLE WAVE: Compression wave or reaction of the air in front of the muzzle of a weapon immediately after firing.

NERVE GAS: (See G-SERIES WAR GASES.)

NITROCELLULOSE: Explosive substance formed by the nitration of cotton, or some other form of cellulose. Used as the base of most U. S. propellants. Specific grades of nitrocellulose (see PYROCELLULOSE and GUNCOTTON) depend on the degree to which the cellulose is nitrated.

NITROGUANIDINE: Used as an additional base of propellant, used as a "cool propellant" because of its low flame temperature which does not erode gun bores nor produce as much luminous flash as single base (nitrocellulose) propellants.

NITROGLYCERINE: Nitrated ester of glycerol in which the OH radicals are replaced by NO₂; used as primary base of British propellants and as gelatinizing agent of U. S. propellants. Not used as primary base of U. S. propellants because its high flame temperature accelerates bore erosion.

NITROGEN MUSTARD GASES: Group of blister gases similar to mustard gas with varying chemical properties and little or no odor; gases affect eyes, nose, and lungs.

NONDELAY FUZE: Fuze that functions as a result of inertia of firing pin (or primer) as missile is retarded during penetration of target. The inertia causes the firing pin to strike the primer (or primer the firing pin), initiating fuze action. This type of fuze is inherently slower in action than the superquick or instantaneous fuze, since its action depends upon deceleration (retardation) of the missile during penetration of the target.

NORMAL CHARGE: Propelling charge employing a standard amount of propellant to fire a gun under ordinary conditions, as compared with a reduced charge or a supercharge used in special circumstances.

NORMAL FORCE: (1) Component of air resistance perpendicular to the axis of the projectile in the plane of yaw (exterior ballistics). (2) Any force perpendicular to a given line or surface (general).

NORMAL IMPACT: Striking of a projectile against a surface that is perpendicular to the line of flight of the projectile.

NOSE SPRAY: (See SPRAY.)

NUTATION: A small periodic oscillation about the motion of precession.

OBTURATION: Any process that prevents the escape of gases from the tube of a weapon during the firing of a projectile.

OBTRURATOR: A device for making the tube of a weapon gas-tight, preventing any escape of gas until the projectile has left the muzzle.

OGIVE: The shape of the head of the projectile, often a convex solid of revolution generated by an arc of a circle whose center lies on the side of the axis of revolution opposite to the arc.

OPTIMUM CHARGE: Web and propellant weight combination which produces maximum velocity at a specified pressure.
OVERTURNING MOMENT (of a projectile in flight): Couple about an axis through the center of gravity, perpendicular to the plane of yaw.

OXYGEN BALANCE: Ratio of self-contained oxygen to fuel in a propellant or explosive.

PARASHEET: Parachute-like device made from a single flat piece of material, or as few pieces as its size will permit; avoids cost of complex gore construction of parachute.

PEAK PRESSURE: Instantaneous maximum pressure developed in the gun chamber by burning propellant; pressure immediately preceding an expanding shock wave.

PERCUSSION COMPOSITION: High-explosive powder that is ignited in some types of firearms by the blow of the firing pin against the primer cap.

PERCUSSION FUZE: (See IMPACT FUZE.)

PERCUSSION PRIMER: Cap or cylinder containing a small charge of high explosive that may be set off by a blow. A percussion primer is used in all fixed and semifixed ammunition and in certain types of separate-loading ammunition to ignite the main propelling charge.

PERFORATION: Passage of a missile completely through an object.

PERMISSIBLE INDIVIDUAL MAXIMUM PRESSURE: For any type gun, that value which should not be exceeded by the maximum pressure developed by any individual round under any service condition.

PERMISSIBLE MEAN MAXIMUM PRESSURE: For any type gun, that value which should not be exceeded by the average of the maximum pressures developed in a series of rounds fired under any service conditions.

PHOSGENE: Colorless choking gas having an odor of new-mown hay or fresh corn; causes choking and coughing, and injuries to the lungs.

PICRIC ACID (trinitrophenol): High explosive, more powerful than trinitrotoluene, used widely in the form of mixtures with other nitro compounds.

PIEZOELECTRIC CRYSTAL: Crystalline material possessing the property that, when it is mechanically compressed or stretched in certain directions, electrical charges in direct proportion to the mechanical strain appear on the crystal surfaces.

PITCH (of rifling): Reciprocal of the twist. (See TWIST.)

PLANFORM: Shape of plan view of fins.

PLASTIC EXPLOSIVE: Explosive which, within normal ranges of atmospheric temperature, is capable of being molded into desired shapes.

PLUNGING FIRE: Gunfire that strikes the earth's surface at a high angle.

POINT-BLANK RANGE: Distance, to a target, that is so short that the trajectory of a bullet or projectile is practically a straight, rather than a curved, line. Point-blank range is one for which no superelevation is needed.

POINT DETONATING FUZE: Fuze, located in the nose of a projectile, which is initiated upon impact.

POWDER: Term sometimes loosely used for "propellant" or "propelling charge."

POWDER TRAIN: (1) Train, usually of compressed black powder, used to obtain time action in older fuze types. (2) Train of explosives laid out for destruction by burning.

PRACTICE AMMUNITION: Ammunition used for target practice, ammunition with a propelling charge, but with either an inert filler or a low-explosive filler to serve as a spotting charge.

PRECISION: The quality of having small dispersion about the mean.

PRECESSION: A change in the direction of the axis of a rotating body. In this handbook, precession means the slow motion without nutation.
PRESSURE, CENTER OF: The point where the resultant force caused by air resistance intersects the axis of the projectile.

PRIMACORD: Flexible fabric tube containing a filler of high-explosive PETN (pentareyritetetranitrate) that is used to transmit a detonation from a detonator to a booster or bursting charge. Primacord is the trade name for the type of detonating cord currently in use.

PRIMER: Device used to initiate the functioning of an explosive or igniter train. It may be actuated by friction, blow, heat, pressure, or electricity.

PRIMER-DETONATOR: Assembly consisting of a primer and a detonator. It may also include a delay element.

PRIMER SEAT: Chamber in the breech mechanism of a gun that uses separate-loading ammunition, into which the primer is set.

PROBABLE ERROR: An error of such magnitude that the probability of making an error greater than it in any given observation is just equal to the probability of making one less than it, both probabilities being one-half.

PROCEDURE, DESIGN: Outline of steps to follow in designing an item.

PROGRESSIVE GRANULATION: Propellant grain which burns with a continually increasing surface until the grain is completely consumed.

PROJECTILE: Object, such as a bullet or shell, that is propelled from a weapon by an explosive propelling charge.

PROOF AMMUNITION: Ammunition incorporating solid, blunt-nosed, steel or cast iron shot of inexpensive manufacture; used in proof firing of guns; used to simulate the weight of projectile designed for the gun in adjusting the charge weight of propellant.

PROPAGANDA SHELL: (See LEAFLET SHELL.)

PROPELLANT: Explosive material whose rate of combustion is low enough, and its other properties suitable, to permit its use as a propelling charge.

PROPELLING CHARGE: Explosive charge that is burned in a weapon to propel a projectile therefrom (see PROPELLANT). Burning of the confined propelling charge produces gases whose pressure forces the projectile out.

PROXIMITY FUZE: Fuze designed to detonate a projectile, bomb, mine, or charge when activated by an external influence in the close vicinity of a target.

PYROCELLULOSE: Nitrocellulose containing 12.60 percent nitrogen.

PYROCOTTON: (See PYROCELLULOSE.)

PYRO POWDER: Straight nitrocellulose powder; smokeless propelling charge consisting of a nitrocellulose that has a smaller nitrogen content than guncotton; single-base propellant.

PYROTECHNICS: Ammunition containing chemicals that produce a smoke or brilliant light in burning, used for signalling, marking, spotting, illuminating, etc.

PYROXYLIN (collodion): Nitrocellulose containing 8-12 percent nitrogen.

QUALITY ASSURANCE: System of assuring that material accepted is in accordance with requirements, including inspection and test procedures, acceptance criteria, etc.

QUICKNESS (propellant burning): Rate of change of pressure within the close chamber with respect to time.

RAM: (1) To push into position. (2) To seat a projectile in the bore of a gun.

RAMMER: (1) Device for driving a projectile into position in a gun. It may be hand- or power-operated or a part of the receiver mechanism. (2) Tool used to remove live projectiles from the bore of a gun.
RATED MAXIMUM PRESSURE: For any type gun, that value of the maximum pressure which is specified in the propellant specification as the upper limit of average pressure which may be developed by an acceptable propellant in the form of propelling charges which will impart the specified muzzle velocity to the specified projectile. The smokeless propellant in propelling charges which, in the acceptance test, develops an average maximum pressure exceeding this value is considered as having failed to pass the test.

RELATIVE FORCE: Ratio of observed maximum pressure developed by a propellant under test to the maximum pressure developed by a standard propellant under identical test conditions.

RELATIVE QUICKNESS: Ratio of the quickness \(\frac{dp}{dt}\) of a test propellant to the quickness of a standard propellant, measured at the same initial temperature and loading density in the same closed chamber.

REMAINING VELOCITY: Speed of a projectile at any point along its path of flight. Remaining velocity is usually measured in feet per second.

RICOCHET: Glancing rebound of a projectile after impact.

RIFLE: (1) Any firearm that has rifling in the bore designed to give a spin to the projectile for greater accuracy of fire and longer range (not extensively used in this manner, except for shoulder arms). (2) Cut spiral grooves (rifling) in the bore of a gun in order to give a spin to the projectile so that it will have a greater accuracy of fire and longer range.

RIFLING: Spiral grooves in the bore of a weapon designed to give a spin to the projectile for greater accuracy and carrying power. Rifling includes both the grooves and the ridges between, called lands.

ROTATING BAND: Soft metal band around a projectile near its base. The rotating band makes the projectile fit tightly in the bore by centering the projectile, thus preventing escape of gas, and giving the projectile its spin as it engages in the rifling.

ROUND: (1) All the parts that make up the ammunition necessary in firing one shot (also called COMPLETE ROUND). (2) One shot fired by a weapon.

ROUND OF AMMUNITION: (See ROUND.)

SABOT: (1) Lightweight carrier in which a subcaliber projectile is centered to permit firing the projectile in the larger caliber weapon. The carrier fills the bore of the weapon from which the projectile is fired; and its light weight permits it to be safely fired at very high velocities. It is normally discarded a short distance from the muzzle, in which case it is known as a discarding sabot.

SAFETY WIRE: Wire set into the body of a fuze to lock all movable parts into safe position so that the fuze will not be set off accidentally. It is pulled out just before loading.

SCABBING: Breaking off of fragments in the inside of a wall of hard material due to the impact or explosion of a projectile on the outside.

SCREENING SMOKE: Chemical agent which, when burned, hydrolyzed, or atomized, produces an obscuring smoke, used to deny observation and reduce effectiveness of aimed fire.

SEMIFIXED AMMUNITION: Ammunition in which the cartridge case is not permanently fixed to the projectile, so that the zoned charge within the cartridge case can be adjusted to obtain the desired range; loaded into the weapon as a unit.

SEMIFIXED ROUND: Round of semifixed ammunition.

SENSITIVITY: Measure of the response of an explosive material to initiation by heat, friction, or impact.
SEPARATED AMMUNITION: Ammunition in which the cartridge case is not fixed to the projectile, so that the zoned charge within the cartridge case can be adjusted to obtain the desired range; loaded into the weapon as a unit.

SEPARATE-LOADING AMMUNITION: Ammunition in which the projectile, propelling charge, and primer are not held together in a shell case, as in fixed ammunition, but are loaded into a gun separately.

SEPARATING BURST: Method of ejecting the contents of a projectile by means of a charge of propellant that breaks the projectile, into two approximately equal parts, along a specially designed circumferential shear joint.

SERVICE AMMUNITION: Ammunition intended for combat rather than for training purposes.

SETBACK: Rearward jerk, caused by inertia, of parts of a projectile when it is fired.

SHAPED CHARGE: An explosive so shaped and designed as to concentrate its explosive force in a single direction.

SHELL: Hollow projectile filled with explosive, or chemical or other material, as opposed to shot, which is a solid projectile.

SHELL-DESTROYING TRACER: Tracer with an igniter element, placed between the explosive in an antiaircraft projectile and the tracer element, that is designed to detonate the explosive after the projectile has passed the target point but is still high enough to be harmless to ground troops.

SHOCK WAVE: Rapid expansion of the hot gases resulting from detonation of an explosive charge.

SHORT DELAY FUZE: One which will burst a projectile on ricochet, preferably about 6 to 10 feet above ground. Some crater effect will be obtained on hard ground.

SHOT: (1) A solid projectile. (2) Pellets, small balls, or slugs used in shotgun shells, canisters, and some other types of ammunition.

SHRAPNEL: Artillery projectile which contains small lead balls that are propelled by a powder charge in the base, set off by a time fuze. Shrapnel has been replaced almost entirely by high-explosive shells. Wounds called shrapnel wounds usually are due to shell fragments rather than to shrapnel.

SHRINKAGE: Contraction of propellant grain from wet (green) dimensions (as it comes from the graining dye) to the dry dimensions after solvent extraction and evaporation.

SIDE SPRAY: (See SPRAY.)

SIGNALLING SMOKE: Any type of smoke, but usually colored smoke from a hand or rifle grenade, or from a pyrotechnic signal, used for conveying a message.

SINGLE-BASE POWDER: (See SINGLE-BASE PROPELLANT.)

SINGLE-BASE PROPELLANT: Propellant whose principle active ingredient is nitrocellulose.

SINGLE-SECTION CHARGE: Propelling charge in separate-loading ammunition that is loaded into a single bag. A single-section charge cannot be reduced or increased for changes of range, as a multisection charge can be.

SMOKE SHELL: Any projectile containing a smoke-producing chemical agent that is released on impact or burst. Also called smoke projectile. Smoke may be white or colored. (See COLORED MARKER SHELL.)

SMOKELESS POWDER: (See SMOKELESS PROPELLANT.)

SMOKELESS PROPELLANT: Propellant explosive from which there is a minimum amount of visible smoke on firing.

SMOOTH-BORE: Having a bore that is smooth and without rifling; shotguns and mortars are commonly smooth-bore.

SPALL: Fragments broken from either surface of an armor plate as the result of penetration, impact of a projectile, or detonation against the plate.
SPECIFIC DENSITY: Mass per unit volume. In interior ballistics it is usually distinguished from loading density and gravimetric density, which see.

SPIN: Angular velocity about the axis of the projectile.

SPIN-DECELERATING MOMENT: A couple about the axis of the projectile which diminishes spin.

SPIN-STABILIZATION: Method of stabilizing a projectile during flight by causing it to rotate about its own longitudinal axis.

SPRAY: Fragments of a bursting shell. The nose, side, and base sprays are the fragments thrown forward, sideways, and rearward, respectively.

SQUASH-HEAD SHELL: (See HIGH-EXPLOSIVE PLASTIC SHELL.)

SQUIB: Small pyrotechnic device which may be used to fire the igniter in a rocket or for some similar purpose; not to be confused with a detonator, which explodes. (See ELECTRIC SQUIB.)

STABILITY: Measure the ability of an explosive material to be stored for long periods.

STABILITY TEST: Accelerated test to determine the suitability of an explosive material for long-term storage.

STABILIZER: Material added to propellant colloid to inhibit, or reduce, decomposition in storage.

STACKED CHARGE: Powder charge in which the powder grains lie end to end within the powder bag.

STANDARD BALLISTIC CONDITIONS: Set of ballistic conditions arbitrarily assumed as standard for the computation of firing tables.

STANDARD DEVIATION: The root-mean-square of the deviations from the mean.

STANDARD TRAJECTORY: Path through the air that it is calculated a projectile will follow under given conditions of weather, position, and materiel, including the particular fuze, projectile, and propelling charge that are used. Firing tables are based on standard trajectories.

STANDOFF: Distance between a shaped charge round and its target at the instant of functioning.

STAR: Pyrotechnic signal that burns as a single light.

STAR GAGE: Instrument for measuring the diameter of the bore of a gun.

STAR SHELL: (See ILLUMINATING SHELL.)

STOWAGE: (1) Method of placing cargo in a vessel to prevent damage, shifting, etc. (2) Method of placing equipment and supplies in a vehicle to provide availability and operating room. (3) Equipment when stowed.

STRIKER: Part of the firing mechanism of a gun, mine, mortar, etc., that hits the primer; hammer or firing pin of a gun.

STRIKING VELOCITY: Speed of a projectile at the point of impact.

SUBCALIBER: Of a caliber smaller than standard.

SUPERQUICK FUZE: Fuze that functions immediately upon impact of the missile with the target. Action of this type of fuze is the quickest possible: the firing pin is driven into the primer immediately upon first contact of the missile:functions at the surfaces of the target. Also called instantaneous fuze.

SUPERSENSITIVE FUZE: Fuze that will set off a projectile when it strikes even a very light target, such as an airplane wing.
SUPPLEMENTAL CHARGE: Filler, which is normally TNT, used in deep cavitated projectiles to fill void between ordinary fuze and booster combination and bursting charge.

SURVEILLANCE: Observation, inspection, investigation, test, study, and classification of ammunition, ammunition components, and explosives in movement, storage, and use with respect to degree of serviceability and rate of deterioration.

SWELL DIAMETER: Maximum diameter of the ogive extended to the place where its generating arc is parallel to the center line.

SYMPATHETIC DETONATION: Explosion caused by the shock of another explosion nearby.

TERMINAL BALLISTICS: The branch of ballistics which deals with the ultimate effect produced by a projectile.

TERMINAL VELOCITY: Remaining speed of a projectile at the point in the downward path of the projectile where the projectile is level with the muzzle of the gun. The speed at the point of impact is called the striking velocity.

TETRYL: Sensitive explosive used especially in caps and boosters to detonate less sensitive explosives, and as the explosive filler in some types of projectiles.

THERMATE: Standard incendiary agent used as filling for incendiary munitions. Mixture of thermite (iron oxide and aluminum) and other oxidizing agents; it burns at about 4,300°F.

THERMIT: Thermite, commercial welding mixture of iron oxide and aluminum; used as an incendiary for some munitions.

TNT: (See TRINITROTOLUENE.)

TRACER: Element of a type of ammunition containing a chemical composition which burns visibly in flight. Tracer is used for observation and adjustment of fire, for incendiary purposes, and for signaling. Ammunition containing tracers is called tracer ammunition.

TRAJECTORY: Path of projectile, missile, or bomb in flight.

TRAJECTORY CHART: Diagram of a side view of the paths of projectiles fired at various elevations, under standard conditions. The trajectory chart is different for different guns, projectiles, and fuzes.

TRAULZL TEST: Method of determining relative energy available from an explosive material by measurement of the volume expansion of a lead test block.

TRIMONITE: High explosive used as a substitute for trinitrotoluene as a bursting charge. Trimonite is a mixture of picric acid and mononitronaphthalene.

TRINITROPHENOL: (See PICRIC ACID.)

TRINITROTOLUENE (TNT): High explosive widely used as explosive filler in projectiles and by engineers; trinitrotoluol.

TRINITROTOLUOL: (See TRINITROTOLUENE.)

TRIPLE-BASE PROPELLANT: Propellant whose principal active ingredients are nitrocellulose, nitroglycerin, and nitroguanidine. (See PROPELLANT.)

TRIPLE POINT: Intersection of the original shock wave, the reflected shock wave, and the Mach stem.

TUBE: The inner cylinder of a built-up gun, usually extending from the inner face of the breechblock to the muzzle.

TWIST: Inclination of the spiral grooves to the axis of the bore of a weapon. The degree of twist is the determining factor in the speed of rotation of the projectile.

VACUUM STABILITY TEST: (See STABILITY TEST.)
W

WAVE FRONT: Surface which is the locus of all molecules having motion in identical phase in a propagating wave.

WEB; WEB SIZE, WEB THICKNESS: Alternative terms describing the minimum distance between any two specified burning surfaces of a propellant grain.

WEB RANGE: Tolerance of web thickness to allow for manufacturing limitation.

WINDSHIELD: (See BALLISTIC CAP.)

WHITE PHOSPHORUS (WP): Yellow, waxy solid which ignites spontaneously when exposed to air. It is used as a filling for various projectiles as a smoke-producing agent, and has an incendiary effect. White phosphorus may be mixed with a xylene solution of synthetic rubber to form plasticized white phosphorus.

WP: (See WHITE PHOSPHORUS.)

Y

YAW: Angle between the axis of the projectile and the tangent to the trajectory.
Ammonium perchlorate explosive, 2-13

Ammunition

armor-defeating, 2-156
armor-piercing (AP), 1-2
base ejection, 2-5
with burster charges, 2-5
canister, 1-3, 2-5, 150, 151
design, 2-162, 4-123
canister, 2-153
fixed, 4-117, 4-160
items, dimensioning of, 5-13
high-explosive, 2-3
antitank (HEAT), 2-4
plastic (HEP), 2-5
hypervelocity armor-piercing discarding sabot (HVAPDS), 1-3
kinetic energy, 2-4, 117
missiles for canister, 2-150
pyrotechnic-type, 1-3
recoilless, 2-153
semifixed, 4-117
semifixed and separate-loading, 4-160
separate loading, 4-117
separated, 4-117
special purpose, 2-154

Amount of Inspection, 5-1

Amplitude of nutation, 3-8
of precession, 3-8

Analysis, 2-106
beam, 4-155, 158
boiler, 4-156
combat, 2-107
constrained shell, 4-154
evaluation of present methods of, 2-91
methods of data, 2-85
stress, 2-153, 4-178, 179
stress in shell, 4-189
by statistical method, 2-126
weapon system, 2-107

Angle(s)
of attack, 2-123, 3-11, 12
small, 2-13
cone apex, 2-53
cone of dispersion, 2-153
of departure, 3-39
of fall, 2-93
of fire, 2-83
of impact, 2-137
index, 2-77, 79
Mach, 3-14
of obliquity, 2-156
sweepback, 3-11, 14
sweep forward, 3-11, 14
toleranced, 5-20
of yaw, 3-2

Angular acceleration, 4-179
velocity, 3-28

Anisotropic material, 4-149
Anisotropic plastic, 4-189
Anneal(s), annealing of, 6-44
of conical, effect of, 2-46
intermediate, 6-1
operations (cartridge case manufacture), 6-39

1-2

process, 6-41
salt peter, 6-39
stress-relief, 4-135, 6-40
Antipersonnel fragmentation weapon(s), 2-103, 106
Antitank projectiles, 2-4, 156
AP shot (shell) (see also Armor-piercing), 4-153
AP caps, matching and soldering, 6-33
AP projectiles, effect of nose geometry of, 2-138
AP shot caps, specifications of steel for, 6-29
AP shot design, 2-128
AP and APC projectiles, comparative performance of, 2-142
APC shell, 4-178
APC and AP projectiles, comparative performance of, 2-142

Application of Metal Fragmentation Characteristics
Data to Design of Shell, 2-98
Approximating the ballistic limit, 2-126
AR, 2-85
Arc, Ogival, 3-87
Area of chamber, 4-34
fire effectiveness, 2-107
illumination, optimum height for, 2-195
lethal, 2-3, 93, 154, 166, 164
vulnerable, 2-101
Arhennius function, 2-192
Armco iron, soft, 4-149

Armor, 2-4, 128
British (CTA) cemented tank, 2-120
bullet proof (BP), 2-120
classification, 2-119
defeat of, 2-117
defeating ammunition, 2-156
design for defeat of, 2-4
face-hardened, 2-141
bullet-proof, (FHBP), 2-120
glass, 2-92
homogeneous, 2-36, 120, 138, 139
Krupp, 2-120
machinable quality (MQ), 2-120
noncemented, 2-120
parameters, effect of varying, 2-129
penetration, 2-137
perforation, 2-124, 125
plate failure, 2-119
types of, 2-120
performance of, 2-125
skirting, 2-137, 157
solid, 2-137
spaced, 2-49, 129, 137
spalling of (HEP), 2-1
targets, heavy, 2-145
thickness, effect on projectile performance, 2-129
U. S. Navy Class A, 2-120
U. S. Navy Class B, 2-120

Armor-piercing (see also AP)
cap(s), 2-4, 117, 123, 137, 141, 144, 4-178
steel shell, 2-4
on, tungsten Carbide cores, effect of, 2-142
projectiles, 2-125, 139
performance of, 2-126
(HVAP), shell, hypervelocity, 2-117
shot (AP), 2-4, 117
comparison of HEP shell with, 2-156
caps, manufacture of, 6-29
HVAP, manufacture of, 6-35
Army Biophysics Laboratory, 2-102
Arsenal
Frankford, 2-82
Picatinny, 2-82, 153
Watertown, 2-139, 142
Artillery ammunition, 1-1
ammunition, design of, components of, 6-1
ammunition, manufacture of, 6-1
primer, 4-84
shell, 6-2
Asbestos-filled phenolic, 2-176
As drawn, 4-123
Aspect ratio, 3-71
fins of low, 3-13
large, 3-12
low, 3-13
ASN (Average Sample Number), 5-6
Assembly
candle, 2-164, 175
of HVAP shot, 6-35
illuminant, 2-160, 182, 184
of projectile, 2-151
tail fin, 2-172
Assessment
tank damage, 2-129
types of damage, 2-111
Assurance, quality, 5-1
Assymetry
Assymetrical
effects of, on velocity drop and jump of finned projectiles, 3-29
projectiles, stability of, 3-29
Atmosphere
Atmospheric
carburizing, 6-36
furnace, reducing, 6-29
hydrogen, 6-36
protective, 6-36
moisture, 2-191
resistance to, 2-190
standard, 2-198, 3-4
Attaching band to projectile, 4-154
Attachment, swivel, 2-178
Attack
angle(s) of, 2-123, 3-11, 12
Kamikaze, 2-110
obliquities of, 2-145
Attenution, wavelength, 2-193
Attribute
inspection, 5-12
Austenitic, steel, 6-1
Available energy for IMR powder, 2-169
Average
bore diameter, 4-152
densities and compositions of explosives, 2-12
outgoing quality (AOQ), 5-3
outgoing quality limit (AOQL), 5-4
web, 4-21
Axis
Axial
moment of inertia, 3-2
spin, 3-29
of revolution, 3-84
Baffle plate, 2-175
Bags, cartridge igniter, 1-7
Bags, pancake, 4-85
Balance, 4-3
Ball(s)
point micrometer, 6-24
powder process, 4-7
steel, 2-150
Ballistics(s)
cap, 2-117
characteristics, uniform exterior, 2-151
coefficient (C), 3-38, 39, 64
computing, 3-73
factors upon which it depends, 3-38
maximum, 3-64
computations, 4-24
effect, uniformity of, 4-20
equations, 4-45
fundamental, 4-43
solution of, 4-36
equivalence, 4-26
failure, 6-43, 47
integrator, 3-85
interior, 2-153, 4-1, 164
limit, 2-125, 127, 141, 144, 145
approximating the, 2-126
charts for, 2-128
estimating, 2-126, 127
matching, 2-6, 157, 177
method, 4-26
mortar test, 2-23
potential, 4-2
problem, exterior, 3-38
research laboratories, 2-36, 39, 41, 66, 68, 70, 73,
81, 94, 97, 129
tables, 3-39
uniformity, 4-1
wound, 2-3, 93, 154
Ballot(ing), 3-30, 4-178, 6-35
forces, 4-178
of projectile, 4-164
Band
driving, 6-17
flyoff, 4-154
land, 4-155
width, 4-155
wiping off of, 4-164
material, yield stress of, 4-157
outside diameter, determination of, 4-149
pre-engraved, 6-27
pressure, radial, 4-149, 153
theoretical prediction of, 4-151
to projectile, attaching, 4-154
retention, 4-154
rotation, 1-3, 2-163, 4-33, 153, 179, 189, 6-1, 17,
26
welded overlay, 2-5, 4-149, 154
seat, 4-155, 6-23
cleaning the, 6-17
diameter, determination of, 4-150
position of, 4-158
shearing of, 4-172
turning, 6-17
Banding of shell, 6-17
Bare charges, 2-10, 11, 16
Barrelling, 4-119
Basal porosity, 6-13
Base
area, estimation of, (effect of drag), 3-67
of case, 4-137
contour of, 4-124
diameter, 3-88
drag, 3-70
coefficient, 3-71
estimation of drag, 3-71
ejection, 1-3, 2-183
ammunition, 2-5
shell, 2-160, 161, 4-1
smoke shell, 2-176
flange, 2-45
flat, 4-182
control of, 4-126
of HVAP shot, 6-35
major, 3-67
plate, 2-162, 164
fastening, 6-17
removable, 2-172
plug, 2-160, 162, 164, 170
shearing, 2-169, 184
shear stress on threads of, 2-163
shear threads, design of, 2-163
pressure, 4-36
reinforcement, 4-137
round, 4-182
rupture of steel cartridge cases, 4-133
of shell, finishing the. 6-16
shell, square, 3-64
stress in, resulting from setback of filler,
4-183
Basic
angle dimensioning, 5-20, 23
dimension, 5-13, 23
problems of interior ballistics, 4-33
radial dimension, 5-20
Battle salvage, 6-47
Battlesfield illumination, 2-162
BAT weapon, 2-81
B Damage, 2-110
Bead, inverted, 4-134
Beads, obturating, 4-124
Beam analysis, 4-155, 158
Bearing-mounted charges, 2-82
Bearing stress of rotating band, 4-153
Before heating, inspection of shell, 6-13
Before splintering, 4-76
Beginning of motion of projectile, 4-34
Beginning of motion, time since, 4-47
Behavior of filler, 4-189
Bench, draw, 6-8
Bending stress(es), 2-124
Bent fins, 3-29
Benzene nucleus, resonance of, 4-90
Bergmann-Junk test, 4-93
Bernoulli
equation, 2-31
theorem, 3-33, 34
Beryllium copper cones, 2-46
Bifurcation, 2-69
Bifurcation of jet, 2-35, 64
Big-end-up, mold, 6-29
Billet, 6-5
scale and descaling, 6-6
separation, 6-5
Bimetallic cones and nonconical shapes, 2-42
Binary mixtures, 2-190
Binder metal, 6-36
Binding agents, 2-186
Binomial probability distribution, 5-3
Birkhoff, 2-64
Black powder, 2-5, 168, 4-1
charge, 4-84
ejection charge, 2-183
initiator, 2-183
loading density versus pressure curve of, 2-183
pellet, 1-5
train, 1-4
Blanking and cupping of cartridge case, 6-37
Blast, blasting, 2-1, 50, 93, 156
against aircraft structures, 2-13
aircraft damage by external, 2-15
aircraft damage by internal, 2-14
aircraft, effect of, 2-14
contours, 2-16
cube, 2-11
damage criteria, external, 2-16
determination of relative intensities, 2-11
effect, 2-7
on aircraft, 2-14
altitude on internal
of case on internal, 2-14
evaluation, 2-11
explosives for, 2-12, 4-2
determination of relative intensities, 2-11
effect, 2-7
on aircraft, 2-14
altitude on internal
of case on internal, 2-14
evaluation, 2-11
explosives for, 2-12, 4-2
external damage criteria, 2-16
external vulnerability of an aircraft, 2-16
information to be obtained from later experimentation,
2-9
measurement of, 2-10
Blast, Muzzle, 3-28, 29, 30
propagation of, 2-10
reflected, 2-9
shot, 6-5, 12, 13, 15
tube, 2-11
vulnerability of aircraft to external, 2-16
waves, 2-19
Blended guncotton, 4-6
Blended nitrocelluloses, 4-2
Blending radius, 4-125
Bleowholes, 6-1
Blow-throughs, 4-120
Blunt
headed shot, 2-124
nose, 2-157
projectiles, 2-154
shot, 2-122
trailing edge, fins with a, 3-13
Boat-tail, 3-8, 64, 67, 68, 6-21
Boat-tail projectiles, 4-160
Body
fin interference, 3-71
of HVAP shot, 6-35
shell, 2-170
determination of critical points in, 4-178
of wrapped cartridge case, 6-46
Boiler analysis, 4-156
Boiler formula, 4-154
Bolling of mouth, 4-122
Bomb, closed, 4-16, 18, 33, 88
Bomb, photo-flash, 2-179
Bonderized, 6-24
Bone penetration, 2-103
Boom, 2-172, 3-29
Booster(s), 1-5, 2-57, 63
black powder pellet, 1-5
of charge, 2-57
lead azide, 1-5
requirements, 2-10
sensitivity test, 2-23
standard, 2-177
tetryl, 1-5
Bore
clearance, 3-4
diameter, average, 4-152
erosion, 4-1, 3
residue, 4-2, 3
safe fuse, 1-5
safety, 1-5
yaw in, 3-28
effects and magnitude of initial yaw due to, 3-28
Boundry, increment, 2-183
Bourrelet, 1-3, 3-4, 82, 6-29
clearance between and rifling, 4-164
clearance, minimum, 4-178
expanding, 6-23
finishing, 6-17
ring gage, 6-24
tolerances of, 6-17
Box
gage, 2-10
tests, 2-84
Brass
cartridge, 6-1, 37
cases, manufacture of, 6-37
copper and alpha, 4-160
overworking, 4-125
tensile strength, 4-135
Break(-up)
nick and, 6-5
fragments, 2-109
jet, 2-32
projectile, 2-129
shell, 2-144
two-dimensional, 2-94
three-dimensional, 2-94
Breech, 4-119, 137
Breech pressure, 2-164, 4-36, 37
Bridge waves, 2-19
Brinell hardness, 6-15
Brisance values, 2-187
Brisant, 2-181
British
Armaments Design Department of the Ministry of Supply, 4-117
armor, cemented tank (CTA), 2-120
practice, design of drawn cartridge cases, 4-117
method of estimating muzzle velocity of a subcaliber projectile, 2-138
wear factor, 4-150
Brittle fracture, 2-123
Bruceton, 2-34
staircase method, 2-23
Budd Co., 2-39
Buffer cap, 2-144
for defeat of spaced armor, 2-144
Bulldozer(s), 6-7, 9
Bullet pull, 4-129
Bullet proof armor (BP), 2-120
Bullet proof armor, face hardened (FHP), 2-120
Buoyancy, center of, 6-35
Bureau of Mines test, 2-22
Burn, burning
chandcel, 2-173
characteristics, 2-190
cigarette, 2-170, 187
constant (B), 4-10
control of, 4-2, 3
dye composition, 2-183
equation, 4-18
filler, 2-178
flare, 2-164, 193
of pressed compositions, 2-189
progressive, 4-24, 25
precutively, 2-189
Burning, propellant, 4-16, 33, 43
rate, 2-187, 189, 190, 191, 4-1, 9, 22, 33, 36
acceleration of, 4-16
burning rate, control of, 4-13
effect of grain shape on, 4-20
rate equation, 4-35
linear, 4-16, 18, 20
proportional law of, 4-20
regressive, 4-25
seven-perforated grains, 4-48
surface, 4-6
constant, 4-24, 26, 27
control of, 4-16
time, 2-167
rotating candle, 2-162
type, smoke compositions, sensitivity of, 2-183
zone A, 2-189
zone B, 2-189
zone C, 2-189
Burner, strand, 4-16
Burnt, burned
after, 4-76
all, 4-39
fraction, 4-21
Burst
explosive, 1-3
height, mean, 2-107
position of, 3-39
separating, 1-3
Burster(s)
casing, 2-180
extruded-aluminum, 2-180
charge(s), 2-5, 160, 176, 178, 181
ammunition with, 2-5
determination of weight of, 2-178, 182
smoke charge, ratio of, 2-178
column, 2-178
reactions, exothermal, 2-189
shell (WP), sealing of, 2-180
Chipboard, 2-172
Chi-square tests, 2-95
Choice of method of stabilization, 3-2
Chopped-glass fiber, 2-175
Chord, 3-71
root, 3-11
tip, 3-11
wing, 3-11
Chrome flash, 6-37
Chronograph, Aberdeen, 2-94
Cigarette burning, 2-170, 187
Circle, tolerance, 5-18,23
Circular meplat, 3-69
Circumferential rupture, 6-42
Class B armor, U. S. Navy, 2-120
Classification, 5-5
of ammunition, 1-2
fixed, 1-1
semifixed, 1-1
separated, 1-1, 2
separate loading, 1-1
armor, 2-119
of defects, 5-1, 5
of explosives, 1-6
missiles, 2-1
by effect, 2-1
blast, 2-1
defeat of personnel, 2-3
fragmentation, 2-1
incendiary, 2-1
leaflets, 2-1
light, 2-1
poison gases, 2-1
penetration of armor (kinetic energy shot), 2-1
penetration of armor by (shaped charges), 2-1
preformed missiles (canister), 2-1
smoke, 2-1
Cleaning band seat, 6-17
Clearance
bore, 3-4
between bourrelet and rifling, 4-164
of case in chamber, 4-121,122
estimating, 4-121
initial, 4-119
minimum, 4-121
Cleat, shroud, 2-171
Clipped-delta wing, 3-27
Closed
bomb, 4-16,19,33,88
test, 4-16,40
pit test, 2-94
Closing plug, 1-2, 7
Closure steel-to-steel, comparison of aluminum-to-
steel, 2-181
Cloud(s)
colored, 2-176,178
color of colored smoke, 2-178
duration of, 2-177
pillaring of (WP), 2-181
Coating(s), coated, 6-17
nitrocellulose lacquer, 6-47
phosphate, 6-17,21
protective, 4-134, 6-44
soap, 6-41
Coated centerlines, 5-15
Coefficient(s), 3-64
aerodynamic, 3-8
ballistic (C), 3-38,39,64
factors upon which (C) depends, 3-38
maximum, 3-64
base drag, 3-71
cross-wind force, 3-10,12
drag (KD), 2-118,166,185,196, 3-10,38,39,64,67,68,
69,70,75
friction, 3-10
drag, 3-68,71
form, 4-21,23,24
lift, 3-10,12
moment yawing, 3-10
normal force, 3-8,9,13
overturning moment, 3-9
partial drag, 3-71
practical drag, 3-38
skin friction drag, 3-10
slopes, lift, 3-27
wave drag, 3-70
yaw-drag, 3-5,28,69
Coining, 4-122
Cold
extrusion, 6-1,3,9
HE shell, 6-21
comparison of hot forging with, 6-24
tests of, 6-23
forming, 6-25
pressing, 6-36
shuts, 6-40,43
work, 6-3
hardening, 6-37
steel, 6-2,43
influence of hot work versus, 6-1
Collapsing cone, 2-38
Colloid, 4-2,6,87
Color(ed), 2-178
cloud, 2-176,178
dye, 2-160
emission, 2-193
filters, 2-193
intensifiers, 2-186
marker, 2-160
shell, 2-160,176,178,182
design of, 2-179
tactical requirements, 2-176
smoke, 2-178
cloud, control of, 2-178
method of producing, 2-178
screen, 2-160
shell, 2-160,182
saturation, 2-177
value, 2-187
Column
burst, 2-178
diameter, limits of propagation versus minimum,
2-182
of explosive, 2-182
strength, 2-185
Combat
analysis, 2-107
models, 2-107
Combustion, heat of, 4-88,89
Compacts, sintered-iron, 4-161
Compacting and sintering of Tungsten carbide, 6-36
Comparative
Comparator
Comparing
Comparison
 aluminum-to-steel closure versus steel-to-steel, 2-181
effectiveness of full-caliber versus subcaliber steel shot, 2-138
explosives, 2-11
of HEP shell with AP shot, 2-156
of hot forging with cold extrusion shell, 6-24
magnetic, 6-45
hardness, 6-43
of peak pressure and impulse, 2-13
performance of AP and APC projectiles, 2-142
performance of KE shot, 2-145
of properties of pyrotechnic compositions with explosives, 2-188
range firings, 3-68
of results, 4-92
of spinning shell with top, 3-2
study of shell forging methods, 6-13
of steel and brass cases, 4-119
Compatible, compatibility, 2-22, 177, 4-94
 quantitative definition of, 2-24
Compensation, 2-35
rotation, 2-35, 36, 37, 71, 73, 75, 78
Complete
 ogive, volume of, 3-86
 round, components of, 1-1
 solution for pressure-time trace, 4-76
Complex yaw, 3-3
Component(s), 3-3
 of, artillery ammunition, design of, 6-1
 of complete round, 1-1
 solids of revolution, 3-81
tolerances, 5-24
Composite rigid projectile, 2-117
Composition(s), 2-13
 A-3, 2-157
 composition B, 2-13, 63, 178
 C-4, 2-157
 of, average densities of explosives and, 2-12
 burning of pressed, 2-189
delay fuze, 2-187
dye, 2-177, 178
 burning, 2-183
 first-fire, 2-172
 flare, 2-167
 illuminant, 2-175
 igniter, 2-192
 ignitibility of, 2-192
 photoflash, 2-187
 pyrotechnic, 2-191
 of standard propellants, 4-2
 tracer, 2-192
Compression
Compressive
 force, radial, 4-178
 stress, 4-181
test, 4-93
 yield stress, 2-165
 wave, 2-123
Compromise method of shell forming, 6-25
Computation
Computing
 ballistic, 4-24
 ballistic coefficient, 3-73
 of ballistic limit, 2-126
 energy of HE shell, 3-76
 lethal area, 2-103
 momentum of HE shell, 3-76
 for ogive, 3-82
 of vulnerability, 2-91
Concept, concept, 2-183
Conclusions on HEP performances, 2-158
Condenser microphone gage, 2-10
Condition(s), 5-24
 Chapman-Jouguet, 2-30
 maximum metal, 5-20, 24
 minimum metal, 5-20, 24
 optimum, 4-50, 74
Conductive primer mixture, 1-7
Conductivity, electrical, 4-2, 3
Conductivity, thermal, 2-189
Conic(al), 3-65, 69
 aluminum, 2-40
 angle, optimum, 2-54
 angle, effect on penetration under rotation, 2-66
 apex angle, 2-53
 beryllium copper, 2-46
 bimetallic, 2-42
 and nonconical shapes, 2-42
 and charge, alignment of, 2-56
 collapse, 2-55
 compacting, 2-38
 of dispersion, 2-150
 angle of, 2-153
double-angle, 2-43
electroformed, 2-39
effect of annealing of, 2-46
effect of spinning, 2-46
 forcing, 4-33, 121, 162
 frustums, 3-88
 glass, 2-38
 head, 2-65
 lead, 2-41
 liners, 2-31
 malformed, 2-39
 sharp apex, 2-55
 steel, 2-41
tail, 2-172, 175
 wall thickness, 2-53
 zinc, 2-41
Confine(d), (ment), 2-31, 57, 181, 4-16
cases, 3-68
 of explosion, 2-109
Consideration of liner parameters, 2-49
Consistent muzzle velocity, 2-152
Consistent notation, 4-16
Consolidation, degree of, 2-189
Constant
 burning (B), 4-10
 surface, 4-24, 26, 27
 grains, 4-48
distortion (Hencky-Von Mises), 4-185, 186
 form function, 4-78
gas, 4-35
Gurney, 2-98
Constituents of pyrotechnic compositions, 2-186
Constrained-shell analysis, 4-154
Continuous-sampling plans, 5-10
Contour(s)
blast, 2-16
of base, 4-124
of case, internal, 4-124
Control(led), (ling)
of colored smoke cloud, 2-178
burning, 4-2,3
rate, 4-13
surface, 4-16
of flatness of base, 4-126
fragmentation, 2-3,107,108,109,111
methods of, 2-108
ring, 2-110
scale, 6-42
web dimensions, 4-13
Cook, 2-93,106
Cooling, air-blast, 6-4
Coordinates, toleranced, 5-17
Copper
and alpha brasses, 4-160
cones, electroformed, 2-41
gage pressure, 4-40
gasket, 6-27
liners, 2-32,46
Coppering, 4-3
Cord, 4-23
propellant, 4-24
equations for, 4-27
Core(s), 6-36
high-explosive, 2-160,176
tungsten carbide, 2-123,128, 6-35
Corner form coefficient, 4-21
Corner’s treatment, 4-21
Corps, Chemical, 2-161
Cost of shell manufacturing plant, 6-24
Cover, base, 1-4
Covolume, 4-17,37,47,88
Crack(s), (ing), 2-123, 6-17
season, 6-40
shearing, 6-5
"Cranz, law of", 2-32
Crimp(ing), 4-33,132, 6-44
effect of method of, 4-132
groove, 4-132
design, 4-122
press-type, 4-132
rubber-die, 4-132
Criteria
Criterion
acceptance, 5-1
for, canister ammunition casualty, 2-154
casualty, 2-102
damage, 2-93
external blast damage, 2-16
Hencky-Von Mises, 4-187
homogeneity, 5-1
incapacitation, 2-104
lethal area, 2-154
lethality, 2-83,101,111
protection, 2-128
sampling plan, 5-2
selection of propellant materials, 4-2
of shaped charge effectiveness, 2-82
Sterne’s, 2-102
yield, 4-181,185
theories, 4-185
utilization, 4-178
Critical
alloys, 6-3
defects, 5-5
opening velocity, 2-196
points in, body of shell, determination for, 4-178
range, 6-27
of steel, 6-1
relative humidity, 2-191
temperatures, 6-12,14
velocity, 2-126
Cropping, 6-13
Cross, 3-3
rolls, 6-7
slide, 6-27
wind force, 3-5,7,10,29,30
coefficient, 3-10,12
damping factor, 3-6,10
Crusher gage, 4-94
Crush-up of nose, 2-5
Crush-up, shell, 2-157
Cryolite, 4-2
Cube, blast, 2-11
Cumulative probability, 2-154
Cupping, 6-1,7,8,41
of, cartridge case, blanking and, 6-37
and draw, 6-37,47
expanding, 4-150
glazed-board, 4-122
preparation for, 6-41
obturating, 2-173
Curve(s)
Curvature
charge-pressure, 4-9
core-velocity, 4-9,10
design, 4-10
normal error, 2-100
probability, 2-126,127
radius of longitudinal, 3-81
stress-strain, 4-118, 6-2
determination for, 4-178
of trajectory, 3-11
web-velocity, 4-10
web-charge, 4-10
Cutting
off base of HEP shell, 6-27
flame, 6-5,14
Cyclotol, 2-40,178
Cylinder(s)
Cylindrical, 3-69
liner, 2-69,71
right circular, 3-1
tapered, 6-46
Cylinders, Chemical, 2-161
Cost of shell manufacturing plant, 6-24
Cover, base, 1-4
Covolume, 4-17,37,47,88
Crack(s), (ing), 2-123, 6-17
season, 6-40
shearing, 6-5
"Cranz, law of", 2-32
Crimp(ing), 4-33,132, 6-44
effect of method of, 4-132
groove, 4-132
design, 4-122
press-type, 4-132
rubber-die, 4-132
Criteria
Criterion
acceptance, 5-1
for, canister ammunition casualty, 2-154
casualty, 2-102
damage, 2-93
external blast damage, 2-16
Hencky-Von Mises, 4-187
homogeneity, 5-1
incapacitation, 2-104
lethal area, 2-154
lethality, 2-83,101,111
protection, 2-128
sampling plan, 5-2
selection of propellant materials, 4-2
of shaped charge effectiveness, 2-82
Sterne’s, 2-102
yield, 4-181,185
theories, 4-185
utilization, 4-178
Critical
alloys, 6-3
defects, 5-5
opening velocity, 2-196
points in, body of shell, determination for, 4-178
range, 6-27
of steel, 6-1
relative humidity, 2-191
temperatures, 6-12,14
velocity, 2-126
Cropping, 6-13
Cross, 3-3
rolls, 6-7
slide, 6-27
wind force, 3-5,7,10,29,30
coefficient, 3-10,12
damping factor, 3-6,10
Crusher gage, 4-94
Crush-up of nose, 2-5
Crush-up, shell, 2-157
Cryolite, 4-2
Cube, blast, 2-11
Cumulative probability, 2-154
Cupping, 6-1,7,8,41
of, cartridge case, blanking and, 6-37
and draw, 6-37,47
expanding, 4-150
glazed-board, 4-122
preparation for, 6-41
obturating, 2-173
Curve(s)
Curvature
charge-pressure, 4-9
core-velocity, 4-9,10
design, 4-10
normal error, 2-100
probability, 2-126,127
radius of longitudinal, 3-81
stress-strain, 4-118, 6-2
determination for, 4-178
of trajectory, 3-11
web-velocity, 4-10
web-charge, 4-10
Cutting
off base of HEP shell, 6-27
flame, 6-5,14
Cyclotol, 2-40,178
Cylinder(s)
Cylindrical, 3-69
liner, 2-69,71
right circular, 3-1
tapered, 6-46
Damage, 2-36,82,129
assessment, types of, 2-111
tank, 2-129
categories of, 2-83
A, 2-110
B, 2-110
C, 2-110
F, 2-83
K, 2-83,110
KK, 2-110
M, 2-83
criteria, 2-16,93
external blast, 2-16
region I, 2-16
region II, 2-16
region III, 2-16
evaluations, 2-129
aircraft, 2-110
external blast to (aircraft), 2-15
fuel, 2-111
to gun, 4-178
internal blast (aircraft), 2-14
probability of, 2-108,111
estimates, 2-88
qualitative description of shaped charge, 2-84
structural 100A, 2-15
test ranking, 2-13
threshold, 2-16
Damping factor(s), 3-4,6,30
cross-wind force, 3-6,10
magnus moment, 3-6,10
spin-decelerating moment, 3-6
yawing moment, 3-6
Danger
of resonance between pitching period and rolling period, 3-29
of too much spin (magnus moment), 3-29
Data
Datum
dimensions, 5-13
fragmentation, 2-105
hole, 5-20
method of dimensioning tapers, 5-24
required to design cartridge case, 4-120
surface, 5-14
symbol, 5-13
Dead metal, 6-42
Decarburization, 6-36
Deceleration
calculation of, 2-166
efficiency, 2-165
parachute, 2-166
design of small, 2-166
Decelerator, 2-164,155,166
Decompose in, storage (must not), 4-2
Decomposition rate, 4-2
Decoppering agent, 4-2
Decrease hygroscopicity, 4-2
Deep cavity, 2-177
Deep-drawing operations, characteristics, 6-2
Defeat
of aircraft, 2-3
of armor, 2-117
of spaced buffer caps for, 2-144
of spaced caps for, 2-143
of fortification, 2-4
of personnel, 2-3
of shaped charge weapons, 2-82
of tank, 2-129
of target, 2-83
Defects
classification of, 5-1,5
critical, 5-5
major, 5-5
minor, 5-5
surface, 6-41
Deficiency, oxygen, 4-89
Definition
of lots, 5-1
of perforation, 2-125
Deflection dispersion, 2-107
Deformation
elastic, 4-150,178
during nosing, 6-17
permanent, 4-185,178
plastic, 4-133,178,186,6-43
projectile, 2-141
of shell, 4-178
Degree of consolidation, 2-189
Degree of nitration, proper, 4-6
Degressive, 4-9
degressive shapes, 4-23
Delay fuze, 1-4
composition, 2-187
Degreasing, washing and, 6-17
Delta wing, 3-27
Demarré formula, 2-125,137
Density(ties), 4-87
air, 3-8
average compositions of explosives and, 2-12
compositions of explosives and average, 2-12
fragment, 2-106
gas, 4-35
jet, 2-38
loading, 2-11,14, 4-1,33
function, 4-48
Ordnance Corps standard, 3-38
of propellant composition, calculated, 4-89
relative, 2-198
Departure, angles of, 3-39
Dependent locational symbol, 5-15
Dependent locational tolerance(s), 5-13,17,19
Deployment methods, parachute, 2-166,196
Depth of cannellure, 4-154
Depth of penetration, 2-78
Derivation of equations, OSRD 6468 method, 4-42
Derivation of optimum height, 2-193
Derivative, time, 3-6
Deriving shell stress formulas, 4-178
Descent rates, 2-171
Description
of notched casings, 2-109
of notched-wire method, 2-109
of test methods, 2-22
Design, 2-6
accessory parts, 2-177
AP shot, 2-128
ammunition, 2-162, 4-123, 6-1
of canister, 2-153
of base plug (optimum), 2-162
of base plug shear threads, 2-163
cartridge case, 4-117,118,124,129
data required, 4-117,129
mouth of, 4-123
of colored marker shell, 2-179
crimping groove, 4-122
curves, 4-10
for defeat of armor, 2-4
of dies, 4-7,13
of drawn cartridge case, 4-117
British practice, 4-117
ejection charge, 2-167,181
equipment (new), 4-121
filler, 2-177
flange, 4-122
gain, 4-13
gun, 4-119,124
chamber, 4-117
of illuminating shell, 2-162
of mortar-type, 2-172
and use of, factors affecting the, 2-162
of liquid-filled shell burster, 2-186
mortar ammunition, problems of, 2-172
optimus, 2-93
parameters, effect on penetration, 2-39
parachute, 2-162
small deceleration, 2-166
pyrotechnic, 2-193
parallel, 5-11
pin plates, 4-13
for precision, 3-1
primers, standard, 4-84
procedure, 2-3
projectile, 2-2,128,129
for gun already made, 3-1
for Q. F. guns, German, 4-123
rifling, 4-169
rotating band, 4-149,153,180
of shaped charge missile, 2-17
of shell, application of metal fragmentation character-
istics data to, 2-98
shell metal parts, 2-162,177
propagation shell, 2-184
signal smoke shell, 2-182
split-sleeve, 2-164
visibility, 2-193
for volume, 4-117
of web dimensions, 4-9
WP shell, 2-180
accessory parts, 2-180
wraparound, 4-135
Desirable properties of liner, 2-38
Desired bullet pull, methods of achieving, 4-132
Detection of gun battery, 4-3
Deterioration in penetration, 2-78
Deterioration of propellant, 4-83
Determine(ation), (ing), 2-129
of band outside diameter, 4-149
of band-seat diameter, 4-150
of critical points in body of shell, 4-178
of effective width of band, 4-150
effect of yaw, 3-75
grain design, 4-9
Internal volume of cartridge case, 4-126
initial velocity factors, 3-72
lethality, 2-106
of maximum forces acting on shell during firing, 4-178
of rifling twist, 4-173
of relative air-blast intensities, 2-11
of web range, 4-10
of weight of burster charge, 2-178,182
weight of tetryl burster required, 2-178
Deterrent material, 4-3
Detonation
Detonator(s), 1-6
electric, 1-6, 2-57
front, 2-30,31
high order, 1-5
lead azide, 1-5
low order, 2-183
mercury fulminate, 1-5
premature, 2-180, 4-178, 6-13
propagation, 2-24
rate, 2-24
tetryl, 1-5
velocity, high, 2-157
wave, 2-30,81,182
Development and Proof Services, Aberdeen Proving Grounds, 2-126
Development of fundamental equations, 4-34
Development of HEF shell, 6-26
Deviation
from mean, 4-137
standard, 2-127,3-8,10,5-12
Diagrams, vulnerability, 2-141
Dial indicator, 5-13,14
Diameter
base, 3-88
case, 4-137
of charge, 2-189
flange, 4-137
nose, 3-87
pin circle, 4-14
rifling, 4-152
swell, 3-69,81,84,87,88
Diametral
taper, 3-83
tolerance, 5-13,19,20
Dibutylphthalate, 4-2
Die(s), 4-14,6-9
design of, 4-13
piercing, 6-7
ring, 6-7,8,9
tapered, 6-9
tungsten carbide, 6-37
Differential expansion, 2-181
Different-length cases in same gun, 4-120
Difficulties, extraction, 4-132,134
Difficulties, ignition, 4-50
Dimension(s)
basic, 5-13,23
angular, 5-20
radial, 5-20
chamber, 4-133
datum, 5-13
reference, 5-13
of shell forgings and shapes, 6-5
Dimensional(ing)
of ammunition items, 5-13
basic angle, 5-23
of cartridge case, 4-133
mouth, 4-124
of chamber, 4-133
checks, 6-40
control, 5-13
of grain, 4-7
radial, 5-20
of rifling, 4-169
of mouth, 4-124
of projectile, 4-137
ramming, 4-178
shell, 3-30
Economics of shell forging, 6-12
Edge, 6-37
leading, 3-11, 13, 14
trailing, 3-11, 13, 14
Effect(s) of
altitude on internal blast, 2-15
annealing of cones, 2-46
armor-piercing caps on tungsten carbide cores, 2-142
armor thickness on projectile performance, 2-129
blast, 2-7
on aircraft, 2-14
case on internal blast, 2-14
classification of missiles by, 2-1
cone angle on penetration under rotation, 2-66
design parameters on penetration, 2-39
estimation of drag
base area on, 3-67
head curvature on, 3-65
head length on, 3-65
meplat diameter, 3-67
shell length, 3-68
yaw, 3-69
erosion, 4-163
of gage tolerance on component tolerance, 5-24
of grain shape on burning rate, 4-20
gun on extraction, 4-119
initial yaw due to bore clearance, 3-28
effect of liner
material on penetration under rotation, 2-68
shape on penetration under rotation, 2-69
thickness on penetration under rotation, 2-67
method of crimping, 4-132
moisture, protection against, 2-192
moisture on shelf life, 2-191
effect, Munroe, 2-110
nose, 2-157
gun on extraction, 4-119
gun on extraction, 4-119
yaw, determining, 3-75
Effective
chamber capacity, 4-126
ejection pressure, 2-163
fragments, 2-107
length of chamber, 4-37
mass of projectile, 4-56
width of band (determination of), 4-150
Effectiveness
area fire, 2-107
comparative, full-caliber vs subcaliber steel shot, 2-138
pyrotechnic composition radiation, 2-193
shaped charge, 2-48
against tanks, 2-82
weapon, 2-106
wounding, 2-98
Efficiency, deceleration, 2-165
Efficiency, point of optimum, 4-75
Eichelberger, 2-32
Ejection
base, 2-183
canister, 2-165
charge, 2-160, 162, 170, 173, 184
design, 2-167, 181
black-powder, 2-183
powders, 2-171
pressure, 2-169
effective, 2-163
second, 2-164, 166
velocity, 2-163, 164
Elastic
chamber expansion, 4-120
deformation, 2-9, 4-150, 178
expansion of gun, 4-119
limit, 6-43
modulus of, 2-165
recovery, 4-118, 6-43
setback, 4-125
stress state, 4-187, 188
stress waves, 2-157
Electric
conductivity, 4-2, 3
detonators, 1-6, 2-57
fuze, 2-57, 63
primer, 1-7
End squeeze, 6-6
Enamel seam sealer, 2-151
Electroformed cones, 2-39, 41, 46
Element, percussion, 4-84
Eliminating spin degradation, 2-81
Elliptic integral, 3-27
Elongation
factor, 2-178
percentage, 4-136, 6-43
low, 5-44
Emission
color, 2-193
fragment, 2-101
Energy
available IMR powder, 2-169
balance equation, 4-35, 36, 37, 43
computing of HE shell, 3-76
equation, 4-37
allowing for friction, 4-37
including heat loss, 4-37
maximum, 4-185
of motion, 4-43
muzzle, 3-38,72
of propellant, 4-87
propellant gases, 3-73
radiant, 2-187,189
relative, 4-88
specific limit, 2-124
strain, 2-182
Engines, peripheral jet, 2-82
Engraving, 2-152, 4-151,152,153
Equation(s)
ballistic, 4-45
Bernoulli’s, 2-31
burning, 4-18
rate, 4-35,43
for cord propellant, 4-27
derivation of OSRD 6468 method, 4-42
energy balance, 4-33,35,36,37,43
allowing for friction, 4-37
including heat loss, 4-37
form-function, 4-43
Hill-Mott-Pack, 2-33
of interior ballistics, 4-22,33,35
Lame, 4-182
of motion, 4-36,38,42
modified, 4-57
projectile, 4-34
of shell, 3-4
Mott, 2-94,98
for multiperforated grain, 4-28
for period after all powder burned, 4-45
for single-perforated propellant, 4-27
solution of RD33, 4-37
for specific surface, 2-190
for strip propellant, 4-27
of state, 2-30, 4-33,34,42,43,88
Abel, 4-35
van der Waals, 4-35
virial, 4-34
Equilibrium, dissociative, 4-87
Equipment, designing new, 4-121
Equivalence, ballistic, 4-26
Equivalent rotating band geometry, 4-155
Erratic pressures, 4-11
Erosion, 4-162,163
bore, 4-1,3
causes of, 4-164
effects of, 4-163
methods used to control, 4-169
of rifling, 4-162
Error distribution, 2-110
Establishing acceptable quality level, (AQL), 5-4
Establishing web size, 4-13
Estimate(s)
acrodynamic coefficients of projectile, 3-8
ballistic limit, 2-127
base drag, 3-71
chamber capacity, 4-126
minimum, 4-125
clearance, 4-121
damage probability, 2-88
drag, 3-64
coefficient, 3-74
fin-stabilized projectiles, 3-70
effect of, 3-69
base area, 3-67
head curvature, 3-65
head length, 3-65
méplat diameter, 3-67
shell length, 3-68
yaw, 3-69
friction drag, 3-71
interference drag, 3-71
wave drag, 3-70
coefficient, 3-76
Ethyl centralite, 4-2
Eutectic, 6-36
Evaluation
blast, 2-11
damage, 2-129
aircraft, 2-110
fragmentation effectiveness (parameters required), 2-93
of present methods of analysis, 2-91
Example by Le Due system, 4-81
Example for optimum loading density, 4-50
Excessive dispersion, 4-129
Exothermal chemical reactions, 2-187,189
Expansion
bourellet, 6-23
cups, 4-150
differential, 2-181
doing for optimum loading density, 4-50
Temporal chemical reactions, 2-187,189
Expelling charge, 2-5,161
Experimental, 2-73
case design (notes on), 4-126
to determine penetration, 2-102
firings, 4-84
results with fluted liners, 2-73,76
shell (ring-type), 2-97
Explosion
confined, 2-109
heat of, 4-2,3,87,89
premature, 6-17
temperature test, 2-23
Explosive(s)
average densities and compositions, 2-12
for blast, 2-12
blasting, 4-2
burst, 1-3
shell, 2-160
bustler, 2-160
classification of, 1-6
high, 1-6
low, 1-6
columns, 2-192
comparsion of, 2-11
pyrotechnic compositions with, 2-188
filler, pinching of, 2-158
fluting of, 2-81
initiation of, 2-61
liquid, 2-62
pellets, 2-82
plastic, 2-156
pressed, 2-95
ratios, 2-178
react with, 6-17
in shaped charges, 2-59
solid, 2-63
train, 2-177
primer, 1-6
types
aluminum, 2-13
ammonium perchlorate, 2-13
HBX, 2-13
Medina, 2-13
MOX, 2-13
Pentolite, 2-13
RDX, 2-13, 14
Silas Mason, 2-178
TNT, 2-13
Torpedo, 2-13
Trinitro, 2-13
wave propagation, 2-7
Extension, plastic, 4-118
Exterior ballistics
problem, 3-38
of sabot, 2-119
External blast
damage criteria, 2-16
vulnerability of aircraft, 2-16
Extraction, 4-119, 6-40
difficulties, 4-132, 134
ease of, 4-121, 134
effect of gun, 4-119
free, 4-117
factors influencing, 4-118
grooves, 1-7
stiff, 4-119
Extractor(s)
gun, 4-117, 122
pockets, 4-119
Extruded-aluminum burster casing, 2-180
Extrusion, 4-6, 6-3, 21
over, advantages of forging, 6-3
cold, 6-1, 3, 9
to length, 6-21
process, French, 6-7
rearward, 6-8
for shell manufacture, 6-2

F damage, 2-83
Fabric, tensile strength of, 2-198
Face, 6-27
hardened armor, 2-119, 141
bullet proof (FHDP), 2-120
Factor
damping, 3-4, 6, 30
dimensionless (K), 2-178
elongation, 2-178
form, 3-38, 39, 65, 66, 69, 4-23
overturning couple, 3-2
overturning moment, 3-8
righting moment, 3-30
shock-load, 2-198
stability, 3-2, 5, 6, 8
Factors (affecting) ballistic coefficient, 3-38
design and use of illuminating shell, 2-162
freedom of extraction, 4-118
initial velocity, 3-72
liner performance, 2-36
luminous intensity, 2-189
parachute design, 2-195
penetration of subcaliber projectiles, 2-137
pyrotechnic compositions, 2-187
range, 3-38
time of flight, 3-38
Failure
armor plate, 2-119, 120
ballistic, 6-43, 47
ductile, 2-120
due to case, 4-120
due to gun causing hard extraction, 4-120
to gun tube, 4-162
to penetrate, 2-123
of shell under stress, 4-178
Fall, angle of, 2-93
False ogive, 2-117
Fastax high-speed cameras, 2-94
Fastening base plate, 6-17
Felt wadding, 2-172
FFAR (shell), 2-85
Fiber, chopped-glass, 2-176
Field interchangeability, 2-182
Figure of merit, 2-103, 106
Filler(s), 2-5, 150
behavior of, 4-189
burning of, 2-178
design, 2-177
propaganda shell, 2-184
dispersion of, 2-178
flechette-type, 2-150
liquid, 2-6, 161, 185
loading (WP), 2-180
pinching of explosive, 2-158
setback (Sp), 4-179, 181, 182, 189
Fillet(s), rotation of, 3-81
Fillet, volume of partial, 3-85
Film, protective, 2-192
Filters, colored, 2-193
Fin(s)
bent, 3-29
with blunt trailing edge, 3-13
interference, 3-71
low aspect ratio, 3-13
rectangular, 3-12, 71
stabilized, 3-1
discarding sabot, 2-4
hypervelocity, 2-4
shell, 2-82, 175, 3-10, 28, 70, 4-189
estimation of drag coefficients of, 3-70
lift of, 3-12
ensure static stability, lift of, 3-11
at subsonic velocities, 3-12
sweepback, 3-13
supersonic speeds, thin, 3-12
supersonic speeds, three-dimensional, 3-12
thin, pointed, abort, 3-13
wedge-type, 3-71
Final head, 6-43
Final inspection, 6-39, 44, 45
Finding
altitude, 3-73
shear, 2-162
in shell wall resulting from rotation (tension), 4-181
stresses in shell, resulting from, 4-181
tangential, 4-179
inertia, 4-178
on rotating band, 4-181
at given section of shell, 4-181
Forcing cone, 4-121,162
slope of, 4-126
Forging, 6-3
advantages of extrusion over, 6-3
finish of cavity, 6-1
heat, 6-9
hot, 6-126
inspection of shell after, 6-13
shell, 6-4,6
steel, casting versus, 6-1
French extrusion method, 6-9
thick-and-thin, 6-7
upsetter, 6-9
Formula
boiler, 4-154
Demarre, 2-137
drag, 2-196
Gurney, 2-98
of interior ballistics, 4-39
for maximum pressure, 4-41
penetration, 2-125
Ritter's, 2-165
simple beam, 4-154
solids of revolution, 3-81
stress (deriving), 4-178
stress (summary of), 4-184
thick-cylinder, 4-180
two-dimensional, 3-12
Formulation, 4-1
Fortification, defeat of, 2-4
Fouling, metal, 4-149
Four-wheeled planimeter, 3-85
Fraction burned, 4-21
of powder, 4-47
of web, 4-17
Fracture, brittle, 2-123
Fragments, 2-14,154
Fragmentation, 2-150,93,94,156
characteristics, 2-94,95,97
control(led), 2-3,107,108,109,110,111
data, 2-105
effect, secondary, 2-5
effectiveness, parameters needed to evaluate, 2-93
Kirkwood-Brinkley's theory, 2-9
nature of, 2-93
patterns, 2-93
discussion of, 2-100
tests, 2-23,146,106
weapons, antipersonnel, 2-103,106
Frankford Arsenal, 2-82, 4-129,133,134,137,160,169
Franklin Institute, 4-137
Free
body stress analysis, 4-188
extraction, 4-117,118
flight system, 2-195
run projectile, 4-164
space, initial, 4-38
Free Flight Aerodynamics Branch of the Exterior Ballistics Laboratory, 3-65
French extrusion method of forging shell, 6-7,9
Friction
coefficient, 3-10
drag, 3-68,70
estimation of, 3-71
projectile, 4-33
sensitivity, 2-23,187
Front
detonation, 2-30,31
shock, 2-7
Frustums, 3-81
conic, 3-88
volume of, 4-126
Fuel damage, 2-111
Fuel tank vulnerability, 2-112
Function
Arknneas, 2-192
density of loading, 4-48
form, 4-16,18,21,23,25,27
pressure, 4-48
of rotating band, 4-149
of skirting plate, 2-137
of special purpose shell, 2-160
of stability factor, 3-31
time, fuze, 2-157
Fundamental
ballistic equation, 4-43
equations of interior ballistics, 4-33
development of, 4-34
Furnace
induction, 6-33
reducing atmosphere, 6-29
Future designs, direction of, 2-170
Fuzes, 1-1,4
adapter, 2-175
black powder train, 1-4
boresafe, 1-5
delay, 1-4
I-18
dispersion, 2-107
ejection charge, 2-172
electrical, 2-63
functioning time, 2-49,157
impact, 1-4
magnetic, 2-57
nondelay, 1-4
point-detonating, 1-4, 4-1
proximity (VT), 1-4, 2-177,184
for shaped charge missiles, 2-63
spitback (flash-back), 2-63
superquick, 1-4
time, 1-4, 4-1
mechanical, 2-177,183,184
VT, 1-4, 2-177,184
Fuzing
of high-velocity rounds, 2-63
of low-velocity rounds, 2-63

Gafarian, 3-14
Gage, 2-10, 6-20
acceptance, 6-44
air-blast, 2-11
calibration of, 2-11
blast cube, 2-11
blast tube, 2-11
bourelet ring, 6-24
box, 2-10
condenser microphone, 2-10
crusher, 4-94
dial indicating, 5-13
distance, charge-to-, 2-11
doimeter, 2-10
GO, 5-5,24
NOT GO, 5-5,12
head thickness, 6-45
icosahedron, 2-100
inspection, chamber, 6-44
mechanical, 2-10
NOT GO, 5-5,24
papter blast, 2-85
meter, 2-10
peak-pressure, 2-10
piezoelectric, 2-10, 4-16,94
pressure, copper, 4-40
pull-over, 4-163
resistance, 2-10
snap, 6-24
thread, 6-24
tolerances, 5-24
varnish cans, 2-11
Gain twist, 4-170
Gas(ea)
acceleration, 2-138
check, 4-189
constant, 4-35
density, 4-35
evolution, 4-1
internal energy of, 4-35
kinetic energy of, 4-36
muzzle, 4-3
nonpersistent, 2-186
dispersion, 2-185
obturate, 2-172
persistent, 2-186
dispersion, 2-185
relative energy in, 4-87
temperature, 4-47
volume, 4-87
calculated for organic chemical constituent, 4-87
calculated for propellant composition, 4-87
wash, 4-120
Gasket, copper, 6-27
GB agents, 2-186
Gelatinizing agents, 4-2
General form functions, 4-26
Generator, piezoelectric, 2-63
Geometric
components of projectile, 3-89
calculations of, 3-90
density of loading, 4-46
Geometry
grain, 4-3,9,26
nose, 2-140
projectile, 3-69,81
German designs for Q. F. guns, 4-123
Gilding-metal, 2-152, 4-149,160
Glazed-board cup, 4-122
Glass
armor, 2-82
cones, 2-38
filled phenolic, 2-175
GO and NOT GO gaging, 5-5,12,24, 6-20
Good ductility, 6-4
Government inspection
intermediate, 6-44
and marking of shells, 6-24
Graham, 3-12,13
Grain, 4-20
design, 4-13
determination of, 4-9
dies, design of, 4-7
dimensioning of, 4-7
green, 4-7
(seven-perforated), multiperforated, 4-13,21,24,26, 36,48
shape, 4-7
burning rate, effect of, 4-20
shrinkage of, 4-13
single perforated, 4-22,23
propellant, 4-16,20,93
surface, 4-6
constant-burning, 4-48
Granulation, 4-1
propellant, 4-9,16
Gravity, acceleration due to, 4-34
Gravity, center of, 2-172, 3-10,86
Green grains, 4-7
Gregg, 2-102
Grinding, centerless, 6-17,29
Grommet, 1-4
Groove(s)
bands without, 6-17
crimping, 4-132
extracting, 1-7
rifling, 4-155
rings, 2-3,103
wire, 2-103
Ground
burst (lethal area), 2-106
impact, 2-177

Gun
battery, detection of, 4-3
camera design, 4-117
damage to, 4-178
design of, 4-119, 124
extractors, 4-117, 122
high-pressure, 4-125
of infinite length, 4-80
and mount, weight of, 3-72
optimum, 4-50
separate loading, 4-117
shell, recoilless, 6-4
stress limits, 4-1
tank, 4-50
tapered-bore, 2-4, 118
tube, failure of, 4-162

Guncotton, 4-2, 6
blended, 4-6
Gurney, 2-93, 94, 106
constant, 2-98
formulas, 2-98
Sarmousakis scaling formula, 2-95
Gyration, radius of, 2-165, 4-153

Half-weight, 2-98
Handling, forces acting on projectiles in, 1-8
Hangfires, 4-84
Hard
caps, 2-144
extraction (failures due to gun causing), 4-120
spot, 4-125
Hardening
age, 4-149, 6-46
strain, 6-21
work, 4-119, 6-24
cold, 6-37
Hardness, 4-119
Brinell, 6-15
of cartridge case, 4-125
requirements, 4-135
of HEP shell, 6-27
loss of, 6-43
test for, 6-15
magnetic comparator, 6-43

Harvard tables (use of), 3-85, 86, 87, 88, 89
HBX, 2-13
Hencky-Von Mises criterion, 4-187
Hencky-Von Mises theory (constant distortion or), 4-185, 186

Head
conical, 3-65
final, 6-43
machining and stamping of cartridge case, 6-39
ogival, 3-65
ogivo-conical, 3-64
thickness, 4-133
gage, 6-43
Heading of cartridge case, 6-37
Heat
capacity, mean, 4-87, 88
of combustion, 4-88, 89
calculated, 4-90

of explosion, 4-2, 3, 87, 89
calculation of (Q), 4-89, 90
for organic chemical constituent, 4-87
for propellant composition, 4-87
forging, 6-9
of formation, 4-89
of nitrocellulose, 4-90
loss, energy equation including, 4-37
of reaction, 2-189, 4-89
sensitivity to, 2-187, 192
of pyrotechnic compositions, 2-192
specific, 4-35
test (100°C), 4-22
test (115°C), 4-93
treatment, 6-3, 4, 14, 33, 43
none required, 6-47
sidewall, 6-43
HEAT shell, 2-32, 58, 3-70, 85
Heavy armor targets, 2-145
Height, 3-64
of ogive, 3-65
optimum, 2-195
HE shell, 4-153
cold extrusion of, 6-21
computing energy of, 3-76
computing momentum of, 3-76
forging of, 6-4
machining of, 6-14
HEP shell, 1-3, 2-5, 156, 158
accuracy of, 2-157
action, 2-158
advantages and disadvantages, 2-156
comparison of with armor-piercing shot, 2-156
cutting-off base of, 6-27
development of, 6-26
theory, status of, 2-158
finishing of, 6-27
fuzing requirements, 2-157
hardness of, 6-27
one-piece, 2-158
performance, 2-157
conclusions on, 2-158
effect of nose on, 2-157
effect of spaced armor on, 2-157
theory of, 2-156
principles of, 2-157
spalling of armor, 2-1
Hexagonal planform, 3-14
High
detonation velocity, 2-157
explosive(s), 1-6
characteristics of, 2-22
core, 2-160, 176
shell, 1-2, 2-3, 3-10, 6-7, 17
antitank (HEAT), 1-2, 2-4
casting, 6-1
plastic (HEP), 2-5, 156
notch sensitivity, 4-120
obliquity, 2-124
order detonation, 1-5
pressure guns, 4-125
pressure, sporadic, 4-84
speed cameras (Fastax), 2-94
speed jet, 2-31
sulfur steel, 6-2
(objections to), 6-4
velocity rounds, fuzing of, 2-63
yield, 6-44
Hill-Mott-Pack equation, 2-33
Hirschfelder interior ballistic system, 4-18, 20, 21
Hitchcock, 3-9, 10
Hit, first, 6-21
Hit, second, 6-21
Hit(s)
centrality of, 5-22
datum, 5-20
primer, 6-43
vent, 4-84
Hollow jet, 2-64
Homogeneity criteria, 5-1
Homogeneity of lot, 5-2
Homogeneous armor, 2-36, 120, 138, 139
Hoop stress, 4-179
tensional, 2-163
Horizontal range, finding, 3-73
Hospitalization of shells, 6-18
Hot
- and-cold water tested, 6-29
-forged stock, 6-2
-forging, 6-125
comparison with cold extrusion of shell, 6-24
effect of water sprays on, 6-12
pressing, 6-36
tops, 6-29
work versus cold work on steel, influence of, 6-1
Howitzers, obturating problem in, 4-134
HVAP
shot, 2-128, 6-35, 36
assembly of, 6-35
base of, 6-35
body of, 6-35
windshield of, 6-35
projectiles, 4-153
HVAPDS
round, 2-137
shot, 2-118, 6-36
projectile, 2-138
HVAPDSFS
projectiles, 2-128
shot, 2-119
Hydraulic piercing, 6-7
Hydrogen atmosphere, 6-36
Hydrostatic pressure, 4-186
Hydroxide, metal, 2-191
Hygroscopicity, 2-22
decrease, 4-2
test, 4-94
Hypergeometric distribution, 5-2
Hypervelocity, 2-4, 118
armor-piercing shell (HVAP), 2-117
manufacture of, 6-35
discarding sabot ammunition (HVAPDS), 1-3
fin-stabilized shot (HVAPDSFS), 1-3
discarding sabot, fin-stabilized shell, 2-4
projectiles, 2-125
Hypothetical shell, lethality of, 2-106
Icosahedron gage, 2-100
Igniter compositions, 2-192
Igniter sticks, 4-64
Ignitability, 2-191, 192
Ignition
cartridge, 2-172
charges, 1-7
difficulties, 4-50
interval, 4-84
temperature, 2-187, 189
time-to-, 2-192
Illuminant
assembly, 2-160, 182, 184
composition, 2-175
Illuminating
canister, 2-185
shell, 2-160, 161, 164, 182, 185, 187, 195
design of, 2-162
elements of mortar-type, 2-172
factors affecting use of and, 2-162
metal parts of, 2-162
optimum height of, 2-162
Illumination
battlefield, 2-162
intensity, 4-3
maximum, 2-195
Immediate incapacitation, probability of, 2-102
Impact, 2-117
angle of, 2-137
fuze, 1-4
ground, 2-177
resistance, 6-4
sensitivity to, 2-187
rifle bullet, 2-23
test, 2-22
velocity, 2-5, 93
Impaired penetration, 2-38
Implication, 5-15, 22
Importance of slow roll, 3-28
Improper heat treatment, 2-123
Impulse, 2-16, 72
comparison of peak pressure and, 2-13
positive, 2-7, 9, 10, 11, 13, 14, 19
IMR powder, 2-168
available energy for, 2-169
Incapacitation
criterion, 2-104
probability of immediate, 2-102
types of, 2-102
A, 2-102
B, 2-102
K, 2-102
two-second, 2-102
Incendiary, 2-1
Incident wave, 2-8, 9
Incipient plastic flow, 4-186
Incipient plastic stress state, 4-188
Increase in drag, 3-67
Increasing twist, 4-172
advantages, 4-170
disadvantages, 4-170
Increment(s), 1-7
boundary, 2-183
propellant, 2-172
Indentation pressure, 4-153
Independent
locational tolerance, 5-13
symbol, 5-15
tolerance, 5-21
Index, 2-77
angle, 2-77,79
lethality, 2-103,106,107
of satisfactory ignition, 4-84
Indicator, dial, 5-14
Induction furnace, 6-33
Inertia(i)
forces, 4-173
tangential, 4-173
moments of, 3-86,89
polar, 4-179
of shell, 3-4
Influence of hot work versus cold work on steel, 6-1
Information-bearing leaflets, 2-183
Infrared, 2-189
Initial
clearance, 4-119
free space, 4-38
shot start pressure, uniform, 4-149
velocity, 3-38
factors determining, 3-72
fragment, 2-106
prediction of, 2-98
yaw, 3-5,28, 4-164,178
magnitude and effects of, due to bore clearance, 3-28
Initiating charge, 2-177
Initiation
of explosive, 2-61
peripheral, 2-62
Initiator
black powder, 2-183
test, 2-23
Inspection, 6-5,18
amount of, 5-1
chamber gage, 6-44
final, 6-39,44,45
government and marking of shells, 6-24
methods of, 5-1, 6-40
by attributes, 5-5,12
lot-by-lot sampling, 5-1
100-percent, 6-44
by variables, 5-12
visual, 6-20,24
personnel required, 6-47
in process of manufacture, 6-13,19,23
of shell forgings, 6-13
of wrapped case, 6-48
Insufficient number of draws, 4-125
Integral, elliptic, 3-27
Integrator, 4-126
ballistic, 3-85
Intensifiers, color, 2-186
Intensity
illumination, 4-3
luminous (candlepower), 2-187,190,191
factors affecting, 2-189
Intensities, determination of relative air-blast, 2-11
Interchangeability, field, 2-182
Interference(s)
drag, 3-70
estimation of, 3-71
fin, 3-71
body, 3-71

Jaeger, 3-13
Jet, 2-58
bifurcation of, 2-35
breakup, 2-32
density, 2-38
ductility, 2-52
engines, peripheral, 2-82
formation, 2-31,32
high speed, 2-31
hollow, 2-64
radiographic studies, 2-68
shaped charge, 2-38,85
velocity, 2-63
water, 6-6
Jib, alining, 4-132
Joint press, 6-17
Joint, shear, 2-160
Jominy tests, 6-29
Jump, 3-6,28,30
finned projectiles, asymmetry effects on, 3-30
measurement of, 3-6

K damage, 2-83,110
KK damage, 2-110
Kamikaze attack, 2-110
Kelley, 3-12
Kent, 4-36
Kerr cell, 2-34
Kl-starch test, 4-93
Kill, 2-110
first-round probability of, 2-3,4
Kinetic energy
ammunition, 2-1,4,85,117
of gas, 4-36
of powder, 2-137
of projectile, 4-9,33,35
shot, comparative performance of, 2-145
shot, penetration of armor, 2-1
Kirkwood-Brinkley's theory, 2-9
Knurling rollers, 6-16
Krupp armor, 2-120
Labyrinth seal, 4-134
Lagerstrom, 3-13,17
Lamé, equations by, 4-182
Lamellar pearlite, 6-29
Laminae, 2-192
Land(s), 3-4, 6-35
band, 4-155
width, 4-155
flattening of, 4-178
rifling, 4-155
wear of, 4-164
Lapin, 3-14
Late collapse, 2-69
Law(s)
of Cranz, 2-32
of mass action, 2-190
Newton's, 4-34
scaling, 2-9,16,65
Lead
azide, 1-5
carbonate, 4-3
cones, 2-41
Leading edge, 3-11,13,14
Leaflets, 2-1
information-bearing, 2-183
Leaflets, propaganda, 2-184,185
rolls, 2-184
method of reinforcing, 2-184
surrender, 2-183
warning, 2-183
Leakage, 2-6
propellant gases, 2-180
Least-square fit, 4-20
Le Due system, 4-33,80,81
Length
cartridge case, 4-121,128
tolerance of, 4-121
of chamber, 4-137
extrusion to, 6-21
gun of infinite, 4-80
ogival, 3-87
are, 3-82
of swell diameter, 3-85
Lessells' and Associates, 2-158
Lethal area, 2-1,93,104,106,154
air-burst, 2-107
computation, 2-103
criteria, 2-154
ground-burst, 2-106
Lethality, 2-1,4,36,71,119,153
Litmus-paper test, 6-40
Loaded, press, 2-156
Loading
density, 2-11,14, 4-1,33
maximum, 4-50
optimum, 4-50
vs. pressure curve of black powder, 2-183
propellant, 4-164
flechettes, 2-150
geometric density, 4-46
mortar shell, 4-178
tool, 6-41
WP filler, 2-180
Location of center of gravity, 3-88
Locational tolerance symbols, 5-13
Longitudinal stress, 4-182,189
Longitudinal tensile stress, 4-179
Long-term surveillance, 2-175
Loose rotating bands, 6-26
Loss
of hardness, 6-43
in obturation, 4-163
in penetration, 2-57
in shot-start pressure, 4-163
Lot
acceptability of, 5-12
definition of, 5-1
homogeneity of, 5-2
-by-lot sampling inspection, 5-1
size, sample-size-to-, 5-6
tolerance percent defective (LTPD), 5-3
Low
aspect ratio, 3-13
explosives, 1-6
notch toughness, 6-4
order detonation, 2-183
oxygen balance, 4-3
percentage elongation, 6-44
-temperature firing, 4-129
-temperature stress relieving, 6-43
-velocity rounds (fuzing of), 2-63
Love, 4-36
Lueder's lines, 6-44
Luminous intensity (candlepower), 2-187,190,191
factors affecting, 2-189
Lupersol, 2-192
Luther, 3-13

M damage, 2-83
M1 propellant, 4-1
M2 propellant, 4-2
M15 propellant, 4-2
Mach
angle, 3-14
number, 3-4,9,12,13,39,65,68,71
stem, 2-9
wave, 2-9,19
Machinable quality armor (MQ), 2-120
Machining, 6-1
finish, 6-15
of HE shells, 6-14
outside of, rough, 6-14
preparation for, 6-14
operations on head of cartridge case, 6-44
operations on mouth of cartridge case, 6-44
Magnaflux test, 6-33
Magnesium-aluminum fuels, properties of aluminum
and, 2-190
Magnetic
comparator, 6-45
hardness, 6-43
fuzes, 2-57
hardness test, 6-43
Magnitude of initial yaw due to bore clearance, 3-28
Magnus moment, 3-8,29
damping factor, 3-6,10
Main body taper, 4-121
Major base, 3-87
Major defects, 5-5
Malformed cones, 2-39
Malfunctions, 6-47
caused by twisting of shroud lines, 2-166
Mandrel, 6-9
Manganese sulfide, 6-4
Manufacture
armor-piercing shot and caps, 6-29
artillery ammunition, 6-1
cartridge case, 4-119,133
annealing operations, 6-39
brass, 6-37
perforated, 6-49
steel, drawn, 6-41
trapezoidal-wrapped, 6-46
of HEP shell, 6-26
of hypervelocity armor-piercing shot (HVAP), 6-35
inspection in process of, 6-23
of shell during closing, 6-19
of nitrocellulose, 4-6
progress in techniques, 6-1
of propellants, 4-6
steel shells, pierce-and-draw process of, 6-2
of tungsten carbide cores, 6-36
Marker, colored, 2-100
Marking
on bases of cartridge cases, 4-126
of shells, 6-18
government inspection and, 6-24
Martensite structure, 2-143
Mass
action, law of, 2-190
fragment, 2-109,111
presented area, relation between, 2-99
of projectile, 3-38
Matching
ballistic, 2-6,157
and soldering AP caps, 6-33
weight, 2-180
Material(s)
anisotropic, 4-149
burster, 2-178
for cartridge cases, 4-132
deterrent, 4-3
liner, 2-85
rotating bands, 4-149
properties required of, 4-149
stabilizing, 4-1
Mathematical statement of Von Mises yield condition, 4-187
Matrix, use of, 2-150
Maximum
ballistic coefficient, 3-64
charge, 4-50
energy, 4-185
theory, 4-185
illumination, 2-195
likelihood, method of, 2-95, 127
loading density, 4-50
metal conditions, 5-30, 24
pressure, 4-16, 19, 20, 26, 39, 40, 48, 94, 188
attainable, 4-33
calculate, 4-81
tables for, 4-47
formula for, 4-41
position of, 4-45, 47
propellant, 4-180, 188
rated, 4-11, 50
ratio of, 4-88
time of, 4-45, 48
range, 3-38, 64
finding, 3-73
shear
stress, 4-185
theory, 4-185, 187
(Tresca’s rule of flow), 4-185
sky brightness, 2-193
square, 6-8
velocity, 4-9, 50
permissible, 4-156
muzzle, 2-128
McMillen, 2-102
Mean, 5-12
burst height, 2-107
deviation from, 4-137
dimension of ogive, 3-2
heat capacity, 4-87, 88
calculated for organic chemical constituent, 4-88
calculated for propellant composition, 4-88
Measurements
of blast, 2-10
of jump, 3-6
of liner performance, 2-36
piezoelectric, 4-94
of presented area of fragment, 2-100
of sensitivity, 4-93
of stability, 4-93
wind tunnel, 3-9, 71
Mechanical gage, 2-10
time fuze, 2-177, 183, 184
Mechanism
of cap action (theories), 2-141
recoil, 3-73
of spalling, 2-157
of spin compensation (by fluted liners), 2-72
Medina explosives, 6-9
Meplat (flat nose), 3-67
circular, 3-69
diameter, effect on estimation of drag, 3-67
Mercury fulminate, 1-5
Merit, figure of, 2-103, 106
Metal
binder, 6-36
burst tube, 2-160, 179
case, solid-drawn, 4-120
deal, 6-42
dust flashes, 2-187
foulung, 4-149
fragmentation characteristics data to design of
shell, application of, 2-98
gilding, 2-152, 4-149, 160
hydroxide, 2-191
oxide, 2-191
parts
accessory, 2-164
of illuminating shell, 2-162
signal-smoke shell design, 2-182
set back of, 4-181
sabots, 2-138
salts, alkali, 4-3
Metallurgy, powder, 6-1
Meter, paper blast, 2-10
Method(s), 4-149
analysis
of data, 2-85
evaluation of present, 2-91
by, statistical, 2-126
of arming, 1-5
ballistic, 4-26
Bruceton staircase, 2-23
bullet pull, of achieving desired, 4-132
of producing colored smoke, 2-178
comparative study of shell forging, 6-13
of computing
air density at any altitude, 2-198
ballistic limits from firing data, 2-126
band width, 4-150
muzzle velocity of a subcaliber projectile,
British, 2-138
of crimping (effect of), 4-122
of controlling fragmentation, 2-108
of dimensioning mouth of case, 4-124
distributed area, 2-88
used to control erosion, 4-169
of forging shell, French extrusion, 6-9
of imparting rotation, 2-119, 4-149
of inspection, 5-1
liner, of attaching, 2-55
liners, for manufacturing fluted, 2-80
of maximum likelihood, 2-95, 127
of reinforcing leaflet rolls, 2-184
of releasing and discarding carrier, 2-119
test, 4-93
description of, 2-22
of shell forming (compromise), 6-25
shock velocity, 2-11
of stabilization, 3-1
stochastic, 2-107
up-and-down, 2-127
vulnerable area, 2-88
of weight control (shell manufacture), 6-17
Methyl violet test, 4-93
Micrometer, ball point, 6-24
Microsurface finish, 2-180
Midwest Research Laboratories, 2-82
Minimum
bourselet clearance, 4-178
candlepower, 2-195
chamber capacity (estimating), 4-125
clearance, 4-121
drag, 3-64
interference, 2-180
metal conditions, 5-20, 24
permissible yield stress, 4-156
stress in shell wall, 4-158

time of flight, 3-38, 64
Minor defects, 5-5
Misfires, 4-84
Missile(s), 2-150
for canister ammunition, 2-150
classification of, 2-1
effect by, 2-1
design of shaped charge, 2-47
dispersion, 2-152
preformed, 2-1
secondary, 2-4
Mixed zone, 2-127
Mixtures, binary, 2-190
Mixture, pyrotechnic, 2-192
Models, combat, 2-107
Modifications of shape of shell, 3-64
Modified equation of motion, 4-37
Modulus
elasticity, 2-165
rigidity, 4-186
Young's, 4-118
Moisture
atmospheric, 2-191
proofing agents, 4-2
protection against effects, 2-192
on shelf life, effect of, 2-191
Mold, big-end-up, 6-29
Mold casting in, 6-1
Moles of gas, number of, 4-87
Molybdenum disulfide, 2-181
Molykote, 2-181
Moment
inertia, 3-86, 89
axial, 3-2
polar, 3-81, 89, 4-179
of shell, 3-4
transverse, 3-2, 10, 28, 81, 90
first about plane, 3-1
Magnus, 3-8, 29
damping factor, 3-10
overturning, 3-2, 7, 10, 11, 29
coefficient, 3-9
factor, 3-8
righting, 3-7, 10, 11
factor, 3-28, 30
spin-decelerating, 3-8
coefficient, 3-10
damping factor, 3-6
transverse, 3-89, 4-178
yawing, 3-3, 8, 10
coefficient, 3-10
damping factor, 3-6
Momentum
of HE shell (computing), 3-76
muzzle, 3-38, 72
of projectile, 3-72
of propellant gases, 3-72
recoil, 3-72
Monobloc
projectiles, 2-141
shot, 2-117, 138
capped, 6-29
Morikawa, 3-14, 27
Mortar ammunition
forgings, 6-4

illuminating, design elements of, 2-172
loading, 4-178
special design problems of, 2-172
spin-stabilized, 2-173

Motion
of center of gravity, 3-6, 38
energy of, 4-43
equation of, 3-4, 4-36, 38, 42
of projectile, 4-33
of spinning shell, 3-2
start of, 2-73, 4-43
Mott, 2-93, 94, 106
equation, 2-94, 96
reliability of, 2-95
scaling formula, 2-95

Mouth
anneal of cartridge case, 6-44
bolling of, 4-122
diameter, internal, 4-124
eccentricity of, 4-124
thickness at, 4-133
Moving charge, 2-16
MOX explosives, 2-13

Mullins Manufacturing Corporation, 6-21
Multieck gage, 6-24

Multiperforated grain (seven-perforated), 4-13, 21, 24
(equations for), 4-28

Multiple
punching, 6-49
sampling, 5-6
wall shell, 2-108, 109

Multipurpose shell, 2-161

Munroe effect, 2-110
Murphy, 3-9, 10

Murray-Ohio Corporation, 6-46

Must not decompose in storage, 4-2

Muzzle
blast, 3-28, 29, 30
energy, 3-38, 72
rotational, 4-150
flash, 4-3
reduce, 4-2
gases, 4-3
momentum, 3-38, 72
pressure, 4-11
velocity, 2-118, 129, 133, 3-39, 72, 4-26, 40, 48, 129,
137, 173, 189
consistent, 2-152
of subcaliber projectile (British method of estimating), 2-138
tables for calculation of, 4-47

National Defense Research Council, 2-37
National Pneumatic Company, 6-29
Nature of fragmentation, 2-93
Naval Ordnance Laboratory, 2-60
Naval Ordnance Test Station, 2-37
Navy star shell, 2-173

Neck of cartridge case, 4-134
Necking case, 4-129
Newton's laws, 4-34
Nick and break, 6-5
Nitration, proper degree of, 4-6
Nitrocellulose, 1-6, 4-1,2,6,13
 blended, 4-2
 forms of, 4-2
 heats of formation of, 4-90
 lacquer coatings, 6-47
 manufacture of, 4-6
Nitroglycerin, 4-1,2
 propellants, 4-1,84
Nitroguanidine, 1-6, 4-2
 propellants, 4-93
Nomograph, 4-17
No heat treatment required, 6-47
Non-cemented armor, 2-120
 deformable projectiles, 2-137
 delay fuze, 1-4
 hygroscopic first-fire, 2-192
 ideal flute, 2-78
 linear flutes, 2-80
 persistent gas, 2-186
 dispersion, 2-185
 undercut seat, 4-154
Normal
 error curve, 2-100
 force, 3-7
 coefficient, 3-8,9,13
 stresses, 4-181
Nose
 adapter, 2-186
 blunt, 2-157
 cabbage of, 6-21
 charge, single, 2-175
 crush-up of, 2-5
 diameter, 3-87
 double-angle, 2-124
 geometry, 2-140
 AP projectile (effect of), 2-138
 tungsten carbide cores (effect of), 2-139
 notching, 6-17
 pointed, 2-124
 radius of projectile, 3-82
 truncated conical, 2-139
 truncated ogival, 2-124
 tapping, 6-16
Nosing, 6-23
 deformation during, 6-17
 of shell, 6-14
NOT GO gage, 5-24
NOT GO, GO-and-, 6-20
Notation, consistent, 4-16
Notches, (ed), (ing), 6-41
 castings, 2-108
 castings (description of), 2-109
 (or grooved) rings, 2-108
 (or grooved) wire, 2-3,108,109
 nose, 6-17
Notch sensitivity, 4-129,133, 6-43
Notes on cartridge case designs, 4-125,126
Nubbin, 6-27
Number, 3-4
 of draws, 4-125
 of fragments, 2-83
Mach, 3-4,9,12,13,29,65,68,71
 of moles of gas, 4-87
 Reynolds, 3-68
 Notation, 3-3

amplitude of, 3-8
angular velocity, 3-29
yaw, 3-6
Nylon shrouds, 2-167

Objections to high sulfur content steel, 6-4
Objectives in shell forging, 6-7
Obliquities of attack, 2-145
Obliquity, 2-125,137,138,141
 angle of, 2-156
 effect of, 2-123
 high, 2-124
Obstraction, target, 4-3
Obstructions within the cavity, 2-44
Obturation, 1-7, 2-152, 4-117,134,149,150,152
 6-1, 40
 heads, 4-134
 cup, 2-173
 gases, 2-172
 loss in, 4-163
 problem in howitzers, 4-134
Obturators, rubber, 2-152
Occluded acids, 4-6
Office of Scientific Research and Development, 2-66, 68
OSRD 6468 method, derivation of equations, 4-42
Offsets, 2-36
Ogival
 arc, 3-87
 center of, 3-84
 length of, 3-82
 radius of, 3-69
 heads, 3-65
 length, 3-87
 radius, 3-8,67
 solid of revolution, 3-87
 zone, volume of, 3-86
Ogive, 1-3, 2-49,128, 3-64,69,81
 arc, radius of, 3-82
 characteristics, 3-88
 computations for, 3-82
 false, 2-117
 height of, 3-65
 mean dimension of, 3-82
 pointed, 3-87
 radius of, 2-139
 secant, 3-64,65,81,87
 segment, 3-85
 calculation of, 3-85
 shape, 2-58
 shell, volume of thin, 3-86
 tangent, 3-65,81,87,88
 volume of complete, 3-86
Ogivo-conical head, 3-64
Olin Mathieson Chemical Corporation, 4-7
One, 6-7
 -piece HEP shell, 2-158
 -shot method, 6-7
 -shot piercing process, 6-7
 -shot press, 6-7
100-percent inspection, 6-44
Opening of parachute, stages in, 2-196
Opening velocity, critical, 2-196
Operating characteristic, curve (OC), 5-2

1-97
Operations, characteristic deep-drawing, 6-2
Operations in the machining of shells, sequence of, 6-14
Optimum
air-burst height, 2-107
base plug, design of, 2-162
charge, 4-9
cone angle, 2-54
conditions, 4-50,74
design, 2-93
efficiency, point of, 4-75
gun, 4-50
height, 2-195
for area illumination, 2-195
concept of, 2-193
derivation of, 2-193
of illuminating shell, 2-162
ignition, requirement for, 4-85
loading density, 4-50
example for, 4-50
pellet size (canister ammunition), 2-153
standoff distance, 2-38,49
visibility, 2-177
warhead size, 2-14
web, 4-10,11
weight of cap material, 2-143
Ordnance
Ammunition Command, 4-7
Board, 4-119
Committee Minutes (OCM), 2-2
Corps standard density, 3-38
Department, 4-7,169
Organic
chemical constituent, gas volume (n) calculated for, 4-87
mean heat capacity \(\gamma \) calculated for, 4-88
heat of explosion (Q) calculated for an, 4-87
relative energy in gas calculated for, 4-88
dye, 2-178
Origin of rifling, 4-173
Oscillatory projectile motion, 3-2
Output, light, 2-170
Ovality, 4-122, 5-13
Overcoming deficiencies of conventional long artillery primers (proposals made for), 4-84
Overlay bands, welded, 6-17,26
Overturning
couple factor, 3-2
moment, 3-2,7,10,11,29
coefficient, 3-9
factor, 3-8
Overworking brass, 4-125
Oxidations, exothermal, 2-187
Oxide, metal, 2-191
Oxidizing agents, 2-186
Oxygen balance, 4-3
Oxygen deficiency, 4-89

Painting of shells, 6-19
Pancreatic bags, 4-85
Panel test, 2-94
Panzerfaust, 2-83
Paper blast gages, 2-85
Paper blast meter, 2-10
Parachute, 2-160,173
deceleration, 2-166
deployment, 2-166
methods, 2-196
design, 2-162
factors affecting, 2-195
pyrotechnic, 2-193
flares, 2-161
functioning, 2-163
shaped, 2-195
stages in opening of, 2-196
standard flat, 2-195
suspension system, 2-196
types of, 2-195
Parallel axis (or plane) theorem, 3-89
Parallel design, 5-11
Parallelism, symbol for, 5-14
Parameter(s)
central ballistic, 4-38
dimensionless, 4-39
needed to evaluate fragmentation effectiveness, 2-93
Parasheet, 2-195
Partial drag coefficients, 3-71
Partial randomness of sampling, 5-2
Particle size, 2-106,189
Particle velocity, 2-7,30
Parts design, accessory, 2-177
Parts design, shell metal, 2-177
Patterns, fragmentation, 2-93
Peak, 4-20
penetration, 2-68
pressure, 2-7,9,10,11,13,14,16,19, 4-1,20,38
gage, 2-10
impulse and comparison of, 2-13
Pearlite, lamellar, 6-29
Pearlitic structure, 2-143
Pellet
black powder, 1-5
explosive, 2-82
size, optimum (canister ammunition), 2-153
Penetrate, failure to, 2-123
Penetrated, thickness of plate, 2-137
Penetration, 2-32,34,35,36,40,41,45,46,49,53,58,60,
62,63,66,71,74,80,81,83,117,122,128,138
armor, 2-137
kinetic energy shot, 2-1
by shaped charges, 2-1
bone, 2-103
depth of, 2-78
deterioration in, 2-78
effect of design parameters on, 2-39
effect of rotation upon, 2-66
experiments to determine, 2-102
fall-off, 2-64
formula, 2-125
impaired, 2-38
loss in, 2-57
peak, 2-68
performance, 2-70,137
power, 2-78
rate of, 2-33
rotational, 2-68
effect of cone angle on, 2-66
effect of liner shape on, 2-69
effect of standoff, 2-68
effect of liner thickness on, 2-67
spin versus optimum, 2-4
subcaliber projectiles, factors limiting, 2-137
sufficient residual, 2-85
Pentolite, 2-13,40
Percentage elongation, 4-136, 6-43
Percentage oxygen deficiency, 4-89
Percussion
 element, 4-84
 firing, 4-126
 primer, 1-7, 2-172
Perforate, 2-125
Perforated cartridge cases, manufacture of, 6-49
Perforation, 2-82,85
 alignment of, 6-49
 armor, 2-124,125
 of cartridge case, 6-49
 definition of, 2-125
 ductile, 2-129
 probability of, 2-88
 punching type of, 2-129
Performance
 of armor plate, 2-125
 of armor-piercing projectiles, 2-126
 of AP and APC projectiles, comparative, 2-142
 of fluted liners, 2-80
 HEP shell, 2-157
 effect of nose, 2-157
 theory of, 2-156
 of kinetic energy shot, comparative, 2-145
liner, 2-36
 factors affecting, 2-36
penetration, 2-70,137
 shaped charge, 2-62
 of wrapped case, 6-47
Peripheral initiation, 2-62
Permanent deformation, 4-178,185
Permanent expansion, 4-118
Permissible tolerance zone, 5-17
Perpendicularity, 5-21
 of surface, 5-15
symbol for, 5-14
Persistent gas, 2-186
 dispersion of, 2-185
Personnel, defeat of, 2-3
Personnel needed, inspection, 6-47
Petal, discarding, 2-119
Petal, retained, 2-119
Petalling, 2-120
Phenolic
 asbestos-filled, 2-176
 glass-filled, 2-175
 type plastic, 2-175
Phillips, 3-14
Phosphate coating, 6-17,21
Phosphate, zinc, 6-3
Photoflash bombs, 2-178
Photoflash composition, 2-187
Phthalates, 4-6
Picatinny Arsenal, 2-82,153,176, 4-16,137,182
Picatinny test, 2-22
Pickled, 6-21
Pickled, shot-blasted, 6-3
Pickling, 6-41
Picknick, 4-36
Piecrce-and-draw process of manufacturing steel shells, 6-2,5,7,8,29
Piercing
 die, 6-7
 drawing after, 6-8
 hydraulie, 6-7
 inverted, 6-8
 press, 6-7,8
 primer hole, 6-43
 process, one-shot, 6-7
 progressive, 6-9
 punch, 6-7
Piezoelectric
 gage, 2-10, 4-16
 generator, 2-63
 measurements, 4-94
Pillaring of WP cloud, 2-181
Pin(s)
 circle diameter, 4-14
 plate, 4-14
 design of, 4-13
 shear, 2-5,100,161,164,172,175,184
 size, 4-13
 twist, 2-161
Pinching of explosive filler, 2-158
Pipe, 6-13,17
Pit
 sand, 2-94
 sawdust, 2-94
 water, 2-94
Plane detonation wave, 2-31
Plane of yaw, 3-7
Planform, hexagonal, 3-14
Planimeter, four-wheeled, 3-85
Plans sampling, continuous, 5-10
Plastic
 anisotropic, 4-189
 canister, 2-183
 projectile, 2-152
 casings, 2-152
 deformation, 4-133,178,186, 6-43
 explosives, 2-156
 extension, 4-118
 flow, 2-120,123,143, 4-118
 incipient, 4-186
 phenolic-type, 2-175
 plug, 4-122
 rotating bands, 4-154
 sabot, 2-119
 shell, manufacture of high-explosive, 6-26
 strain, 4-118
 stress state, 4-188
Plasticity theory, 4-150,187
Plate
 balfe, 2-175
 base, 2-164
 flat, 2-165
 skirting, 2-129
 pin, 4-14
 vibrations, 2-123
Plug(s), 2-124
 base, 2-160,162,164,170
 closing, 1-2,7
 lifting, 1-4
 plastic, 4-122
 white metal, 4-122
of shell for machining, 6-14
of slug, 6-21
Presented area of fragment, measurement of, 2-100
Press(ed), (ing)
cold, 6-36
compositions, burning of, 2-189
explosives, 2-95
fit, 2-180, 4-132
surface, 2-180
hot, 6-36
loadcd, 2-156
one-shot, 6-7
piercing, 6-7,8
type crimping, 4-132
Pressure, 4-47
acting on projectiles during firing (summary of),
4-181
allowable, 2-118, 4-137
base, 4-36
breech, 2-164, 4-36,37
center of, 2-172, 3-7,8,10,12
chamber, 2-129,163,172, 4-53,182
curve of black powder, loading density vs., 2-183
ejection, 2-163,169
engraving, 4-150
erratic, 4-11
force resulting from propellant gas, 4-179,181
function, 4-48
hydrostatic, 4-186
identification, 4-152
limitations, 4-1,9,11
maximum, 4-18,19,20,26,39,40,48,94
allowable, 4-188
attainable, 4-33
propellant, 4-180,188
rated, 4-9,50
muzzle, 4-11
peak, 2-7,9,10,11,13,14,19, 4-1,20,38
propellant, 4-189
relative, 4-94
setback, 2-164
on shell wall resulting from rotation of filler,
4-180,181
space average, 4-36,76
stagnation, 2-34
Prevailing shell steel specifications, 6-4
Prime requirement, 5-15
Primer(ed), 1-7, 4-33
artillery, 4-84
conductive mixture, 1-7
design, standard, 4-84
electric, 1-7
explosive train, 1-6
flame action, 1-6
hole, 4-133, 6-43
piercing, 6-43
percussion, 1-7, 2-172
pocket, 6-43
stab action, 1-6
tube, 4-84
Principle(s)
of HEP shell, 2-157
separating burst, 2-174
shearing stresses, 4-185
of similitude, 2-125
stresses of shell, 4-182,185
Probability
- of acceptance (P_a), 5-2
- cumulative, 2-154
- curve, 2-126,127
- damage, 2-108,111
- of immediate incapacitation, 2-102
- of kill, first-round, 2-3,4
- of perforating, 2-88
- single-shot, 2-106,107

Problem(s)
- exterior ballistic, 3-38
- sample, 3-73
- of interior ballistics, basic, 4-33
- of propellant ignition, 4-84
- sample, 3-31

Procedure(s)
- design, 2-3
- inspection, 6-40
- test, 6-5

Process
- anneal, 6-41
- Ball powder, 4-7
- of manufacture, inspection in, 6-23
- one-shot, 6-7
- pierce-and-draw, 6-5,29

Producing colored smoke, method of, 2-178

Profile
- check, 6-24
- double wedge, 3-71
- of finish-machined rotating bands, 4-154
- of rifling, 4-155,169
- single wedge, 3-71

Progress in manufacturing techniques, 6-1

Progressive
- burning, 4-24,25
- piercing, 6-9
- shapes, 4-23
- stress, 4-163
- cracks, 4-162

Projectile, 1-1
- antitank, 2-4,156
- armor-piercing, 2-125,139
- assembly of, 2-151
- balloting of, 4-164
- blunt-nosed, 2-154
- boat-tail, 4-160
- breakup, 2-129
- calculations of geometric characteristics, 3-90
- composite rigid, 2-117
- deformation, 2-141
- design, 2-128,129
- intended for gun already made, 3-1
- eccentricity of, 4-137
- equation of motion, 4-34
- fin-stabilized, 4-189
- during firing, forces and pressures acting on (summary of), 4-181
- flat-base, 4-160
- free run, 4-164
- friction, 4-33
- geometric components of, 3-89
- geometry, 3-69,81
- hypervelocity, 2-123
- HVAP, 4-153
- HVAPDS, 2-138
- HVAPDSFS, 2-128
- kinetic energy, 4-9,33,35
- mass of, 3-38
- effective, 4-36
- momentum of, 3-72
- monobloc, 2-141
- motion of, 4-33
- beginning of, 4-54
- oscillatory, 3-2
- nondeformable, 2-137
- nose radius of, 3-82
- parameters, effect of varying, 2-137
- performance of armor-piercing, 2-126
- performance, effect of armor thickness on, 2-129
- requirements for gun, 2-2
- shattered, 2-123
- skirted, 2-118, 4-124
- solid geometry, 3-85
- spin-stabilized, 3-64
- squeeze-bore, 2-4
- subcaliber, 1-3, 2-4,118,137
- T33 (FAP), 2-138
- T33 (FAPT), 2-138
- tapered back, 4-159
- torque (T) applied to, 4-179
- total volume behind, 4-94
- travel of, 4-44,47
- tumbling of, 4-164
- typical, 3-39
- velocity of, 4-20,35,44
- weight of, 4-50
- weight distribution in, 4-189
- yaw of inside gun, 4-149

Propaganda, 2-160
- disseminating shell, 2-5,160,161,183,185
- filler design, 2-184
- shell metal parts design, 2-184
- leaflets, 2-184,185

Propagate, 2-175

Propagation
- of blast, 2-10
- detonation, 2-24
- difficulties, 2-181
- explosive wave, 2-7
- vs. minimum column diameter, limits of, 2-182

Propagatively, burn, 2-189

Propellant(s), 1-6, 4-1
- M1, 4-1
- M2, 4-2
- M15, 4-3
- burning of, 4-16,33
- calculation of thermodynamic properties, 4-87
- gas volume (n), 4-87
- heat of explosion (Q), 4-87
- mean heat capacity, 4-88
- relative energy, 4-88
- characteristics, 4-93
- charge, 2-138,150
- composition, calculated density of, 4-89
- cord, 1-24
- double base, 1-6, 4-1,93
- deterioration of, 4-53
- energy of, 4-87
- flashless, 1-6
- force, 4-88
- gases, energy of, 3-73
- gases, leakage of, 2-180

I-31
gases, momentum of, 3-72
gas pressure, force resulting from, 4-179,181
granulation, 4-9,16
ignition, problems of, 4-84
increments, 2-172
loading density of, 4-164
manufacture of, 4-6
relative costs of, 4-7
materials, criteria for selection of, 4-2
nitrocellulose, 1-6
nitroglycerine, 4-1,84
nitroguanidine, 1-6, 4-93
pressure, 4-189
maximum, 4-180
released at muzzle, unburnt, 4-76
residue, 4-1
single base, 1-6, 4-1,93
slow-burning, 2-175
smokeless, 1-6
strip, 4-24
thermochemical characteristics of, 4-89
triple base, 1-6, 4-2
Pyrotechnic compositions, 2-191
characteristics of, 2-186
required, 2-187
chemistry of, 2-186
constituents of, 2-186
with explosives, comparison of properties, 2-188
factors affecting, 2-187
heat sensitivity of, 2-192
properties of typical, 2-187
radiation effectiveness of, 2-193
mixture, 2-192
reaction mechanism of, 2-192
parachute design, 2-193
solid-state chemistry of, 2-190
type ammunition, 1-3
Propelling charge, 1-1,6,4-9
Proper degree of nitration, 4-6
Properties
of aluminum and magnesium-aluminum fuels, 2-190
interior ballistic, 4-16
rheological, 4-189
of rotating band materials, 4-149,160
of sintered iron, 4-161
of typical pyrotechnic compositions, 2-187
Proportional law of burning rate, 4-20
Proposals made for overcoming deficiencies of conventional long artillery primers, 4-84
Protective atmosphere of hydrogen, 6-35
coatings, 4-134, 6-44
criterion, 2-128
film, 2-192
against moisture, 2-192
Proving ground tests, 6-40
Proximity fuze (VT), 1-4
Pseudo-ratio of specific heats, 7, 4-47
Psychological warfare, 2-183
Psychological Warfare Service, 2-184
Pugh, 2-32,34,81
Pull, bullet, 4-129
Pull-over gage, 4-163
Punching, 6-9
forming, 6-26
multiple, 6-49
piercing, 6-7
type of perforation, 2-129
Purdue University, 4-161
Pyramid rolls, 4-136
Pyrocellulose, 4-2,6
Pyroxylin (collodion), 4-2,6
Qualitative description of shaped charge damage, 2-84
Quality
assurance, 5-1
average outgoing (AOQ), 5-3
level acceptable, 5-8
level acceptance (AQL), 5-3
limit average outgoing (AOQL), 5-4
Quantitative definition of compatibility, 2-24
Quench, 6-43
Quenching, 6-14
Quickmatch, 2-172,183
Quickness, relative, 4-9,16,18
RDX, 2-13,14
Radial
band pressure, 4-149,153
reduction of, 4-169
compressive force, 4-178
dimensioning, 5-20
dispersion, 2-150
stresses, 4-182
Radiant energy, 2-187,189
Radiation effectiveness of pyrotechnic compositions, 2-193
Radiographs, flash, 2-69,73,93
Radiographic jet studies, 2-68
Radius
blending, 4-125
go of gyration, 2-165, 4-153
go of longitudinal curvature, 3-81
ogival, 2-139, 3-8,67
arc, 3-69,82
of spherical cap, 3-83
toleranced, 5-20
Raisers, stress, 6-41,43
Raketempanzerbichse, 2-83
Ramming, eccentric, 4-178
Randomness, of sampling, 5-2
Range
critical, 6-27
dispersion, 2-107
finding horizontal, 3-73
firings, 3-65,68
maximum, 3-38,64,73
spark, 3-67,70
and time of flight, factors governing, 3-38
web, 4-9,11
Ranking, damage test, 2-13
Rarefaction wave, 2-7
Rate(s)
burning, 2-187, 190, 191, 4-1, 9, 22, 33, 36

equation for, 4-43
decomposition, 4-2
descent, 2-171
detonation, 2-24
decomp. reaction, 2-189, 190, 192
penetration, 2-33
of yawing, 3-8, 10
Rated maximum pressure, 4-9, 11

Ratio
aspect, 3-71
of burster charge to smoke charge, 2-178
explosive, 2-178
interference, 4-152
of maximum pressures, 4-88
Poisson's, 4-155
of specific heats, 4-88
t/d, 2-122, 125
RD38 system, solution by, 4-33, 36, 48
sample solution by use of, 4-40
React with explosive, 6-17
Reactants, effect of specific surface of, 2-190
Reaction
heat of, 2-189, 4-89
mechanism of pyrotechnic mixtures, 2-192
rate, 2-190, 192
temperatures, 2-187
time to, 2-192
Rearward extrusion, 6-8
Recessed, 6-27
Recoil
mechanism, 3-72
momentum, 3-72
system, 3-72
Recollless
ammunition, 2-153
gun shell, 6-4
rifles, 2-5, 156
weapons, 2-157, 6-49
Recommended interferences, 4-123
Recovery
of case, 4-118
elastic, 4-118, 6-43
solvent, 4-7
Recrystallization, 6-43
temperature, 6-41
Rectangular
fin, 3-12, 71
wing, 3-13, 27, 71
Red shortness, 6-4
Reduce
bore residue, 4-2
muzzle flash, 4-2
radial band pressure, 4-169
smoke, 4-2
velocity, 2-169, 4-48
viscosity, 4-6
Reducing agents, 2-186
Reducing-atmosphere furnace, 6-29
Reefing, 2-196
Reference dimension, 5-13
Reflect(-ion)
blast, 2-9
shock, 2-31
wave, 2-8, 9
strong shock (Mach Waves), 2-8

weak shock, 2-8
Region I, 2-16
Region II, 2-16
Region III, 2-16
Regression of surfaces, 4-35
Regressive burning, 4-25
Reinforcement, base, 4-137
Relation
charge-pressure, 4-9
charge-velocity, 4-9
between mass and presented area of fragment, 2-99
Relative
costs of propellant manufacture, 4-7
density, 2-198
energy, 4-88
calculated for propellant composition, 4-88
in gas, 4-85

calculated for organic chemical constituent, 4-85
force, 4-16, 19
humidity, critical, 2-191
pressure, 4-94
quickness, 4-9, 16, 18
Release wave, 2-45
Releasing and discarding carrier, method of, 2-119
Reliability of Mott equation, 2-95
Relief, stress, 6-44
anneal, 6-23
Remaining
velocity, 3-4
of fragments, 2-99
web, 4-23
Removable base plate, 2-172
Repose, yaw of, 3-2, 4
Representative shrinkage data, 4-14
Reproducibility of results, 2-126
Required characteristics of pyrotechnic compositions, 2-157
Requirement(s)
booster, 2-10
for canister information, tactical, 2-154
colored marker shell, tactical, 2-176
for gun projectiles, 2-2
HEP fuzing, 2-157
imploded, 5-15, 22
for optimum ignition, 4-85
prime, 5-15
secondary, 5-15
WP shell, sealing, 2-186
Residual velocity, 2-126
Residue, bore, 4-3
Residue propellant, 4-1
Resistance
to atmospheric moisture, 2-190
gage, 2-10
impact, 6-4
to setback, 2-184
Resonance, 3-29
of benzene nucleus, 4-90
between pitching period and rolling period (danger of), 3-29

Results
comparison of, 4-82
reproducibility of, 2-126
zone of mixed, 2-125
Sampling, 6-5
 acceptance, 5-2
 double, 5-5
 inspection, standard tables, 6-44
 multiple, 5-6
 plan criteria, 5-2
 risks, 5-2
 single, 5-5
 by variables, 5-12
Sand
 pit, 2-94
 test for liquids, 2-23
 test for solids, 2-23
Sarmousakis, 2-93,94,95
Satisfactory ignition, index of, 4-84
Saturation, color, 2-177
Sawdust pit, 2-94
Sawing, 6-5
Scale
 control, 6-42
 and descaling, billet, 6-6
 effect, 2-125
Scaling, 2-75
 formula, Gurney-Sarmousakis, 2-95
 formula, Mott, 2-95
 laws, 2-9,16,65
Schmidt, 3-9,10
Schoedter, 3-13
Scoop, 2-124
Screen, colored smoke, 2-160
Screen, velocity, 2-94
Screening, 5-12
Seal, labyrinth, 4-134
Sealing of chemical (WP) shell, 2-180,186
Sealing lip, short, 4-150
Seam sealer, enamel, 2-151
Season cracking, 6-40
Seat, band, 4-155, 6-23
 nonundercut, 4-154
 undercut, 4-154
Secant ogive, 3-64,65,81,87
Second
 ejection, 2-164,166
 flash, 4-3
 hit, 6-21
 order effects, 4-33, 4-36
Secondary
 effect, 2-5,156
 missile, 2-4
 requirement, 5-15
Section of shell, tangential force at given, 4-181
Segment, ogive, 3-85
Selection of
 liner material, 2-50
 propellant materials (criteria for), 4-2
 weapon type and size, 2-47
Selective absorption, 2-177
Semi-anneal, 6-37
Semifixed ammunition, 4-117,160
Sensitivity, 2-23
 of burning-type smoke compositions, 2-183
 friction, 2-25,187
 heat, 2-187,192
 pyrotechnic compositions, 2-192
 to impact, 2-187
test, 2-22
rifle bullet, 2-23
measure of, 4-93
notch, 4-129,133, 6-43
 to static, 2-187
Separate loading ammunition, 4-117,160,178
Separate loading gun, 4-117
Separated ammunition, 4-117
Separating
 burst, 1-3
 principle, 2-174
 shell, 2-160
 charge, 2-175
 Separation, billet, 6-5
Sequence of operations in machining of shells, 6-14
Serrated rolls, 6-6
Service ammunition, 1-2
 blank, 1-2
 drill, 1-2
 practice, 1-2
 proof, 1-2
Service velocity, 4-9,10
Setback, 2-5,150,176, 4-189
 elastic, 4-125
 filler, 4-179,181,182,189
 stress in base resulting from, 4-183
 stress in shell wall resulting from, 4-183
 forces, 2-108,109,162, 4-178,179
 of metal parts, 4-181
 stress in shell wall resulting from, 4-183
 pressure, 2-164
 resistance to, 2-184
 of shell walls, 4-179,189
 stresses, 2-119
 weight, 2-164,175,185
Setter, tire, 6-17
Seven-perforated propellant grains, 4-26,36,48
 burning of, 4-48
 form functions for, 4-25,26
Shape(s)
 of chamber, 4-117,124
 charge, 2-50
 degressive, 4-23
 and dimensions of shell forgings, 6-5
 of explosive charge, effect of, 2-19
 grain, 4-7
 liner, 2-52
 ogive, 2-38
 parachutes, 2-195
 progressive, 4-23
 of shell, modifications of, 3-64
Shaped charge(s), 2-85
ammunition, 2-1
 damage, qualitative description of, 2-84
 effect, 2-57,59
 on explosive, 2-18
 effectiveness, 2-48
 criterion of, 2-82
 against tanks, 2-82
 explosives in, 2-59
 jet, 2-38,85
 effect of rotation upon, 2-63
 liner, 2-52
 missile, design of, 2-47
 missiles, fuzes for, 2-63
performance, 2-62
penetration of armor by, 2-1
rotating, 2-32,65
weapons, defeat of, 2-82
Shaping, wave, 2-61
Shapiro, 2-95
Sharp apex cone, 2-55
Sharp-nosed shot, 2-122
Shatter, 2-123,126,144
gap, 2-4
Shattered projectile, 2-123
Shear
force, 2-162
joint, 2-160
pins, 2-160,161,164,172,175,184
rings, 2-175
stresses, 2-31, 4-181,183
allowable, 2-164
maximum, (Tresca's rule of flow), 4-185
rotating band, 4-153
on threads of base plug, 2-163
threads, 2-5,160,164,184
design of base plug, 2-163
Shearing, 2-120, 6-5
base plug, 2-169,184
cracks, 6-5
of rotating band, 4-172
stresses, principal, 4-185
Sheet, trapezoidal, 6-39
Shelf life, effect of moisture on, 2-191
Shell, 2-160, 3-1, 6-1,2
APC, 2-4, 4-178
banding of, 6-17
base-ejection, 2-160,161, 4-1
smoke, 2-176
body, 2-170
all-plastic, 2-175
breakup, 2-94,144
capped steel armor-piercing, 2-4, 4-178
casting high-explosive, 6-1
colored marker, 2-160,176,178,182
colored smoke, 2-160,182
crush-up, 2-157
defor mation of, 4-178
development of, HEP, 6-26
design of colored marker, 2-179
design of illuminating, 2-162
design of liquid-filled burster, 2-186
design, WP, 2-180
during closing (manufacture) inspection of, 6-19
during firing, determination of the maximum forces acting on, 4-178
eccentric, 3-30
equations of motion of, 3-4
explosive-burst, 2-160
fin stabilized, 3-10,23,70
finishing of HEP, 6-27
forces acting on, 4-178,181
forging, 6-6
economics of, 6-12
inspection of, 6-13
after, inspection of, 6-13
methods, comparative study of, 6-13
mortar, 6-4
objectives in, 6-7
shapes and dimensions of, 6-5
forming, compromise method of, 6-25
high-explosive (HE), 1-2, 3-10, 4-153, 6-7,17
high-explosive antitank (HEAT), 1-2, 2-32,58,85, 3-70
high-explosive plastic (HEP), 1-3, 2-156,158
hardness of, 6-27
hospitalization of, 6-18
hyper-velocity, armor-piercing (HVAP), 2-117
incipient, 2-1
illuminating, 2-160,161,164,182,185,187,195
internal contour of, 2-185
leaflet distributing, 2-1
lethality of hypothetical, 2-106
light-producing, 2-1
limit to length of, 3-1
length, estimation of drag effect of, 3-68
liquid-filled, 2-160,185
machining of HE, 6-14
manufacture, 6-26
manufacture, methods of weight control, 6-17
manufacture, pierce-and-draw process of, steel, 6-2
manufacturing plant, cost of, 6-24
marking of, 6-18
metal parts design, 2-162,177
moms of inertia, 3-4
motion of spinning, 3-2
multipurpose, 2-161
multiple-wall, 2-109
nosing of, 6-14
painting of, 6-19
performance, HEP, 2-157
poison gas, 2-1
pre-engraved, 3-10
propaganda disseminating, 2-5,160,161,183,185
filler design, 2-184
metal parts design, 2-184
ring-type (experimental), 2-97
rough machining outside of, 6-14
round base, 4-182
separate-loading, 4-178
separating burst, 2-160
shape modifications of, 3-64
smoke, 2-1,161
WP, 2-179
special purpose, 2-160
function of, 2-160
spin-stabilized, 2-35, 3-39
spinning, 3-4
square base, 3-64
squash-head, 2-157
steel, military specification for, 6-5
stress in, 2-153, 4-177,184,185
resulting from forces, 4-181
under stress, failure of, 4-178
thin-walled, 4-154, 6-26
unsatisfactory, 6-15
velocity relative to air velocity of, 3-10
volume of thin ogive, 3-86
wall pressure on resulting from rotation of filler, 4-180,181
walls, setback of, 4-179
wall, stress in minimum, 4-158
wall stress in resulting from rotation of filler,
wall stress in resulting from setback of filler, 4-183
wall stress in resulting from setback of metal parts, 4-183
tension in wall resulting from rotation, 4-180
weight of, 3-64
white phosphorous (WP), 2-160,161,179,186
Shock, 2-156
axbender, 2-175
front, 2-7
-load factor, 2-198
reflection, 2-31
surface, 2-30
velocity method, 2-11
wave, 2-7,14,19,72,93,156,157,177
effect of, 2-9
reflection of strong (Mach Waves), 2-8
reflection of weak, 2-8
velocity, 2-11
Short sealing lip, 4-150
Shortness, red, 6-4
Shot
armor-piercing (AP), 2-4,117,153
blasting, 6-5,12,13,15
pickled, 6-3
blunt headed, 2-124
blunt-nosed, 2-122
capped, 2-138
monobloc, 6-29
discarding sabot, 2-4
hypervelocity armor-piercing (HVAP), 1-2, 2-128, 6-35,36
base of, 6-35
body of, 6-35
manufacture of, 6-35
windshield of, 6-35
hypervelocity armor-piercing discarding sabot
(HVAPDS), 2-118, 6-36
hypervelocity armor-piercing discarding sabot fin-stabilized (HVAPDSFS), 1-3, 2-119
monobloc, 2-138, 6-29
sharp-nosed, 2-122
solid, 2-117
start pressure, loss in, 4-163
truncated-nosed, 2-117
Shrinkage, 4-7
data, representative, 4-14
of grain, 4-13
Shroud
cleat, 2-171
lines, malfunctioning caused by twisting, 2-166
line, tensile strength of, 2-198
nylon, 2-167
Shuts, cold, 6-40,43
Side spray, 2-106
Sidewall heat treatment, 6-43
Sidewall stress, 2-153
Signal(s), 2-187
color lights, 2-193
smokes, 2-182
shell, metal parts design, 2-182
tactical use, 2-182
terminal effects limitations, 2-182
Silas Mason explosive, 2-178
Similitude, principle of, 2-129
Simmons, 3-9
Simple beam formula, 4-154
Simplified form function for seven-perforated pro-
pellant, 4-26
Simulated fire, 1-2
Single
-base propellants, 1-6, 4-1,93
ejection charge, 2-160
ejection system, 2-171
nose charge, 2-175
perforated grains, 4-22,23
equations for, 4-27
sampling, 5-5
-shot probability, 2-106,107
wedge profile, 3-71
Singleton, 2-95
Sintered iron, 4-149,161
compacts, 4-161
properties of, 4-161
Sintering, 6-36
of tungsten carbide (compacting and), 6-36
Size
particle, 2-106,189
pin, 4-13
web, 4-22
Sizing-the-slug, 6-21
Skin friction drag, 3-10
coefficient, 3-10
Skirting
armor, 2-137,157
on cap, effect of, 2-143
-banded projectiles, 2-118, 4-124
plate, 2-129
effect of, 2-137
function of, 2-137
Sky brightness, maximum, 2-193
Sleeves, split, 2-164,166,171,175,185
Slide, cross, 6-27
Slope
chamber, 4-137
of forcing cone, 4-126
lift-coefficient, 3-13
start of forward, 4-137
of tangent lines connecting two arcs, 3-83
Slow-burning propellant, 2-175
Slow-roll, importance of, 3-29
Slug, 2-31,58,150, 6-1,3,5,7
preparation of, 6-21
sizing the, 6-21
Small angles of attack, 3-13
Smoke(s), 2-1,187, 4-1,3
canister, 2-182,183,184
charge, ratio of burster charge to, 2-178
compositions, sensitivity of burning type, 2-183
compositions, typical, 2-179
dyes for, 2-186
reduce, 4-2
shell, 2-161
base-ejection, 2-176
colored, 2-182
signal, 2-185
dispersion of, 2-183
screen, colored, 2-160
Smokeless propellant, 1-6, 4-1
Snap gage, 6-24
Soapcoated, 6-41,42
Soap lubricant, sodium stearate, 0-3
Sodium orthosilicate wash, 6-21
Sodium stearate soap lubricant, 6-3
Soft
(Armco) iron, 4-149
caps, 2-144
porous liner, 2-109
Solem, 2-95
Solid
armor, 2-137
drawn metal case, 4-120
explosives, 2-63
geometry of projectiles, 3-85
of revolution, 3-88
component, 3-81
formulas for, 3-81
ogival, 3-87
volume of, 3-81
shot, 2-117
state chemistry of pyrotechnics, 2-190
Solution
of ballistic equation, 4-36
after burnt, 4-39
for pressure-time trace (complete), 4-76
by RD38 system (Hirschfelder), 4-37,40,48
Solvent recovery, 4-7
Sources of terminal ballistic data, 2-83
Space average pressure, 4-36,76
Space, cartridge head, 4-122,123
Spaced armor, 2-49,129,137
caps for defeat of, 2-144
on HEP shell, effect of, 2-157
Spall(ing), 1-3, 2-120,121,156
of armor (HEP), 2-1
mechanism of, 2-157
Span, 3-11,71
Spark range, 3-67,70
Spatial distribution, fragments, 2-101
Special
design problems of mortar ammunition, 2-172
purpose shell, 2-154,160
function of, 2-160
treatment steel (STS), 2-120
Specific
heat, 4-35
ratio of, 4-88
pseudo-ratio of, 4-47
limit energy, 2-124
surface, 2-190,192
reactants, effect of, 2-190
equation for, 2-190
volume, 4-37
Specifications, 4-137
for cartridge cases, trend in, 4-129
specifications for shell steel, 6-4,5,29
Spheroidized, 6-41
Spin, 3-8, 4-149,173
axial, 3-29
compensation, 2-35,36,37,71,73,75,78
by fluted liners (mechanism of), 2-72
other than fluted liners, 2-81
lawnmowers, 2-81
shear-formed liners, 2-81
spiral staircases, 2-81
danger of too much (Magnus Moment), 3-29
decelerating moment, 3-9
coefficient, 3-10
damping factor, 3-6
degradation, eliminating, 2-81
flat, 3-30
stabilization, 3-1
stabilized shell, 2-35, 3-39,64
mortar, 2-173
vs. flight time, 3-10
vs. optimum penetration, 2-4
Spinning shell, 3-4
with a top, comparison of, 3-2
Spiral flutings, 2-36
Spiral wrapping, 4-135, 6-1
Splintering, after, 4-76
Splintering, before, 4-76
Splinters, unburned, 4-25
Split-back (flash-back)
fuze, 2-63
tube, 2-37,54
effect of, 2-46
Split
rings, 2-162
sleeves, 2-164,166,171,175,185
aluminum, 2-162
design, 2-164
steel tubes, 2-5
Sponginess, 6-17
Sporadic high pressures, 4-84
Spotting charge, 1-2, 2-187
Spray, side, 2-106
Sprays on hot forgings, effect of water, 6-12
Spreiter, 3-13
Square
base shell, 3-64
maximum, 6-8
slugs, round vs, 6-8
Squash charge, 2-157
Squash-head shell, 2-157
Squeeze-bore projectile, 2-4
Squeeze, end, 6-6
Squeezing, 6-1
Squidding, 2-195
Stab-action primer, 1-6
Stability, 1-8, 2-157,191, 4-2,189
of asymmetrical projectiles, 3-29
condition, statement of, 3-4
factor, 3-2,5,6,8
functions of, 3-31
in flight, 4-170, 6-35
measure of, 4-93
of pyrotechnic compositions (factors which affect), 2-187
static, 3-10
vs. standoff, 2-4
of symmetrical shell, 3-11
Stabilizing materials, 4-1,2
Stages in opening of parachute, 2-196
Stagnation point, 2-31,33
Stagnation pressure, 2-34
Staircase method, Bruceton, 2-23
Stamping of cartridge case, head machining and, 6-39
Standard
atmosphere, 2-198, 3-4
boosters, 2-177
calibration chart, 4-40
deviations, 2-127, 3-8, 10, 5-12
flat parachute, 2-195
primers design, 4-84
propellants, compositions of, 4-2
riffing forms, 4-159
sampling inspection tables, 6-44
Standoff, 2-33, 34, 35, 36, 38, 40, 41, 49, 66, 82
optimum, 2-38, 49
on penetration under rotation, effect of, 2-68
Steady-state suspension, 2-195
Steel
adapter, 2-180
austenitic, 6-1
balls, 2-150
cartridge cases, 4-133, 6-1, 41, 44
base rupture of, 4-133
trapezoidal-wrapped, 4-135
cold-worked, 6-2, 43
cones, 2-41
critical range of, 6-1
liners, 2-32, 61
high sulfur content, 6-2
objections to, 6-4
shells, casting vs forging of, 6-1
special treatment (STS), 2-120
specifications, shell, 6-4, 29
-steel, comparison of aluminum to steel closure vs, 2-181
Stellite, 6-27
Stein, Mach, 2-9
Stepped flange, 4-123
Sterne's criterion, 2-102
Sticks, igniter, 4-84
Stiff extraction, 4-119
Stochastic methods, 2-107
Stock, hot-forged, 6-2
Stop, case, 4-121
Storage, 1-8
must not decompose in, 4-2
Strain(s)
energy, 2-182
hardening, 6-21
plastic, 4-118
stretcher, 6-44
Strand burner, 4-16
Strength
of candle case, 2-176
column, 2-185
ultimate, 6-11
yield, 4-134, 149, 6-2, 41
Stress(es), 2-153
algebraic sign of, 4-181
bending, 2-124
in base resulting from rotation of filler, 4-183
in base resulting from setback of filler, 4-183
compressive, 4-181
failure of shell under, 4-178
formulas, deriving shell, 4-178
formulas, summary of, 4-184
hoop, 4-179
limits, gun, 4-1
longitudinal, 4-182, 189
normal, 4-181
principal, 4-182, 185
progressive, 4-162, 163
radial, 4-182
raisers, 6-41, 43
relief, 6-44
anneal, 4-135, 6-23, 46
low-temperature, 6-43
taper, 6-43
setback, 2-119
shear, 4-31, 4-181, 183
maximum, 4-185
in shell (analysis of), 2-153, 4-177, 178, 179, 188, 189
principle, 4-181, 185
resulting from rotation, 4-182
summary of, 4-184
wall resulting from rotation of filler, 4-183
wall resulting from setback of filler, 4-183
wall resulting from setback of metal parts, 4-183
sidewall, 2-153
-strain curves, 4-118, 6-2
state, elastic, 4-188
state, plastic, 4-188
tangential, 4-182
tensile, 4-181
ultimate, 2-178
yield, 2-178, 4-119
Stretcher strains, 6-44
Striking velocity, 2-126, 128, 137
Strip propellant, 4-24
equations for, 4-27
Strip, rolled, 6-1
Stripping case from punch, 4-124
Structural damage (100A), 2-15
Structure, martensite, 2-143
Structure, pearlitic, 2-143
Studies, aircraft vulnerability, 2-111
Subcaliber projectile, 1-3, 2-4, 118, 128, 137, 165
factors limiting penetration of, 2-137
subcaliber steel shot, comparative effectiveness of full-caliber vs, 2-138
Sublot, acceptability of each, 6-44
Subsonic velocities, finned projectiles at, 3-12
Successive draws, 6-1
Sufficient residual penetration, 2-85
Summary, of causes of case failure, 4-120
of equations, interior ballistics, 4-39,46
summary of stresses acting on projectile during firing, 4-181
of stress in shell, 4-184
of tabulated values, 4-87
Superquick fuze, 1-4
Supersonic speeds, thin fins at, 3-12
Supersonic speeds, three-dimensional fins at, 3-12
Supersonic velocity, 3-9
Supplementary charges, 2-177
Surface
burning, 4-6
charges vs. internal charges, 2-14
datum, 5-14
decarburization, 6-33
defects, 6-41
finish, 6-27
grain, 4-6
perpendicularity of, 5-15
press-fit, 2-180
regression of, 4-35
of revolution, 3-69
roughness, 6-16
shock, 2-30
specific, 2-190,192
equation for, 2-190
Surrender leaflets, 2-183
Surveillance, long-term, 2-175
Surveillance test (65° C), 4-93
Suspension
cable, 2-175
steady-state, 2-195
system, 2-170
parachute, 2-196
Sweepback angle, 3-11,14
Sweepforward angle, 3-11,14
Swall diameter, 3-89,81,84,87,88
length of, 3-85
Sweptback fins, 3-13
Swivel, 2-164,166
attachment, 2-173
Symbol
concentricity, 5-13,14
datum surface, 5-13
dependent locational, 5-15
independent, 5-15
locational tolerance, 5-13
for parallelism, 5-14
for perpendicularity, 5-14
Symmetrical double wedge, 3-71
Symmetrical shell, stability of, 3-11
Symmetry, 5-14
System
double-ejection, 2-171
free-flight, 2-195
of interior ballistics, 4-33
Le Duc, 4-80
RDS (Hirschfelder), 4-20,33,36
recoil, 3-72
single-ejection, 2-171
suspension, 2-170
two-shock, 2-9

T33 projectile (FAP), 2-138
T33 projectile (FAPT), 2-138
T34/85 Russian tank (vulnerable areas), 2-89
T/D ratio, 2-122,125
TNT, 2-13
Tables
ballistic, 3-39
for calculation of maximum pressure, 4-47
for calculation of muzzle velocity, 4-47
firing, 2-177
Harvard, 3-85,87,88,89
standard sampling inspection, 6-44
Tabulated values, summation of, 4-87
Tack-welded, 6-46
Tactical
requirement for canister information, 2-154
requirements, colored marker shell, 2-176
requirements, WP smoke shell, 2-180
use, signal smokes, 2-182
Tail
bont, 3-64,67,68
cone, 2-172,175
fin assembly, 2-172
Taliani test (110° C), 4-94
Tangent
goive, 3-65,81,87,88
lines connecting two arcs (slope of), 3-83
Tangential (inertia) forces, 4-178,179
at given section of shell, 4-181
on rotating band, 4-181
stresses, 4-182
Tank
damage assessment, 2-129
defeat of, 2-129
guns, 4-50
Taper(s)
chamber, 4-134
datum method of dimensioning, 5-24
diametral, 3-83
draw, 4-135
main body, 4-121
stress relief, 6-43
Tapered
adapter, 2-118
back projectiles, 4-189
-bore gun, 2-4,118
cylinder, 6-46
die, 6-8
walls, effect on penetration of, 2-43
Tapering, 4-124, 6-43
of cartridge case, 6-37,43
Tapping, nose, 6-16
Target(s)
characteristics, 2-85
defeat of, 2-93
heavy armor, 2-145
obscuration, 4-3
Taschengurts, 2-196
Tear drops, 6-13
Temperature
absolute, 4-35
critical, 6-12,14
flame, 4-35
ignition, 2-187,189
recrystallization, 6-41

I-40
reaction, 2-187
tempering, 6-14
Tempering temperatures, 6-14
Tensile
strength brass, 4-135
strength of fabric, 2-198
strength of shroud line, 2-198
stress, 4-181
longitudinal, 4-179
Tension
in shell wall resulting from rotation, 4-180, 181
test, 4-185
hoop stress, 2-163
Terminal
ballistic data, sources of, 2-83
ballistic firings, 2-83
effects' limitations of signal smokes, 2-182
velocity, 2-195
Test(s)
acceptance, 4-93
ballistic mortar, 2-23
Bergmann-Junk, 4-93
booster sensitivity, 2-23
box, 2-84
Bureau of Mines, 2-22
calorimetric, 4-89
chi-square, 2-95
closed bomb, 4-93
closed-pit, 2-94
of cold-extruded shell, 6-23
compression, 4-93
eexplosion temperature, 2-23
fragmentation, 2-23, 94, 106
functional, 4-129, 137
hardness, 6-15
heat (75° C International), 2-22
heat (100° C), 4-93
heat (115° C), 4-93
hygroscopicity, 4-94
impact sensitivity, 2-22
initiator, 2-23
Jominy, 6-29
Kl-starch, 4-93
litmus-paper, 6-40
magnaflood, 6-33
magnetic hardness, 6-43
methods, 2-22, 4-93
methyl violet, 4-93
sand for liquids, 2-23
sand for solids, 2-23
static, 2-16
compression, 2-165
surveillance (65° C), 4-93
Taliani (110° C), 4-94
tension, 4-185
Trauzl, 2-24
total volatiles, 4-94
panel, 2-94
Picatinny, 2-22
test procedures, 6-5
proving ground, 6-40
up-and-down, 2-126
vacuum stability, 2-22, 4-94
velocity measurement, 2-94
Tetryl, 1-5, 2-178, 181
bursters, 2-178
required, determining weight of, 2-178
charge, 2-182
Tetrytol, 2-181
Theory
Bernoulli's, 2-33, 34
constant distortion, of Hencky-Von Mises, 4-186
first-order, 2-34
of HEP shell performance, 2-156
status of HEP shell development and, 2-158
interacting wave front, 2-157
Kirkwood-Brinkley's, 2-9
maximum energy, 4-186
maximum shear, 4-185, 187
mechanism of cap action, 2-141
parallel axis (or plane), 3-89
plasticity, 4-150, 187
Sachs', 2-9
thin-walled shell, 4-156
yield criteria, 4-185
zero-order, 2-31
Theoretical prediction of radial band pressure, 4-151
Theoretical values, Munk's, 3-9
Thermal conductivity, 2-189
Thermochemical characteristics of propellants, 4-89
Thermodynamic properties of propellants, calculation of, 4-87
Thick and thin, 6-37
Thickness
of case mouth, 4-124, 133
cone wall, 2-53
cyllinder formula, 4-180
flange, 4-123
depth of plate penetrated, 2-137
root, 3-71
-thin effect, 2-72
-and-thin forgings, 6-7
web, 4-11, 21, 24
Thin
fins at supersonic speeds, 3-12
pointed, short fins, 3-13
thick and, 6-37
-walled case, 6-1
-walled shell, 4-154, 6-26
-walled theory, 4-156
Thompson, 2-125
Thread(s)
gage, 6-24
shear, 2-5, 160, 164, 164
Three-dimensional breakup of shell, 2-94
Three-dimensional fins at supersonic speeds, 3-12
Threshold, damage, 2-16
Thresholds, visibility, 2-193
Throner, 2-37
Time
since beginning of motion, 4-47
burning, 2-167
derivative, 3-6
of flight, 3-4
factors governing, 3-38
minimum, 3-38, 64
vs. standoff, 2-4
fuzes, 1-4, 4-1
functioning, 2-49, 157
-to-ignition, 2-192
of maximum pressure, 4-45, 48

I-41
-to-reaction, 2-192
Tin, 4-3
Tip chord, 3-11
Tire-setter, 4-154, 6-17
Toggle joint press, 6-17
Tolerance(s), 2-39
acceptance gage, 5-24
of bourrelet, 6-17
circle, 5-18,23
component, 5-24
dependent locational, 5-13,17,19
diametral, 5-13,19,20
gage, 5-24
effect of on component, 5-24
of fluted liners, 2-80
independent locational, 5-13,21
of length of case, 4-121
limits, 5-11,18
percent defective lot (LTPD), 5-3
weight, 2-152
work gage, 5-24
zone, 5-24,25
Toleranced
angle, 5-20
coordinates, 5-17
radius, 5-20
Tolerancing, 5-13
Tool
forming, 6-16
loading, 6-41
waving, 6-16
Torn cavities, 6-13
Torox, 2-13
Torque (T) applied to projectile, 4-179
Total
radial stress, 4-182
volutates test, 4-94
volume behind projectile, 4-34
Toughness, low notch, 6-4
Tracer(s), 1-4, 2-187
compositions, 2-192
Trailing edge, 3-11,13,14
Train, explosive, 2-177
Trajectory, curvature of, 3-11
Transparent interpolator, 4-17
Transport effect, 2-72
Transverse
moment, 3-89, 4-178
of inertia, 3-2,10,28,31,90
wave, 2-123
weakness, 6-4
Trapezoidal sheet, 6-39
Trapezoidal-wrapped cases, 4-135, 6-47
Trauzl test, 2-24
Travel function, 4-48
Travel of projectile, 4-44,47
Treatment, heat, 6-3,4,14,33,43
improper, 2-123
Tresca's rule of flow (maximum shear), 4-185
Triacetin, 4-2
Trim, rotary, 6-42
Trimming, 6-43
Triple base propellant, 1-6, 4-2
Triple point, 2-9
Tritonal, 2-13
Trumpet-shaped liners, 2-69
Truncated
conical nose, 2-139
-nosed shot, 2-117
circular nose, 2-124
Tube, 4-23
blast, 2-11
flash, 2-183
metal burster, 2-160
primer, 4-84
split-back, 2-37,54
effect of, 2-46
split steel, 2-5
Tuck, 2-64
Tumbling (velocity retardation), 2-166
Tumbling of projectile, 4-164
Tungsten carbide, 2-117,137
compacting and sintering of, 6-36
core, 2-123,128, 6-35
effect of armor-piercing caps on, 2-142
effect of nose geometry of, 2-139
manufacture of, 6-36
dies, 6-37
Turning, band, 6-17
Turning, rough, 6-12
Twist, 2-173
gain, 4-170
increasing, 4-172
pin, 2-161
rifling, 4-169,170,179,189
uniform, 4-170
zero, 4-172
Twisting of shroud lines, malfunctioning caused by,
2-166
Two
dimensional breakup of shell, 2-94
dimensional fragment breakup, 2-106
dimensional formula, 3-12
shock system, 2-9
Type(s)
of armor plate failure, 2-120
damage assessment, 2-111
of flanges, 4-122
of flutes, 2-76
of incapacitation, 2-102
A, 2-102
B, 2-102
K, 2-102
of parachutes, 2-195
of perforation, punching, 2-129
of projectiles, 1-2
Typical
calculations for cartridge case, 4-126
smoke compositions, 2-179
projectiles, 3-39
of rifling twist, 4-172
Ultimate strength, 6-41
ultimate stress, 2-178
Unburnt propellant released at muzzle, 4-76
Unburned splinters, 4-25
Uncannelured band, 4-25
Undercut shot, 4-154
Under head position, 4-122,125
Uniform
Yield condition, mathematical statement of Von Mises, 4-187

criteria, 4-181, 185
theories, 4-185
utilization of, 4-178
function, Von Mises, 4-186
high, 6-44
point, 2-153, 4-118, 6-23
strength, 4-134, 149, 6-2, 41
stress, 2-178, 4-119
of band material, 4-157
compressive, 2-185
minimum permissible, 4-156
static, 4-185
Young's modulus, 4-118

Zamac 5 (zinc alloy), 2-37

Zero
interference, 4-169
order, 2-32
twist, 4-172
Zinc alloy, Zamac 5, 2-37
cones, 2-41
phosphate, 6-3
Zobel, 3-10
Zone
A (burning), 2-189
B (burning), 2-189
C (burning), 2-189
charges, 4-134
firing, 1-2, 7
mixed, 2-127
of mixed results, 2-125
pre-ignition, 2-189
tolerance, 5-24, 25
permissible, 5-17
ARTILLERY AMMUNITION—GENERAL

TYPES AND CLASSIFICATION OF COMPLETE ROUNDS

1-1. Complete Rounds. The term "artillery ammunition" refers to ammunition, excepting rockets and shotgun shells, used in weapons having a bore diameter of more than 0.60 inch. A complete round of artillery ammunition comprises all of the components necessary to fire a weapon once and to cause the projectile to function at the desired time and place. These components are, in general, the projectile, the fuze, the propelling charge, and the primer. Dependent upon both the type of propelling charge and the method of loading into the weapon, complete rounds of artillery ammunition are known as fixed, semifixed, separate loading, or separated. Figure 1-1 illustrates these types of ammunition and their component parts.

1-2. Components of a Complete Round.

 Projectile. The projectile is the effect-producing assembly which is ejected from the weapon by the gas pressure developed by the burning propelling charge. Other terms used in specific nomenclature of certain items, in place of "projectile," are "shell" and "shot."

 Fuze. A fuze is a mechanical or electrical device assembled to a projectile to cause it to function at the time and under the circumstances desired.

 Propelling Charge. The propelling charge consists of a quantity of propellant in a cartridge case, cloth bag, or both.

 Primer. A primer is used to initiate the burning of a propelling charge. It consists essentially of a small quantity of sensitive explosive and a charge of black powder.

1-3. Fixed Ammunition. Complete rounds in which the propelling charge is fixed, that is, not adjustable, and which are loaded into the weapon in one operation, are known as "fixed" ammunition. As usually designed, the propelling charge is loose in the cartridge case, which is crimped rigidly to the projectile. In a few cases, however, the charge is contained
in a bag inside the cartridge case. For certain calibers, rounds of fixed ammunition are termed "cartridges."

1-4. **Semifixed Ammunition** is characterized by an accessible propelling charge, which may be adjusted for zone firing. Like fixed ammunition, it is loaded into the weapon as a unit. The cartridge case is a free fit over the projectile. The propelling charge is divided into bagged sections, each containing a definite quantity of propellant.

1-5. In **Separate-Loading Ammunition**, the separate components — projectile, propelling charge, and primer — are loaded into the weapon separately, because the ammunition is too heavy and bulky to be handled as a unit. Ammunition larger than 105-mm caliber falls into this category.

1-6. **Separated Ammunition** is characterized by the arrangement of the propelling charge and the projectile for loading into the gun. The propelling charge, contained in a primed cartridge case that is sealed with a closing plug, and the projectile, are loaded into the gun in one operation. Separated ammunition is used when the ammunition is too large to handle as a fixed unit.

1-7. **Classification of Ammunition.** Ammunition may be classified according to use as service, practice, blank, or drill. In addition, it may be classified according to type of filler as explosive, chemical, or inert.

1-8. **Service Ammunition** is used in combat. Dependent upon the type of projectile, it may be high-explosive (HE), high-explosive antitank (HEAT), armor-piercing (AP), armor-piercing capped (APC, with or without explosive filler), hypervelocity armor-piercing (HVAP, HVAPDS, or HVAPDSFS), high-explosive plastic (HEP), incendiary, illuminating, marking, propaganda, chaff, or liquid-filled shell.

1-9. **Practice Ammunition** is fired for effect in simulated combat, and is also used in training in marksmanship. The projectile in this type of ammunition may have a small quantity of low-explosive filler to serve as a spotting charge, or the filler may be inert. The projectile may be an empty cast-iron shell.

1-10. **Blank Ammunition** is provided in small and medium calibers for saluting and simulated fire. This ammunition has no projectile.

1-11. **Drill Ammunition** is used for training in handling and loading. It is completely inert.

1-12. **Proof Ammunition.** Proof ammunition is used for testing of guns and propellant charges. The projectile is ordinarily a blunt-nosed solid steel shot of the same weight as the high-explosive projectile which is to be fired from the gun. The propellant charge weight is adjusted to give the pressure desired for the test that the round is designed for.

TYPES OF PROJECTILES

1-13. **High-Explosive (HE) Shell** have projectiles of forged steel, comparatively thin walls, and a large bursting charge of high explosive. HE shell are used against personnel and material targets, producing blast effect and fragmentation at the target. HE shell may have a time-, impact-, inertia-, or proximity-type fuze, according to the action desired.

1-14. **High-Explosive Antitank (HEAT) Shell.** This is a special shell used against armored targets. Its effect is dependent upon the formation of an ultra-high-velocity jet of metal caused by the action of the hollow charge on the metal liner.

1-15. **Armor-Piercing (AP) Ammunition.** The armor-piercing projectile has a nose of forged high-carbon nickel-chrome steel, and is intended to penetrate the armor of a tank by the energy of impact. The nose may be ogival, or blunt truncated, and must be hard enough to penetrate armor, yet tough enough to withstand cracking or shattering upon impact; it may have an aluminum windshield to provide better ballistic characteristics. The body of an AP shot must be capable of withstanding bending stresses, and also the gouging action of the edges of the hole. The base must have enough strength to smash through the plate if caught by the side of the hole, or should be so designed that it will break off from the body without injuring the forward part.

1-16. **Hypervelocity Armor-Piercing (HVAP) Shot** is lighter than the other armor-piercing projectile of the same caliber, and it is fired
at higher velocities. The HVAP shot has a pointed cylindrical core of tungsten carbide. The core has great density and hardness. This type of projectile is obsolescent and is being replaced by more modern types, such as HVAPDS.

1-17. Hypervelocity Armor-Piercing Discarding Sabot (HVAPDS) Ammunition. This type of ammunition consists of a subcaliber projectile comprising a carbide core in a light alloy or steel sheath. The subcaliber projectile is placed inside a full-caliber carrier (called a "sabot") designed to impart velocity and spin to the projectile. As it leaves the gun, the sabot is discarded by the action of centrifugal force, air resistance, or both, allowing the projectile to proceed toward the target unimpeded. Generally made of aluminum, magnesium-zirconium alloy, or plastic, sabots are of three types: pot type, petal type, and latch type. (See Section 2.)

1-18. Hypervelocity Armor-Piercing Discarding Sabot Fin-Stabilized (HVAPDSFS) Shot. The HVAPDSFS shot is a fin-stabilized kinetic energy projectile designed for extremely high muzzle velocities. It is characterized by an extremely high length-over-diameter ratio. Its long thin appearance has led to its being referred to as the "arrow" projectile. It may be fired from either rifled or unrifled barrels by means of a sabot. It is currently in the development stage and has given some very promising results.

1-19. High-Explosive Plastic (HEP) Shell are unique in antitank warfare, as they attempt to defeat tanks without penetrating the armor. The explosive is made in a molded plastic form and flattens out when the projectile strikes the target. The detonation of the explosive on the face of the armor causes a rupture on the opposite side. This ruptured portion is known as a spall, which causes damage inside the tank, dependent on the velocity and mass of the spall. The mass and velocity of the spall depends on the quality and thickness of the armor, and the mass, type, and shape of the explosive filler. This shell has not yet been fully developed, and little of the theory is known. A more complete description of available theory and design is given in Section 2.

1-20. Canister Ammunition consists of slugs (small cylinders from bar stock), steel balls, or flechettes (stabilized fragments with pointed nose and finned tail), contained by various methods within the shell. The canister projectile consists of a heavy steel base, designed to withstand the firing stresses, and a thin steel tube packed with preformed missiles. As the canister projectile leaves the weapon, the steel case containing the missiles is split open by centrifugal force, and the missiles are distributed in a random pattern. The missiles inflict damage, since a velocity is imparted to them by a propellant charge. A more complete description of canister packing and design is given in Section 2.

1-21. Pyrotechnic-Type Ammunition comprises a group of shells which perform varied functions, but possess certain design similarities. These shells, which are fired from mortars, howitzers, or guns, are made to function by base ejection, separating burst, or explosive burst. In general, they are modifications of the HE shell of the same caliber. Pyrotechnic-type ammunition, grouped together by design similarity, include: illuminating shell, propaganda shell, colored smoke shell, and chaff shell; WP shell, and liquid-filled shell; and colored marker shell. The complete description and design of these shells is given in Section 2.

PROJECTILE COMPONENTS

1-22. The Ogive is the curved portion of the projectile from the point to the bourrelet. The curve of the ogive is usually the arc of a circle whose center is located in a line perpendicular to the axis of the projectile, and whose radius generally is 6 to 11 calibers in length.

1-23. The Bourrelet is an accurately machined cylindrical surface, of diameter slightly larger than the body, that bears on the lands of the bore. The bourrelet centers the projectile in the bore and guides it in its travel through the bore.

1-24. The Rotating Band is a cylindrical ring of comparatively soft material, usually copper, gilding metal, or soft iron, pressed into a knurled or roughened groove near the base of the projectile. When the gun is fired, the
1-25. Base Cover. Shell containing high explosives usually are provided with a base cover to prevent the hot gases of the propelling charge from coming in contact with the explosive filler of the projectile through possible flaws in the metal of the base.

1-26. Body. The main portion of the projectile ordinarily is called the body. The term "body diameter," however, is used to designate the dimension of the cylindrical portion of the projectile between the bourrelet and the rotating band. In order to prevent contact with the bore, the body diameter is smaller than the diameter of the bourrelet or the rotating band.

1-27. Tracer. For observation of fire, some shell are fitted with a tracer in the base. In some antiaircraft gun projectiles, the tracer ignites a pellet that, after burning a prescribed number of seconds, detonates the explosive filler, should the fuze fail to operate against a target. This type of tracer is known as "shell destroying" (SD).

1-28. Lifting Plug and Grommet. The lifting plug and grommet do not play any part in the firing of the projectile but are included on the larger caliber shell merely for shipping and handling purposes. The lifting plug is an eye bolt that fits into the threaded fuze cavity in the nose of the shell and permits the shell to be handled by means of a winch. The grommet is a rubber-lined steel covering placed over the rotating band to protect it from damage resulting from rough handling. Both are removed before the projectile is used.

FUZES, BOOSTERS, AND DETONATORS

1-29. Introduction. A fuze is a device used with ammunition to cause it to function at the time desired, and under the circumstances desired. Artillery fuzes are classified according to their location on the projectile as base detonating or point detonating. They also are classified according to their method of functioning, as time, impact, or proximity (VT), or may be a combination of these.

1-30. Time Fuzes usually contain a graduated time element in the form of a compressed black powder train, or a mechanism with a gear train like a clock, which may be set to function at a predetermined time after firing.

1-31. Impact Fuzes are classified according to the quickness of action after impact as super-quick, nondelay, or delay. See figure 1-2 for action of ammunition at the target according to the quickness of action. Superquick fuzes produce a burst immediately upon impact, before any penetration occurs, thus giving maximum surface effect. Nondelay fuzes are inertia-operative, and burst the projectile on a hard surface before complete penetration or ricochet. Delay fuzes allow penetration of material targets before bursting, or allow air bursts in ricochet fire. The time of action of impact fuzes is measured from the instant of its impact on a target, whereas the time of action of time fuzes is measured from the instant the weapon is fired. An impact fuze intended to function on impact with a very light material target, such as an airplane wing, is called supersensitive.

1-32. Proximity (VT) Fuzes. In effect, VT (Variable Time) fuzes are automatic time fuzes. Without "setting" or adjustment, they detonate the missiles that carry them on approach to the target. Artillery VT fuzes are essentially combination self-powered radio transmitting and receiving units. In flight, the armed fuze broadcasts radio waves. Unlike radar waves, the radio waves are sent continuously and are nondirectional. The radio wave fronts, which are reflected back from airplane, ground, or water to the moving missile, interact with the transmitted wave. When this interaction of transmitted and reflected waves, which results in ripples or beats, reaches a predetermined intensity, it trips an electronic switch. The switch then permits an electric charge that is stored in the firing capacitor to flow through an electric firing squib. The VT fuzes can be used only in deep-cavity shell.

1-33. General Description of Fuzes. In general, modern fuzes consist of a connected series (train) of small explosive charges, together with a striker or firing-pin device for initiating the action of the first charge in the train. The mechanism and explosive elements are held in a body or housing. In modern point-detonating
Figure 1-2. Action of ammunition at the target

(PD) fuzes, the housing is shaped for best ballistics. In impact fuzes now in use, the explosive train usually consists of a small but highly sensitive explosive charge, such as lead azide, in turn followed by a still larger and still less sensitive explosive charge, such as tetryl. Such charges function by successive detonation—hence the term detonating fuzes.

When delay action is desired by the use of a black powder pellet, the initial charge is a primer mixture, which passes a flame to the black powder and, in turn, to a detonator. Black powder is used exclusively in the time train of powder-train time fuzes, and for the magazine charge of both powder-train and mechanical types of time fuzes. Black powder that has been compressed to great density burns slowly, the rate of combustion decreasing as the density increases. In the functioning of a fuze, each charge by its action initiates the next charge in the train. The final charge in the fuze causes the detonation of the booster, which in turn detonates the bursting charge of the shell.

1-34. Bore Safety. To prevent accidental arming during handling and shipping, safety devices, such as a safety wire or a cotter pin, are used when required. In certain types of fuzes, the mechanisms are arranged so that the fuzes are said to be "boresafe" (detonator-safe). A boresafe fuze is one in which the explosive train is interrupted so that, while the projectile is still in the bore of the weapon, premature action of the bursting charge is prevented if any of the more sensitive elements (primer or detonator) function.

1-35. Methods of Arming. A fuze is said to be armed when it is ready to detonate the shell, that is, when all parts are in, or are free to move to, their proper positions in order that the fuze may operate in its intended manner. The principal forces used in arming fuzes are inertia and centrifugal force. In some fuzes, both of these forces are used to activate safety devices, in others, only one is used. Centrifugal force occurs in spinning projectiles. This force may be utilized to operate gear trains and to move safety devices into their proper positions in fuzes and boosters.

1-36. Boosters. Since the bursting charges of high-explosive shell are relatively insensitive to shock, a comparatively large detonating charge is necessary to ensure a high order detonation of the bursting charge. The use of more sensitive explosives, such as mercury fulminate or lead azide, in the quantities required for the purpose would create excessive hazards in handling and firing; therefore, such explosives are used only in small amounts as initiating and intermediate detonating charges. A separate charge of somewhat less sensitivity, usually tetryl, is provided for detonating the high-explosive charge of the shell. Because its function is to increase or "boost" the effectiveness of the explosive train, this charge is known as a booster charge. The booster charge may be incorporated in the fuze itself, or may be encased in thin metal or plastic which is screwed permanently to the fuze and handled as a unit with the fuze.
1-37. **Detonators.** A detonator is used in the explosive train to create or transmit a detonation wave to the booster charge, booster lead, or burster. Three types of detonators are used. One contains a primer mixture as the upper layer, for initiation by stab action of a firing pin. Another contains lead azide as the upper layer, for initiation either by flame action from a separate primer, delay pellet, time-train ring, or by detonation of a separate detonator. The third type contains a fine wire or other high-resistance electric circuit in contact with a heat-sensitive primer mixture. Passage of an electric current through the resistance circuit generates heat, which initiates detonation in the primer mixture. Most detonator cups and disks are made of aluminum.

EXPLOSIVES FOR AMMUNITION

1-38. **General.** To deliver the projectile at the target, and to cause it to function properly on arrival, it is necessary to employ different kinds of explosives, each of which has a specific function in a round of ammunition. The characteristics of the various types of explosives are given in Section 2. The arrangement of a series of explosives, beginning with a small amount of sensitive explosive and ending with a large amount of comparatively insensitive explosive, is called an explosive train.

1-39. **Classification of Explosives.** Explosives are divided into two basic groups—propellants (low explosives) and high explosives. The propellant reacts by burning, at a rate which depends upon such factors as pressure, grain form, grain size, and composition. The high explosive is used for its detonating properties, which result from the motion of a detonation wave traveling through the high-explosive charge at an extremely high velocity.

1-40. Propellants are used to eject the projectile from the weapon at a prescribed velocity. Those currently used have a nitrocellulose and/or nitroguanidine base. These propellants are distinguished by such terms as single base (those with nitrocellulose), double base (with nitrocellulose and nitroglycerin), or triple base (nitrocellulose, nitroglycerin, and nitroguanidine). Propellants may be called flashless and/or smokeless, but these terms are relative, not absolute.

1-41. **High Explosives,** because of their extremely rapid rate of detonation, have a powerful disruptive action. The high explosives that are most sensitive to impact are used as initiators in primers or detonators, whereas the high explosives less sensitive to impact are used as bursting charges in shell.

PROPELLING CHARGES

1-42. **General.** Propelling charges consist of the propellant (essentially nitrocellulose plus other ingredients) with an igniter of black powder, assembled in a suitable container. Generally, in fixed, semifixed, and separated rounds, the full igniter charge is present in a tube attached to the percussion element of the primer. In certain cases, however, such as ammunition for the 75-mm rifle, a supplementary igniter charge is located in the forward end of the cartridge case. In separate-loading rounds, the igniter charge is assembled in a bag sewed to the base end of the propelling-charge bag, and in some cases includes a core running through the center of the propelling-charge bag. See figure 1-1 for representative types of propelling charges.

To control the burning of propellant powder to obtain the desired performance in a particular weapon, the powder is manufactured in several types of grains. For a complete description of the various propellants, their grain types and their characteristics, refer to Section 4.

1-43. **Flashless and Smokeless Characteristics.** Whether the ammunition upon firing has flashless or smokeless characteristics, or both, depends chiefly upon the chemical composition of the propellant, the design of the ignition system, and the characteristics of the weapon in which the ammunition is fired. Variable factors that must be allowed for in the original design of the flashless-smokeless ammunition are firing temperature, degree of wear of weapon, and weather conditions.

1-44. **A Cartridge Case,** made of drawn brass or steel, serves as the container for the propelling charge in the instance of fixed and semifixed artillery ammunition. The case has a profile and design to conform to the chamber of the weapon for which the case is intended. The head of the case is relatively thick and has a flange to permit mechanical extraction and to
seat the round in the gun. These rounds used in automatic guns usually have cartridge cases with extracting grooves instead of flanges or rims. The cartridge case holds the primer, the propelling charge, and the projectile (except for separated types), so that the assembly can be inserted into the weapon in one operation. A secondary function is to provide for obturation. The case is sufficiently thin to be expanded by the pressure of the burning gases to a tight fit against the side of the weapon chamber, thereby preventing the escape of gas to the rear.

1-45. The Propelling Charge in a Round of Fixed Ammunition is usually loose powder in the cartridge case. In some instances, where the charge is not large enough to fill the case completely, a distance wadding, usually a cardboard disk and cylinder or felt pads, is inserted in the neck of the cartridge case, between the powder charge and the base of the projectile. In some instances, the same function may be served by enclosing the charge in a cloth bag inside the case. Where the primer charge is insufficient for satisfactory ignition of the propelling charge, a supplementary igniter charge of black powder may be attached to the distance wadding to supplement the primer ignition.

1-46. The Propelling Charge in a Round of Semifixed Ammunition is in cartridge bags in the cartridge case. Since the cartridge case is loosely fitted to the projectile, some of the bags of powder may be removed prior to firing to provide for zone firing.

1-47. The Propelling Charge in Separated Ammunition. In "separated" ammunition, the separately loaded propelling charge is loosely contained in a cartridge case, which is closed by a "closing plug" made of palmetto pulp, plastic, or cork. An igniter may be placed around the primer to ensure proper ignition.

1-48. Mortar Propelling Charges are made up of several removable parts or "increments" to provide for zone firing. Each increment consists of a charge of smokeless propellant encased in a cotton bag. The bag has a buttonhole at each end to enable it to be fastened to the cartridge housing of the mortar round. The round, as received in the field, has the maximum number of increments fastened to it. The gunner adjusts for zone firing by removing the increments that are not desired.

1-49. Cartridge Bags form a suitable and convenient means of containing the smokeless powder charge in separate-loading ammunition. Cartridge-bag cloth normally is made of silk; bags made of rayon sometimes are used to replace silk. Only certain ash-free grades of this fabric are suitable; other grades might leave smoldering fragments in the bore of the cannon after firing. The products of combustion of smokeless powder are inflammable when mixed with the requisite amount of air. A reignition of gases known as a "flareback" could occur in the presence of these smoldering particles.

Cartridge igniter bags are made of silk, and the cloth is similar to cartridge-bag cloth, except that it is more closely woven in order to prevent the black ignition powder from sifting through. To date no suitable substitutes for silk have been found.

For a further discussion of the propelling charges, and a description of propelling charges for particular guns, refer to Section II, chapter 3, of reference 3, and also Section 4 of this handbook.

1-50. Primers and Ignition Charges. A primer is used in a propelling-charge explosive train as the component that initiates burning of the propelling charge by a flame. Such primers vary in size and complexity, depending upon their type and the quantity of propelling charge to be ignited. For example, the propelling charge of 20-mm rounds is so small, relatively, that the primer is merely a sensitive element assembly that is inserted directly into the primer pocket of the cartridge case. In larger caliber rounds, the primer contains a sensitive element of primer mixture or other explosive, plus a primer charge of black powder to ensure proper ignition of the larger propellant charges. Where sufficient black powder cannot be loaded into the primer body to ensure proper ignition, a separate bag of black powder, called an igniter charge assembly, is placed with the propellant.

Primers may be classified by method of ignition as percussion, initiated by a sharp blow from a firing pin in the weapon; or electric, initiated by sending a small electric current through a resistance wire embedded in an explosive, or through a conductive primer mixture.
1. Unique Functioning. The unique function of ammunition must be considered in the design of complete rounds and their components. Practically all ammunition items are required to function only once. This one time, they must function as intended, with a very high degree of certainty. Usually, they are used without any previous preparation or adjustment, after subjection to handling and storage that may have gone on for periods of years, sometimes under very adverse conditions.

This peculiarity of function imposes certain design requirements of a restrictive nature, such as:

1. Ruggedness
2. Corrosion prevention

On the other hand, this peculiarity makes it possible to neglect certain other factors that ordinarily must be given consideration, such as:

1. Wear
2. Fatigue
3. Permanent deformation of certain parts as a normal consequence of its functioning.

1-52. Quantity Production Requirements. Another general characteristic of nearly all ammunition components is that they are made in large quantities. Quantity production makes it economical to provide special tools, automatic or semi-automatic machines, and other special mass production equipment for their manufacture, loading, assembly, inspection, testing, and the like. In the design of ammunition components, their forms, dimensions, and tolerances must be kept in mind for mass production purposes.

1-53. Forces Acting on Projectiles in Handling. Normally, projectiles are subject to rough handling. They may be dropped, or they may roll and tumble against each other, both in shipment and in use. Some of the areas of the projectile that may be subject to damage as a result of this handling are listed below, together with the nature of the damage that might be expected.

1. Rotating bands — indentations or scars.
2. Fins — breaking or bending.
4. Explosive elements — primers and detonators are liable to detonation if subjected to severe shock deformation or movement.
5. Chemical fillers — leakage.

Such damage can be minimized by proper choice of materials, by the avoidance of sharp corners or edges subject to breakage, and by proper packing.

1-54. Design Considerations From Storage Requirements. Since ammunition may be stored for long periods of time, under adverse conditions of temperature and humidity, the following factors must be considered.

1. Malfunctioning or loss of accuracy caused by extremes of temperature.
2. Malfunctioning or loss of accuracy resulting from exposure to dust or sand.
3. Malfunctioning or loss of accuracy resulting from exposure to rain or snow, and immersion in water.
4. Stability of explosives and other chemically reactive material.
5. Resistance of metal parts to corrosion.

BIBLIOGRAPHY

The Engineering Design Handbook Series is intended to provide a compilation of principles and fundamental data to supplement experience in assisting engineers in the evolution of new designs which will meet tactical and technical needs while also embodying satisfactory producibility and maintainability. Listed below are the Handbooks which have been published or submitted for publication. Handbooks with publication dates prior to 1 August 1962 were published as 20-series Ordnance Corps pamphlets. AMC Circular 310-38, 19 July 1963, redesignated those publications as 706-series AMC pamphlets (i.e., ORDP 20-138 was redesignated AMCP 706-138). All new, reprinted, or revised handbooks are being published as 706-series AMC pamphlets.

General and Miscellaneous Subjects

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>106</td>
<td>Elements of Armament Engineering, Part One, Sources of Energy</td>
</tr>
<tr>
<td>107</td>
<td>Elements of Armament Engineering, Part Two, Ballistics</td>
</tr>
<tr>
<td>108</td>
<td>Elements of Armament Engineering, Part Three, Weapon Systems and Components</td>
</tr>
<tr>
<td>110</td>
<td>Experimental Statistics, Section 1, Basic Concepts and Analysis of Measurement Data</td>
</tr>
<tr>
<td>111</td>
<td>Experimental Statistics, Section 2, Analysis of Enumerative and Classificatory Data</td>
</tr>
<tr>
<td>112</td>
<td>Experimental Statistics, Section 3, Planning and Analysis of Comparative Experiments</td>
</tr>
<tr>
<td>113</td>
<td>Experimental Statistics, Section 4, Special Topics</td>
</tr>
<tr>
<td>114</td>
<td>Experimental Statistics, Section 5, Tables</td>
</tr>
<tr>
<td>115</td>
<td>Maintenance Engineering Guide for Ordnance Design</td>
</tr>
<tr>
<td>116</td>
<td>Inventions, Patents, and Related Matters</td>
</tr>
<tr>
<td>117</td>
<td>Servomechanisms, Section 1, Theory</td>
</tr>
<tr>
<td>118</td>
<td>Servomechanisms, Section 2, Measurement and Signal Converters</td>
</tr>
<tr>
<td>119</td>
<td>Servomechanisms, Section 3, Amplification</td>
</tr>
<tr>
<td>120</td>
<td>Servomechanisms, Section 4, Power Elements and System Design</td>
</tr>
<tr>
<td>121</td>
<td>Inventories, Patents, and Related Matters</td>
</tr>
<tr>
<td>122</td>
<td>Servomechanisms, Section 1, Theory</td>
</tr>
<tr>
<td>123</td>
<td>Servomechanisms, Section 2, Measurement and Signal Converters</td>
</tr>
<tr>
<td>124</td>
<td>Servomechanisms, Section 3, Amplification</td>
</tr>
<tr>
<td>125</td>
<td>Servomechanisms, Section 4, Power Elements and System Design</td>
</tr>
<tr>
<td>126</td>
<td>Armor and Its Application to Vehicles (U)</td>
</tr>
<tr>
<td>127</td>
<td>Propellant Actuated Devices</td>
</tr>
<tr>
<td>128</td>
<td>Warheads--General (U)</td>
</tr>
<tr>
<td>129</td>
<td>Compensating Elements (Fire Control Series)</td>
</tr>
<tr>
<td>130</td>
<td>The Automotive Assembly (Automotive Series)</td>
</tr>
<tr>
<td>131</td>
<td>Ammunition and Explosives Series</td>
</tr>
<tr>
<td>132</td>
<td>Solid Propellants, Part One</td>
</tr>
<tr>
<td>133</td>
<td>Properties of Explosives of Military Interest, Section 1</td>
</tr>
<tr>
<td>134</td>
<td>Properties of Explosives of Military Interest, Section 2 (U)</td>
</tr>
<tr>
<td>135</td>
<td>Dummies, General and Mechanical</td>
</tr>
<tr>
<td>136</td>
<td>Fuses, Proximity, Electrical, Part One (U)</td>
</tr>
<tr>
<td>137</td>
<td>Fuses, Proximity, Electrical, Part Two (U)</td>
</tr>
<tr>
<td>138</td>
<td>Fuses, Proximity, Electrical, Part Three (U)</td>
</tr>
<tr>
<td>139</td>
<td>Fuses, Proximity, Electrical, Part Four (U)</td>
</tr>
<tr>
<td>140</td>
<td>Fuses, Proximity, Electrical, Part Five (U)</td>
</tr>
<tr>
<td>141</td>
<td>Section 1, Artillery Ammunition--General, with Table of Contents, Glossary and Index for Series</td>
</tr>
<tr>
<td>142</td>
<td>Section 2, Design for Terminal Effects (U)</td>
</tr>
<tr>
<td>143</td>
<td>Section 3, Design for Control of Flight Characteristics</td>
</tr>
<tr>
<td>144</td>
<td>Section 4, Design for Projection (U)</td>
</tr>
<tr>
<td>145</td>
<td>Section 5, Inspection Aspects of Artillery Ammunition Design</td>
</tr>
<tr>
<td>146</td>
<td>Section 6, Manufacture of Metallic Components of Artillery Ammunition (U)</td>
</tr>
</tbody>
</table>

Ballistic Missile Series

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>281(S-RD)</td>
<td>Weapon System Effectiveness (U)</td>
</tr>
<tr>
<td>282</td>
<td>Propulsion and Propellants</td>
</tr>
<tr>
<td>284(C)</td>
<td>Trajectories (U)</td>
</tr>
<tr>
<td>286</td>
<td>Structures</td>
</tr>
<tr>
<td>140</td>
<td>Trajectories, Differential Effects, and Data for Projectiles</td>
</tr>
<tr>
<td>150(S)</td>
<td>Elements of Terminal Ballistics, Part One, Introduction, Kill Mechanisms, and Vulnerability (U)</td>
</tr>
<tr>
<td>61(S)</td>
<td>Elements of Terminal Ballistics, Part Two, Collection and Analysis of Data Concerning Targets (U)</td>
</tr>
<tr>
<td>162(S-RD)</td>
<td>Elements of Terminal Ballistics, Part Three, Application to Missile and Space Targets (U)</td>
</tr>
</tbody>
</table>

Carriages and Mounts Series

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>341</td>
<td>Cradles</td>
</tr>
<tr>
<td>342</td>
<td>Recoil Systems</td>
</tr>
<tr>
<td>343</td>
<td>Top Carriages</td>
</tr>
<tr>
<td>344</td>
<td>Bottom Carriages</td>
</tr>
<tr>
<td>345</td>
<td>Equilibrators</td>
</tr>
<tr>
<td>346</td>
<td>Elevating Mechanisms</td>
</tr>
<tr>
<td>347</td>
<td>Traversing Mechanisms</td>
</tr>
</tbody>
</table>

Materials Handbooks

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>301</td>
<td>Aluminum and Aluminum Alloys</td>
</tr>
<tr>
<td>302</td>
<td>Copper and Copper Alloys</td>
</tr>
<tr>
<td>303</td>
<td>Magnesium and Magnesium Alloys</td>
</tr>
<tr>
<td>304</td>
<td>Titanium and Titanium Alloys</td>
</tr>
<tr>
<td>305</td>
<td>Adhesives</td>
</tr>
<tr>
<td>306</td>
<td>Gasket Materials (Nonmetallic)</td>
</tr>
<tr>
<td>307</td>
<td>Glass</td>
</tr>
<tr>
<td>308</td>
<td>Plastics</td>
</tr>
<tr>
<td>309</td>
<td>Rubber and Rubber-Like Materials</td>
</tr>
<tr>
<td>310</td>
<td>Corrosion and Corrosion Protection of Metals</td>
</tr>
</tbody>
</table>

Surface-to-Air Missile Series

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>291</td>
<td>Part One, System Integration</td>
</tr>
<tr>
<td>292</td>
<td>Part Two, Weapon Control</td>
</tr>
<tr>
<td>293</td>
<td>Part Three, Computers</td>
</tr>
<tr>
<td>294(S)</td>
<td>Part Four, Missile Armament (U)</td>
</tr>
<tr>
<td>295(S)</td>
<td>Part Five, Countermeasures (U)</td>
</tr>
<tr>
<td>296</td>
<td>Part Six, Structures and Power Sources</td>
</tr>
<tr>
<td>297(S)</td>
<td>Part Seven, Sample Problem (U)</td>
</tr>
</tbody>
</table>