UNCLASSIFIED

<table>
<thead>
<tr>
<th>AD NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD816135</td>
</tr>
</tbody>
</table>

NEW LIMITATION CHANGE

TO
Approved for public release, distribution unlimited

FROM
Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational use; Aug 1966. Other requests shall be referred to Air Force Flight Dynamics Laboratory [FDFE], Wright-Patterson AFB, OH 45433.

AUTHORITY

AFFDL ltr, 12 Nov 1971.

THIS PAGE IS UNCLASSIFIED
CHEMILUMINESCENCE AS A SIGNALLING DEVICE

J. Evraea Gischard

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of the Air Force Flight Dynamics Laboratory (FDDE), Wright-Patterson AFB, Ohio 45433.
FOREWORD

This report covers work performed as an in-house research effort concerning the investigation of the phenomenon of chemiluminescence for signalling purposes. The effort was conducted by the Air Force Flight Dynamics Laboratory of the Research and Technology Division, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio. The investigation was initiated for the Limited War effort under a special charge number 041A-7763. The chief investigator was J. Brennan Gisclard. The work commenced in September 1965 and was completed in December 1965. The manuscript was released by the author in March 1966 for publication as a technical report. Resumption of any additional exploratory work will be only upon request from an interested department or agency.

Distribution is limited because this report contains information embargoed under the Department of State, International Traffic in Arms Regulations, and the U.S. Export Control Act of 1949.

Publication of this technical report does not constitute Air Force approval of the author’s findings or conclusions. It is published only for the exchange and stimulation of ideas.

WILLIAM C. SAVAGE
Chief, Environmental Control Branch
Vehicle Equipment Division
Air Force Flight Dynamics Laboratory
Abstract

Reliable and unique signalling devices are a military necessity and the vagaries of nocturnal operations on land and sea engender a constant search for improvements and innovations. The phenomenon of chemiluminescence has been under study as a simple, reliable means of producing a unique light that might be adaptable as a signalling device. The chemical compound commonly known as luminol remains the best producer of “cold” light. Various attempts were made to oxidize the compound using reagents that would be safe to handle and easily available for field use but would be capable of producing a visible glow. It was found that the luminol can be oxidized with any ordinary chlorine-containing bleach to produce a greenish blue light that can be made to function as a flash or continuous glow that is visible from a considerable distance. Provided water is available, the method offers a means of signalling when electrical equipment of any kind is not available or has ceased to function. The phenomenon might also be used to create bizarre effects for psychological warfare.
INTRODUCTION

The chemical, 5-amino-2,3-dihydro-1,4
phthalazinedione, commonly known as luminol, exhibits the unique property of giving
off a greenish blue light when it is oxidized
in an alkaline solution. The light is short
lived, however, and the reaction is irre-
versible so that a continuous glow is emitted
only while an oxidizing agent is brought
in contact with unreacted luminol. The light
may therefore consist of a single flash that
deteriorates rapidly or a continuous glowing
stream depending upon the manner in which
the chemicals are mixed.

The luminescence of luminol was first
studied in detail and described by Albrecht
(Reference 1). The phenomenon gained the
attention of Langenbeck and Ruge (Refer-
ence 2) who performed additional experiments
featuring light production, and their work
was followed closely by Huntress, Stanley,
and Parker (Reference 3). Other publica-
tions have appeared on luminol but the authors
have concerned themselves primarily with
the study of the mechanism of the reaction
which is beyond the scope of this report.

The data that follows describes the various
ways in which luminol can be made to react
with an oxidizing agent to produce a strongly
visible luminescence. In selecting the test
procedures consideration was given to prob-
lems that arise from the use of chemicals by
nontechnical personnel. The difference
between field conditions versus laboratory,
the hazards involved, and the cost of the
chemicals employed in the reaction.

TEST PROCEDURE

Reference to the literature cited and that
of a recent publication (Reference 4) indicate
that the desirable alkalinity which optimizes
light production is furnished by solutions of
sodium hydroxide. Accordingly, the experi-
ments were performed in this reagent in
varying concentrations but other alkaline
materials were also investigated.

Basic considerations for the use of luminol
in the field are the following:

1. The compounds to be made into

solutions should preferably be solids for ease
of packaging and transporting.

2. They should be very soluble in water
and require no special mixing procedures.

3. To reduce cost and hazard to personnel
they should be capable of producing the de-
sired effect in very low concentrations.

In view of these considerations, a number
of preliminary experiments were performed.
These experiments consisted of: (a) Pre-
paring an alkaline solution and dissolving
the luminol in the solution, or first mixing
the solid reagent and luminol together, then
dissolving the mixture, and (b) Adding an
oxidizing agent to the prepared alkaline
solution of luminol in the dark to observe
the effects. The results are shown in Table I.

The results in Table I reveal that the
most desirable effects are produced when a
solution of luminol in NaOH is mixed with
a dilute solution of a bleaching compound.
Either 5 percent sodium hypochlorite or a
prepared solution of Du-chlor can be used.
The Du-chlor is preferred, however, be-
cause it is a pure white powder that is
easily handled and more stable in solution.
The attached photograph shows the chemi-
luminescent phenomenon as produced in the
laboratory. The brighter glow resulted from
the usual and well-known oxidation of luminol
with hydrogen peroxide and potassium fer-
ricyanide. Hydrogen peroxide is an unstable
liquid, however, and requires further inves-
tigation for field use. The glow of a deeper
blue was produced with solid chemicals that
can be easily adapted to field use.

VISIBLE EFFECTS FOR FIELD USE

Regardless of the degree of luminescence
produced by laboratory experiments, to be
useful, the effect must be demonstrated
under conditions approaching actual field
operations. In this respect, visibility must
be achieved and persist for a length of time
commensurate with the function of the signal-
ling device and its location. An arrangement
was set up in which a solution of 0.1 percent
luminol in 0.1 N NaOH was fed from a 500 ml
bottle at a controlled rate and merged in
a Y tube with a similarly contained 0.5 percent
TABLE 1

<table>
<thead>
<tr>
<th>ALKALINE REAGENT</th>
<th>OXIDISER USED</th>
<th>LIGHT EFFECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1% Luminol in 1% K₂CO₃</td>
<td>Potassium Ferricyanide 1%</td>
<td>Barely visible</td>
</tr>
<tr>
<td>1% Luminol in 1% K₂CO₃</td>
<td>Sodium Hypochlorite 5%</td>
<td>Increased luminescence</td>
</tr>
<tr>
<td>1% Luminol in 1N NaOH</td>
<td>Sodium Hypochlorite 5%</td>
<td>Intense Green Light</td>
</tr>
<tr>
<td>1% Luminol in 0.1N NaOH</td>
<td>0.5% Sodium Hypochlorite in 0.1N NaOH</td>
<td>Bright Blue Glow</td>
</tr>
<tr>
<td>1% Luminol in 0.1N NaOH</td>
<td>Dilute Hydrogen Peroxide and Crystals of Potassium Ferricyanide</td>
<td>Bright Green Glow</td>
</tr>
<tr>
<td>1% Luminol in 1%K₂CO₃</td>
<td>Du-chlor (Sodium dichlorocyanurate) 1%</td>
<td>Poor Light</td>
</tr>
<tr>
<td>1% Luminol in 1N NaOH</td>
<td>Du-chlor, 1%</td>
<td>Bright Blue Glow</td>
</tr>
<tr>
<td>0.1% Luminol in 0.1N NaOH</td>
<td>Du-chlor 0.1%</td>
<td>Bright Blue Glow</td>
</tr>
<tr>
<td>0.1% Luminol in 1% Na₃PO₄</td>
<td>Du-chlor 0.1%</td>
<td>Good Luminescence</td>
</tr>
</tbody>
</table>

solution of sodium hypochlorite. The merging mixture flowed by gravity through a section of 1/4 inch OD clear, plastic tubing. The device was positioned on a table three feet above the floor at one end of a tunnel used for experiments in lighting effects. As the two reagents flowed together they produced a blue glow in about three feet of the tubing. It was observed that the glow was visible at a distance of 300 feet. By changing the flow rate of the luminol solution a pulsing glow was produced which was also visible at this distance.

DISCUSSION

The oxidation of luminol in an alkaline solution in the dark produces an intense blue glow that is visible at 200 feet. It would probably be visible at greater distances provided the quantities used were proportional to those used in laboratory experiments. All the reagents required to produce the glow are very soluble in water.

The chemical reaction is unique and suggests the following possibilities for application to the limited war effort:

1. As a unique signalling device for night operations.
2. As a locating device for rescue operations when a fire or flare would be hazardous to use.
3. As a locating device for rescue at sea.
4. As an emergency landing light on air strips.
5. As a psychological weapon by virtue of the weird and bizarre effects that can be produced.

In any area of use additional tests would have to be made depending upon the intended application, the manner in which the reagents are to be handled, and the best means of packaging and transporting the reagents for field use.
REFERENCES

Reliable and unique signalling devices are a military necessity and the vagaries of nocturnal operations on land and sea engender a constant search for improvements and innovations. The phenomenon of chemiluminescence has been under study as a simple, reliable means of producing a unique light that might be adaptable as a signalling device. The chemical compound commonly known as luminol remains the best producer of "cold" light. Various attempts were made to oxidize the compound using reagents that would be safe to handle and easily available for field use but would be capable of producing a visible glow. It was found that the luminol can be oxidized with any ordinary chlorine-containing bleach to produce a greenish blue light that can be made to function as a flash or continuous glow that is visible from a considerable distance. Provided water is available, the method offers a means of signalling when electrical equipment of any kind is not available or has ceased to function. The phenomenon might also be used to create bizarre effects for psychological warfare.
INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontraclsor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking to be in accordance with appropriate security regulations.

3. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

4. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parentheses immediately following the title.

5. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

6. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

7. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.

8. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedure, i.e., enter the number of pages containing information.

9. NUMBER OF REFERENCES: Enter the total number of references cited in the report.

10. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.

11. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system number, task number, etc.

12. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

13. OTHER REPORT NUMBER(S): If the report has been assigned any other report number(s) (either by the originator or by the sponsor), also enter this number(s).

14. SECURITY LIMITATION NOTICES: Enter any limitations of the report, other than those imposed by security classification, using standard statements such as:

 (1) "Qualified requesters may obtain copies of this report from DDC."
 (2) "Foreign announcement and dissemination of this report by DDC is not authorized."
 (3) "U.S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through..."
 (4) "U.S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through..."
 (5) "All distribution of this report is controlled. Qualified DDC users shall request through..."

 If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

15. SUPPLEMENTARY NOTES: Use for additional explanatory notes.

16. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

17. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

 It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (SI), (CI), or (U).

 There is no limitation on the length of the abstract. However, the suggested length is from 120 to 225 words.

18. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but shall be followed by an indication of technical content. The assignment of links, rules, and weights is optional.