NEW LIMITATION CHANGE

TO
Approved for public release, distribution unlimited

FROM
Distribution authorized to U.S. Gov’t. agencies and their contractors; Critical Technology; APR 1967. Other requests shall be referred to Department of the Army, Fort Detrick, Attn: Technical Releases Branch, Frederick, MD 21701.

AUTHORITY

Army Biological Defense Research Lab ltr
dtd 28 Sep 1971
TECHNICAL MANUSCRIPT 376

INHIBITION OF FLOWERING IN XANTHIUM PENSylvANICUM WALLN. BY ETHYLENE

Frederick B. Abeles

APRIL 1967

DEPARTMENT OF THE ARMY
Fort Detrick
Frederick, Maryland
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
DEPARTMENT OF THE ARMY
Fort Detrick
Frederick, Maryland 21701

TECHNICAL MANUSCRIPT 376

INHIBITION OF FLOWERING IN LANTHUM PENSylvanicum WALLN.
BY ETHYLENE.

Frederick B. Abeles

Crops Division
BIOLOGICAL SCIENCES LABORATORY

Project IL013001A91A

April 1967
INHIBITION OF FLOWERING IN XANTHIUM PENSylvANICUM WALLN.
BY ETHYLENE

ABSTRACT

Ethylene inhibited the formation of flowers in cocklebur (Xanthium pensylvanicum Walln.) plants that were exposed to an inductive dark period. Indoleacetic acid had been shown earlier to have this same effect. Because it stimulates ethylene evolution from cocklebur leaves, the results suggest that the effect of auxin may be an ethylene effect.

Bonner and Thurlow reported that indoleacetic acid (IAA) inhibited the formation of flowers in cockleburs (Xanthium pensylvanicum Walln.) when it was applied as a spray during the long inductive night. In the present report, evidence is presented that ethylene also inhibits the flowering of cocklebur plants that have been exposed to a long inductive photoperiod and that the IAA effect is probably due to auxin-stimulated ethylene production.

The two large apical beaks were cut from cocklebur fruits (Chicago strain*) and the fruits were washed in running water for 24 hours and planted in 4-inch pots of soil; seedlings were grown for 3 weeks at 25 C on a 16-hour light cycle (1,500 ft-c) supplied by daylight fluorescent bulbs. The plants were induced to flower by exposure to 16 hours of darkness in 10-liter desiccators containing 0, 1, 10, or 100 ppm ethylene. After the induction period, the plants were returned to the growth chamber; the sizes of the inflorescences were measured 8 weeks later. Ethylene evolution from the plants was measured by gas chromatography.

The inflorescences of the two controls receiving no ethylene were 5 and 8 mm in diameter and in anthesis. After 16 hours in the desiccator, the level of ethylene in the gas phase had risen to 0.025 ppm. One of the plants treated with 1 ppm ethylene remained vegetative and the other had an inflorescence 2 mm in diameter. The two plants treated with 10 and 100 ppm ethylene remained vegetative. Except for an initial temporary leaf epinasty, the ethylene treatment had no effect on the subsequent growth and vigor of the plants when compared with controls maintained on long days. This experiment was repeated on three other occasions and

* Supplied by F.B. Salisbury, Utah State University, Logan, Utah.
similar results were obtained. Ethylene production from untreated cockle-
bur plants during the 16-hour dark period was 7 nl per hour per plant.
Spraying prior to the dark period with 10^{-6} and 10^{-5} M IAA until runoff
increased the rate of gas production to 14 and 28 nl per hour, respectively.

Some recent examples of auxin effects shown to be ethylene effects
include the stimulation of abscission by auxin, the auxin-induced inhibi-
tion of growth of pea stem sections, and the induction of flowering of
pineapples. Palmer recently reported that high levels of IAA would
inhibit the induction of invertase in aged beetroot (Beta vulgaris L.)
tissue slices. Using the same species Scott reported that 10 ppm ethylene
would also inhibit invertase synthesis. Another example of auxin-ethylene
effects may be the development of sex in monoecious species. In a recent
review, Nitsch pointed out that treatments by auxin and unsaturated gases
such as ethylene, CO, and acetylene favor the formation of female flowers
on cucumber (Cucumis sativus L.) plants. The results presented here sug-
jest that the inhibition of flowering in the cocklebur by auxin may also
be an ethylene effect.

The mechanism by which ethylene prevents the induction of floral
primordia is unknown. However, it is known that RNA synthesis and
presumably protein synthesis are an essential part of the induction
process. It is known that ethylene can enhance RNA and protein syntheses
in ethylene-sensitive tissue, suggesting that ethylene may interfere
in some way with the orderly production of RNA required for the flowering
process.
LITERATURE CITED

REPORT TITLE

INHIBITION OF FLOWERING IN *XANTHIIUM PENSylvANICOUM* WALLN. BY ETHYLENE

AUTHORS

Abeles, Frederick B.

ABSTRACT

Ethylene inhibited the formation of flowers in cocklebur (*Xanthium pensylvanicum* Walln.) plants that were exposed to an inductive dark period. Indoleacetic acid had been shown earlier to have this same effect. Because it stimulates ethylene evolution from cocklebur leaves, the results suggest that the effect of auxin may be an ethylene effect.