UNCLASSIFIED

AD NUMBER

AD813218

NEW LIMITATION CHANGE

TO
Approved for public release, distribution unlimited

FROM
Distribution authorized to U.S. Gov't. agencies and their contractors; Critical Technology; APR 1967. Other requests shall be referred to Department of the Army, Attn: Technical Releasing Branch/TID, FT Detrick, Frederick, MD 21701.

AUTHORITY

BDRL, D/A ltr, 28 Sep 1971

THIS PAGE IS UNCLASSIFIED
EFFECT OF UV-IRRADIATED HELPER PHAGE ON TRANSFORMATION AND TRANSFECTION OF ESCHERICHIA COLI BY DNA FROM A TRANSDUCING PHAGE

Lois M. Swaney
Robert A. Altenbern

STATEMENT #2 UNCLASSIFIED

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of

APRIL 1967

DEPARTMENT OF THE ARMY
Fort Detrick
Frederick, Maryland
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
Reproduction of this publication in whole or in part is prohibited except with permission of the Commanding Officer, Fort Detrick, ATTN: Technical Releases Branch, Technical Information Division, Fort Detrick, Frederick, Maryland, 21701. However, DDC is authorized to reproduce the publication for United States Government purposes.

DDC AVAILABILITY NOTICES

Qualified requesters may obtain copies of this publication from DDC.

Foreign announcement and dissemination of this publication by DDC is not authorized.

Release or announcement to the public is not authorized.

DISPOSITION INSTRUCTIONS

Destroy this publication when it is no longer needed. Do not return it to the originator.

The findings in this publication are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.
EFFECT OF UV-IRRADIATED HELPER PHAGE ON TRANSFORMATION AND TRANSFECTION OF ESCHERICHIA COLI BY DNA FROM A TRANSDUCING PHAGE

Lois M. Swanse
Robert A. Altenbern

Medical Bacteriology Division
BIOLOGICAL SCIENCES LABORATORY

Project 1C014501871A

April 1967
EFFECT OF UV-IRRADIATED HELPER PHAGE ON TRANSFORMATION AND TRANSFECTION OF ESCHERICHIA COLI BY DNA FROM A TRANSDUCING PHAGE

ABSTRACT

When moderately irradiated helper phage λ^+ was added to Escherichia coli W1485 A23 (try A^-) cells and DNA from a non-defective, temperate, transducing hybrid phage carrying bacterial try A and B genes ($\lambda^h\lambda^b\lambda^+\lambda^B$), it resulted in an increase in try$^+$ transformants and hybrid phage transfectants. The increase may result from prevention of lysis of potential transformants and transfectants because of irradiation damage in the helper phage.

The addition of severely irradiated λ^+ resulted in a decrease in the number of transfectants but did not reduce the number of transformants. Two possibilities are considered: (i) the decrease in transfectants results from insertion of ultraviolet-light damage in the helper phage DNA into the genome of the hybrid phage, preventing replication of the hybrid phage, and (ii) the registry of the try genes carried by the hybrid phage with the bacterial chromosome, resulting in try$^+$ transformants, is not affected by insertion of ultraviolet-light damage from the helper phage.

Taylor and Yanofsky reported transformation of a tryptophan A^- mutant of Escherichia coli to tryptophan independence when they infected cells with helper phage before adding DNA from a non-defective, temperate, transducing hybrid phage carrying bacterial try A and B genes. They suggested some type of physical interaction between the helper DNA and the hybrid DNA in the instances when the helper DNA directed the hybrid DNA to the attachment site of the helper phage on the bacterial chromosome. The hybrid DNA normally attaches at another site.

This communication reports the effect of ultraviolet-light-inactivated helper phage λ^+ on the recovery of try$^+$ transformants and on the simultaneous recovery of hybrid phage transfectants. Transfection, a term suggested by Foldes and Trautner, refers to the production of complete virus in cells infected with isolated nucleic acid from that virus.
E. coli K12 strain W1485 A23 (try A' mutant), non-lysogenic or lysogenic for the hybrid phage λ1434 or λ80, and W3101 lysogenic for the helper phage λ1434 (a λ-434 hybrid with the immunity of 434) were obtained from Dr. Milton W. Taylor. Strain W1485 wild type was obtained from Dr. Esther M. Lederberg, and C600 lysogenic for λ from Dr. Benjamin J. Barnhart.

The procedures of Taylor and Yanofsky were followed with these exceptions. Lysogenic strains were induced with mitomycin C, and the resultant phages were propagated on W1485. Lysates containing either the helper or the hybrid phage were subjected to several cycles of low- and high-speed centrifugation in 0.01 M Tris + 0.01 M MgSO₄, pH 7.8, to concentrate and purify the phage. Plaque-forming units (PFU) of the helper phage were assayed on lawns of W1485 or W1485 A23, and those of the hybrid phage on W3101 (λ1434). Try⁺ transformant colonies on minimal agar were counted after 48 hours at 37 C. Preparations of hybrid phage DNA were heated to 72 C for 10 minutes and quickly chilled in ice water as described by Barnhart. DNA was used in a final concentration of 10 µg per ml. Suspensions of the helper phage were irradiated 36 cm below a 15-watt "germicidal" lamp in containers placed on a rotary shaker. Irradiated and non-irradiated phage were added to cells in the ratio of 2.6 phage particles per cell, as determined from the titer of non-irradiated phage.

Table 1 reveals the effect on the transformation system of helper phage exposed for increasing periods to ultraviolet (UV) light. The table also shows the effect of irradiation on the viability of the helper phage. The UV irradiation that reduced the titer of the helper phage by three logs resulted in an increase in try⁺ transformants and transfectants. Exposure of the helper phage to more UV light reduced the numbers of transfectants but did not affect the formation of try⁺ transformants.

Control experiments (not reported here) showed that infection of W1485 A23 with non-irradiated helper phage resulted in the lysis of 85% of the cells. Increased recovery of both transformants and transfectants among cells infected with moderately damaged helper phage may result from prevention of lysis of potential transformants and transfectants by the helper phage.

The helper phage is a λ phage lacking only the λ immunity region and the hybrid phage contains the λ immunity region and the host range of 80. Thus, there must be considerable genetic homology between the genomes of the two phages. Decreased recovery of transfectants that occurs following infection with severely irradiated helper phage may result from insertion of the UV damage in the helper-phage DNA into the genome of the hybrid phage, preventing replication of the hybrid phage.

* CalBiochem, Los Angeles, Calif.
** General Electric Co.
TABLE 1. TRANSFORMATION AND TRANSFECTION OF E. COLI W1485 A23 BY HYBRID PHAGE DNA AFTER TREATMENT WITH IRRADIATED HELPER PHAGE\(^a\)\(^b\)

<table>
<thead>
<tr>
<th>Minutes</th>
<th>Helper Phage</th>
<th>PFU</th>
<th>Number per ml of Mixture(^b)</th>
<th>Transfectants</th>
<th>Transformants</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Irradiated</td>
<td>Surviving</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>1.1 x 10(^6)</td>
<td>6.9 x 10(^6)</td>
<td>275</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>3.1 x 10(^6)</td>
<td>>5.0 x 10(^6)</td>
<td>420</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>3.1 x 10(^6)</td>
<td>1.0 x 10(^6)</td>
<td>620</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>1.0 x 10(^6)</td>
<td>1.1 x 10(^6)</td>
<td>790</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.0</td>
<td>3.0 x 10(^6)</td>
<td>3.5 x 10(^3)</td>
<td>755</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None(^c)</td>
<td>2.6 x 10(^9)</td>
<td>1.5 x 10(^6)</td>
<td>60</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(\text{a. Each ml of incubation mixture contained 1.0 x 10}^9\text{ cells, 2.6 x 10}^9\text{ phage particles, and 10 \(\mu\)g DNA.}
\(\text{b. Each value is an average of two determinations.}
\(\text{c. A replicate mixture, from which hybrid phage DNA was}
\text{omitted, contained no \text{try}^+\text{ or transfected cells.}

Transformation to tryptophan independence was not diminished in the presence of severely irradiated helper phage. Apparently, the hybrid phage, although unable to replicate because of incorporation of damage from the helper phage, may register with the chromosome of the recipient cell and, if so, may subsequently transform from \text{try}^+ to \text{try}^-. The portion of the hybrid phage DNA carrying the \text{try}^+\text{B}^+\text{ genes presumably has no homology with the damaged helper phage.

Transformant colonies obtained with non-irradiated helper phage were reported to be lysogenic for \(\lambda\)\(^{434}\) and the hybrid phages\(^1\) and to be smooth- or rough-edged. This colonial morphology was shown to be associated with the chromosomal location of the hybrid phage.\(^2\) Our studies included an examination of progeny of transformant colonies obtained with irradiated helper phage. Many \text{try}^+\text{ progeny of smooth-edged colonies were non-lysogenic and sensitive to }\lambda, \text{ try}^+\text{B}^+\text{, the hybrid, and \(\phi\)60 phages, but others were lysogenic for the hybrid phage. Assessment of the lysogenic characteristics of progeny of rough-edged colonies was inconclusive because of the segregation of \text{try}^+\text{ cells, also noted by Taylor and Yanofsky, and the large numbers of free hybrid phage in the transformed clones discovered in the course of these experiments. Progeny that were examined were not lysogenic for }\lambda\text{\(^{434}\), although they did harbor the hybrid phage.\)
Goldschmidt and Landman demonstrated transduction of *Salmonella typhimurium* LT-2 by high multiplicities of UV-inactivated virulent PLT-2 bacteriophage that resulted in the recovery of phage-sensitive, non-lysogenic transductants. The UV treatment of helper phage in the transformation system described in this paper provides a method for increasing the transformation rate to try independence, possibly by preventing lysis of potential transformants by the helper phage, and may provide a method for studying transformation without lysogenization.
LITERATURE CITED

EFFECT OF UV-IRRADIATED HELPER PHAGE ON TRANSFORMATION AND TRANSFECTION OF ESCHERICHIA COLI BY DNA FROM A TRANSDUCING PHAGE

When moderately irradiated helper phage λ^{434} was added to Escherichia coli W1485 A23 (try^+) cells and DNA from a non-defective, temperate, transducing hybrid phage carrying bacterial try A and B genes ($\lambda^{436} \text{try}^+$ A and B), it resulted in an increase in try^+ transformants and hybrid phage transfectants. The increase may result from prevention of lysis of potential transformants and transfectants because of irradiation damage in the helper phage.

The addition of severely irradiated λ^{434} resulted in a decrease in the number of transfectants but did not reduce the number of transformants. Two possibilities are considered: (i) the decrease in transfectants results from insertion of ultraviolet-light damage in the helper phage DNA into the genome of the hybrid phage, preventing replication of the hybrid phage, and (ii) the registry of the try genes carried by the hybrid phage with the bacterial chromosome, resulting in try^+ transformants, is not affected by insertion of ultraviolet-light damage from the helper phage.