Approved for public release; distribution is unlimited.

Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; JAN 1967. Other requests shall be referred to Air Force Rocket Propulsion Lab., Edwards AFB, CA.

AFRPL ltr 20 Dec 1971
FINAL REPORT
156 INCH FIBERGLASS CASE LITVC MOTOR PROGRAM (U)

THIOKOL CHEMICAL CORPORATION
WASATCH DIVISION

TECHNICAL REPORT NO. AFRPL–TR–66–331

VOLUME II
NOZZLE DESIGN ANALYSIS

JANUARY 1967

PREPARED FOR
HEADQUARTERS, SPACE SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
LOS ANGELES, CALIFORNIA 90045

IN ADDITION TO SECURITY REQUIREMENTS WHICH MUST BE MET, THIS DOCUMENT IS SUBJECT TO SPECIAL EXPORT CONTROLS AND EACH TRANSMITTAL TO FOREIGN GOVERNMENTS OR FOREIGN NATIONALS MAY BE MADE ONLY WITH PRIOR APPROVAL OF AFRPL (RPPR/STINFO) EDWARDS, CALIFORNIA 93523.
THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
FINAL REPORT
156 INCH FIBERGLASS CASE LITVC MOTOR PROGRAM (U)

THIOKOL CHEMICAL CORPORATION
WASATCH DIVISION

TECHNICAL REPORT NO. AFRPL-TR-66-331
VOLUME II
NOZZLE DESIGN ANALYSIS

January 1967

Approved by
W. G. Ramroth, Manager
Large Space Booster
Project Engineering

Approved by
C. G. Kennedy, Manager
Space Booster Development

IN ADDITION TO SECURITY REQUIREMENTS WHICH MUST BE MET, THIS DOCUMENT IS
SUBJECT TO SPECIAL EXPORT CONTROLS AND EACH TRANSMITTAL TO FOREIGN GOV-
ERNMENTS OR FOREIGN NATIONALS MAY BE MADE ONLY WITH PRIOR APPROVAL OF
AFRPL (RPPR/STINFO), EDWARDS, CALIFORNIA 93523.
FOREWORD

This Final Technical Engineering Report covers the work performed under Contract AF 04(695)-773, "156-7 Fiberglass Case Liquid Injection Thrust Vector Control Motor Program". The program motor, designated by the Air Force as the 156-7 rocket motor, is identified for inhouse processing as the TU-393 rocket motor.

This program was conducted under the overall direction of Col H. W. Robbins of SSD, with technical direction by the Air Force Rocket Propulsion Laboratory (AFRPL). Mr. Carver G. Kennedy, Manager Space Booster Development, was the Wasatch Division Program Manager and Mr. W. G. Ramroth, Manager Large Space Booster Project Engineering was the Project Engineer.

This technical report has been reviewed and is approved.

Mr. R. Felix
Senior Project Engineer (RPMMS)
AFRPL, Edwards, California
ABSTRACT

The 156 in. diameter case LITVC motor program was conducted by the Wasatch Division, Thiokol Chemical Corporation for the Air Force Space Systems Division with technical direction by the Air Force Rocket Propulsion Laboratory. The two major objectives were (1) the design and fabrication of a flightweight 156 in. diameter monolithic solid propellant motor utilizing a fiberglass-reinforced plastic monolithic case, a 34 to 1 expansion ratio submerged fixed nozzle, and a N₂O₄ LITVC system; and (2) the demonstration static test of the motor in a simulated altitude environment to provide meaningful LITVC data in a high expansion ratio nozzle. Both objectives were successfully attained. The program was culminated on 13 May 1966 with a static test of the motor utilizing a 10 ft diameter by 82 ft long diffuser for altitude simulation. The motor had a mass fraction in excess of 0.90 and operated for 110 sec at an average thrust level of approximately 325,000 lb. The static test was successful and all motor components were intact and in good condition at the completion of the firing. Two abnormalities occurred during the firing. At approximately 0 sec, a burnthrough occurred in the diffuser tube approximately four feet aft of the nozzle exit plane, apparently due to high localized erosion of the ablative insulation on the inside diameter. The diffuser continued to operate throughout the test although at a lower simulated altitude. A malfunction of the pressure regulating subsystem portion of the LITVC system caused a degradation of injectant pressure during the firing and subsequent degradation of the LITVC performance. Post-test inspection of the motor and components revealed that internal insulation, nozzle design, and case design were satisfactory and the motor had functioned as expected. The static test demonstrated attainment of all program objectives. After post-test analysis of the fired motor and components, the fired case was hydroburst tested to obtain additional data on fiberglass case design. The case burst at 963 psig, very near the design ultimate pressure of 970 psig. This hydroburst, performed under a supplemental agreement to the contract, demonstrated the validity of the design and fabrication techniques used for this case.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II NOZZLE DESIGN AND FABRICATION</td>
<td>2</td>
</tr>
<tr>
<td>1. Design</td>
<td>6</td>
</tr>
<tr>
<td>c. Submerged Assembly</td>
<td>6</td>
</tr>
<tr>
<td>b. Flange and Injector Ring Pad</td>
<td>14</td>
</tr>
<tr>
<td>c. Exit Cone Assembly</td>
<td>14</td>
</tr>
<tr>
<td>2. Method of Fabrication</td>
<td>19</td>
</tr>
<tr>
<td>3. Design Criteria</td>
<td>22</td>
</tr>
<tr>
<td>III LOADS AND ANALYSIS SUMMARY</td>
<td>29</td>
</tr>
<tr>
<td>1. Loads</td>
<td>29</td>
</tr>
<tr>
<td>2. Analysis</td>
<td>25</td>
</tr>
<tr>
<td>IV DESIGN ANALYSES</td>
<td>50</td>
</tr>
<tr>
<td>1. Aerodynamic Analysis</td>
<td>50</td>
</tr>
<tr>
<td>a. Exit Cone</td>
<td>51</td>
</tr>
<tr>
<td>b. Nose Contour</td>
<td>53</td>
</tr>
<tr>
<td>c. Aerodynamic Nozzle Loads</td>
<td>68</td>
</tr>
<tr>
<td>2. Heat Transfer and Erosion Analysis</td>
<td>71</td>
</tr>
<tr>
<td>a. Definition of Motor Internal Thermal Environment</td>
<td>71</td>
</tr>
<tr>
<td>b. Insulation Performance</td>
<td>81</td>
</tr>
<tr>
<td>c. Nozzle Throat Sample Analysis</td>
<td>84</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>d. Material Loss Due to Erosion (Corrosion)</td>
<td>95</td>
</tr>
<tr>
<td>e. Erosion Due to LITVC</td>
<td>100</td>
</tr>
<tr>
<td>f. Conclusions</td>
<td>103</td>
</tr>
<tr>
<td>3. Structural Analysis</td>
<td></td>
</tr>
<tr>
<td>a. Thermal Stress Analysis</td>
<td>112</td>
</tr>
<tr>
<td>b. Discontinuity Analysis of Flange–Submerged Shell and Case Polar Boss.</td>
<td>116</td>
</tr>
<tr>
<td>c. Submerged Shell Buckling</td>
<td>153</td>
</tr>
<tr>
<td>d. Stiel Flange Shell Stresses</td>
<td>165</td>
</tr>
<tr>
<td>e. Exit Cone Shell</td>
<td>179</td>
</tr>
<tr>
<td>f. Flange Shell – Exit Cone Shell Discontinuity Analysis</td>
<td>198</td>
</tr>
<tr>
<td>g. Injector Ring Analysis</td>
<td>222</td>
</tr>
<tr>
<td>h. Exit Cone Attachment Analysis</td>
<td>233</td>
</tr>
<tr>
<td>i. Flange Joint (Steel to Plastic)</td>
<td></td>
</tr>
<tr>
<td>V WEIGHT ANALYSIS</td>
<td>269</td>
</tr>
<tr>
<td>VI LIST OF REFERENCES</td>
<td>271</td>
</tr>
</tbody>
</table>
List of Illustrations

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Physical Properties of Plastic Laminates at Room Temperature</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Metal Material Properties at Room Temperature</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Properties of Aluminum Honeycomb and Attach Bolts</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>156-7 Nozzle</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>156-7 Nozzle Submerged Cone Assembly</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>156-7 Nozzle Nose Inlet Cap Blank</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>Structural Shell Upper Stage Nozzle</td>
<td>15</td>
</tr>
<tr>
<td>8</td>
<td>156-7 Flange Shell</td>
<td>15</td>
</tr>
<tr>
<td>9</td>
<td>156-7 Nozzle Exit Cone Assembly</td>
<td>17</td>
</tr>
<tr>
<td>10</td>
<td>156-7 Nozzle Fabrication Flow Chart</td>
<td>21</td>
</tr>
<tr>
<td>11</td>
<td>Pressure vs Time Curves for 156-7 Motor (70 and 100°F)</td>
<td>27</td>
</tr>
<tr>
<td>12</td>
<td>Vacuum Thrust vs Time Curves for 156-7 Motor (70 and 100°F)</td>
<td>28</td>
</tr>
<tr>
<td>13</td>
<td>Static Test Loads at Utah Conditions</td>
<td>30</td>
</tr>
<tr>
<td>14</td>
<td>156-7 Nozzle Internal Pressure Distribution</td>
<td>31</td>
</tr>
<tr>
<td>15</td>
<td>156-7 Nozzle Axial Shear Load Distribution</td>
<td>32</td>
</tr>
<tr>
<td>16</td>
<td>Pressure Distribution During Secondary Injection</td>
<td>33</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS (Cont)

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>156-7 Nozzle Axial Pressure Distribution Due to LITVC</td>
<td>34</td>
</tr>
<tr>
<td>18</td>
<td>156-7 Pressure Distribution Due to LITVC</td>
<td>35</td>
</tr>
<tr>
<td>19</td>
<td>Axial Shear Force Due to LITVC (3.5 Deg Thrust Vector)</td>
<td>36</td>
</tr>
<tr>
<td>20</td>
<td>Transverse Shear Load Due to LITVC (3.5 Deg Thrust Vector)</td>
<td>37</td>
</tr>
<tr>
<td>21</td>
<td>156-7 Moment Distribution Due to Side Load</td>
<td>38</td>
</tr>
<tr>
<td>22</td>
<td>LITVC Tangential Moment vs Station in the Exit Cone</td>
<td>39</td>
</tr>
<tr>
<td>23</td>
<td>Weight Per inch vs Station</td>
<td>40</td>
</tr>
<tr>
<td>24</td>
<td>Flight Test Acceleration Loads</td>
<td>41</td>
</tr>
<tr>
<td>25</td>
<td>LITVC Tank Strut and Nozzle Loads (Flight Test Condition)</td>
<td>42</td>
</tr>
<tr>
<td>26</td>
<td>Simulated Tank Loads on Igniter Ring</td>
<td>43</td>
</tr>
<tr>
<td>27</td>
<td>Simulated Tank Loads on Flange Shell</td>
<td>44</td>
</tr>
<tr>
<td>28</td>
<td>Design Conditions</td>
<td>45</td>
</tr>
<tr>
<td>29</td>
<td>Structural Analysis Summary</td>
<td>47</td>
</tr>
<tr>
<td>30</td>
<td>156-7 Chamber Side of Nozzle Erosion and Char Prediction</td>
<td>48</td>
</tr>
<tr>
<td>31</td>
<td>156-7 Nozzle Exit (Inside Wall) Erosion and Char Prediction</td>
<td>49</td>
</tr>
<tr>
<td>32</td>
<td>156-7 Exit Cone Mach Number Profile</td>
<td>54</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>33</td>
<td>156-7 Exit Cone Heat Transfer Coefficient Variation</td>
<td>55</td>
</tr>
<tr>
<td>34</td>
<td>156-7 Local Wall Mach Number vs Axial Location in Nozzle (R_{\text{INF}} = 19.2 \text{ In.} ; L_N = 13.0 \text{ In.})</td>
<td>56</td>
</tr>
<tr>
<td>35</td>
<td>156-7 Convective Heat Transfer Coefficient vs Axial Location in Nozzle (R_{\text{INF}} = 19.2 \text{ In.} ; L_N = 13.0 \text{ In.})</td>
<td>57</td>
</tr>
<tr>
<td>36</td>
<td>Hyperbolic Spiral Description</td>
<td>59</td>
</tr>
<tr>
<td>37</td>
<td>Analysis Matrix</td>
<td>61</td>
</tr>
<tr>
<td>38</td>
<td>156-7 Local Wall Mach Number vs Axial Location in Nozzle (R_{\text{INF}} = 18.57 \text{ In.} ; L_N = 12.0 \text{ In.})</td>
<td>62</td>
</tr>
<tr>
<td>39</td>
<td>156-7 Convective Heat Transfer Coefficient vs Axial Location in Nozzle (R_{\text{INF}} = 18.57 \text{ In.} ; L_N = 12.0 \text{ In.})</td>
<td>63</td>
</tr>
<tr>
<td>40</td>
<td>156-7 Local Wall Mach Number vs Axial Location in Nozzle (R_{\text{INF}} = 19.8 \text{ In.} ; L_N = 13.8 \text{ In.})</td>
<td>66</td>
</tr>
<tr>
<td>41</td>
<td>156-7 Convective Heat Transfer Coefficient vs Axial Location in Nozzle (R_{\text{INF}} = 19.8 \text{ In.} ; L_N = 13.8 \text{ In.})</td>
<td>67</td>
</tr>
<tr>
<td>42</td>
<td>Thermal and Erosion Analysis Definitions</td>
<td>72</td>
</tr>
<tr>
<td>43</td>
<td>Exhaust Gas Enthalpy vs Area Ratio</td>
<td>75</td>
</tr>
<tr>
<td>44</td>
<td>Viscosity of Combustion Products (Evaluated at 1,000 psi)</td>
<td>78</td>
</tr>
<tr>
<td>45</td>
<td>Prandtl Number of Combustion Products (Evaluated at 1,000 psi)</td>
<td>79</td>
</tr>
<tr>
<td>46</td>
<td>Convective Heat Transfer Coefficient vs Area Ratio</td>
<td>80</td>
</tr>
<tr>
<td>47</td>
<td>Static Gas Temperature vs Nozzle Area Ratio</td>
<td>82</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS (Cont)

<table>
<thead>
<tr>
<th>Figure</th>
<th>Illustration Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>Predicted Temperature Profiles, 156-7 Nozzle Section Through Throat</td>
<td>86</td>
</tr>
<tr>
<td>49</td>
<td>Temperature Distribution, 156-7 Nozzle Section 8 In. Forward of Throat (A/A* = 1.54; Time = 108 Sec)</td>
<td>87</td>
</tr>
<tr>
<td>50</td>
<td>Predicted Temperature Profiles, 156-7 Nozzle Section at A/A* = 4.0</td>
<td>88</td>
</tr>
<tr>
<td>51</td>
<td>Predicted Temperature Profiles, 156-7 Nozzle Section at A/A* = 8.6</td>
<td>89</td>
</tr>
<tr>
<td>52</td>
<td>Predicted Temperature Profiles, 156-7 Nozzle Section at A/A* = 12.9</td>
<td>90</td>
</tr>
<tr>
<td>53</td>
<td>Predicted Temperature Profiles, 156-7 Nozzle Section at A/A* = 14.7</td>
<td>91</td>
</tr>
<tr>
<td>54</td>
<td>Predicted Temperature Profiles, 156-7 Nozzle Section at A/A* = 22.5</td>
<td>92</td>
</tr>
<tr>
<td>55</td>
<td>Predicted Temperature Profiles, 156-7 Nozzle Section at A/A* = 33.0</td>
<td>93</td>
</tr>
<tr>
<td>56</td>
<td>Temperature Profiles Through Insulation on Chamber Side of 156-7 Nozzle</td>
<td>94</td>
</tr>
<tr>
<td>57</td>
<td>Graphite Cloth Phenolic Erosion Rate vs Convective Heat Transfer Coefficient</td>
<td>96</td>
</tr>
<tr>
<td>58</td>
<td>Graphite (Carbon) Cloth Phenolic Erosion Rate vs Convective Heat Transfer Coefficient</td>
<td>97</td>
</tr>
<tr>
<td>59</td>
<td>Silica Cloth Phenolic Erosion Rate vs Convective Heat Transfer Coefficient</td>
<td>98</td>
</tr>
<tr>
<td>60</td>
<td>158-7 Nozzle Erosion and Char Profile</td>
<td>101</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>61</td>
<td>Ablation Rates as a Function of Flow Rate Ratio (Injectant Flow Rate/Axial Flow Rate)</td>
<td>102</td>
</tr>
<tr>
<td>62</td>
<td>Nomenclature</td>
<td>106</td>
</tr>
<tr>
<td>63</td>
<td>156-7 Nozzle Thermal Stresses 8.0 In. Forward of Throat (Time = 108 Sec)</td>
<td>109</td>
</tr>
<tr>
<td>64</td>
<td>156-7 Nozzle Thermal Stresses at Throat (Time = 108 Sec)</td>
<td>110</td>
</tr>
<tr>
<td>65</td>
<td>156-7 Nozzle Thermal Stresses at A/A* = 4.0 (Time = 108 Sec)</td>
<td>111</td>
</tr>
<tr>
<td>66</td>
<td>156-7 Nozzle Discontinuity Stresses at Attachment Flange</td>
<td>117</td>
</tr>
<tr>
<td>67</td>
<td>156-7 Nozzle Flange Area</td>
<td>118</td>
</tr>
<tr>
<td>68</td>
<td>Submerged Nozzle Discontinuity at the Torque Box (Loads During Static Firing at MEOP)</td>
<td>199</td>
</tr>
<tr>
<td>69</td>
<td>156-7 Nozzle Internal Pressure During Flight</td>
<td>200</td>
</tr>
<tr>
<td>70</td>
<td>Torque Box Tank Loads, View Looking Forward</td>
<td>222</td>
</tr>
<tr>
<td>71</td>
<td>Total Stress in Injector Ring from Strut Radial Loads vs Location</td>
<td>231</td>
</tr>
<tr>
<td>72</td>
<td>Radial and Rotational Glass Steel Shell Deflections</td>
<td>264</td>
</tr>
<tr>
<td>73</td>
<td>Nozzle Section Materials and Design Criteria</td>
<td>265</td>
</tr>
<tr>
<td>74</td>
<td>156-7 Nozzle Mass Properties Data</td>
<td>279</td>
</tr>
</tbody>
</table>
SECTION I

INTRODUCTION

Detailed design analyses were conducted on the 156-7 nozzle for the 156 Inch Demonstration Motor. The nozzle presented in this report complies with the requirements of Exhibit "A" to Contract AF 04(695)-773 and will provide a reliable performance.

The detailed analyses that were conducted include an aerodynamic analysis, a thermal analysis, and a structural analysis.

This section presents the results of these analyses for the design of the 156-7 nozzle.

Maximum use of recent developments in analytical techniques and test results from recent firings (such as Thiokol's TU-402, TU-412, TU-454, TU-455, and SURVEYOR and UTC's 1205-3 Motor) was made in the design of this nozzle. Analyses indicate that design objectives were met and that the 156-7 nozzle design should perform successfully.
SECTION II

NOZZLE DESIGN AND FABRICATION

The nozzle concept selected for the 156-7 156 in. rocket motor is a semisubmerged, fixed, contoured, ablative plastic nozzle for an upper stage application and utilizes liquid injection of nitrogen tetroxide for thrust vector control. The nozzle has been analyzed for both flight and static test conditions; these analyses are presented later in this section.

Nozzle liner and insulation thickness was based on heat transfer and erosion analyses and a thorough evaluation of test and manufacturing data. The structural member thicknesses were determined from a comprehensive structural analysis. In all cases, compatibility, ease of fabrication, cost, availability, and the properties and past performance of each material were carefully considered before making a material selection. The materials chosen for this nozzle, (graphite cloth phenolic, carbon cloth phenolic, silica cloth phenolic, and glass cloth phenolic) are all in common use in the industry and have proven reliable as used in the appropriate design application.

Other nozzle designs considered especially pertinent to the 156-7 nozzle design were the submerged structures of the Wing VI Stage II MINUTEMAN and SURVEYOR, the submerged noses of the TU-454 and TU-455 motors, and the exit cone structure of the TITAN III 120 in. motor. Available material data obtained by all contractors (primarily Thiokol and Lockheed) in the 623A program were carefully analyzed. Properties of the various materials are presented in Figures 1 thru 3.
<table>
<thead>
<tr>
<th>Material</th>
<th>Graphite Cloth Tape Phenolic</th>
<th>Carbon Cloth Tape Phenolic</th>
<th>Silica Cloth Tape Phenolic</th>
<th>181 Glass Cloth Tape Phenolic</th>
<th>341 and 143 Glass Broad Cloth Phenolic</th>
<th>143 Glass Cloth Tape Wrap E-Glass</th>
<th>20 End S-HTS Glass Filament E-Glass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultimate Tensile (psi)</td>
<td>15,000</td>
<td>20,000</td>
<td>25,000</td>
<td>45,000</td>
<td>75,000</td>
<td>110,000</td>
<td>65,000</td>
</tr>
<tr>
<td>Flexural Modulus (psi x 10^6)</td>
<td>1.2</td>
<td>1.8</td>
<td>2.6</td>
<td>4.5</td>
<td>5.0</td>
<td>3.0</td>
<td>8.10</td>
</tr>
<tr>
<td>Ultimate Tensile (psi)</td>
<td>12,000</td>
<td>12,000</td>
<td>12,000</td>
<td>36,000</td>
<td>75,000</td>
<td>85,000</td>
<td>45,000</td>
</tr>
<tr>
<td>Flexural Modulus (psi x 10^6)</td>
<td>1.75</td>
<td>2.0</td>
<td>2.3</td>
<td>5.39</td>
<td>6.58</td>
<td>3.20</td>
<td>6.10</td>
</tr>
<tr>
<td>Compressive Strength (psi)</td>
<td>15,000</td>
<td>20,000</td>
<td>25,000</td>
<td>35,000</td>
<td>45,000</td>
<td>60,000</td>
<td>45,000</td>
</tr>
<tr>
<td>Compressive Modulus (psi x 10^6)</td>
<td>2.00</td>
<td>3.00</td>
<td>2.50</td>
<td>2.94</td>
<td>4.91</td>
<td>5.12</td>
<td>2.79</td>
</tr>
<tr>
<td>Specific Gravity</td>
<td>1.50</td>
<td>1.54</td>
<td>1.74</td>
<td>1.94</td>
<td>1.94</td>
<td>1.94</td>
<td>1.94</td>
</tr>
<tr>
<td>Barcol Hardness</td>
<td>37</td>
<td>72</td>
<td>74</td>
<td>NR</td>
<td>74</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Specific Heat</td>
<td>0.26</td>
<td>0.25</td>
<td>0.24</td>
<td>0.22</td>
<td>0.20</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Thermal Conductivity</td>
<td>6.0</td>
<td>3.17</td>
<td>2.1</td>
<td>1.37</td>
<td>1.92</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>(Btu/hr/ft²F)</td>
<td>45 (min)</td>
<td>60 (min)</td>
<td>50</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Organic Resin</td>
<td>34 - 3</td>
<td>34 - 3</td>
<td>34 - 3</td>
<td>34 - 3</td>
<td>NR</td>
<td>36 max</td>
<td>36 max</td>
</tr>
<tr>
<td>Solids (percent)</td>
<td>2 - 8</td>
<td>2 - 8</td>
<td>2.2 max</td>
<td>NR</td>
<td>3.5</td>
<td>2.0 max</td>
<td>2.0 max</td>
</tr>
<tr>
<td>Volatile Range (percent)</td>
<td>5 - 15</td>
<td>5 - 15</td>
<td>5 - 15</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Component Use</td>
<td>Inlet Exit Cone Exit Cone</td>
<td>Exit Cone Structural Insulation</td>
<td>Exit Cone Substructure Submerged Structural Shell</td>
<td>Face Sheets</td>
<td>Fed Ring Sandwich Face Sheets</td>
<td>End Ring Sandwich Face Sheets</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: NR - Not reported

Figure 1. Physical Properties of Plastic Laminates at Room Temperature (Warp Direction, 0°)
<table>
<thead>
<tr>
<th>Property</th>
<th>18 Percent Nickel Steel</th>
<th>5052-Sheet Aluminum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tension, ultimate (psi)</td>
<td>210,000</td>
<td>31,000</td>
</tr>
<tr>
<td>Tension, yield (psi)</td>
<td>200,000</td>
<td>21,000</td>
</tr>
<tr>
<td>Compression, ultimate (psi)</td>
<td>210,000</td>
<td>31,000</td>
</tr>
<tr>
<td>Compression, yield (psi)</td>
<td>200,000</td>
<td>20,000</td>
</tr>
<tr>
<td>Shear, ultimate (psi)</td>
<td>120,000</td>
<td>19,000</td>
</tr>
<tr>
<td>Modulus of Elasticity (psi)</td>
<td>27×10^6</td>
<td>10.1×10^6</td>
</tr>
<tr>
<td>Density (lb/cu in.)</td>
<td>0.293</td>
<td>0.097</td>
</tr>
<tr>
<td>Thermal Conductivity,</td>
<td>--</td>
<td>110.0</td>
</tr>
<tr>
<td>(BTU/ft-hr-°F)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific Heat</td>
<td>--</td>
<td>0.23</td>
</tr>
<tr>
<td>Component Use</td>
<td>Flange</td>
<td>Sandwich</td>
</tr>
<tr>
<td>Use</td>
<td>Injector</td>
<td>Core</td>
</tr>
<tr>
<td></td>
<td>Ring</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2. Metal Material Properties at Room Temperature
Aluminum Honeycomb - 5052 Aluminum

1/4 in. Cell - 5052 Aluminum - 0.0025 in. Thick

Density - 5.2 lb/cu ft

Compression

Stress - 480 psi

\(E_c \) (modulus) - 116,000 psi

Crush Strength - 326 psi

Shear

<table>
<thead>
<tr>
<th></th>
<th>L Direction</th>
<th>W Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strength (psi)</td>
<td>360</td>
<td>210</td>
</tr>
<tr>
<td>Modulus, (G_c) (psi)</td>
<td>61,000</td>
<td>30,500</td>
</tr>
</tbody>
</table>

Bolt-EWB 26-12 - Nozzle-Case Attacment

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile Ultimate (psi)</td>
<td>220,000</td>
</tr>
<tr>
<td>Shear Ultimate (psi)</td>
<td>128,000</td>
</tr>
<tr>
<td>Modulus of Elasticity (psi)</td>
<td>29 x 10^6</td>
</tr>
<tr>
<td>Poisson's Ratio</td>
<td>0.30</td>
</tr>
</tbody>
</table>

Figure 3. Properties of Aluminum Honeycomb and Attach Bolts
1. DESIGN

The 156-7 nozzle incorporates a fiberglass-steel-aluminum sandwich structural shell from the inlet to the exit plane with reinforced plastic insulation liners. The nozzle divergent section is contoured to provide a higher performance than is obtainable with a cone of equal length (133.3 in.) and expansion ratio (34:1). The nozzle is submerged 48.8 percent of its nose to exit length. The depth of submergence was based on the case pole piece opening (67.87 in. diameter) and the location of the injector ports (ε = 13.1:1).

Figure 4 shows the nozzle design with the selected insulation and structural materials. The weight summary is presented in Section V.

a. Submerged Assembly—The submerged assembly consists of a structural member and the necessary erosive and insulative barriers as shown in Figures 5 and 6. The submerged structural cone is fabricated from glass cloth phenolic selected because of its compatibility with reinforced plastic insulation, ease of fabrication, adaptability to design improvement, low cost, availability, and successful use in the SURVEYOR nozzle.

The SURVEYOR retro-rocket uses a nozzle submerged to half its length with a similar structural shell. This nozzle, with a throat diameter of 3.5 in. and an expansion ratio of 53:1 was successfully static tested 25 times, 13 under simulated vacuum conditions at AEDC.

The structural cone for the 156-7 nozzle is subjected to an axial compressive load with internal and external pressure distribution. It was analyzed using
Figure 5. 156-7 Nozzle Submerged Cone Assembly
acceptable buckling and local crippling criteria for monocoque truncated cones (the critical buckling pressure is $1,08^8$ psi). The glass cloth phenolic composite structure is composed of two layers of hoop oriented broadcloth laid up parallel to the surface and three layers of longitudinally oriented cloth, also laid up parallel to the surface. This combination is stronger in the hoop direction for the critical external pressure with no large degradation of the longitudinal strength for the axial blowout load and provides the lowest weight design. Figure 7 presents the complete structural shell.

The nose and throat region are formed by graphite cloth phenolic. This fabric is laid up and cured in a ply orientation that exposes ply edges to the gas stream as much as possible, thereby maximizing erosion resistance. Graphite cloth is used in regions where erosion is high because of its reliable and reproducible past performance as an erosion barrier. Silica cloth phenolic was chosen as insulation beneath the graphite cloth in the throat region due to its effective low thermal conductivity and wide acceptance as a thermal heat barrier. The outside diameter of the supporting structure is silica cloth phenolic. This material extends aft on the chamber side of the submerged portion and is the sole insulating material between the supporting structure and the motor environment in this low velocity region where heating is due almost entirely to radiation.

The forward exit cone liner from an expansion ratio of 1.33:1 to 10.33:1 is carbon cloth phenolic tape. Graphite cloth is used in the
critical region of the inlet and throat, but carbon cloth has been substituted in the
less critical upper exit cone region because of its lower cost.

b. **Flange and Injector Ring Pad**—The flange shell (Figure 8) and injector ring
(Figure 6), are machined from one ring forging of maraging 18 percent nickel
steel and bolted together. Maraging 18 percent nickel steel, grade 200 Kpsi, was select
because of the requirements for the highest strength material available coupled with
ease of fabrication, low cost, and schedule compatibility. The flange shell is the
connecting structure between the case aluminum pole piece, the submerged cone,
and the exit cones, and is subjected to axial and lateral loads, transverse bending,
pressure distribution, concentrated bolt loads, and discontinuity bending and shear
loads. The injector ring primarily provides the support area for attaching the
LITVC system components.

Other materials considered for this application were aluminum, titanium,
and beryllium. Aluminum and titanium were rejected because of cost and schedule
compatibility; beryllium forgings of this magnitude do not exist.

c. **Exit Cone Assembly**—The exit cone assembly (Figure 9) is comprised of a
liner and structural shell. The liner is silica cloth phenolic tape wrapped parallel
to the nozzle centerline and extends from an expansion ratio of 10.33:1 to the exit
plane. The compatibility of silica cloth phenolic with nitrogen tetroxide injectant
has been demonstrated in the TITAN III program. Erosion near the injectors is a
function of the TVC duty cycle requirement (i.e., injectant mass flow rate and total
mass flow) and injector location. Under the most extreme conditions of injection
(all the injectant flowing from one port) which might occur during firing,
approximately 0.150 in. of material could be lost. Erosion in the port region during periods of no TVC is not anticipated because of the high expansion ratio at which the injectors are located.

The design erosion rate in quadrants having no injection ports was 1.65 mils/sec and the corresponding rate used to size material required in the port regions was 2.65 mils/sec. The resulting liner thickness is not necessary in quadrants having no injection ports; however, this thickness has been maintained constant around the circumference for ease of fabrication.

The exit cone structural shell is a sandwich structure consisting of a 5052 aluminum honeycomb core with 143 glass cloth parallel to the surface and 20 S-HTS glass roving epoxy sheets. Use of this sandwich type structure on the TITAN III-C solid propellant nozzles indicate the current state-of-the-art for this lightweight rigid structure. State-of-the-art glass cloth facings are used for weight reduction on this nozzle in lieu of the stainless steel facings used on the TITAN III-C solid propellant nozzles.

This honeycomb shell provides the rigidity required to support the asymmetric LTVC pressure distribution, the external pressure loads, and the acceleration loads. The selection is based on the results of a comprehensive engineering study of high expansion ratio nozzles (Reference 7).

2. METHOD OF FABRICATION

Methods of fabrication have been carefully considered in the design of the 156-7 nozzle. The chosen methods allow the parts to be processed separately, yet still provide a reliable nozzle with structural and insulative integrity. No one unit
can delay the manufacturing time cycle excessively. A flow chart of the fabrication steps for this nozzle is shown in Figure 10.

The inlet rings and the throat section graphite cloth phenolic are processed in three ring blocks. The upstream block is an edge grain layup at an upstream angle of 90 deg to the nozzle centerline. The middle block and the throat block are tape wrapped at a downstream angle of 70 degrees. This concept has been successfully tested on the TU-454 and TU-455 motors. The silica cloth phenolic backup insulation is tape wrapped parallel to the centerline on a separate mandrel and bonded to the inlet and throat rings.

The carbon cloth phenolic of the forward exit cone liner is wrapped parallel to the nozzle centerline and cured on a mandrel. The steel flange and the structural glass, consisting of two layers of hoop oriented glass cloth laid up parallel to the surface and three layers of longitudinally oriented glass layup, are then applied.

The silica cloth submerged OD insulation is tape wrapped, parallel to centerline, fabricated separately and bonded in place. The graphite cloth phenolic nose cap is composed of three separate rings. The forward section inner ring is tape wrapped parallel to centerline with an overwrap parallel to the backside surface for the outer ring. The aft section is tape wrapped parallel to centerline.

The exit cone structural shell will be processed on the outside of the cured exit cone liner. The exit cone liner is silica cloth phenolic tape wrapped parallel to the nozzle centerline. The aluminum honeycomb core will be spliced into 8 longitudinal segments to provide for ease of fabrication. A forward end block of glass cloth attaches the exit cone structural shell to the steel flange shell. A block
Figure 10. 156-7 Nozzle Fabrication Flow Chart
of glass roving epoxy tape wrapped parallel to the centerline provides an end ring stiffener at the exit plane.

3. DESIGN CRITERIA

Consideration was given to the criteria outlined in the following paragraph in the design of the 156-7 nozzle.

The nozzle must be a lightweight submerged nozzle. Nozzle parts exposed to gas flow shall be of ablative plastic.

The nozzle shall be capable of liquid injection thrust vector control (LITVC).

The minimum structural safety factor will be 1.25. An analysis consisting of the following factors shall be performed.

1. Aerodynamic, heat transfer and stress analysis of the submerged portion, throat, and exit cone.

2. Aerodynamic, heat transfer and stress analysis of the interaction of secondary fluid injectant with the local materials in this area.

3. Vibration loads and exit cone deflection data from previous firings.

4. Prediction of erosion profile, char layer, and temperature isotherms.
External design considerations shall be based on the following parameters.

1. Dynamic pressure (maximum) of 1,000 psf.
2. Thrust misalignment (maximum) of 0.5 degrees.
3. Staging angle of attach (maximum) of ± 5 degrees.
4. No wind shear.

Materials and fabrication techniques shall be within current industrial experience and design.

The nozzle design shall incorporate a nozzle expansion ratio compatible with the exit cone diameter limit of 149 inches.

In addition to the above criteria, the following specific requirements were used.

1. Motor Requirements

Web Time

<table>
<thead>
<tr>
<th>Chamber Pressure (psi)</th>
<th>Average</th>
<th>Maximum</th>
<th>MEOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burn Time (sec)</td>
<td>107</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Reference Figure 11.
<table>
<thead>
<tr>
<th></th>
<th>Average</th>
<th>Maximum</th>
<th>MEOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thrust (lb) (Vacuum)</td>
<td>342,000</td>
<td>400,000</td>
<td>442,000*</td>
</tr>
<tr>
<td>Action Time, t_a (sec)</td>
<td>110.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Shock - Vibration

- **Radial Shock at Ignition**
 - Submerged Section: $\pm 60g's$ for 0.25×10^{-3} sec
 - Flange and Steel Shell: $\pm 30g's$ for 0.25×10^{-3} sec
 - Exit Section: $\pm 60g's$ for 0.25×10^{-3} sec

- **Shock Load**: $3 g's$ axially
- **Vibration Load**: $1.5g's$ laterally
- **Acceleration**: $8.0g's$ axial, $5.0g's$ lateral

2. **Thrust Vector Control Requirements**

- **Maximum TVC Angle (Pitch or Yaw)**: 3.5 deg
 - Includes 2.0 deg (AF requirement) +
 - 0.50 deg (Misalignment) + 1.0 deg (for LITVC Performance Band at MEOP $= 705$ psi)

- **Injector Port Diameter (in.)**: 0.70
- **Injector Pressure (psi)**: 750
- **Injector Ports/Quadrant**: 3
- **Maximum Port Mass Flow (lbm/sec)**: 16.84 lbm/sec

Reference Figure 12.
Injectant Fluid

3. Nozzle Requirements

Nitrogen Tetroxide (N_2O_4)

Weight (lb) 5,400 (nominal target)

Throat Diameter - Initial (in.) 20.0

Expansion Ratio 34.0:1

Configuration
Fixed Submerged Upper Stage,
Contour Exit Cone. Designed
for Static Test at Utah and
Flight Test

Area Ratio Locations

Case Boss 9.20:1

LITVC Port 13.10:1

4. Propellant Requirements

Formulation TP-H8163

Composition 16 Al/69 AP/HB

Temperature, Chamber 5,780°F

Configuration Modified Slotted CP

5. Structural Requirements

Stress

Steel F.S. (min) = 1.25 at Yield Allowable

Glass F.S. (min) = 1.50 at Ultimate Strength
Insulation

Maintain at least minimum thickness as required by thermodynamic analysis.

Maintain room temperature on structural glass of submerged cone.

Deformation

Throat = 10.0 (0.40 percent) = 0.040 in. Radial Growth

Exit Cone = 58.3 (0.50 percent) = 0.292 in. Radial Growth
Figure 11. Pressure vs Time Curves for 150-7 Motor (70 and 100° F)
Figure 12. Vacuum Thrust vs Time Curves for 156-7 Motor (70 and 100°F)
SECTION III
LOADS AND ANALYSIS SUMMARY

1. LOADS

The two major loading conditions, static and flight tests, receive the forces through (1) the pressure distribution on the inside and outside nozzle walls, (2) by shock and vibration, and (3) by acceleration loads in the axial and lateral directions. Typical static test condition loads are graphically presented in Figure 13.

Temperature gradients will exist on all surfaces of the nozzle, except the external wall from flange to diffuser, and will contribute to the total stress and deformation at critical design sections.

The nozzle wall pressure and resulting axial load are presented in Figures 13 and 15. The wall pressure due to secondary injection, the transverse shear, and the bending moments are shown in Figures 16 through 22. The injector ring loads from the mounting of the TVC system and acceleration loads are presented in Figures 23 through 27.

The analysis and evaluation to obtain the above loading conditions are presented in detail in Section IV-1. The design condition for the static and flight test loadings are listed in Figure 28.
SYMBOLS

P_1 - Axial Pressure Load on the Nozzle from Throat to Sealing Ring at Case Boss (Varies with Nozzle Erosion)

P_2 - Axial Acceleration Load at Nozzle Center of Gravity

P_3 - Lateral Acceleration Load at Nozzle Center of Gravity

P_4 - Nozzle Internal Wall Pressure Load on the Nozzle from Throat to Diffuser Attachment (Varies with Nozzle Erosion)

P_5 - Ambient Pressure Load on the Nozzle Outside Diameter from the Case Boss to the Diffuser Attachment

P_6 - Lateral Load Due to Thrust Misalignment at Centroid of Submerged Nozzle Subassembly

P_7 - Lateral Load Due to Secondary Injection (Direction of Load Depends on Port Location)

P_8 - Axial Load from Secondary Injection

P_9 - Lateral Acceleration Load at SVC Tank Center of Gravity

P_{10} - Axial Acceleration Load at SVC Tank Center of Gravity

P_a - Variable Nozzle Wall Pressure Dependent on Gas Mach Number

P_c - Chamber Pressure

P_o - Ambient Pressure at Utah Conditions

Figure 13. Static Test Loads at Utah Conditions
Figure 16. Pressure Distribution During Secondary Injection
Figure 17. 156-7 Nozzle Axial Pressure Distribution Due to LTVC
Figure 19. Axial Shear Force Due to LITVC (3.5 Deg Thrust Vector)
Figure 20. Transverse Shear Load Due to LIIVC (3.5 Deg Thrust Vector)
Figure 21. 156-7 Moment Distribution Due to Side Load
Figure 22. LITVC Tangential Moment vs Station in the Exit Cone
Figure 23. Weight Per Inch vs Station
Figure 24. Flight Test Acceleration Loads
Figure 25. LITVC Tank Strut and Nozzle Loads (Flight Test Condition)
TO SIZE THE INJECTOR RING FOR THE TANK LOADS THE STRUT LOADS WERE SIMULATED BY A TANGENTIAL BENDING MOMENT, RADIAL LOAD AND HORIZONTAL LOAD IMMEDIATELY UNDER THE TANK ON ITS CENTERLINE. THE RESULTING CONSERVATIVE APPROXIMATION OF THE TANK LOADS ON THE NOZZLE ARE ILLUSTRATED BELOW. SINCE THE LOADS AT 0 DEG DO NOT AFFECT THE STRESS AND DEFORMATION AT 180 DEG THE MAXIMUM CASE IS SHOWN FOR EACH TANK.

LOAD AT 1

- \(F_1 = 300 \text{ LB (6 O'B')} = 1,500 \text{ LB} \)
- \(F_3 = 5(1.173) = 2,346 \text{ LB} \)
- \(M_1 = 1,500 \text{ LB (18.37)} \)
 \(= 33,000 \text{ IN. LB} \)

LOAD AT 2

- \(F_2 = 700 \text{ LB (5 O'B')} \)
- \(= 3,500 \text{ LB} \)
- \(F_3 = 5(0.123) = 12.246 \text{ LB} \)
- \(M_2 = 5,800 \text{ LB (18.37)} \)
 \(= 33,700 \text{ IN. LB} \)

N_2 LOAD CONDITION

- +5 O'B' AXIAL
- +5 O'B' HORIZONTAL
- +5 O'B' VERTICAL

N_4 LOAD CONDITION

- +5 O'B' AXIAL
- +5 O'B' HORIZONTAL
- +5 O'B' VERTICAL

FLIGHT TEST CONDITION

* FOR STATIC TEST CONDITION USE A RATIO TIMES FLIGHT TEST CONDITION

Figure 26. Simulated Tank Loads on Igniter Ring
TO SIZE THE NOZZLE SHELL TO INCLUDE THE TANK LOADS THE FORCES USED FOR THE INJECTOR RING MAY BE USED AND BE REACTED AT THE NOZZLE FLANGE.

FLIGHT TEST CONDITION

RIGHT HAND RULE

MOMENT ORIENTATION

injector ring

FLANGE

16.20 IN.

Figure 27. Simulated Tank Loads on Flange Shell
Static Test at Utah Conditions

Internal Motor Pressure
LITVC Pressure Distribution
Radial Shock Loads (at ignition)
 Submerged Section
 Flange and Injector Shell
 Exit Section
Shock Load
Vibration Load
Ambient Pressure on Nozzle and Diffuser OD
LITVC System Support

Flight Conditions for Upper Stage Motor

Internal Motor Pressure
LITVC Pressure Distribution
Radial Shock Loads (at ignition)
 Submerged Section
 Flange and Injector Shell
 Exit Section
Acceleration Loads
Dynamic Pressure on Nozzle OD
 (Staging and base pressures not considered)
LITVC System Support

MEOP (psi) = 705
3.5 deg TVC at MEOP thrust
± 60 g's for 0.25×10^{-3} sec
± 30 g's for 0.25×10^{-3} sec
± 60 g's for 0.25×10^{-3} sec
3 g's axial
1.5 g's lateral
12.5 psi

MEOP = 705 psi
3.5 deg TVC at MEOP thrust
± 60 g's for 0.25×10^{-3} sec
± 30 g's for 0.25×10^{-3} sec
± 60 g's for 0.25×10^{-3} sec
8.0 g's axial
5.0 g's lateral
6.94 psi

Figure 28. Design Conditions
2. ANALYSIS

Key areas in the nozzle have been analyzed to determine maximum stresses and deformations using the ultimate loads and calculated temperature distributions throughout the nozzle (See Section IV-3). A summary of this analysis is presented in Figure 29, which presents the type of stress at various nozzle sections with the corresponding factor of safety and calculated deformation. A minimum factor of safety of 1.25 is maintained throughout the nozzle. A percent deformation band (ΔR/R) is allowed along the length of the nozzle with 0.4 percent at the throat and 0.5 percent at the exit plane.

The nozzle wall, from the start of the hyperbolic spiral inlet through the throat to the exit cone, is subjected to erosion and charring of the reinforced plastic liner. The insulation and erosion liner design provides a sufficient material thickness to maintain the structural glass cone at room temperature and provides a sufficient material thickness for erosion in the throat and exit cone (Figures 30 and 31).
<table>
<thead>
<tr>
<th>SECTION</th>
<th>STRESS</th>
<th>FACTOR OF SAFETY</th>
<th>DEFLECTION (IN.)</th>
<th>PERCENT RADIUS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>THERMAL-MECHANICAL ANALYSIS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station 0.0 (throat)</td>
<td>Hoop</td>
<td>Ref. Fig</td>
<td>-0.0053</td>
<td>-0.4</td>
<td>108</td>
</tr>
<tr>
<td>NOZZLE FLANGE-CASE INTERFACE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station 6.0</td>
<td>Local Hoop</td>
<td>+1.06 Glass</td>
<td>-0.047</td>
<td>-0.58</td>
<td>112</td>
</tr>
<tr>
<td>Station 34.40</td>
<td>Local Buckling</td>
<td>+1.56 Glass</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>SUBMERGED STRUCTURAL SHELL</td>
<td>Column Buckling</td>
<td>+1.91 Glass</td>
<td>-0.083</td>
<td>-0.24</td>
<td></td>
</tr>
<tr>
<td>Station 6.0</td>
<td>Local Hoop</td>
<td>+1.06 Glass</td>
<td>-0.047</td>
<td>-0.58</td>
<td>112</td>
</tr>
<tr>
<td>Station 64.5</td>
<td>Local Hoop</td>
<td>+1.60 Steel</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Station 61.25</td>
<td>Local Buckling</td>
<td>+1.93 Glass</td>
<td>-0.140</td>
<td>-0.44</td>
<td></td>
</tr>
<tr>
<td>FLANGE SHELL</td>
<td>Column Buckling</td>
<td>+ High Steel</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Station 47.6</td>
<td>Local Buckling</td>
<td>+ High Steel</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Station 84.5</td>
<td>Local Hoop</td>
<td>+1.60 Steel</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Station 121.25</td>
<td>Local Buckling</td>
<td>+1.60 Steel</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>EXIT CONE SHELL</td>
<td>Column Buckling</td>
<td>+ High Glass</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Station 65.10</td>
<td>Local Buckling</td>
<td>+ High Glass</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Station 100.80</td>
<td>Local Hoop</td>
<td>+2.11 Glass</td>
<td>+0.026</td>
<td>+0.07</td>
<td></td>
</tr>
<tr>
<td>Station 120.30</td>
<td>Local Buckling</td>
<td>+1.68 Glass</td>
<td>+0.039</td>
<td>+0.08</td>
<td></td>
</tr>
<tr>
<td>FLANGE SHELL-EXIT CONE INTERFACE</td>
<td>Long. Buckling</td>
<td>+ High Glass</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>INJECTOR-EXTREME SUPPORT RING</td>
<td>Hoop Bucking</td>
<td>+ High Steel</td>
<td>--</td>
<td>+0.03</td>
<td></td>
</tr>
</tbody>
</table>

ATTACHMENTS					
Injector Ring					
Screws	Shear	+1.95	--	--	197
Sandwich and Liner					190
Pin A	Bending	+1.31	--	--	
Pin B	Bending	+2.64	--	--	
Case Bolts	Shear-tension	+1.29	--	--	
Diffuser Screws	Shear	NA	--	--	197

Nitrogen Tetraoxide Tank Attachments

Strut A, A'F'	Tension, Shear	See Beld	--	--	197
Strut AD	Tension, Shear	+2.64	--	--	
Strut A'D'	Tension, Shear	+1.27	--	--	
Strut BE, CE	Tension, Shear	+2.73	--	--	

Nitrogen Tank Attachment

Strut KR, K'X'	Tension, Shear	+1.25 Min	--	--	211
Strut RW	Tension, Shear	+1.25 Min	--	--	
Strut R'W'	Tension, Shear	+1.25 Min	--	--	
Strut EU, TU	Tension, Shear	+1.25 Min	By Inspection		

Injectors

| Delta | Shear, Tension Load | NA | -- | -- | 311 |

Figure 29. Structural Analysis Summary
Figure 30. 156-7 Chamber Side of Nozzle Erosion and Char Prediction
SECTION IV

DESIGN ANALYSES

The nozzle must be analyzed gas dynamically, thermodynamically, and structurally to finalize design details prior to release for fabrication. These analyses are based on the design criteria, materials and their fabrication capabilities, and the static and flight test loadings.

The gas dynamic analysis establishes the submerged nose and exit cone contours, the static and flight test loadings, and the heat transfer coefficients at various stations throughout the nozzle.

The final temperature distribution and insulation thicknesses are determined from the thermodynamic analysis with the use of the above mentioned heat transfer coefficients.

The structural analysis certifies the integrity of the nozzle design and TVC system support structures with the loads and temperature distribution determined from the gas dynamic and thermodynamic analyses respectively.

1. AERODYNAMIC ANALYSIS

A gas dynamic analysis of the fixed, submerged, 156-7 nozzle was conducted to design the contour of the inlet, throat and exit cone sections necessary to develop flow conditions throughout the nozzle that will uniformly accelerate the motor exhaust gases.

The analysis included the following areas: (1) selection and analysis of the exit cone contour, (2) determination of the configuration for the subsonic portion of
the nozzle (inlet and throat approach), and (3) nozzle aerodynamic loads affecting the nozzle structure. The following motor criteria were used in the analysis.

1. Motor web time = 107 seconds
2. Motor operating pressure = 550 psia
3. Propellant = TP-H8163

The initial throat diameter is 20.0 inches. For this design study the nozzle throat erosion rate was calculated to be 11.5 mils/sec based on the simplified Bartz heat transfer analysis. This throat erosion rate was held constant.

a. Exit Cone—The analysis considered the exit cone contour and the Mach number and heat transfer coefficient to assist in the thermodynamic analysis.

(1) Contour—The internal nozzle contour of the 156-7 nozzle was designed using a Thiokol computer program with the method of characteristics, a solution using a set of hyperbolic partial differential equations.

The boundary conditions around the region of integration are determined by the following assumptions.

1. A three-dimensional point-source flow exists from some point in the nozzle to the point of inflection of the nozzle.
2. The three-dimensional point source is considered to be a distance r* from the sonic surface for which M = 1.
3. The specific heat ratio is constant in the flow field.
4. The flow is axially symmetric, nonviscous, irrotational, and isentropic.

In addition, the direction of the streamline at the inflection point is specified and Prandtl-Meyer flow is assumed along the point-source boundary. The contour is determined by the condition that the slope of the contour at some computed point must be equal to the slope of the streamline at that point.

The variables in the contour optimization are initial divergence angle, length, and expansion ratio. The expansion ratio and length were determined during the preliminary tradeoff studies.

This envelope-contour required to meet the RFP performance requirements was determined as part of the overall motor configuration selection. This selection involved a tradeoff of nozzle weight, motor thrust, and envelope.

The only remaining independent variable for contour optimization was initial divergence angle. A series of contours was developed and the performance maximized with initial divergence angle. The performance is calculated by a series of empirical efficiency curves on each of the primary variables.

The selected contour has an initial divergence angle of 25 degrees. The contour wall turns back to an exit angle of 13 deg within a throat to exit length of 13.5 throat radii. An external arc equal to 0.6 throat radii blends the throat into the initial divergence angle. This small arc minimizes weight of the blending section while providing for smooth transitory flow.

(2) Mach Number and Heat Transfer Coefficient—The exit contour Mach number and heat transfer coefficient were calculated from a characteristics net in
the exit. This calculation also developed the wall pressure profile for the load calculation. The exit cone Mach number variation is shown in Figure 32. The heat transfer coefficient variation in the exit cone is shown in Figure 33.

The subsonic Mach number variation was developed from the nose design analysis presented in the next section. The subsonic Mach number for the four burning times considered in the design analysis is presented in Figure 34.

The heat transfer coefficient profile corresponding to the Mach number profile is presented in Figure 35. Eroded configuration data were developed during the nose design and are included here. Eroded exit cone data were not necessary for design but will be presented in the final design report.

b. Nose Contour—An aerodynamic study was conducted to design the contour of the entrance section or nose of the submerged nozzle for the 156-7 motor and to develop the flow conditions throughout the nozzle and motor. The objective of the design study was to design a minimum size, acceptable performance, nozzle inlet contour to operate with the motor criteria.

The nose of a submerged nozzle must provide a uniform transition of the propellant combustion products from the motor to the nozzle throat. A uniform transition is required to:

1. Assure a predictable throat erosion rate;
2. Assure a high nozzle discharge coefficient;
3. Provide uniform nozzle nose erosion such that conditions 1) and 2) will be fulfilled throughout motor burning time.
Figure 32. 156-7 Exit Cone Mach Number Profile
Figure 33. 156-7 Exit Cone Heat Transfer Coefficient Variation
Figure 34. 156-7 Local Wall Mach Number vs Axial Location in Nozzle
(R_{inf} = 19.2 In.; L_N = 13.0 In.)
Figure 35. 156-7 Convective Heat Transfer Coefficient vs Axial Location in Nozzle
($R_{\text{INF}} = 19.2$ in.; $L_N = 13.0$ in.)
A minimum size nose, compatible with the above conditions is also required to aid in providing a minimum cost and weight nozzle.

Design studies conducted by Thiokol have indicated that the design objectives can be attained using a hyperbolic spiral for the contour of the nozzle nose. This hyperbolic spiral is blended into the throat by a circular arc (Figure 36). The length of the nozzle nose from the nose tip to the throat \(L_N\) and the width of the nozzle nose from the nozzle centerline to the nose tip must be determined for each nozzle application \(R_{INF}\), however.

Previous detailed design analyses of submerged nozzles using graphite cloth in the throat region indicated that the minimum nose length required was given approximately by the expression:

\[
L_N = 1.1 R_T + \epsilon^t t_w
\]

where

- \(L_N\) = length of nose from tip to throat (in.)
- \(R_T\) = nozzle throat radius (in.)
- \(\epsilon^t\) = erosion rate at the throat (in. /sec)
- \(t_w\) = motor web time (sec)

and the minimum radius from the nozzle centerline to the nose tip was approximated by:

\[
R_{INF} = 1.6 (R_T + \epsilon^t t_w)
\]

Using these approximate relationships, the nose length for the 156-7 nozzle was determined to be approximately 12.0 in. and the radius from the nozzle centerline to the nose tip was determined to be 18.57 inches.
Figure 36. Hyperbolic Spiral Description
Two nozzle nose contours were evaluated simultaneously using longer nose lengths and larger nose tip radii. The complete analysis matrix is shown in Figure 37.

Results of the analysis on the nose contour 12.0 in. long with a radius from the nozzle centerline to the nose tip of 18.57 in. are shown in Figures 38 and 39. Figure 38 shows the variation of the Mach number along the nozzle nose at 0 sec, 35.6 sec (1/3 web), 71.2 sec (2/3 web), and 107 sec (web time). These Mach number profiles were calculated using the axisymmetric potential flow solution. The zero sec Mach number profile was calculated using the initial propellant configuration and the uneroded nozzle geometry. The 35.6 sec configuration shown in Figure 38 was determined using the convective heat transfer coefficient determined for the zero sec flow conditions shown in Figure 39. The material erosion rates determined from the convective heat transfer coefficients calculated for the zero sec flow condition were extrapolated for 35.6 sec to determine the total erosion depth. A new Mach profile and heat transfer coefficient variation along the nozzle nose were then calculated for the 35.6 sec eroded configuration and extrapolated to 71.2 seconds. The process was then repeated to obtain the flow properties at motor web time (107 sec).

Examination of Figures 38 and 39 indicates the following conclusions.

1. The flow Mach number along the backside of the nozzle nose is low (M < 0.10).
2. At zero sec the flow is smoothly accelerated about the nozzle nose tip at low Mach number (M ≈ 0.30).
<table>
<thead>
<tr>
<th>CONFIGURATION</th>
<th>NOSE LENGTH (IN.)</th>
<th>RADIUS FROM NOZZLE CENTERLINE TO NOSE TIP (IN.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.00</td>
<td>18.57</td>
</tr>
<tr>
<td>2</td>
<td>13.00</td>
<td>19.20</td>
</tr>
<tr>
<td>3</td>
<td>13.80</td>
<td>19.80</td>
</tr>
</tbody>
</table>

Figure 37. Analysis Matrix
Figure 38. 156-7 Local Wall Mach Number vs Axial Location in Nozzle

\(R_{\text{INF}} = 18.57 \text{ In.}; L_N = 12.0 \text{ In.} \)
Figure 39. 156-7 Convective Heat Transfer Coefficient vs Axial Location in Nozzle ($R_{IN} = 18.57$ In.; $L_N = 12.0$ In.)
The flow then accelerates uniformly along the wall to a point approximately 1 in. upstream of the geometrical throat at which time it reaches Mach 1.

3. As motor burning progresses, the Mach number around the tip of the nozzle increases and the point at which sonic velocity is reached moves upstream along the nozzle nose.

4. At 107 sec of motor burning, the flow Mach number at the nose tip is high (M = 0.5).

5. The average convective heat transfer coefficient in the nozzle throat area is approximately 1.00. This value of heat transfer coefficient will produce a throat erosion rate of 10.3 mils per second. For this analysis, however, the throat erosion rate of 11.5 mils/sec was used to assure reliability of the design.

The Mach number variation along the 13.0 in. long nose is shown in Figure 34. These Mach numbers also were determined using the axisymmetric potential flow analysis. The convective heat transfer coefficient variation along this nose design is shown in Figure 35.

Comparison of the Mach number variations produced by this nose design during motor operation with those of the 12.0 in. nose (Figure 38) indicates that
the larger nose reduces the flow Mach number at the tip of the nose. In this area of
motor web time the Mach number is reduced from approximately 0.6 to 0.4.

The average convective heat transfer coefficient in the throat of the 13.0 in.
long nozzle is reduced from that calculated in the 12.0 in. long nozzle. The average
value is approximately 0.95 which will result in a throat erosion rate of 9.75 mils/
sec compared to 10.5 mils/sec in the 12.0 in. long design.

The Mach number and convective heat transfer coefficient variations along
the 13.8 in. long nose design are shown in Figures 40 and 41. The flow is
again smoothly accelerated around the nose into the throat. This nose does not
significantly reduce the Mach number at the nose tip from that produced in the 13.0
in. long nose. The throat convective heat transfer coefficient is reduced, however,
to an average value of approximately 0.9 over motor burn time, which would result
in a throat erosion rate of 9.0 mils per second.

The nose contour recommended for the 156-7 nozzle is 13.0 in. long with a
radius from the nozzle centerline to the nose tip of 19.2 inches. This contour was
selected in the following manner.

The three designs subjected to detailed analysis all produced a smooth
acceleration of flow from the backside of the nozzle nose, around the nose tip to
the nozzle throat. The 12.0 in. long nose, because of nozzle erosion, produces a
high flow Mach number about the tip of the nozzle nose, at motor web time. This
high acceleration will result in thinning of the boundary layer with significant
increases in nose heating and erosion. This effect is undesirable. The 13.0 in.
Figure 40. 156-7 Local Wall Mach Number vs Axial Location in Nozzle (R_{\text{in}} = 19.8 \text{ in.}; L_N = 13.8 \text{ in.})
Figure 41. 156-7 Convective Heat Transfer Coefficient vs Axial Location in Nozzle ($R_{\text{INF}} = 19.8$ In.; $L_N = 13.8$ In.)
long nose reduces this Mach number of turning on the nose tip approximately 20 percent from 0.50 to 0.40.

The Mach number on the nose tip of the 13.8 in. nose is not significantly changed from the 13.0 in. nose. Although the nozzle throat erosion rate would be reduced to 9.0 mils/sec, in the 13.8 in. nose from the 9.75 mils/sec rate obtained with the 13.0 in. nose, this change was not considered significant enough to warrant the increased nose size.

Therefore, because of the desirable nose tip flow properties on the 13.0 in. long nose compared to the 12.0 in. nose, the 13.0 in. nose contour was selected.

c. Aerodynamic Nozzle Loads—To assist with the structural analysis of the 156-7 nozzle, the following items were developed.

1. Internal wall pressure.
2. Axial blowout load.
3. LLTVC wall pressure, transverse shear, and longitudinal bending moment.
4. Injector reaction ring load.

Figures illustrating these loads are in Section III. The analysis used to obtain these loads is explained in the following paragraphs.

(1) Wall Pressure—The internal pressure distribution is shown in Figure 14. Pressures in the subsonic region were determined using a subsonic potential flow solution programmed for the IBM 7040 computer and were developed as part of the nose design. The wall pressures in the supersonic flow region were calculated.
using an axi-symmetric method of characteristics program. Ambient sea level pressures were assumed acting on the external surface.

(2) Axial Load—The loads acting on the nozzle were determined by integrating the internal and external wall pressures. Since the pressures are assumed to be axi-symmetric in the undisturbed stream, the resultant load acting on the nozzle without liquid injection will be in the axial direction. The following equation was used to determine the axial load:

\[F_A = 2\pi \int_{r_1}^{r_2} P r d\theta dr \]

Integration of these pressures was performed from the exit forward to the nose in incremental steps such that the axial load acting aft of any given point along the nozzle axis can be determined. This axial load vs axial location is plotted in Figure 15.

(3) LITVC Wall Pressure—The nozzle loading due to liquid injection consists of the wall pressure load and the reaction load due to the momentum of the injected liquid.

Limited data are available for determining the wall pressure distribution due to N₂O₄ injection. However, the peak pressure due to injection was determined using a method developed under Contract No. AF 04(611)-9960 (See Reference 27). This pressure was assumed to act at the injection port and the pressures were assumed to vary as shown in Figures 17 and 18. The region affected by these pressures was established using data presented in Reference 28. These data also indicated that the assumption of linear pressure variations is adequate for predicting
the structural design loads. Integration of the pressures shown in Figures 17 and 18 was performed to establish the axial and transverse loading along the nozzle axis. These loads are presented in Figures 19 and 20 respectively. The bending moment distribution due to the side load is presented in Figure 21. This curve was obtained through evaluation of the moment integral at various axial locations.

(4) Injector Ring Load—The reaction load due to the momentum of the injected liquid can be written as:

\[F_R = \dot{m} V_j + (P_j - P_g) A_j \]

where:

- \(\dot{m} \) = mass of injectant per port = 16.8 lb/sec
- \(V \) = velocity of injection, ft/sec
- \(P_j \) = static pressure of injectant, psia
- \(P_g \) = static pressure of gases at injection port, psia
- \(A_j \) = area of injection port = 0.0029 sq ft

The velocity \((V_j)\) was calculated using the following equation:

\[V_j = \frac{\dot{m}}{C_D \rho A} \]

where:

- \(\rho \) = fluid density, lbm/cu ft
- \(C_D \) = discharge coefficient = 0.7

The calculated reaction load was 420 lb per quadrant.
2. **HEAT TRANSFER AND EROSION ANALYSIS**

The thermal analysis insures that adequate material is provided to allow for anticipated losses (erosion-corrosion) with enough material remaining to adequately insulate the structural parts during firing. A list of thermal and erosion analysis definitions is presented in Figure 42.

A newly developed, two-dimensional, axisymmetric, computer program which determines temperature response in ablating, charring materials was used in the analysis (Reference 23). Boundary conditions and other input required by this program are described below and are followed by a sample analysis in the throat region.

The transient temperature response of the insulation and nozzle parts is a function of the thermal properties of the material and the internal environment to which the part is subjected. The thermal properties are usually published values obtained from vendors and laboratory tests. The motor internal thermal environment is theoretically determined by the methods outlined below.

a. **Definition of Motor Internal Thermal Environment**—The internal thermal environment of the motor is dependent on propellant composition and pressure at which combustion occurs. With these two parameters fixed, the combustion temperature, the enthalpy, the equilibrium composition of the combustion products, and the motor performance are calculated by the IBM 7040 computer. The program used expands the gases isentropically through the nozzle and calculates the static enthalpy of the gas at prescribed locations in the nozzle. From this information
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Condensed particle cross sectional area (sq cm)</td>
</tr>
<tr>
<td>A/A^*</td>
<td>Nozzle expansion ratio</td>
</tr>
<tr>
<td>C^*</td>
<td>Characteristic gas velocity (ft/sec)</td>
</tr>
<tr>
<td>C_H</td>
<td>Convective heat transfer coefficient based on enthalpy differences (lb/sq ft·sec)</td>
</tr>
<tr>
<td>D_t</td>
<td>Nozzle throat diameter (ft or in.)</td>
</tr>
<tr>
<td>g</td>
<td>Acceleration due to gravity (ft/sec²)</td>
</tr>
<tr>
<td>i_r</td>
<td>Recovery enthalpy (Btu/lb)</td>
</tr>
<tr>
<td>i_s</td>
<td>Static enthalpy (Btu/lb)</td>
</tr>
<tr>
<td>i_t</td>
<td>Total (stagnation) enthalpy (Btu/lb)</td>
</tr>
<tr>
<td>i_w</td>
<td>Static enthalpy of the gases on the wall side of the boundary layer (Btu/lb)</td>
</tr>
<tr>
<td>L</td>
<td>Mean radiation beam length (cm)</td>
</tr>
<tr>
<td>L_e</td>
<td>Lewis number (dimensionless)</td>
</tr>
<tr>
<td>m</td>
<td>Erosion rate (lb/sq ft·sec)</td>
</tr>
<tr>
<td>N</td>
<td>Particle number density (number/cu cm)</td>
</tr>
<tr>
<td>N_{rf}</td>
<td>Recovery factor (dimensionless, the cube root of the Prandtl number)</td>
</tr>
<tr>
<td>r_o</td>
<td>Throat radius of curvature (ft)</td>
</tr>
<tr>
<td>P_c</td>
<td>Chamber pressure (psia or psia)</td>
</tr>
<tr>
<td>P_r</td>
<td>Prandtl number (cp/k) (dimensionless)</td>
</tr>
<tr>
<td>q</td>
<td>Heat flux ,Btu/ft²·sec)</td>
</tr>
<tr>
<td>St</td>
<td>Stanton number (dimensionless)</td>
</tr>
</tbody>
</table>

Figure 42. Thermal and Erosion Analysis Definitions
\(T_g \) = Gas temperature
\(T_w \) = Wall temperature
\(\alpha_g \) = Gas absorptivity
\(\beta \) = Blowing parameter (dimensionless)
\(\epsilon_g \) = Gas emissivity
\(\epsilon_w' \) = Effective wall emissivity
\(\mu \) = Viscosity (lb/sec)
\(\rho \) = Gas density
\(\sigma \) = Boltzman's constant \([0.476 \times 10^{-12} \text{ Btu/sq ft-sec } (\text{°R})^4] \)
\(\phi \) = Dimensionless factor accounting for variation of gas density and gas viscosity across the boundary layer

Subscripts

ch = Chamber conditions or curvature
e = Boundary layer edge
DL = Diffusion limited
g = Gas
t = Throat
T = Total
RL = Rate limited
w = Wall

Figure 42. Thermal and Erosion Analysis Definitions (Cont)
and a suitable recovery factor (a function of the Prandtl number), the recovery enthalpy may be determined from the following relationship:

\[i_r = N_{rf} (i_T - i_s) + i_s \]

where:

- \(i_r \) = recovery enthalpy (Btu/lb)
- \(N_{rf} \) = recovery factor (dimensionless, the cube root of the Prandtl number)
- \(i_T \) = total (stagnation) enthalpy (Btu/lb)
- \(i_s \) = static enthalpy (Btu/lb)

The recovery enthalpy represents the potential heat available for transmission across the boundary layer to the wall. Recovery enthalpy, as well as static enthalpy, is plotted as a function of area ratio in Figure 43.

To determine the amount of heat actually transmitted across the boundary layer (by convection), the enthalpy on the wall side of the boundary layer must also be known. This is obtained by a second computer program which calculates equilibrium composition and enthalpy as a function of temperature and pressure. Computation by this program considers the effect on wall enthalpy of mass added at the surface by diffusion through the boundary layer, percolation of pyrolysis gases through the char, char consumption at the surface, and particle impingement on the surface (if the impingement rate is known). Wall enthalpy as a function of these parameters is the output on punched cards that becomes input for the ablation and char heat transfer program. From these data and the recovery enthalpy, the enthalpy difference across the boundary layer at any instantaneous set of conditions may be
determined by the computer. This information, as well as the convective heat transfer coefficient, is needed to evaluate convective heat flux.

The simplified Bartz (Reference 21) equation is used to calculate the convective heat transfer coefficient:

\[
C_H = \frac{0.028}{(D_t)^{0.2} (A/A^*)^{0.9}} \left(\frac{\mu}{P_c g \rho \gamma C^*} \right)^{0.6} \left(\frac{P_c g \rho \gamma C^*}{P_c} \right)^{0.8} \left(\frac{D_t}{r_c} \right) \phi
\]

where:

- \(C_H \) = heat transfer coefficient based on enthalpy difference (lb/sq ft/sec)
- 0.028 = a correlation constant derived by Bartz from turbulent boundary layer analyses
- \(D_t \) = nozzle throat diameter (ft)
- \((A/A^*) \) = expansion ratio at the nozzle location under consideration
- \(\mu \) = viscosity at stagnation conditions (lb/ft-sec)
- \(P_r \) = Prandtl number (\(\mu c_p/k \)) (dimensionless)
- \(P_c \) = chamber pressure (psia)
- \(g \) = acceleration due to gravity (ft/sec^2)
- \(C^* \) = characteristic gas velocity (ft/sec)
- \(r_c \) = throat radius of curvature (ft)
- \(\phi \) = dimensionless factor accounting for variation of \(\rho \) (gas density) and \(\mu \) (gas viscosity) across the boundary layer
Transport properties appearing in the Bartz equation are evaluated by a computer program based on the kinetic theory of gases. The latest thermochemical data are used in this program and their predictions compare well with available experimental data. Pertinent transport properties are plotted as a function of temperature in Figures 44 and 45.

Heat transfer coefficients as a function of wall temperature and nozzle expansion ratio are shown in Figure 46.

Having obtained the foregoing information, the convective heat flux may be calculated according to the following equation:

\[q_{\text{conv}} = C_H (i_r - i_w) \]

where:

- \(C_H \) = convective heat transfer coefficient (lb/sq ft-sec)
- \(i_r \) = recovery enthalpy of the combustion gases (Btu/lb)
- \(i_w \) = static enthalpy of the gases on the wall side of the boundary layer (Btu/lb)

Conventional techniques are used to determine the net radiant heat flux to the wall. The net radiant heat flux may be expressed as:

\[q_{\text{rad}} = \epsilon_w' \sigma (\epsilon_g T_g^4 - \alpha_g T_w^4) \]

where:

- \(\epsilon_w' \) = effective wall emissivity
- \(\epsilon_g \) = gas emissivity
- \(\alpha_g \) = gas absorptivity
- \(T_g \) = temperature of the gas (°R)
Figure 44. Viscosity of Combustion Products (Evaluated at 1,000 psi)
Figure 46. Convective Heat Transfer Coefficient vs Area Ratio
\(T_w \) = temperature of the wall (°R)

\(\sigma \) = Boltzman's constant

Gas temperature (\(T_g \)) is shown as a function of nozzle expansion ratio in Figure 47.

The emissivity (absorptivity of a particle laden gas at any particular temperature) (Reference 22) may be expressed as:

\[
\epsilon_g = \alpha_g = 1 - e^{-N AL}
\]

where:

\(N \) = particle number density (number/cu cm)

\(A \) = condensed particle cross sectional area (cu cm)

\(L \) = mean radiation beam length (cm)

The effective wall emissivity is determined from available material data and/or from experiment.

b. Insulation Performance—The computer program used in the thermal analysis is an explicit, finite difference solution for the transient temperature response in a one-dimensional, axisymmetric body, which can experience decomposition in depth. The ablating surface boundary condition is one of general convective-radiative heating with coupled mass transfer, assuming unity Lewis number.

The program uses a three component model for the thermal decomposition of the reinforced plastic. The plastic is assumed to consist of two components which decompose separately; the reinforcement is the third decomposing component.

The heat transfer coefficient used to calculate the surface heating rate is corrected for surface transpiration of the gases from the decomposing
(pyrolyzing) material. This is the heat transfer coefficient input to the computer (calculated in the absence of blowing by the Bartz correlation described earlier) and is corrected for the effects of blowing from the surface material as the solution progresses.

The equilibrium state of the surface is determined by a second computer program (surface equilibrium thermochemistry program) as a function of char rate and surface recession rate. Output from this program (which includes enthalpy of the surface gases) becomes direct input to the ablation-char computer program. Other output is shown in the sample analysis outlined in the following section.

Both of these programs are part of a set recently developed by Vidya, Inc under Air Force Contract AF 04(611)-9073 (Reference 23). The erosion depths computed by the ablation-char program are slightly higher than those estimated by scaling techniques from test data. This may be attributed to small errors in computing the convective heat transfer coefficient since erosion rate and the heat transfer coefficient are directly related. Other methods than the Bartz correlation are available for computing boundary layer conditions (e.g., the Ambrok, Rubesin, Mayer method; and Bartz, et al.; References 24 and 25) but have not yet been fully evaluated in conjunction with the programs described above.

In the subsonic nose region, where three-dimensional effects are important, a boundary layer program based on a more rigorous interpretation of the Bartz equation is used in conjunction with a flow net analysis. Heat transfer coefficients generated by this combination of programs are used in conjunction with an empirical correlation to obtain erosion data in this region (described later in more detail).
c. **Nozzle Throat Sample Analysis**—Calculations presented below show how temperature profiles along the throat centerline were obtained. Results of similar calculations for several other stations throughout the nozzle are also presented.

Computations were performed on the IBM 7040 computer using the ablation–char program described earlier.

Input to the computer requires the definition of boundary conditions.

This procedure is outlined below.

1. **Boundary Conditions**
 - **Definition of motor parameters**
 - Average chamber pressure = 550 psia
 - Propellant: 16-86 HB
 - Throat diameter = 20.00 in.
 - \(A/A^* = 1.0\) (transonic)

2. **Convective Heat Flux**
 - \(P/P_c = 0.568\)
 - \(P = 400\) psia
 - \(T_c = 6,240^\circ R\)
 - \(T = 5,800^\circ R\) (Figure 47)

Heat transfer coefficients (Figure 46)

<table>
<thead>
<tr>
<th>Temperature (^\circ R)</th>
<th>(C_H) at 1,000 psi (lb/sq\ ft-sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,125</td>
<td>1.030</td>
</tr>
<tr>
<td>4,690</td>
<td>0.930</td>
</tr>
<tr>
<td>6,250</td>
<td>0.878</td>
</tr>
</tbody>
</table>
Since chamber pressure is a function of time, the above coefficients are corrected (as a function of time) by the ratio \((P_c/1,000)^{0.8}\).

3. Radiant Heat Flux—The net radiant heat flux at the nozzle throat is small compared to the convective heating. It was calculated by the conventional equations described previously.

\[
q_{rad} = \varepsilon_w' \sigma (\varepsilon_g T_g - \alpha_g T_w^4)
\]

Temperature is the only value in the equation which varies throughout the nozzle. Gas temperature at the throat was 5,830°F.

Values for the other constants were:

\[
\varepsilon_g = \alpha_g = 1
\]

\[
\varepsilon_w' = 0.78
\]

\[
\sigma = 0.476 \times 10^{-12} \text{ Btu/sq ft-sec (°R)^4}
\]

\(q_{rad}\) was calculated by the computer as a function of \(T_w\).

4. Evaluation of Throat Temperature History

The above boundary conditions were input to the computer. Results of the computer analysis are plotted in Figure 48. Runs at various other locations were made and results at representative locations are plotted in Figures 49 through 56. These illustrations are composite plots which not only show temperature gradients through the wall at various times, but also indicate the predicted erosion depths. The depth of erosion at any particular time is indicated by the point at which that particular time curve intersects the erosion curve. There is no sharp
Figure 49. Temperature Distribution, 156-7 Nozzle Section 8 In. Forward of Throat

\(A/A^* = 1.54; \) Time = 108 Sec
Figure 50. Predicted Temperature Profiles, 156-7 Nozzle Section at A/A* = 4.0

*FOR TEMPERATURE DISTRIBUTION, REFER TO FIGURE 56.
Figure 51. Predicted Temperature Profiles, 156–7 Nozzle Section at $A/A^* = 8.6$
Figure 52. Predicted Temperature Profiles, 156-7 Nozzle Section at \(\frac{A}{A^*} = 12.9 \)
Figure 53. Predicted Temperature Profiles, 156-7 Nozzle
Section at A/A* = 14.7
Figure 54. Predicted Temperature Profiles, 156-7 Nozzle Section at $A/A^* = 22.5$
Figure 55. Predicted Temperature Profiles, 156-7 Nozzle Section at A/A* = 33.0
Figure 56. Temperature Profiles Through Insulation on Chamber Side of 156-7 Nozzle
line of demarcation between the virgin and charred material. In the charring region, material properties vary depending on the depth, length of exposure, and surface boundary conditions. Pyrolysis of the resin is assumed to begin at about 500°F; therefore, all material above this temperature has been charred to some extent. Surface temperatures shown in the illustrations are lower than those usually shown due to the more accurate treatment of the endothermic chemical reactions (corrosion) occurring at the surface and the resultant effect on wall enthalpy.

d. Material Loss Due to Erosion (Corrosion)—The foregoing analysis requires an estimation of erosion rates. The erosion depths calculated by the newly developed Vidya computer programs are included in Figures 48 through 56 for those locations at which erosion is expected. These depths are considered to be greater than will actually occur; therefore, scaling techniques from test data were used to obtain the final eroded nozzle configuration. Erosion data obtained in numerous firings with a propellant almost identical in formulation to that to be used in the subject nozzle test were correlated with the convective heat transfer coefficient. These correlations are shown in Figure 57 (nose region), Figure 58 (nozzle exit carbon cloth) and Figure 59 (nozzle exit silica cloth).

The assumption implicit in the use of the correlation is that erosion is primarily a reaction of certain chemical species in the combustion gases with the nozzle material. Furthermore, it is assumed that the material is at a sufficiently high temperature so that the reaction rate of the reacting species and the wall material is infinite and that the overall rate of erosion (corrosion) is determined only by boundary conditions which control the transport rate of reactants and
Figure 57. Graphite Cloth Phenolic Erosion Rate vs Convective Heat Transfer Coefficient
Figure 58. Graphite (Carbon) Cloth Phenolic Erosion Rate vs Convective Heat Transfer Coefficient
Figure 53. Silica Cloth Phenolic Erosion Rate vs Convective Heat Transfer Coefficient
reaction products. These controlling boundary conditions are satisfactorily defined by the convective heat transfer coefficient.

It is recognized that this approach is somewhat specious with silica cloth since physical changes (melting, vaporization) controlled by environmental temperature play a more prominent role here than do chemical reactions. The correlation has, however, been found to yield dependable design data in applications and conditions similar to those from which the reference test data was obtained.

This empirical technique somewhat circumvents uncertainties in the heat transfer coefficient calculation. The same method for computing this coefficient is used both to set up the correlation and to read values from it. Uncertainty in the heat transfer coefficient is thus cancelled out.

Separate correlations are used for the graphite cloth in the nose region and in the nozzle exit because the convective heat transfer coefficient is calculated by different methods in the two cases. In the nose region where flow is axi-symmetric, two-dimensional, a boundary layer program is used to obtain the heat transfer coefficients (more fully discussed in Section IV, Aerodynamics). The correlation shown in Figure 57 is used in conjunction with these coefficients to determine erosion in the nose region.

For the nozzle exit, the heat transfer coefficients are calculated by the simplified Bartz correlation (plotted in Figure 46) and used in conjunction with Figure 58 and Figure 59 to obtain erosion rates in the nozzle exit. In either case, it is necessary to know only the convective heat transfer coefficient at a particular
location and the erosion rate may then be read from Figures 57, 58, or 59, whichever is applicable.

Multiplying these rates by the web time gives the final eroded configuration of the nozzle (Figure 60).

e. Erosion Due to HITVC—Erosion around the injector port during liquid injection is primarily a function of the type of injection, and the relative weight flow rate of the injectant and the main exhaust stream.

Data showing the relationship of erosion rate to the flow rate ratio of injectant to mainstream was obtained in Program 623A (TITAN III-C Booster) Reference 26. This relationship is shown in Figure 61. In the TITAN III-C Booster, injection occurs at an expansion ratio of 3.5 where the normal erosion rate without TVC varies from 4 to 7 mils/sec. In the motor from which data shown in Figure 50 was obtained, the normal rate was 7 mils/sec. In the 156-7 nozzle, no erosion is anticipated around the TVC port in the absence of injection. Therefore, the curves shown for the TITAN III-C Booster are shifted downward to indicate zero erosion when the injectant flow rate is zero.

In the subject nozzle, the worst condition (from an erosion standpoint) would be if the injection valves remained in the full open position until the supply of injectant was depleted. This corresponds to a weight flow rate ratio of 0.044, based on the following data.

\[\frac{A/A^*}{A/A} = 13.1:1 \]

Motor weight flow rate 122,000/107 = 1,140 lb/sec

Maximum injectant weight flow rate = 50 lb/sec

Flow rate ratio 50/1,140 = 0.044
Figure 61. Ablation Rates as a Function of Flow Rate Ratio
(Injectant Flow Rate/Axial Flow Rate)
Under these conditions the erosion rate would be 14.7 ...ils/sec. The supply of injectant would be depleted in 10 sec and therefore the maximum eroded depths would be 0.147 inch.

Measured rates are expected to be less than indicated in Figure 60. With the injectant flow evenly distributed among the four quadrants the average depth per quadrant will be less than 0.050 inch.

f. Conclusions--The thermal analysis indicates that the subject nozzle is conservatively designed and that sufficient material has been provided to allow for anticipated losses as well as to maintain the temperature of the structural parts within acceptable limits during firing.
3. STRUCTURAL ANALYSIS

The structural design philosophy in designing this nozzle was to provide a lightweight structure consistent with case and nozzle requirements of strength and rigidity.

Preliminary structural analyses were based on classical shell and frame structural calculation methods. Most of the analyses are programmed on computers. The programs were developed and modified during the present 156 Inch Motor Program to handle problems peculiar to nozzle design (Reference 8; Figure 2-25). This includes discontinuity shell analysis for the nozzle/case interface and ring analysis for inplane loading of various types.

Throughout the analysis, the following design criteria were applied.

1. All loads for stress and deflection calculations are based on the maximum expected chamber pressure considering a three sigma variation for propellant burning rate.

2. All steel structural components have a minimum safety factor of 1.25 based upon minimum yield strength of the material. Glass cloth reinforced plastics have a safety factor of 1.50 based on ultimate strength of the material.

A tabulation of the critical discontinuity stresses at the nozzle/case interface and the resulting margins of safety are shown in Section III.
The materials used in this analysis and the physical and mechanical properties are listed in Section II. Nomenclature is listed in Figure 62.

The submerged conical shell was sized using accepted buckling criteria for monocoque truncated cones under combined external lateral pressure and axial compression. The critical pressure for the proposed design is 1,088 psi meeting the required 1.25 safety factor.

The steel flange shell and sandwich exit cone structures were sized on the basis of buckling criteria for combined transverse shear, axial compression, and bending loads resulting from injection loads.

Thermomechanical stresses are shown in Figures 63 through 65 at selected stations (throat, a supersonic area ratio = 4.0, and 8 in. forward of throat) to provide a margin of safety for the insulation and radial interface pressures for the shell discontinuity stresses.

The injector ring and tank support must support the majority of the LITVC system weight times acceleration factor (g's) and the maximum injection wall pressure. Standard ring analysis (Reference 15) indicates the maximum bending, shear and axial loading on the ring will provide an adequate 0.25 margin of safety.

Plane sections of the nozzle exit cone from injection port to exit plane indicate the margin of safety is satisfactory for the steel and sandwich cone.

Nozzle attachments of the exit cone and diffuser are investigated for critical loading conditions: axial load, pressure, transverse bending moments and shears. The exit cone bolts are also satisfactory.

105
p = pressure, psi, positive when directed outward
Q = total shear force, lb; unit shear force, lb/in.
q = uniform load, lb/in.
M = total moment, in. lb; unit moment, in. lb/in.
T = unit force, lb/in., positive when inducing tension; temperature, °F; or torsional load, in. lb
P = load, lb
E = modulus of elasticity, psi
G = shear modulus, psi
u = Poisson's ratio
α = coefficient of thermal expansion, in./in./°F
σ_{TU} = ultimate tensile strength, psi
σ_{BU} = ultimate bearing strength, psi
σ_{TY} = yield strength, psi
σ_{SU} = ultimate shear strength, psi
σ_{CU} = ultimate compressive strength, psi
R = radius, in., perpendicular to the axis of revolution
L = length, in.
t = thickness, in.
A = area, sq in.
I = moment of inertia, in.\(^4\)
c = distance from centroid of a section to fiber being evaluated, in.
D = flexural rigidity, in./lb; diameter, in.
K = torsional shape factor, in.\(^4\)
\(\beta\) = angle of twist, radians; damping function
\(\phi\) = an angle in degrees
\(\theta\) = angle of slope change, radians, positive when counterclockwise
\(\sigma\) = normal stress, lb per square inch, positive when tensile
\(\omega\) = radial component of displacement, in., positive when directed toward axis of revolution
\(\delta\) = deflection, in.
M.S. = margin of safety
\(\lambda\) = ratio of torsional to flexural rigidity, GK/EI

SUBSCRIPTS

The foregoing symbols used in conjunction with subscript notations listed below will have the following meanings:

\(p\) = denotes the effect of pressure load
\(b\) = denotes the effect of bearing loads
\(s\) = denotes the shear stress
\(m, M\) = denotes the effect of moment load
1 = refers to meridional direction.
2 = refers to hoop or tangential direction
Q = denotes the effect of shear load
Figure 63. 156-7 Nozzle Thermal Stresses 8.0 In. Forward of Throat (Time = 108 Sec)
Figure 64. 156-7 Nozzle Thermal Stresses at Throat (Time = 108 Sec)
Figure 65: 156-7 Nozzle Thermal Stresses at A/A* = 4.0 (Time = 108 Sec)
Thermal Stress Analysis—An analysis was made of the stresses resulting from pressurization and temperature gradients in the submerged section of the nozzle. Three cross sections of the nozzle were analyzed using a computer program. Figure 7 shows the location of those sections.

At each section analyzed, the various materials are subdivided into numerous thin concentric cylinders such that the temperature in the cylinder is considered constant. The equation for radial deflection is written for the inside and outside of each cylinder based on material properties programmed into the computer. These material properties have been compiled by Thiokol from vendor data, Government reports, and development tests. Each cylinder is allowed to deform internally and the deflections at the boundaries are set equal. The resulting matrix is solved for the interface contact pressures, and the values are used to calculate the tangential stresses and radial deflections. The program is set up so that various combinations of external boundary conditions can be imposed, such as known internal and external pressures or known inside and outside deflections.

The equations for this analysis were based on the solution given by Timoshenko (Reference 31). The general equation for radial stress in a cylinder subjected to thermal gradient is as follows:

\[
\sigma_r = \frac{E}{(1+\mu)} \left[\frac{(1+\mu)}{1-\mu} \frac{1}{R^2} \int_1^R 2\pi R dR + \frac{C_1}{1-2\mu} \frac{C_2}{R^2} + \frac{\mu}{1-2\mu} \right]
\]
The longitudinal strain, \(\varepsilon_z \), is:

\[
\varepsilon_z = \frac{\sigma_z}{E} - \frac{\mu}{E} (\sigma_r + \sigma_t) + \alpha T
\]

and the boundary conditions are as follows:

at \(R = R_1 \)

\(\sigma_r = \sigma_{r_i} = -P_l \) (internal pressure)

\(R = R_0 \)

\(\sigma_r = \sigma_{r_o} = -P_o \) (external pressure)

At the inside boundary the integral of the temperature term becomes zero:

\[
\int_{R_i}^{R_l} \alpha TRdR = 0
\]

therefore:

\[
\sigma_{r_i} = -P_l = \frac{E}{1 + \mu} \left[\frac{C_1}{1 - \mu} + \frac{C_2}{R_t^2} + \frac{\mu}{1 - 2\mu} \varepsilon_z \right].
\]

At the outside boundary of a cylinder, thin enough to consider the temperature constant, the integral of the temperature term reduces to:

\[
\int_{R_l}^{R_o} \alpha TRdR = \frac{\alpha}{2} \left(R_o^2 - R_i^2 \right)
\]

Therefore:

\[
\sigma_{r_o} = -P_o = \frac{E}{1 + \mu} \left[\frac{-(1 + \mu) \alpha T}{(1 - \mu) 2 R_o^2} \left(R_o^2 - R_i^2 \right) + \frac{C_1}{1 - 2\mu} + \frac{C_2}{R_o^2} + \frac{\mu}{1 - 2\mu} \varepsilon_z \right].
\]
By taking the difference between the internal and external radial stress, the constant C_2 is found:

$$C_2 = \frac{R_i^2 - R_o^2}{R_o^2 - R_i^2} \left[\frac{(P_I - P_0)(1 + \mu)}{E} + \frac{(1 + \mu)}{(1 - \mu)} \frac{\alpha T (R_o^2 - R_i^2)}{2R_o^2} \right].$$

The constant C_1 can be found in terms of C_2:

$$C_1 = -P_l \frac{(1 + \mu)(1 - 2\mu)}{E} \frac{C_2 (1 - 2\mu)}{R_o^2} - \mu \varepsilon_z.$$

The equation for the radial deflection can now be written, inward deflection being positive:

$$\Delta R = \omega = \frac{1}{R} \frac{(1 + \mu)}{(1 - \mu)} \int_{R_i}^{R} \alpha T R dR - C_1 R - \frac{C_2}{R}.$$

Considering the temperature to be constant, substituting for C_1 and C_2, and simplifying:

$$\omega = \frac{R_o^2 (1 + \mu)}{ER (R_o^2 - R_i^2)} \left[R_o^2 + (1 - 2\mu)R^2 \right] P_0 - \frac{R_i^2 (1 + \mu)}{ER (R_o^2 - R_i^2)} \left[R_o^2 + (1 - 2\mu)R^2 \right] R.$$

$$- (1 + \mu) \alpha T R + \mu R \varepsilon_z$$

The computer program has been set up so that the plane strain condition can be imposed by solving for an axial load, P_z, which causes ε_z to be constant.
This load is found through an iteration of the matrix solution using the following equation for the strain:

\[\varepsilon_z = \frac{N_z + N_{z0}}{(R_o - R_l) E_i} - \frac{u}{E_c} (\sigma_T + \sigma_l) + \alpha_l T \]

where:

- \(N_{z0} \) is an input axial load if a known condition exists. The computer program will also select the material properties for the axial direction if a difference should exist.

Figures 63 through 65 are plots of the combined pressurization and thermal tangential stress distribution at the sections analyzed for several different times during the firing. The maximum predicted compressive stresses in the graphite cloth are at all times below the ultimate compressive strength of the material at that temperature.
b. Discontinuity Analysis of Flange-Submerged Shell and Case Polar Boss—

The flange shell as the main structural member in the nozzle distributes the blowout load, secondary injection side load and dynamic loads into the case closure with axial, shear, and bending moments through the bolted attachments. The components are broken down into small free bodies with all loads and reactions shown and then the deflections and rotations of the bodies are equated to each other and solved for the shear and moments per circumferential inch.

Figure 66 indicates the present design of flange and submerged shell and the stresses existing at critical locations in the cross sections. Inspection of the stresses and allowables indicate all exhibit a safety factor of 1.25 on yield stress.

The aft polar boss and the nozzle flange, attached together by 100 3/4 in. dia tensile type bolts (220,000 psi ultimate), are subjected to the highest discontinuity firing loads at static test.

The following loading conditions have been taken into consideration (Figure 67):

1. Internal case pressure
2. Deformation of shear ply between the fiberglass reinforced plastic and polar boss face
3. Thrust
4. External pressure
Figure 66. 156-7 Nozzle Discontinuity Stresses at Attachment Flange
(Loads During Static Firing at MEOP)
5. Axial loading due to:

LITVC

External pressure on nozzle cone

3g acceleration of nozzle relative to the case

Results shown on Figure 66 are based on a MEOP of 705 psia. Factors of safety shown for metal parts are based on material yield and those for non-metal parts are based on material ultimate strengths.

(1) Material Properties

Polar Boss

2014 - T652 Aluminum Alloy
(After case cure)

<table>
<thead>
<tr>
<th></th>
<th>FTU (psi)</th>
<th>FTY (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tangential</td>
<td>55,000</td>
<td>47,500</td>
</tr>
<tr>
<td>Radial</td>
<td>53,250</td>
<td>45,600</td>
</tr>
<tr>
<td>Axial</td>
<td>52,250</td>
<td>43,700</td>
</tr>
</tbody>
</table>

\[F_s = 0.6 F_T \]
\[E = 10.5 \times 10^6 \text{ psi} \]
\[\mu = 0.33 \]

Nozzle Flange

18 percent Nickel Steel - 200 Grade

\[FTU = 210,000 \text{ psi} \]
\[FTY = 200,000 \text{ psi} \]
\[F_s = 0.6 F_T \]
\[E = 27 \times 10^6 \text{ psi} \]
\[\mu = 0.3 \]
Bolt (tensile type)

3/4 - 16 UNF

\[F_{TY} = 180,000 \text{ psi} \]
\[F_{TU} = 220,000 \text{ psi} \]

Insert

(Cres 303)

\[F_{TU} = 110,000 \text{ psi} \]
\[F_{TY} = 75,000 \text{ psi} \]

Fiberglass Reinforced Plastic Cone

(58 percent horizontal, 42 percent longitudinal - 143 Glass Fabric with Phenolic Resin)

\[F_{TU\phi} = 30,000 \text{ psi} \]
\[F_{TU\theta} = 33,000 \text{ psi} \]
\[\mu = 0.25 \]
\[E_{\phi} \cdot E_{\theta} = 4 \times 10^6 \text{ psi} \]

(2) Boundary Load Summary

Internal case pressure 705 lb/sq in.

Load due to shear deformation of shear ply due to case strain parallel to polar boss surface 4,980 lb/in.

Thrust 400,000 lb

External pressure at Utah 12.5 lb/sq in.
Axial loading

LITVC - 7,800 lb

External pressure + 84,000 lb

3g acceleration + 3,800 lb

(3) Discontinuity Analysis—Thiokol Program No. 3239, IBM 7040

Computer Program for Stress Analysis of a System of Free Bodies, computes and solves the discontinuity equations resulting from the input of the above boundary loads and the geometry of structural components.

(4) Maximum Stress in Polar Boss (Station 2)

\[
M = -49,100 \text{ in. lb/in.} \quad t = 3.6 \text{ in.}
\]

\[
Q = -15,220 \text{ lb/in.}
\]

\[
T = 11,060 \text{ lb/in.}
\]

\[
\sigma_{\text{max}} = \frac{6M}{t^2} + \frac{Q}{t} \quad \text{49,100 in. lb/in.}
\]

\[
\tau_{\text{max}} = \left(\frac{3}{2}\right)\frac{T}{t \cos 30 \text{ deg}}
\]

At outboard side of junction

\[
\sigma_{\text{max}} = \frac{6(49,100)}{(3.60)^2} + \frac{15,220}{(3.60) \cos 30 \text{ deg}}
\]

\[
= 22,730 + 4,880
\]

= 27,610 psi

\[
\tau_{\text{max}} = \frac{2(3.60) \cos 30 \text{ deg}}{(3)(11,060)}
\]

\[
= 5,320 \text{ psi}
\]

\[
F.S. = \frac{F_{\text{TYR}}}{\sigma_{\text{max}}} = \frac{45,600}{27,610} = 1.65
\]

121
(5) Stress in Bolt and Area Around Insert (Station 3)

\[T = 10,340 \text{ lb/in.} \quad \Delta R = -0.0444 \text{ in.} \]
\[M = -20,850 \text{ lb/in.} \quad \Delta \theta = +0.0246 \text{ rad} \]

Q is reacted by the shear lip

Bolt Stress

\[\sigma_{\text{bolt}} = 134,000 \text{ psi} \quad \sigma_{\text{allowable}} = 200,000 \text{ psi} \]
\[\text{F.S.} = \frac{F_{TY}}{\sigma_{\text{bolt}}} = \frac{180,000}{134,000} = 1.34 \quad \text{(See Section D3h (4))} \]

Insert Stress

\[P_b = \sigma_{\text{bolt}} A_s \]
\[= 134,000 (0.3734) = 50,040 \text{ lb/bolt} \]

Bolt - Insert Thread (Assume failure to be 2/3 the distance between pitch and minor dia in insert)

\[A_T = \frac{2}{3} \pi D_{so} L \]
\[= \frac{2\pi (0.71) (0.95)}{3} \]
\[= 1.413 \text{ sq in.} \]
\[\tau = \frac{P_b}{A_T} \]
\[= \frac{50,040}{1.413} \]
\[= 35,414 \text{ psi} \]
\[\text{F.S.} = \frac{F_{gy} \text{ (Insert)}}{\tau} \]
\[= \frac{0.6 (75,000)}{35,414} \]
\[= 1.27 \]

122
Insert - Polar Boss Thread (Assume failure to be 3/4 the distance between pitch and minor dia in polar boss)

\[
A_T = \frac{3}{4} \pi D_{so} L
\]

\[
= \frac{3 \pi (1.10) (1.5)}{4}
\]

\[
= 3.887 \text{ sq in.}
\]

\[
\tau_{thread} = \frac{F_{bolt}}{A_T} = \frac{50,040}{3,887} = 12,870 \text{ psi}
\]

\[
F.S. = \frac{F_{SY} \text{ (Polar Boss)}}{\tau_{thread}} = \frac{(0.6) (43,700)}{12,870} = 2.03
\]

Stress in Shear Lip

\[
Q = 20,845 \text{ lb/in.}
\]

\[
\tau_{max} = \left(\frac{3}{2}\right)\left(\frac{Q}{t}\right)
\]

\[
= \frac{(3) (20,845)}{(2) (0.60)} = 52,110 \text{ psi}
\]
Bending

\[\sigma_{\text{max}} = K \left(\frac{6M}{t^2} \right) \]

where: \(K = \) Stress concentration factor (Reference 40

\[\frac{F}{t} = 0.06 \]

\[\frac{D}{t} = 0.9 \]

\(K = 1.80 \) (From Figure 60 Reference 40)

\[\sigma_{\text{max}} = \frac{1.85 (6) (Q_e)}{(0.60)^2} = \frac{(1.80)(6)(20,845)(0.25)}{0.36} \]

\[= 156,340 \text{ psi} \]

\[\text{F.S.} = \frac{FSY}{\sigma_{\text{max}}} = \frac{200,000}{156,340} = 1.27 \]

Shear Stress in Polar Boss at Shear Lip

\[\tau_{45 \text{ deg}} = \frac{Q \cos^2 45 \text{ deg}}{h} \]

\[= \frac{(20,845)(0.707)^2}{0.53} = 19,660 \text{ psi} \]
F.S. = \frac{F_{SY}}{t} = \frac{(43,700)(0.6)}{19,660} = 1.33

(6) Stress in Nozzle Flange (Station 3)

\begin{align*}
M & = 17,000 \text{ in. lb/in.} \\
Q & = 20,845 \text{ lb/in.} \\
S_B & = 2.22 \text{ in. between bolts}
\end{align*}

Typical Section Between Bolts

\begin{align*}
M_{sect} & = M_S B = 17,000 \times (2.22) = 37,740 \text{ in. lb} \\
Q_{sect} & = Q_S B = 20,845 \times (2.22) = 46,280 \text{ lb} \\
I_{sect} & = \frac{b h^3}{12} = \frac{(2.16 - 0.80)(1.2)^3}{12} = 0.1958 \text{ in.}^4 \\
\delta & = \frac{M_c}{I} + \frac{Q}{A} \\
& = \frac{(37,740)(0.6) + 46,280}{0.1958} = \frac{(2.16 - 0.80)(1.2)}{0.1958} \\
& = 115,650 + 28,360 = 144,000 \text{ psi} \\
F.S. & = \frac{F_{TY}}{\sigma} = \frac{200,000}{144,000} = 1.38
\end{align*}

(7) Stress in Flange Connection Ring Junction (Station 4)

\begin{align*}
M & = 13,920 \text{ in. lb/in.} \quad \Delta \theta = +0.0246 \text{ rad} \\
Q & = -14,740 \text{ lb/in.} \quad \Delta R = -0.0595 \text{ in.} \\
T & = 10,490 \text{ lb/in.}
\end{align*}
Shear

\[
\tau_{\text{max}} = \left(\frac{3}{2} \right) \left(\frac{T}{t} \right) = \left(\frac{3}{2} \right) \left(\frac{10,490}{1.2} \right) = 13,110 \text{ psi}
\]

\[
\text{F.S.} = \frac{F_{\text{gy}}}{\tau_{\text{max}}} = \frac{(200,000)0.6}{13,110} = 9.15
\]

Bending

\[
\sigma_{\text{max}} = \frac{6M}{t^2} + \frac{Q}{t}
\]

\[
= \left(\frac{6}{1.2^2} \right) (13,920) + \frac{14,740}{1.2}
\]

\[
= 58,000 + 12,280 = 70,280 \text{ psi}
\]

\[
\text{F.S.} = \frac{F_{\text{ty}}}{\sigma_{\text{max}}} = \frac{200,000}{70,280} = 2.84
\]

(8) Stress in Aft Cone Junction with Ring (Station 6)

\[
M = -1,636 \text{ in. lb/in.} \quad \Delta \theta = +0.0166 \text{ rad}
\]

\[
Q = -1,400 \text{ lb/in.} \quad \Delta R = -0.102 \text{ in.}
\]

\[
T = +417 \text{ lb/in.}
\]

Inside Surface of Cone

\[
\sigma_{\phi} = -125,640 \text{ psi}
\]

\[
\sigma_{\theta} = +46,380 \text{ psi}
\]

Outside Surface of Cone

\[
\sigma_{\phi} = -124,800 \text{ psi}
\]

\[
\sigma_{\theta} = -121,510 \text{ psi}
\]
F.S. (min) = \frac{F_{TY}}{\sigma_\phi \text{ (Inside)}}

= \frac{200,000}{125,640} = 1.59

(9) Stress in Submerged Cone Junction with Ring (Station 9)

\begin{align*}
M &= -3,912 \text{ in. lb/in.} & \Delta \theta &= +0.0246 \text{ rad} \\
\Theta &= +3,267 \text{ lb/in.} & \Delta R &= -0.0371 \text{ in.} \\
T &= -10,320 \text{ lb/in.}
\end{align*}

The steel section of the cone segment is assumed to react the moment and shear loading.

At Outside Surface of Steel Section

\begin{align*}
\sigma_{\phi o} &= \frac{6M}{t^2} + \left(\frac{\Theta}{t} \right) \cos \phi \\
&= \frac{(6)(-3.912) + (3.267)(\cos 66 \text{ deg})}{(0.55)^2} \\
&= +77.600 + 2.420 = 80.020 \text{ psi}
\end{align*}

\[F_{\sigma_{\phi o}} = \frac{F_{TY}}{\sigma_{\phi o}} = \frac{200,000}{80,020} = 2.49 \]

Hoop Stress at Outside Surface of Fiberglass Reinforced Plastic Section

\begin{align*}
\sigma_\theta &= -\frac{E_\theta}{R_o} \left[\Delta R_\theta \right] \\
&= -\frac{11.7 \times 10^6}{33.3} \left[-0.03706 \right] \\
&= 13,000 \text{ psi}
\end{align*}

\[F.S. = \frac{F_{TU\theta}}{\sigma_\theta} = \frac{33,000}{13,000} = 2.53 \]

127
Bearing Stress Between Fiberglass Reinforced Plastic Section and Ring

\[\sigma_{br} = \frac{T}{A_b} = \frac{10,320}{0.50} = 20,640 \text{ psi} \]

\[\text{F.S.} = \frac{F_{BRU}}{\sigma_{br}} = \frac{35,000}{20,640} = 1.69 \]

(10) Stress in Fiberglass Reinforced Plastic Cone at Junction with Steel Tongue (Station 11)

\[M = +1,588 \text{ in. lb/in.} \quad \Delta \theta = +0.0248 \text{ rad} \]
\[Q = +846 \text{ lb/in.} \quad \Delta R = +0.0421 \text{ in.} \]
\[T = -10,110 \text{ lb/in.} \]

Inside Surface of Cone

\[\sigma_\phi = -1,522 \text{ psi} \]
\[\sigma_\theta = -5,840 \text{ psi} \]

Outside Surface of Cone

\[\sigma_\phi = -14,755 \text{ psi} \]
\[\sigma_\theta = -9,150 \text{ psi} \]

\[\text{F.S.} \phi = \frac{F_{TU} \phi}{\sigma_\phi} = \frac{30,000}{14,755} = 2.03 \]
\[\text{F.S.} \theta = \frac{F_{TU} \theta}{\sigma_\theta} = \frac{33,000}{9,150} = 3.60 \]

Since \(\sigma_\phi \) and \(\sigma_\theta \) are both compressive at the surface bonded to the steel tongue, the pressure between the two is positive; therefore, there is no tendency to peel the adhesive between the two surfaces.
An aft polar boss and nozzle discontinuity analysis for flight test conditions was conducted (IBM 7040 computer program No. 3239). The revised aft polar boss is shown on page 130.

The preliminary analysis revealed that the static test condition was the critical condition. Therefore the flight test condition was not re-run when the nozzle flange was redesigned for grade 200 18 percent nickel steel.

The aft polar boss and nozzle discontinuity analysis was then conducted for static test conditions. The results of this analysis are presented on pages 131 through 152.
FREE BODY TO DETERMINE LOAD ON POLAR BOSS
FREE BODY NUMBER 1 SEMI-INFINITE CONE

0.000000 --- INTERNAL PRESSURE, PSI
43.500000 --- RADIUS AT MID-POINT OF STATION 11, IN.
13.440000 --- RADIUS OF THROAT, IN.
-4.819900 --- PRESSURIZED RADIUS AT STATION 11, IN.
74.200000 --- PHI, DEGREES
-0.272280 --- COSINE OF PHI
0.962220 --- SINE OF PHI
45.208050 --- MEAN RADIUS OF CURVATURE NORMAL TO MERIDIAN (R2), IN.

100.000000 --- THICKNESS FOR STRESS AT STATION 11, IN.
0.000001 --- THICKNESS FOR DEFLECTIONS, IN.
0.000000 X 10E6 --- MODULUS OF ELASTICITY, PSI
0.330000 --- POISSON'S RATIO
60.138698 --- DAMPING FUNCTION
0.000000 X 10E6 --- FLEXURAL RIGIDITY, IN-LBS.
0.000000 --- AXIAL LOAD AT STATION 11, LBS/IN.
0.000000 --- M(1) - MOMENT, IN-LBS/IN.
-0.000000 --- Q(1) - SHEAR FORCE, LBS/IN.

DELTA THETA (1) — DELTA RADIUS (1) — CHANGE IN RADIUS, IN.

0.02462940 --- DELTA THETA (1) - ROTATION, RADIANS
0.09766700 --- DELTA RADIUS (1) - CHANGE IN RADIUS, IN.

DELTA THETA (1) --- ******************* M(1) ******************* Q(1)
DELTA RADIUS (1) --- ******************* M(1) ******************* Q(1)

0.00000000 --- SIGMA(1P)
-0.00000000 --- SIGMA(1Q)
0.00000000 --- SIGMA(1M)
-0.00000000 --- SIGMA(11)
-0.00000000 --- SIGMA(10)

0.00000000 --- SIGMA(2P)
-0.00000000 --- SIGMA(2Q)
0.00000000 --- SIGMA(2M)
-0.00000000 --- SIGMA(21)
-0.00000000 --- SIGMA(20)

STRESSES AT STATION 11

BASIC MERIDIONAL STRESS, PSI
MERIDIONAL STRESS DUE TO SHEAR, PSI
MERIDIONAL STRESS DUE TO MOMENT, PSI
MAXIMUM COMBINED INSIDE MERIDIONAL STRESS, PSI
MAXIMUM COMBINED OUTSIDE MERIDIONAL STRESS, PSI

BASIC TANGENTIAL STRESS, PSI
TANGENTIAL STRESS DUE TO SHEAR, PSI
TANGENTIAL STRESS DUE TO MOMENT, PSI
TANGENTIAL STRESS DUE TO SIGMA(M), PSI
MAXIMUM COMBINED INSIDE TANGENTIAL STRESS, PSI
MAXIMUM COMBINED OUTSIDE TANGENTIAL STRESS, PSI
TAPER SECTION OF POLAR RING

FREE BODY NUMBER 2 RING

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>705.0000000</td>
<td>INTERNAL PRESSURE(1), PSI.</td>
</tr>
<tr>
<td>12.0000000</td>
<td>THROAT RADIUS(1), IN.</td>
</tr>
<tr>
<td>43.0000000</td>
<td>RADIUS TO MID-POINT OF STATION(1), IN.</td>
</tr>
<tr>
<td>705.0000000</td>
<td>INTERNAL PRESSURE(2), PSI.</td>
</tr>
<tr>
<td>12.0000000</td>
<td>THROAT RADIUS(2), IN.</td>
</tr>
<tr>
<td>36.9994992</td>
<td>RADIUS TO MID-POINT OF STATION(2), IN.</td>
</tr>
<tr>
<td>40.6465352</td>
<td>RADIUS TO CENTROID, IN.</td>
</tr>
<tr>
<td>105.8000000</td>
<td>PHI AT STATION(1), DEGREES</td>
</tr>
<tr>
<td>0.9622180</td>
<td>SINE PHI AT STATION(1)</td>
</tr>
<tr>
<td>-0.2722003</td>
<td>COSINE PHI AT STATION(1)</td>
</tr>
<tr>
<td>89.9999986</td>
<td>PHI AT STATION(2), DEGREES</td>
</tr>
<tr>
<td>1.0000000</td>
<td>SINE PHI AT STATION(2)</td>
</tr>
<tr>
<td>-0.0000000</td>
<td>COSINE PHI AT STATION(2)</td>
</tr>
<tr>
<td>10.500 X 10E6</td>
<td>ELASTIC MODULUS, PSI.</td>
</tr>
</tbody>
</table>

20.9879992 | AREA OF CROSS-SECTION OF RING, SQ. IN. |

7964.9999972 | HORIZONTAL COMPONENT OF PRESSURE, P1, LB/IN. |
1874.0000000 | VERTICAL COMPONENT OF PRESSURE, P2, LB/IN. |
0.0000000 | HORIZONTAL COMPONENT OF PRESSURE, P3, LB/IN. |

2.8934444 | VERTICAL DISTANCE FROM CENTROID TO AXIAL LOAD(1), IN. |
-3.6965356 | VERTICAL DISTANCE FROM CENTROID TO AXIAL LOAD(2), IN. |

-4.6108085 | PRESSURIZED RADIUS AT STATION(1), IN. |
36.0999996 | PRESSURIZED RADIUS AT STATION(2), IN. |
4.5465356 | VERTICAL DISTANCE TO CENTROID, IN. |

48.1619700 | MOMENT OF INERTIA ABOUT THE Y-AXIS, IN. (4TH) |

-1.1034644 | VERTICAL DISTANCE FROM CENTROID TO P1, IN. |
1.0997541 | HORIZONTAL DISTANCE FROM CENTROID TO P2, IN. |
0.0000000 | VERTICAL DISTANCE FROM CENTROID TO P3, IN. |

-0.1802458 | HORIZONTAL DISTANCE FROM CENTROID TO AXIAL LOAD(1), IN. |
1.8702458 | HORIZONTAL DISTANCE FROM CENTROID TO AXIAL LOAD(2), IN. |

20449.9998720 | AXIAL LOAD AT STATION(1), LB/IN. (T1) |
11058.7692032 | AXIAL LOAD AT STATION(2), LB/IN. (T2) |
2.4997541 | HORIZONTAL DISTANCE TO CENTROID, IN. |

0.0000000 | M1(1) -- MOMENT, IN-LB/IN. |
-49865.9790848 | M1(2) -- MOMENT, IN-LB/IN. |

-0.0000000 | Q1(1) -- SHEAR, LB/IN. |
-15210.9185280 | Q1(2) -- SHEAR, LB/IN. |

0.0976670 | DELTA RADIUS(1) -- CHANGE IN RADIUS, IN. |
0.0560432 | DELTA RADIUS(2) -- CHANGE IN RADIUS, IN. |
0.0246294 | DELTA THETA(1) -- ROTATION, RADIANS |
0.0246294 | DELTA THETA(2) -- ROTATION, RADIANS |
BOLTED SECTION OF POLAR RING
FREE BODY NUMBER 3 RING

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal Pressure 21, PSI</td>
<td>704.0000000</td>
<td>(P1)</td>
</tr>
<tr>
<td>Throat Radius 21, IN.</td>
<td>12.0000000</td>
<td>(P2)</td>
</tr>
<tr>
<td>Radius to Mid-Point of Station 21, IN.</td>
<td>36.9599999</td>
<td>(P3)</td>
</tr>
<tr>
<td>Internal Pressure 31, PSI</td>
<td>705.0000000</td>
<td>(P4)</td>
</tr>
<tr>
<td>Throat Radius 31, IN.</td>
<td>12.0000000</td>
<td>(P5)</td>
</tr>
<tr>
<td>Radius to Mid-Point of Station 31, IN.</td>
<td>35.4169999</td>
<td>(P6)</td>
</tr>
<tr>
<td>Radius to Centroid, IN.</td>
<td>35.7792636</td>
<td>(P7)</td>
</tr>
</tbody>
</table>

15.7865892 --- AREA OF CROSS-SECTION OF RING, SQ. IN. 31.7246856 --- MOMENT OF INERTIA ABOUT THE Y-AXIS, IN.(4TH)
1495.0000000 --- HORIZONTAL COMPONENT OF PRESSURE, P1, LB/IN. 0.7792647 --- VERTICAL DISTANCE FROM CENTROID TO P1, IN.
3989.9999744 --- VERTICAL COMPONENT OF PRESSURE, P2, LB/IN. 0.5159087 --- HORIZONTAL DISTANCE FROM CENTROID TO P2, IN.
282.0000000 --- HORIZONTAL COMPONENT OF PRESSURE, P3, LB/IN. -1.3992846 --- VERTICAL DISTANCE FROM CENTROID TO P3, IN.
1.1807353 --- VERTICAL DISTANCE FROM CENTROID TO AXIL LOAD 21, IN. 1.7615887 --- HORIZONTAL DISTANCE FROM CENTROID TO AXIAL LOAD 21, IN.
-0.3622646 --- VERTICAL DISTANCE FROM CENTROID TO AXIAL LOAD 31, IN. 2.3184113 --- HORIZONTAL DISTANCE FROM CENTROID TO AXIAL LOAD 31, IN.
36.0999999 --- PRESSURIZED RADIUS AT STATION 21, IN. 11035.7770752 --- AXIAL LOAD AT STATION 21, LB/IN.(T2)
36.3999999 --- PRESSURIZED RADIUS AT STATION 31, IN. 10344.5913600 --- AXIAL LOAD AT STATION 31, LB/IN.(T3)
1.7992846 --- VERTICAL DISTANCE TO CENTROID, IN. 3.3415887 --- HORIZONTAL DISTANCE TO CENTROID, IN.

-49965.9790848 --- M(21) --- MOMENT, IN-LB/IN. -15216.9185280 --- Q(21) --- SHEAR, LB/IN.
17907.0132736 --- M(31) --- MOMENT, IN-LB/IN. -20845.7488384 --- Q(31) --- SHEAR, LB/IN.

0.0560432 --- DELTA RADIUS 21) --- CHANGE IN RADIUS, IN. 0.0246294 --- DELTA THETA 2) --- ROTATION, RADIANS
-0.0444448 --- DELTA RADIUS 31) --- CHANGE IN RADIUS, IN. 0.0246294 --- DELTA THETA 3) --- ROTATION, RADIANS
<table>
<thead>
<tr>
<th>Q(MET)</th>
<th>Q(MET)</th>
<th>DELTA RADIUS (CI)</th>
<th>DELTA RADIUS (MI)</th>
<th>DELTA RADIUS (MI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0000</td>
<td>0.0000</td>
<td>7.3186(\text{CI} 31)</td>
<td>7.3186(\text{CI} 31)</td>
<td>7.3186(\text{CI} 31)</td>
</tr>
<tr>
<td>1.7272</td>
<td>0.0000</td>
<td>7.3186(\text{CI} 31)</td>
<td>7.3186(\text{CI} 31)</td>
<td>7.3186(\text{CI} 31)</td>
</tr>
<tr>
<td>1.7609</td>
<td>0.0000</td>
<td>6.7699(\text{CI} 31)</td>
<td>6.7699(\text{CI} 31)</td>
<td>6.7699(\text{CI} 31)</td>
</tr>
<tr>
<td>1.8431</td>
<td>0.0000</td>
<td>6.7699(\text{CI} 31)</td>
<td>6.7699(\text{CI} 31)</td>
<td>6.7699(\text{CI} 31)</td>
</tr>
<tr>
<td>6.0098</td>
<td>0.0000</td>
<td>-7.9726(\text{CI} 31)</td>
<td>-7.9726(\text{CI} 31)</td>
<td>-7.9726(\text{CI} 31)</td>
</tr>
<tr>
<td>6.0098</td>
<td>0.0000</td>
<td>-7.9726(\text{CI} 31)</td>
<td>-7.9726(\text{CI} 31)</td>
<td>-7.9726(\text{CI} 31)</td>
</tr>
</tbody>
</table>
3/4-16UNEF BOLTS (100)

BOLT NO. 7 CONNECTING FREE BODIES 3 AND 4

2.2260000 --- BOLT SPACING, IN.
1.4000000 --- DISTANCE T/2 PIVOT POINT, IN.
0.3734000 --- STRESS AREA OF BOLT, SQ. IN.
0.0000000 --- EFFECTIVE LENGTH OF BOLT, IN.
30.0000000 x 10E6 --- ELASTIC MODULUS OF BOLT, PSI
90.0000000 --- PHI, DEGREES
34.3999996 --- PRESSURIZED RADIUS, IN.

17077.0132736 --- M (3) - MOMENT, IN-LB/IN.
-26845.7488384 --- Q(3) - SHEAR, LB/IN (REACTED BY SHEAR LIP)

0.0000000 --- DELTA THETA (3) - ANGLE OF SEPARATION BETWEEN MATING SURFACES, RADIANS

DELTA THETA (3) --- 0.0000000 M (3) 0.0000000

61502.3902720 --- SIGMA (IP) BASIC BOLT STRESS, PSI
7222.5228160 --- SIGMA (1I) BOLT STRESS DUE TO BENDING, PSI
133725.90820 --- SIGMA (T) TOTAL TENSILE STRESS, PSI
NOZZLE FLANGE (NI-82 STEEL - 200 GRADE)

FREEDOM NUMBER 4 RING

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>705.00000000</td>
<td>INTERNAL PRESSURE 1, PSI.</td>
</tr>
<tr>
<td>12.00000000</td>
<td>THROAT RADIUS 1, IN.</td>
</tr>
<tr>
<td>35.43954946</td>
<td>RADIUS TO MID-POINT OF STATION 1, IN.</td>
</tr>
<tr>
<td>705.00000000</td>
<td>INTERNAL PRESSURE 2, PSI.</td>
</tr>
<tr>
<td>12.00000000</td>
<td>THROAT RADIUS 2, IN.</td>
</tr>
<tr>
<td>33.99994928</td>
<td>RADIUS TO MID-POINT OF STATION 2, IN.</td>
</tr>
</tbody>
</table>

5.13399999 | AREA OF CROSS-SECTION OF RING, SQ. IN. |

0.7654962 | MOMENT OF INERTIA ABOUT THE Y-AXIS, IN. (4TH) |

282.00000000 | HORIZONTAL COMPONENT OF PRESSURE, P1, LB/IN. |
0.00000000 | VERTICAL COMPONENT OF PRESSURE, P2, LB/IN. |
0.00000000 | HORIZONTAL COMPONENT OF PRESSURE, P3, LB/IN. |

-0.70805750 | VERTICAL DISTANCE FROM CENTROID TO AXIAL LOAD 1, IN. |
-2.14305756 | VERTICAL DISTANCE FROM CENTROID TO AXIAL LOAD 2, IN. |

34.39995964 | PRESSURIZED RADIUS AT STATION 3, IN. |
34.00000000 | PRESSURIZED RADIUS AT STATION 4, IN. |

2.14305756 | VERTICAL DISTANCE TO CENTROID, IN. |

17007.8132736 | M (3) - MOMENT, IN-LB/IN. |
13923.1428608 | M (4) - MOMENT, IN-LB/IN. |

-20845.7488384 | QI (3) - SHEAR, LB/IN. |
-14739.6089856 | QI (4) - SHEAR, LB/IN. |

0.0246204 | DELTA THETA (3) - ROTATION, RADIANS |
0.0246204 | DELTA THETA (4) - ROTATION, RADIANS
<table>
<thead>
<tr>
<th>(U(\text{NET}))</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0000 Q(3)</td>
<td>-1.0000 Q(4)</td>
<td>-0.0000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\Delta \text{RADIUS (C)})</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4239 Q(3)</td>
<td>-9.4239 Q(4)</td>
<td>-0.0000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(M(\text{NET}))</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.0000 M(3)</td>
<td>0.5118 Q(3)</td>
<td>1.0000 M(4)</td>
<td>0.0782 Q(4)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\Delta \text{THETA (3)})</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-63.7038 M(3)</td>
<td>33.6141 Q(3)</td>
<td>61.2038 M(4)</td>
<td>4.9402 Q(4)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\Delta \text{RADIUS (3)})</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-33.6141 M(3)</td>
<td>27.3611 Q(3)</td>
<td>33.6141 M(4)</td>
<td>-6.7965 Q(4)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\Delta \text{THETA (4)})</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-63.2038 M(3)</td>
<td>33.6141 Q(3)</td>
<td>63.2038 M(4)</td>
<td>4.9402 Q(4)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\Delta \text{RADIUS (4)})</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4.9402 M(3)</td>
<td>6.7965 Q(3)</td>
<td>-4.9402 M(4)</td>
<td>-9.8100 Q(4)</td>
</tr>
</tbody>
</table>
RING CONNECTING FLANGE WITH CONES

FREE BODY NUMBER 5 - RING

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal Pressure 41, PSI.</td>
<td>89.9999984</td>
</tr>
<tr>
<td>Throat Radius 41, in.</td>
<td>1.0000000</td>
</tr>
<tr>
<td>Radius to Mid-Point of Station 41, in.</td>
<td>-0.0000000</td>
</tr>
<tr>
<td>Internal Pressure 51, PSI.</td>
<td>112.4999984</td>
</tr>
<tr>
<td>Throat Radius 51, in.</td>
<td>0.9238795</td>
</tr>
<tr>
<td>Radius to Mid-Point of Station 51, in.</td>
<td>-0.3826835</td>
</tr>
<tr>
<td>Internal Pressure 91, PSI.</td>
<td>114.0000000</td>
</tr>
<tr>
<td>Throat Radius 91, in.</td>
<td>0.9135456</td>
</tr>
<tr>
<td>Radius to Mid-Point of Station 91, in.</td>
<td>-0.4063767</td>
</tr>
<tr>
<td>Radius to Centroid, in.</td>
<td>27.000 x 10E6 - Elastic Modulus, PSI.</td>
</tr>
</tbody>
</table>

3.4999488 - AREA OF CROSS-SECTION OF RING, SQ. IN.	1.2659461 - MOMENT OF INERTIA ABOUT THE Y-AXIS, IN. (4TH)
437.0000000 - HORIZONTAL COMPONENT OF PRESSURE, P1, LB/IN.	-0.6601115 - VERTICAL DISTANCE FROM CENTROID TO P1, IN.
-388.0000000 - VERTICAL COMPONENT OF PRESSURE, P2, LB/IN.	0.3933305 - HORIZONTAL DISTANCE FROM CENTROID TO P2, IN.
4.1200000 - HORIZONTAL COMPONENT OF PRESSURE, P3, LB/IN.	0.0000000 - VERTICAL DISTANCE FROM CENTROID TO P3, IN.
0.9400115 - VERTICAL DISTANCE FROM CENTROID TO AXIAL LOAD 41, IN.	0.0493305 - HORIZONTAL DISTANCE FROM CENTROID TO AXIAL LOAD 41, IN.
-0.0598885 - VERTICAL DISTANCE FROM CENTROID TO AXIAL LOAD 51, IN.	1.4416695 - HORIZONTAL DISTANCE FROM CENTROID TO AXIAL LOAD 51, IN.
-0.2098885 - VERTICAL DISTANCE FROM CENTROID TO AXIAL LOAD 91, IN.	-0.9583305 - VERTICAL DISTANCE FROM CENTROID TO AXIAL LOAD 91, IN.
34.0000000 - PRESSURIZED RADIUS AT STATION 41, IN.	10492.0586240 - AXIAL LOAD AT STATION 41, LB/IN. (T)
34.7668124 - PRESSURIZED RADIUS AT STATION 51, IN.	418.0000000 - AXIAL LOAD AT STATION 51, LB/IN. (T)
34.7668124 - PRESSURIZED RADIUS AT STATION 91, IN.	10659.999888 - AXIAL LOAD AT STATION 91, LB/IN. (T)
1.1598885 - VERTICAL DISTANCE TO CENTROID, IN.	1.2083305 - HORIZONTAL DISTANCE TO CENTROID, IN.
19923.1428608 - M1 41 - MOMENT, IN-LB/IN.	-14739.6089856 - Q1 41 - SHEAR, LB/IN.
-2984.9587968 - M1 51 - MOMENT, IN-LB/IN.	-1647.6411264 - Q1 51 - SHEAR, LB/IN.
-3912.1496870 - M1 91 - MOMENT, IN-LB/IN.	3267.5422200 - Q1 91 - SHEAR, LB/IN.
-0.0594687 - DELTA RADIUS 41 - CHANGE IN RADIUS, IN.	0.0246294 - DELTA THEETA 41 - ROTATION, RADIANS
-0.0576185 - DELTA RADIUS 51 - CHANGE IN RADIUS, IN.	0.0246294 - DELTA THEETA 51 - ROTATION, RADIANS
-0.2370559 - DELTA RADIUS 91 - CHANGE IN RADIUS, IN.	0.0246294 - DELTA THEETA 91 - ROTATION, RADIANS
Short Aft Cone Segment No. 1

Free Body No. 6

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-6.000000</td>
<td>Internal Pressure, PSI</td>
</tr>
<tr>
<td>0.320000</td>
<td>Length of Short Cone, IN.</td>
</tr>
<tr>
<td>32.940000</td>
<td>Radius to Mid-Point of Station 51, IN.</td>
</tr>
<tr>
<td>33.000000</td>
<td>Radius to Mid-Point of Station 61, IN.</td>
</tr>
<tr>
<td>0.000000</td>
<td>Throat Radius 51, IN.</td>
</tr>
<tr>
<td>32.76446</td>
<td>Pressurized Radius of Station 51, IN.</td>
</tr>
<tr>
<td>32.87066</td>
<td>Pressurized Radius of Station 61, IN.</td>
</tr>
<tr>
<td>32.970000</td>
<td>Radius to Centroid, IN.</td>
</tr>
<tr>
<td>35.68647</td>
<td>Mean Radius of Curvature Normal to Meridian (R2), IN.</td>
</tr>
<tr>
<td>35.65400</td>
<td>Mean Radius of Curvature Normal to Meridian at Station 51 (R2), IN.</td>
</tr>
<tr>
<td>35.71894</td>
<td>Mean Radius of Curvature Normal to Meridian at Station 61 (R2), IN.</td>
</tr>
<tr>
<td>418.000000</td>
<td>Axial Load at Station 51, LB/IN (T3)</td>
</tr>
</tbody>
</table>

Influence Coefficients

<table>
<thead>
<tr>
<th>K</th>
<th>194.1575120</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>196.1600624</td>
</tr>
<tr>
<td>L</td>
<td>3172.3032320</td>
</tr>
<tr>
<td>V</td>
<td>8.0861839</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M (51)</th>
<th>-2086.9587968</th>
<th>Moment, IN-LB/IN</th>
</tr>
</thead>
<tbody>
<tr>
<td>M (61)</td>
<td>-1636.1663488</td>
<td>Moment, IN-LB/IN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Q (51)</th>
<th>-1647.6411264</th>
<th>Shear, LB/IN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q (61)</td>
<td>-1399.4689920</td>
<td>Shear, LB/IN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Delta Theta 51</th>
<th>Rotation, Radians</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0749770</td>
<td>-0.0918665</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Delta Theta 61</th>
<th>Rotation, Radians</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0150670</td>
<td>-0.102029</td>
</tr>
</tbody>
</table>
SHORT AFT CONE SEGMENT NO. 2
FREE BODY NO. 7 SHORT CONE

-6.00000 --- INTERNAL PRESSURE, PSI
1.20000 --- LENGTH OF SHORT CONE, IN.
33.00000 --- RADIUS TO MID-POINT OF STATION 61, IN.
33.42000 --- RADIUS TO MID-POINT OF STATION 71, IN.
0.00000 --- THROAT RADIUS (61), IN.
32.87066 --- PRESSURIZED RADIUS OF STATION (61), IN.
33.32299 --- PRESSURIZED RADIUS OF STATION (71), IN.
33.21000 --- RADIUS TO CENTROID, IN.
35.94625 --- MEAN RADIUS OF CURVATURE NORMAL TO MERIDIAN (R2), IN.
35.71894 --- MEAN RADIUS OF CURVATURE NORMAL TO MERIDIAN AT STATION 61 (R2), IN.
34.17555 --- MEAN RADIUS OF CURVATURE NORMAL TO MERIDIAN AT STATION 71 (R2), IN.
417.00000000 --- AXIAL LOAD AT STATION 61, LB/IN (T_i)
412.00000000 --- AXIAL LOAD AT STATION 71, LB/IN (T_i)

INFLUENCE COEFFICIENTS

| 10.0607692 | 10.9067093 | 3.8111396 |
| 41.2919940 | 3.8111396 | 1.9021234 |

-1636.16034800 --- M1 (61) - MOMENT, IN-LB/IN
-497.69500000 --- M1 (71) - MOMENT, IN-LB/IN

0.0165478 --- DELTA THETA (61) - ROTATION, RADIANS
-0.0165478 --- DELTA THETA (71) - ROTATION, RADIANS

0.280000 --- THICKNESS FOR STRESSES AT STATION 61, IN.
0.210000 --- THICKNESS FOR STRESSES AT STATION 71, IN.
0.240000 --- THICKNESS FOR DEFLECTIONS, IN.
67.499999 --- PHI, DEGREES
0.000000 --- THROAT RADIUS (71), IN.
0.923800 --- SINE PHI
-0.382683 --- COSINE PHI
27.000000 X 10^6 --- ELASTIC MODULUS, PSI
0.300000 --- POISSONS RATIO
0.034180 X 10^6 --- FLEXURAL RIGIDITY, IN-LB
0.437631 --- DAMPING FUNCTION

41.0169300 --- S
1.9021234 --- V

-1399.46899200 --- Q1 (61) - SHEAR, LB/IN
-560.09461760 --- Q1 (71) - SHEAR, LB/IN

-0.1022026 --- DELTA RADIUS (61) - CHANGE IN RADIUS, IN.
-0.0974474 --- DELTA RADIUS (71) - CHANGE IN RADIUS, IN.
Delta Theta (6)	-1397.7806976 M (6)	769.6400876 M (6)	1390.2340736 Q (7)	766.3982912 Q (7)	-20.5797552
Delta RADIUS (6)	-769.6400876 M (6)	567.748116 Q (6)	766.3982912 Q (7)	283.3607424 Q (7)	1720.6495629
Delta Theta (7)	-1380.2340736 M (6)	766.3982912 Q (7)	1397.7806976 M (7)	769.6400876 M (7)	-20.5797552
Delta RADIUS (7)	766.3982912 M (6)	-233.3607424 Q (6)	769.6400876 M (7)	-567.748116 Q (7)	1756.9250336

Stresses at Station 6

<table>
<thead>
<tr>
<th>Stress</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_{1p}</td>
<td>1489.2857088</td>
</tr>
<tr>
<td>σ_{1g}</td>
<td>-1912.6915840</td>
</tr>
<tr>
<td>σ_{1m}</td>
<td>-125216.8138752</td>
</tr>
<tr>
<td>σ_{11}</td>
<td>-125640.2206726</td>
</tr>
<tr>
<td>σ_{10}</td>
<td>124793.4070784</td>
</tr>
<tr>
<td>σ_{2p}</td>
<td>-763.4059200</td>
</tr>
<tr>
<td>σ_{2g}</td>
<td>85034.5549824</td>
</tr>
<tr>
<td>σ_{2m}</td>
<td>-37565.6439168</td>
</tr>
<tr>
<td>σ_{21}</td>
<td>46704.1050624</td>
</tr>
<tr>
<td>σ_{20}</td>
<td>121834.1928560</td>
</tr>
</tbody>
</table>

Stresses at Station 7

<table>
<thead>
<tr>
<th>Stress</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_{1p}</td>
<td>1961.9047680</td>
</tr>
<tr>
<td>σ_{1g}</td>
<td>-1204.2760384</td>
</tr>
<tr>
<td>σ_{1m}</td>
<td>-67704.9663488</td>
</tr>
<tr>
<td>σ_{11}</td>
<td>-665.73174208</td>
</tr>
<tr>
<td>σ_{10}</td>
<td>68462.5936304</td>
</tr>
<tr>
<td>σ_{2p}</td>
<td>-1033.5294072</td>
</tr>
<tr>
<td>σ_{2g}</td>
<td>80147.0734336</td>
</tr>
<tr>
<td>σ_{2m}</td>
<td>-20311.4097408</td>
</tr>
<tr>
<td>σ_{21}</td>
<td>58802.0539392</td>
</tr>
<tr>
<td>σ_{20}</td>
<td>99425.0326016</td>
</tr>
</tbody>
</table>
SHORT AFT CONE SEGMENT NO. 3
FREE BODY NO. 8 SHORT CONE

-6.00000 --- INTERNAL PRESSURE, PSI
1.20000 --- LENGTH OF SHORT CONE, IN.
33.42000 --- RADIUS TO MID-POINT OF STATION (7), IN.
33.85000 --- RADIUS TO MID-POINT OF STATION (8), IN.
0.00000 --- THROAT RADIUS (7), IN.
33.32299 --- PRESSURIZED RADIUS OF STATION (7), IN.
33.70071 --- PRESSURIZED RADIUS OF STATION (8), IN.
33.63500 --- RADIUS TO CENTROID, IN.
36.40626 --- MEAN RADIUS OF CURVATURE NORMAL TO MERIDIAN (R2), IN.
36.17395 --- MEAN RADIUS OF CURVATURE NORMAL TO MERIDIAN AT STATION (7) (R2), IN.
36.63898 --- MEAN RADIUS OF CURVATURE NORMAL TO MERIDIAN AT STATION (8) (R2), IN.
412.000000 --- AXIAL LOAD AT STATION (7), LB/IN (T7)

406.000000 --- AXIAL LOAD AT STATION (8), LB/IN (T8)

INFLUENCE COEFFICIENTS

-5.2403289 --- K
27.271012 --- Y
-497.6315008 --- M (7) - MOMENT, IN-LB/IN
-22.5299584 --- M (8) - MOMENT, IN-LB/IN
-0.0184787 --- DELTA THETA (7) - ROTATION, RADIANS
-0.0367682 --- DELTA THETA (8) - ROTATION, RADIANS

0.210000 --- THICKNESS FOR STRESSES AT STATION (7), IN.
0.150000 --- THICKNESS FOR STRESSES AT STATION (8), IN.
0.180000 --- THICKNESS FOR DEFORMATIONS, IN.
67.499999 --- PHI, DEGREES
0.923880 --- SINE PHI
-0.382833 --- COSINE PHI
27.000000 X 10E6 - ELASTIC MODULUS, PSI
0.300000 --- POISSON'S RATIO
0.014420 X 10E6 --- FLEXURAL RIGIDITY, IN-LB
0.502130 --- DAMPING FUNCTION
DELTA THETA (7) — -1924.7782400 mi (7) 1054.6615168 qi (7) 1083.1991296 mi (8) 1046.9803136 qi (8) -27,825089
DELTA RADIUS (7) — -1054.6615168 mi (7) 776.9662600 qi (7) 1046.9803136 mi (7) 1924.7782400 mi (8) 2342.9069323
DELTA THETA (8) — -1083.1991296 mi (7) 1046.9803136 mi (7) 1924.7782400 mi (8) 1054.6615168 qi (8) -27,925069
DELTA RADIUS (8) — 1046.9803136 mi (7) -397.237724 qi (7) -1054.6615168 qi (8) -776.9662600 qi (8) 2379.406799

STRESSES AT STATION (7)

1964.9047600 — SIGMA (1P)
-1204.2763804 — SIGMA (1G)
-97704.9663488 — SIGMA (1M)
-66947.3974200 — SIGMA (11)
68462.593684 — SIGMA (1O)

-1033.5290072 — SIGMA (2P)
60620.1860096 — SIGMA (2M,0)
-20311.4897408 — SIGMA (2M,1)
-2475.1656560 — SIGMA (121)
99492.1491776 — SIGMA (20)

STRESSES AT STATION (8)

2706.666752 — SIGMA (1P)
-577.2030208 — SIGMA (1O)
-6007.9869420 — SIGMA (1M)
-3678.5252664 — SIGMA (11)
8137.4525440 — SIGMA (1O)

-1465.5590400 — SIGMA (2P)
52300.2318048 — SIGMA (2H,0)
-13023.3966720 — SIGMA (2M,1)
49032.2755304 — SIGMA (21)
52637.069312C — SIGMA (20)

BASIC MERIDIONAL STRESS, PSI
MERIDIONAL STRESS DUE TO SHEAR, PSI
MERIDIONAL STRESS DUE TO MOMENT, PSI

MAXIMUM COMBINED INSIDE MERIDIONAL STRESS, PSI
MAXIMUM COMBINED OUTSIDE MERIDIONAL STRESS, PSI

BASIC TANGENTIAL STRESS, PSI
TANGENTIAL STRESS DUE TO MOMENT AND SHEAR, PSI
TANGENTIAL STRESS DUE TO SIGMA (1M,PSI)

MAXIMUM COMBINED INSIDE TANGENTIAL STRESS, PSI
MAXIMUM COMBINED OUTSIDE TANGENTIAL STRESS, PSI
AFT CONICAL SHELL (STL)
FREED BODY NUMBER 9: SEMI-INFINITE CONE

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal Pressure, psi</td>
<td>-6.00000</td>
</tr>
<tr>
<td>Radius to Mid-Point of Station (8), in.</td>
<td>33.85000</td>
</tr>
<tr>
<td>Radius of Throat, in.</td>
<td>0.00000</td>
</tr>
<tr>
<td>Pressurized Radius at Station (8), in.</td>
<td>33.78071</td>
</tr>
<tr>
<td>Phi, Degrees</td>
<td>67.50000</td>
</tr>
<tr>
<td>Cosine of Phi</td>
<td>-0.38268</td>
</tr>
<tr>
<td>Sine of Phi</td>
<td>0.92308</td>
</tr>
<tr>
<td>Mean Radius of Curvature Normal to Meridian (R2), in.</td>
<td>36.63898</td>
</tr>
<tr>
<td>Moment, in-lbs/in.</td>
<td>-22.5299586</td>
</tr>
<tr>
<td>Shear Force, lbs/in.</td>
<td>-226.2456064</td>
</tr>
</tbody>
</table>

STRESSES AT STATION (8):

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Meridional Stress, psi</td>
<td>-218.5555040</td>
</tr>
<tr>
<td>Meridional Stress Due to Shear, psi</td>
<td>184.1296448</td>
</tr>
<tr>
<td>Meridional Stress Due to Moment, psi</td>
<td>2137.525440</td>
</tr>
<tr>
<td>Maximum Combined Inside Meridional Stress, psi</td>
<td>-1465.5590400</td>
</tr>
<tr>
<td>Tangential Stress Due to Shear, psi</td>
<td>-3308.942893</td>
</tr>
<tr>
<td>Tangential Stress Due to Moment, psi</td>
<td>-1802.3966720</td>
</tr>
<tr>
<td>Maximum Combined Inside Tangential Stress, psi</td>
<td>4941.8719488</td>
</tr>
<tr>
<td>Maximum Combined Outside Meridional Stress, psi</td>
<td>93016.6552920</td>
</tr>
<tr>
<td>Maximum Combined Outside Tangential Stress, psi</td>
<td>55989.770484</td>
</tr>
</tbody>
</table>
SUBMERGED CIRCLE NO. 1 (STL-FRP)
FREE BODY NO. 10 SHORT CONE

-705.00000 — INTERNAL PRESSURE, PSI
1.050000 — LENGTH OF SHORT CONE, IN.
32.62000 — RADIUS TO MID-POINT OF STATION (9), IN.
31.94000 — RADIUS TO MID-POINT OF STATION (10), IN.
13.44000 — THROAT RADIUS (9), IN.
32.36877 — PRESSURIZED RADIUS OF STATION (9), IN.
31.27311 — PRESSURIZED RADIUS OF STATION (10), IN.
32.28000 — RADIUS TO CENTROID, IN.
35.33496 — MEAN RADIUS OF CURVATURE NORMAL TO MERIDIAN (R2), IN.
35.70704 — MEAN RADIUS OF CURVATURE NORMAL TO MERIDIAN AT STATION (9) (R2), IN.
34.96268 — MEAN RADIUS OF CURVATURE NORMAL TO MERIDIAN AT STATION (10) (R2), IN.

-10659.999988 — AXIAL LOAD AT STATION (9), LB/IN (T9)
-10320.000000 — AXIAL LOAD AT STATION (10), LB/IN (T10)

INFLUENCE COEFFICIENTS
ON BODY NO. 5
35.3428964 — X
242.5969408 — Y
35.1570404 — B
6.8656637 — L
242.8882560 — S
3.4322434 — V

-3912.149576 — M(9) — MOMENT, IN-LB/IN
-3453.6522112 — M(10) — MOMENT, IN-LB/IN
3267.5422208 — Q(9) — SHEAR, LB/IN
1647.3695660 — Q(10) — SHEAR, LB/IN

0.56294 — DELTA THETA (9) — ROTATION, RADIANS
0.3255019 — DELTA THETA (10) — ROTATION, RADIANS

0.950000 — THICKNESS FOR STRESSES AT STATION (9), IN.
1.460000 — THICKNESS FOR STRESSES AT STATION (10), IN.
1.500000 — THICKNESS FOR DEFLECTIONS, IN.
65.999998 — PHI, DEGREES
13.44000 — THROAT RADIUS (10), IN.
0.9135435 — SINE PHI
-0.406737 — C SINE PHI
11.700000 X 10E6 — ELASTIC MODULUS, PSI
0.300000 — POISSONS RATIO
3.616071 X 10E6 — PLEXURAL RIGIDITY, IN-LB
0.176560 — DAMPING FUNCTION

REACTED IN BEARING BY THE FRP SECTION ON BODY NO. 5
REACTED IN BEARING BY THE FRP SECTION

0.0370560 — DELTA RADIUS (9) — CHANGE IN RADII, IN.
0.0007423 — DELTA RADIUS (10) — CHANGE IN RADII, IN.
<table>
<thead>
<tr>
<th>DELTA THETA (9)</th>
<th>190.21562CM (9)</th>
<th>143.2690464 Q (9)</th>
<th>-109.9474800 M (10)</th>
<th>143.2117344 Q (10)</th>
<th>-947.2595775</th>
</tr>
</thead>
<tbody>
<tr>
<td>DELTA RADIUS (9)</td>
<td>-143.2690464 M (9)</td>
<td>-143.9447376 Q (9)</td>
<td>143.2117344 M (10)</td>
<td>-71.9600498 Q (10)</td>
<td>40845.5561216</td>
</tr>
<tr>
<td>DELTA THETA (10)</td>
<td>149.4674800 M (9)</td>
<td>143.2117344 M (9)</td>
<td>-190.2156208 M (10)</td>
<td>143.2690464 M (10)</td>
<td>-947.2595775</td>
</tr>
<tr>
<td>DELTA RADIUS (10)</td>
<td>143.2117344 M (9)</td>
<td>71.9600498 Q (9)</td>
<td>-143.2690464 M (10)</td>
<td>143.9447376 Q (10)</td>
<td>39224.571269</td>
</tr>
</tbody>
</table>

STRESSES AT STATION(9)

<table>
<thead>
<tr>
<th>2416.4169216 --- SIGMA (10)</th>
<th>-77586.3566080 --- SIGMA (10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-45769.9274752 --- SIGMA (2P)</td>
<td>27941.3755904 --- SIGMA (2M,0)</td>
</tr>
<tr>
<td>-23278.9069624 --- SIGMA (2M)</td>
<td>-41107.4586672 --- SIGMA (21)</td>
</tr>
<tr>
<td>5650.354444C --- SIGMA (20)</td>
<td></td>
</tr>
</tbody>
</table>

STRESSES AT STATION(10)

<table>
<thead>
<tr>
<th>-1068.4931072 --- SIGMA (1P)</th>
<th>-972.9373696 --- SIGMA (1M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-7582.4961536 --- SIGMA (11)</td>
<td>-5636.6215188 --- SIGMA (10)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>-16882.6654720 --- SIGMA (2P)</td>
<td>14096.5550080 --- SIGMA (2M,0)</td>
</tr>
<tr>
<td>-291.8812064 --- SIGMA (2M)</td>
<td>-3077.9916544 --- SIGMA (21)</td>
</tr>
<tr>
<td>-2494.2292486 --- SIGMA (20)</td>
<td></td>
</tr>
</tbody>
</table>

MERIDIONAL STRESS DUE TO SHEAR, PSI
MERIDIONAL STRESS DUE TO MOMENT, PSI

BASIC TANGENTIAL STRESS, PSI
TANGENTIAL STRESS DUE TO MOMENT AND SHEAR, PSI
TANGENTIAL STRESS DUE TO SIGMA (1M), PSI

MAXIMUM COMBINED INSIDE TANGENTIAL STRESS, PSI
MAXIMUM COMBINED OUTSIDE TANGENTIAL STRESS, PSI

BASIC MERIDIONAL STRESS, PSI
MERIDIONAL STRESS DUE TO SHEAR, PSI
MERIDIONAL STRESS DUE TO MOMENT, PSI

MAXIMUM COMBINED INSIDE MERIDIONAL STRESS, PSI
MAXIMUM COMBINED OUTSIDE MERIDIONAL STRESS, PSI

BASIC TANGENTIAL STRESS, PSI
TANGENTIAL STRESS DUE TO MOMENT AND SHEAR, PSI
TANGENTIAL STRESS DUE TO SIGMA (1M), PSI

MAXIMUM COMBINED INSIDE TANGENTIAL STRESS, PSI
MAXIMUM COMBINED OUTSIDE TANGENTIAL STRESS, PSI
<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal Pressure, PSI</td>
<td>705.0000</td>
</tr>
<tr>
<td>Length of Short Cone, in.</td>
<td>1.80000</td>
</tr>
<tr>
<td>Radius to Mid-Point of Station (10), in.</td>
<td>31.94000</td>
</tr>
<tr>
<td>Radius to Mid-Point of Station (11), in.</td>
<td>31.25000</td>
</tr>
<tr>
<td>Throat Radius (10), in.</td>
<td>13.44000</td>
</tr>
<tr>
<td>Pressurized Radius of Station (10), in.</td>
<td>31.25484</td>
</tr>
<tr>
<td>Pressurized Radius of Station (11), in.</td>
<td>30.65620</td>
</tr>
<tr>
<td>Radius to Centroid, in.</td>
<td>31.59500</td>
</tr>
<tr>
<td>Mean Radius of Curvature Normal to Meridian at Station (10), in.</td>
<td>34.58503</td>
</tr>
<tr>
<td>Mean Radius of Curvature Normal to Meridian at Station (11), in.</td>
<td>34.96288</td>
</tr>
<tr>
<td>Mean Radius of Curvature Normal to Meridian at Station (11), in.</td>
<td>34.20730</td>
</tr>
<tr>
<td>Axial Load at Station (10), lb/in (T_{10})</td>
<td>-10320.00000000</td>
</tr>
<tr>
<td>Axial Load at Station (11), lb/in (T_{11})</td>
<td>-10109.9999232</td>
</tr>
</tbody>
</table>

Influence Coefficients

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>27.1269972</td>
</tr>
<tr>
<td>B</td>
<td>27.1454232</td>
</tr>
<tr>
<td>L</td>
<td>163.1205468</td>
</tr>
<tr>
<td>M(10) - Moment, in-lb/ln</td>
<td>345.6552112</td>
</tr>
<tr>
<td>M(11) - Moment, in-lb/ln</td>
<td>1587.8857984</td>
</tr>
<tr>
<td>Delta Theta (10) - Rotation, radians</td>
<td>0.0295079</td>
</tr>
<tr>
<td>Delta Theta (11) - Rotation, radians</td>
<td>0.0248190</td>
</tr>
<tr>
<td>Delta Radius (10) - Change in Radii, in.</td>
<td>0.0007423</td>
</tr>
<tr>
<td>Delta Radius (11) - Change in Radii, in.</td>
<td>0.0421074</td>
</tr>
</tbody>
</table>

Constants

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness for Stresses at Station (10), in.</td>
<td>1.500000</td>
</tr>
<tr>
<td>Thickness for Stresses at Station (11), in.</td>
<td>1.300000</td>
</tr>
<tr>
<td>Thickness for Deflections, in.</td>
<td>1.400000</td>
</tr>
<tr>
<td>Phi, Degrees</td>
<td>65.99998</td>
</tr>
<tr>
<td>Sine Phi</td>
<td>0.913545</td>
</tr>
<tr>
<td>Cosine Phi</td>
<td>-0.406737</td>
</tr>
<tr>
<td>Elastic Modulus, psi</td>
<td>7.600000 \times 10^{-6}</td>
</tr>
<tr>
<td>Poisson's Ratio</td>
<td>0.300000</td>
</tr>
<tr>
<td>Interaxial Rigidity, in-lb/ln</td>
<td>1.909744 \times 10^{-6}</td>
</tr>
<tr>
<td>Damping Function</td>
<td>0.184728</td>
</tr>
</tbody>
</table>

Notes

- The values provided are specific to the components and conditions described in the document, focusing on the mechanical properties and geometric dimensions of the cone.
| DELTA THETA (10) | 231.6673264 M (10) | 190.2640048 G (10) | -231.1919883 M (11) | 190.1348560 G (11) | -1530.4182656 |
| DELTA RADIUS (10) | -190.2640048 M (10) | -206.5130384 G (10) | 190.1348560 M (11) | -104.2261960 G (11) | 64698.5467254 |
| DELTA THETA (11) | 231.1919883 M (11) | 190.1348560 G (11) | -231.6673264 M (11) | 190.2640048 G (11) | -1530.4182656 |
| DELTA RADIUS (11) | 190.1348560 M (11) | 104.2261960 G (11) | -190.2640048 M (11) | 208.5130384 G (11) | 61922.3107254 |

Stresses at Station (10)

- **Basic Meridional Stress**, PSI
- **Meridional Stress due to Shear**, PSI
- **Meridional Stress due to Moment**, PSI
- **Maximum Combined Inside Meridional Stress**, PSI

Sigma (1P)

-6880.000000

Sigma (1Q)

446.6960046

Sigma (1M)

921.7392256

Sigma (11)

-735.0431432

Sigma (10)

-5511.5646464

Sigma (2P)

-16432.4608000

Sigma (2M-G)

15218.199016

Sigma (2M-I)

-276.5217600

Sigma (2I)

-1490.8251736

Sigma (20)

-937.7798808

Stresses at Station (11)

- **Basic Meridional Stress**, PSI
- **Meridional Stress due to Shear**, PSI
- **Meridional Stress due to Moment**, PSI
- **Maximum Combined Inside Meridional Stress**, PSI
- **Maximum Combined Outside Meridional Stress**, PSI

Sigma (1P)

-7776.9230336

Sigma (1Q)

264.5757536

Sigma (1M)

5637.4643712

Sigma (11)

-1874.8828416

Sigma (10)

-19149.8116096

Sigma (2P)

-10550.9275640

Sigma (2M-Q)

4018.9235200

Sigma (2M-I)

1691.2392960

Sigma (2I)

-12040.7647232

Sigma (20)

-15423.2432640

- **Basic Tangential Stress**, PSI
- **Tangential Stress due to Moment and Shear**, PSI
- **Tangential Stress due to Sigma (1M)**, PSI
- **Maximum Combined Inside Tangential Stress**, PSI
- **Maximum Combined Outside Tangential Stress**, PSI

Sigma (1P)

BASIC TANGENTIAL STRESS, PSI

Sigma (1Q)

TANGENTIAL STRESS DUE TO SHEAR, PSI

Sigma (1M)

TANGENTIAL STRESS DUE TO MOMENT, PSI

Sigma (11)

Sigma (10)

Sigma (2P)

Sigma (2M-Q)

Sigma (2M-I)

Sigma (2I)

Sigma (20)
SUBMERGED CONE (IFRP) 143 GLASS FABRIC AND PHENOLIC RESIN
FREE BODY NUMBER 12 SEMI-INFINITE CONE

-705.00000 --- INTERNAL PRESSURE, PSI
31.250000 --- RADIUS TO MID-POINT OF STATION(11), IN.
13.440000 --- RADIUS OF THROAT, IN.
31.790113 --- PRESSURIZED RADIUS AT STATION(11), IN.
66.000000 --- PHI. DEGREES
-0.40674 --- COSINE OF PHI
0.91355 --- SINE OF PHI
34.20738 --- MEAN RADIUS OF CURVATURE NORMAL TO MERIDIAN (RZ), IN.

1587.8857984 --- M(11) - MOMENT, IN-LBS/IN.
845.6293504 --- Q(11) - SHEAR FORCE, LBS/IN.

STRESSES AT STATION(11)

-8424.999360 --- SIGMA(1P)
286.6237344 --- SIGMA(1Q)
6816.4908366 --- SIGMA(1H)
-1522.1852928 --- SIGMA(111)
-14754.5664632 --- SIGMA(110)

-20094.8382464 --- SIGMA(2P)
8902.2282496 --- SIGMA(2Q)
36985.5429696 --- SIGMA(2H)
1654.0471104 --- SIGMA(211)
-5841.9449344 --- SIGMA(21)
-9150.0403712 --- SIGMA(20)

1.20000 --- THICKNESS FOR STRESSES AT STATION(11), IN.
1.20000 --- THICKNESS FOR DEFLECTIONS, IN.
4.000000 x 10E6 --- MODULUS OF ELASTICITY, PSI
0.250000 --- POISSONS RATIO
0.202126 --- DAMPING FUNCTION
0.614400 x 10E6 --- FLEXURAL RIGIDITY, IN-LBS.
-10110.00000 --- AXIAL LOAD AT STATION(11), LBS/IN. (T1)

0.0248190 --- OELTA THETA (11) - ROTATION, RADIANS
0.0421074 --- OELTA RADIUS(11) - CHANGE IN RADIUS, IN.
c. **Submerged Shell Buckling**—Each structural member must be checked for buckling as a column subjected to axial load, external pressure, bending moment, and radial shock loads.

To insure structural integrity, each end must be checked for local buckling including much the same loads as above and local end conditions.

Submerged Shell

The deformation in the middle of the cone due to external pressure is calculated as follows:

\[
\delta = - \frac{pr^2(1-\mu/2)}{E_{c-hoop} t} = - \frac{684(23.50^2)(0.93)}{3.4(10^6)(1.29)} \quad \text{(Reference 14)}
\]

Average \(R\) = 23.50 in.

\(E_{c-hoop} = 3.40(10^6)\)

\(t = 1.29\) avg

\(\mu = 0.15\)

\[p = -705 \left(\frac{85-14.8 + 30(60 \text{ g's})}{3} \right) = \frac{684 \text{ psi}}{2\pi R} - 660 \text{ psi}\]

\(\delta = -0.0803\) in. \(\Delta R = 0.0803 \times 100 = -0.34\) percent

\[\frac{R}{23.50}\]
(1) Column Buckling Analysis

Unsupported Length Between End Rings

- 46.5 in. - 3.1 in. aft end - 5.1 in. fwd end
- 38.3 in.

Shell Loads - Flight Load Condition *

Station 6.0

\[P = 0.440 \times 10^6 + \text{neg acceleration load} = 440,000 \text{ lb} \]

\[P_{\text{internal}} = 0.12(705) = 85 \text{ psi} \]

\[M = 119,000 \text{ in. lb (acceleration)} \]

\[V = \text{neg acceleration load} = 0 \]

Station 43.40

\[P = 2.03 \times 10^6 + \text{neg acceleration load} = 2.03 \times 10^6 \]

*Static test load condition not critical
M = 373,000 in. lb (acceleration)

V = 12,950 lb neg acceleration = 0

p int = 0.020(705) = 14.8 psi

Axial Load Buckling (Reference 11)

\[\text{avg load} = \frac{-(2.03 + 0.440) \times 10^6}{2} = 1.235(10^6) \]

\[\text{avg } t = 1.30 + 1.33 + 1.15 + 1.40 = 1.29 \]

\[P \text{ critical} = 2CnEt^2 = 2(0.475)(3.14)(3.0)(10^6)(1.29)^2 \]

\[P \text{ critical} = 14.85 \times 10^6 \]

\[R/t = 23.50/1.29 = 18.20 \]

\[\text{avg } R = 15.00 + 32.0 = \frac{47.0}{2} = 23.5 \text{ in.} \]

\[Z = \frac{L^2 \sqrt{1-\mu^2}}{Rt} = \frac{(38.3)^2}{23.50(1.29)} = 47.5 \]

\[c_p = 0.475 \quad \text{Rc} = \frac{1.23(10^6)}{14.85(10^6)} = 0.082 \]

Glass Cloth Phenolic Shell Composite Allowables (Reference 36)

Hoop Direction \(\mu = 0.15 \)

Compression Stress (Composite)

\[
\begin{align*}
0.722 (45,000) &= 32,500 & \text{341 glass phenolic hoop oriented} \\
0.568 (19,000) &= 10,800 & \text{143 glass phenolic longitudinally oriented} \\
1.290 &= 43,300
\end{align*}
\]

\[\sigma \text{ Hoop Compression} = \frac{43.300}{1.29} = 33,800 \text{ psi} \]
Compression Modulus of Elasticity (Composite)

\[
\begin{align*}
0.722 (4.910 \times 10^6) &= 3.54 (10^6) \\
0.568 (1.51 \times 10^6) &= 0.85 (10^6) \\
1.290 &= 4.39 (10^6)
\end{align*}
\]

\[
E_{\text{Hoop Compression}} = \frac{4.39 (10^6)}{1.29} = 3.40 (10^6) \text{ psi}
\]

Longitudinal Direction \(\mu = 0.15 \)

Compression Stress (Composite)

\[
\begin{align*}
0.722 (19,000) &= 13,700 \\
0.568 (45,000) &= 25,500 \\
1.290 &= 39,200
\end{align*}
\]

\[
\sigma_{\text{Longitudinal Compression}} = \frac{39,200}{1.290} = 30,400 \text{ psi}
\]

\[
\begin{align*}
0.722 (1.51 \times 10^6) &= 1.09 (10^6) \\
0.568 (4.91 \times 10^6) &= 2.79 (10^6) \\
1.290 &= 3.88
\end{align*}
\]

\[
E_{\text{Longitudinal Compression}} = \frac{3.88 (10^6)}{1.290} = 3.00 (10^6) \text{ psi}
\]
External Pressure Buckling (Reference 11)

\[P_{cr} = \frac{\pi^2 D}{P_{RL}^2} = \frac{7.5(3.14^2)(0.622)10^6}{23.5(38.3)^2} \]

\[Z = 47.5 \]

\[D = \frac{EcI^3}{11.75} = \frac{3.40 \times 10^6 (1.29)^3}{11.75} = 0.622(10^6) \]

\[c_p = 7.5 \]

\[P_{cr} = 1,335 \text{ psi} \]

\[P_{act} = \frac{705 - (65 + 14.8)}{3} \pm \frac{30 \text{ lb/in. x } 60 \text{ g's}}{2 \pi R} \]

\[\text{(External) + (Internal) (Shock)} \]

\[= 705 - 33 + 12.2 = +684 \text{ psi} \quad R = \frac{684}{1,335} = 0.512 \]

\[-660 \text{ psi} \quad R = \frac{660}{1,335} = 0.512 \]

Bending Moment Buckling (Reference 11)

\[\text{avg bending moment} = 246,000 \text{ in. lb} \quad R/t = 18.20 \]

\[C_B = 0.50 \]

\[M_{cr} = C_B \pi ERt^2 = 0.50(3.14)(3.00)10^6(23.50)(1.29)^2 \]

\[M_{cr} = 184(10^6) \text{ in.lb} \]

\[R_B = \frac{0.246(10^6)}{184(10^6)} = \text{neg} \]

Combined Axial Compression and Lateral External Pressure

\[F.S. = \frac{1}{\sqrt{0.083^2 + 0.512^2}} = \frac{1}{0.522} = 1.91 \]

157
Local Stress (Station 6.0)

Local Stress Loads

Cylinder Load

\[\text{Cylinder Load} = \frac{440,000}{2\pi R} \]

\[R = 15 \text{ in.} \]

\[= \frac{440,000}{6.28(15)} \]

\[= 4,670 \text{ lb/in.} \]

Therefore cone load is an angle function of cylinder loads.

Assume no discontinuity bending and shear loads.

\[P = \text{Membrane Load lb/in.} \]

\[H = \text{Uniform Axisymmetrical Shear Load lb/in.} \]

\[P \cos 22 \text{ deg} = 4,670 \text{ lb/in.} \]

\[P = \frac{4,670}{0.9272} = 5,050 \text{ lb/in.} \]

\[H = \sin 22 \text{ deg} (5,050) = 0.3746(5,050) = 1,890 \text{ lb/in.} \]

Bending Moments - Due to Horizontal Shear (H) (Reference 13)

Assume a cylindrical shell with \(R = 15.0 \text{ in.} \)

\[MX = \frac{0.322 H}{\lambda} \text{ at } \frac{3}{4} = \frac{3.14}{4(0.296)} = 2.85 \text{ in. from edge} \]

\[\lambda = \sqrt[4]{\frac{3(1-\mu^2)}{R^2 t^2}} = \sqrt[4]{\frac{3(0.98)}{(15.0)^2 (1.3)^2}} = \sqrt[4]{0.0074} = 0.296 \]

\[\lambda^3 = 0.026 \]
Max moment = \(\frac{0.322(1.890)}{0.296} = 2.060 \text{ in. lb/in.} \)

Net Pressure

\[P_{\text{net}} = P_{\text{ext}} - P_{\text{int}} + P_{\text{shock}} = 705 - 85 + 19 = +639 \text{ psi} \]

Hoop Stress = pressure + shear load

\[\sigma_H = \frac{-pR}{t} - \frac{2H}{t} \lambda R \]

\[= -\frac{639(15, 0)}{1.30} - \frac{2(1.890)(0.296)(15.00)}{1.30} \]

\[= -7,360 - 12,900 \]

\[\sigma_H = -20,260 \quad \text{F.S.} = \frac{33,800}{20,260} = +1.66 \]

Hoop Deformation (pressure and shear load)

\[\delta_H = \frac{-pR^2}{Et} \left(1 - \frac{\mu}{2}\right) - \frac{V_0}{2Dv} \]

\[D = \frac{3.4(10^6)t^3}{12(1 - \mu^2)} \quad t = 1.30 \]

\[D = \frac{(3.4)(2.2)(10^6)}{11.75} \]

\[D = 0.635(10^6). \]

\[\delta_H = \frac{-639(15)^2(0.93)}{1.30(3.4)(10^6)} - \frac{1.890}{2(0.635)(0.026)(10^6)} \]

\[\delta_H = -0.030 - 0.057 \]

\[\delta_H = -0.089 \text{ in.} \]

Radial growth = \(\frac{0.087}{15.00} (100) = 0.58 \text{ percent} \)
Longitudinal Stress: pressure + bending moment

\[\sigma_L = -\frac{P}{t} - \frac{6M}{bt^2} + \frac{Mc}{\pi R^3 t} = -\frac{5.050}{1.30} \]

\[+ \frac{6(2.060) + 119,000 (15.0)}{(1.30)^2} + \frac{3.14 (15^3) (1.30)}{1.30} \]

\[= -3,880 + 7,320 + 130 \]

\[\sigma_L = +3,570 \text{ psi outside} \]

\[\sigma_L = -11,330 \text{ psi inside at 2.12 in. downstream from joint} \]

\[P.S. = \frac{-30,400}{11,330} = +2.68 \]

Local Buckling (Reference 11) Flight Test Condition

axial load = 0.440 \(10^6\)

lateral pressure = -705 + 85 \(\frac{30 \text{ lb/in.}}{2 \pi (15)}\) - 639 psi max

axial bending moment = 119,000 in. lb

assume \(R = 15.0\) for a cylinder of \(L = 38.3\) in.

\(t = 1.30\) in.

Axial Load

\[P_{\text{critical}} = 2C \pi Et^2 = 2(0.50)(3.14)(3.00)10^6 (1.30^2) \]

\[P_{\text{critical}} = 12.2 (10^6) \]

\[\frac{R}{t} = \frac{15.0}{1.30} = 11.52 \]

\[\therefore C = 0.50 \]

\[\frac{R_C}{12.2 (10^6)} = 0.036 \]
Transverse External Pressure

\[Z = \frac{1.2(0.99)}{R_t} = \frac{38.3^2(0.99)}{15(1.30)} = 74.4 \quad D = \frac{E t^3}{12(1-\mu^2)} \]

\[D = \frac{3.4(10^6)(1.30^3)}{11.75} = 0.639(10^6) \]

\[C_p = 9.0 \]

\[P_{\text{critical}} = \frac{(3.14)^2 C_p D}{(15.0)(38.3)^2} = \frac{9.0(0.639)10^6(9.9)}{22,000} = 2,590 \text{ psi} \]

\[R = \frac{639}{2,590} = 0.246 \]

Axial Bending \(R_B \approx 0.0 \) neg

Combined Axial Compression and Lateral External Pressure

\[\text{F.S.} = \frac{1}{\sqrt{R_c^2 + R_p^2}} \approx \frac{1}{\sqrt{0.036^2 + 0.246^2}} \]

\[= \frac{1}{0.248} = +4.03 \]

(3) Local Stress (Station 43.40)

Local Stresses – Glass Cloth Structural Shell

Loads

axial load = 2,030,000 lb

uniform axial load = \(\frac{2,030(10^6)}{2\pi R \cos 22 \text{ deg}} = \frac{2,030(10^6)}{6.28(32)(0.9272)} \)

\[= 10,900 \text{ lb/in.} \]

Since the steel seat for the submerged shell is perpendicular to the shell wall, no hoop ring will be needed to hold the glass cloth cone in place.
However to insure reliability, a glass hoop is installed to take 5 percent of the membrane load of 10,000 lb/in.

hoop ring load = 10,900(0.05) = 545 lb/in.

Bending Moment = 373,000 in. lb (acceleration)

Net Pressure

\[P_{\text{net}} = P_{\text{ext}} - P_{\text{int}} + \text{shock pressure} \]

\[= -705 + 14.8 + \frac{35 \text{ lb/in. (60 g's)}}{2\pi R} = -687 + \frac{2,100}{6.28(32)} \]

\[= -687 + 10.45 \]

\[= -697.5 \text{ psia} \]

Stress

\[\text{hoop} = -\frac{dR}{t_{\text{cost}}} = -\frac{697.5(32)}{1.40(0.927)} = -17,250 \text{ psi} \]

F.S. = \(\frac{33,800}{17,250} = +1.96 \)

long. = \(\frac{P + MC}{A} \)

\[= -\frac{10,900 + 373,000(16)}{1(1.40)} \frac{3}{\pi R^3} \]

\[= -7,780 + \frac{5.97(10^6)}{3.14(32^3)(1.40)} \]

\[= -7,780 + 1,325 = -9,105 \text{ psi} \]

\[= -6,455 \text{ psi} \]

F.S. = \(\frac{30,400}{9,105} = +3.34 \)
Local Stresses - 181 Glass Cloth Hoop Ring (Reference 36)

\[\text{181 glass cloth phenolic hoop ring} \]

\[\text{glass to glass shell} \]

\[\text{2 in.} \]

\[\text{18 percent nickel steel flange shell} \]

Ring Hoop Stress \(\sigma_H = \frac{FR}{A} = \frac{545 \text{ lb/in. (33.5 in.)}}{2(0.50)} = +18,250 \text{ psi tension} \)

F. S. = \(\frac{38,000}{+18,250} = +2.08 \)

Local Buckling (Reference 11)

Loads - Flight Test Condition

Same as for local stresses. Assume \(R = 32 \text{ in.} \) for a cylinder

length \(L = 38.3 \text{ in.} \) and thickness \(t = 1.40 \text{ in.} \).

Axial Load Buckling

\[P_{\text{critical}} = 2 \pi E t^2 = 2(0.465)(3.14)(3.00)10^6 (1.40^2) \]

\[= 17.1 \times 10^6 \]

\[\therefore C = 0.465 \]

\[\frac{R}{t} = \frac{32}{1.40} = 22.90 \]

\[R_C = \frac{2.03(10^6)}{17.1(10^6)} = 0.12 \]

Lateral External Pressure

\[P_{\text{cr}} = \frac{C \pi D}{RL^2} = \frac{6.5(3.14)^2}{32(38.3)^2} = 1,088 \text{ psi} \]
Axial Bending Buckling – Not considered as the allowable bending moment is many times greater than the actual bending moment.

Combined Axial Compression and Lateral Pressure

\[F.S. = \frac{1}{\sqrt{R_o^2 + R_p^2}} = \frac{1}{\sqrt{0.12^2 + 0.64^2}} = \frac{1}{0.65} = 1.54 \]

Hoop Deformation

\[\delta_H = -\frac{pR^2 (1-\mu/2)}{Et} \] (Reference 14)

\[\delta_H = -\frac{697.5(32^2)(0.9375)}{3.40(10^6)(1.40)} = -0.140 \text{ in.} \]

Percent of radius \[= \frac{0.140}{32.00} \times 100 = 0.44 \text{ percent} \]

Lateral Deflection of Nose Cap – Under flight acceleration loads.

\[L = 46.5 + 13 = 59.5 \text{ use uniform load (Reference 16)} \]

\[D_{\text{max}} = \frac{WL^4}{8EI} = \frac{225(59.5)^4}{8(3.0)10^6 (3R_1^2)} = \frac{2840 \times 10^6}{2,860,000 \times 10^6} = 0.001 \text{ in.} \]

Axial Deflection of Submerged Structure

\[DL = \frac{9105(59.5)}{3 \times 10^6} = 0.180 \text{ in.} \]
d. **Steel Flange Shell Stresses**—The flange shell is checked for column buckling due to axial load, pressure, LITVC bending moments, shear and radial shock, and vibration loads.

Each shell end is checked for local buckling and stresses.

(1) Column Buckling Analysis—The section is analyzed for the critical bending moments, transverse shear, axial moments, and external pressure (Reference 11, Aerospace Buckling Criteria).

Flight Condition External Pressure (Refer Section III)

\[P_{net} = + \left(\frac{12.7 + 7.8}{2} \right) - 6.90 \pm \frac{30^2}{2 \pi (32.25)} = 10.25 - 6.90 \pm 4.45 = 7.80 - 1.10 \]

\[r_{eq} = \frac{r_2}{\cos \delta} = \frac{37.8}{\cos 23 \text{ deg}} = 41.2 \text{ in.} \]

\[L_{eq} = \frac{0.75 r_1 + 1.45 r_2}{2.2 r_2} L \]

Revision A design analysis will reflect thickness change.
\[L_{eq} = \frac{0.75(32.25) + 1.45(37.8)}{2.2(37.8)} = 0.92 \]

\[= 14.85 \text{ in.} \]

\[Z = \frac{L_{eq}^2}{r_{qt}} \sqrt{1-\mu^2} = \frac{(14.85)^2}{0.955} = 41.2(0.15) \]

\[Z = 34.0 \]

Use fixed ends for \(K_p \) coefficient

\[\therefore K_p = 5.30 \]

\[P_{cr} = \frac{K_p \pi^2 E t^3}{12(1-\mu^2)L_{eq}^2 r_{eq}} = \frac{5.30(9.9)(27)(10^6)}{10.9(220)(41.2)} \]

\[P_{cr} = 47.4 \text{ psi} \quad R_p = \frac{-1.10}{47.4} = 0.023 \text{ (neg)} \]

Bending Moment

\[M_{cr} = C_B \pi E t^2 \quad \text{Actual Moment} = \left(\frac{2.1 + 1.26}{2}\right)(10^6) \]

\[R/t = 35.02/0.15 = 233.0 \quad = 1.68 \times 10^6 \]

\[\text{Avg } R = \frac{37.8 = 32.25}{2} = 35.02 \]

\[\therefore C_B = 0.332 \]

\[M_{cr} = 0.332(3.14)(27)(10^6)(35.02)(0.022) = 21.7 \times 10^6 \text{ in. lb} \]

\[R_B = \frac{1.68}{21.7} = 0.078 \text{ (neg)} \]

Axial Load

\[P_{cr} = 2C \pi E t^2 \]

\[\therefore C = 0.267 \]

\[P_{cr} = 2(0.267)(3.14)(27)(10^6)(0.022) = 1.0 \times 10^6 \text{ lb compression} \]

\[R_C = 0 \]
Actual Axial Load = \(\frac{57,350 + 40,900}{2} \)

= 49,125 lb tension \(R_C = 0 \)

Transverse Shear

\[
V_{cr} = \frac{C_s \pi^3 DR}{L^2}
\]

\[
D = \frac{E_t^2}{12(1-\mu^2)} = \frac{E_t^3}{10.9}
\]

\[
C_s = 17.5
\]

\[
V_{cr} = \frac{17.5 \times 31 \times E_t^3 (35.02)}{186 (10.9)} = \frac{(13.65)^2 \times 0.955}{35.02 (0.15)}
\]

\[
V_{cr} = 9.38 (27) \times 10^9 (0.003)
\]

\[
V_{cr} = 0.810 (10^6)
\]

Actual \(V = \frac{57,000 + 50,400}{2} = 53,700 \) lb

\[
R_S = \frac{53,700}{810,000} = 0.066
\]

Combined axial compression, bending and transverse shear

\[
F.S. = \frac{2}{R_C + R_b + \sqrt{(R_C + R_b)^2 + 4(R_S)^2}}
\]

(Reference 20)

\[
F.S. = \frac{2}{0 + 0.078 + \sqrt{0.078^2 + 0.0174}} = +0.65
\]

(2) Local Stress at Station 47.6--This section is designed by the bending moments, axial load, and transverse shear of pressure, the LITVC loads (N\textsubscript{2}O\textsubscript{4}), the acceleration, shock loads, and tank support. The section is taken far enough forward of the flange to not add to the discontinuity stresses.
Flight Condition

NOTE: Neglect local LITVC pressure effects at the flange.

\[P_{\text{int}} = P_{\text{ext}} + P_{\text{int}} + P(\text{shock}) \]

\[= -6.9 + 12 + \frac{30 (30)}{2 \pi R} = +5.1 + 4.4 \]

\[= +9.5 \text{ psi} \]

Moment = \(1.23 (10^6) + 0.73 (10^6) \) (LITVC) (Acceleration) + 0.14 (10^6)* (Tank) = 2.10 (10^6) in. lb

Axial Load = + 31,500 + 100,000 (Acceleration) (Pressure)

- 8,750 - \(\pi (R_E - R)(14.7 - 6.9) \) (LITVC)

Axial Load = + 122,750 - 24.5 (80.8^2 - 32.5^2)

= + 122,750 - 65,400

= + 57,350 lb

\(yy \)-Transverse Shear = + 27,500 + 19,600 + 9,900 = + 57,000 lb

(LITVC) + (Acceleration) + (Tank)

***Tanks transposed from \(y'y' \) and \(x'x' \) axis to \(xx \) and \(yy \) with no change.

**Revision A design analysis will reflect thickness change.
Stresses

\[\sigma_{\text{Hoop}} = \frac{pR}{t} = \frac{9.5 (32.25)}{0.15} = 2,040 \text{ psi (neg)} \]

\[\sigma_{\text{Radial}} = p_{\text{net}} = +9.5 \text{ psi (neg)} \]

\[\sigma_{\text{Axial}} = \frac{P}{A} \pm \frac{Mc}{I} = \frac{57,350}{30.4} \pm \frac{2,100,000 (32.25)}{\pi R^3 t} (14,700) \]

\[= +1,880 \pm 4,600 = +6,480 \text{ psi} \]

\[= -2,720 \text{ psi} \]

\[\sigma_{\text{Axial Shear}} = \frac{V}{A} = \frac{57,000}{2 \pi R t} = 57,000 \]

\[= 1,880 \text{ psi (neg)} \]

F. S. = \[\frac{200,000}{+6,480} = + \text{ high} \]

Local Buckling and Deformation not Considered: Negligible
(3) Local Stress at Station 54.50—This section will be subjected to axial compression - bending loads and nonsymmetrical LITVC internal pressure loads.

At the midpoint between the flange and torque box the shell will be weakest when subjected to internal pressure due to the minimum stiffening ends of the shell end restraints.

LITVC Loading—(Assume Load F is Reacted in Shear by the Adjacent Wall)

Pressure Loading on Shell at Station 54.50

Section of shell length (dx) = 1.0 in.

Maximum moment and hoop tension will be at $\phi = 180$ deg
Maximum shear will be at $\phi = 90$ deg

At Station 53.5 the load is $\frac{11}{2} (10) = 55$ lb
Total load induced by LITVC pressure on inside surface of the steel cone.

![Diagram of pressure distribution in cone]

Total Internal Load (V)

\[V = 2 \left(\frac{1}{4} \rho A_z = 10.5 \right) = 2 \left[\frac{1}{4} \left(22\right)\left(13.65\right)\frac{10}{z} \right] = 752 \text{ lb} \]

Since the ends of the cone are restrained by stiff rings the radial deformations in the cone will tend to be small at the ends and gradually increase to a maximum at the center (z = 7 in.). It will be assumed that the load is equally distributed over the length of the cone and reacted in shear (Q) through the wall \(v' = \frac{752}{13.65} = 55 \text{ lb/in.} \)
Since the local load at Station 54.50 is equal to the distribution load, use

\[F = 55 \text{ lb.} \]

At 0 deg

\[
M = \frac{FR}{2\pi} \left(1 - \phi \sin \phi + \frac{\cos \phi}{2}\right)
\]

\[
= \frac{(55)(35)}{2\pi} (1 - 1.5 + 0.5) = 460 \text{ in. lb/in.}
\]

\[
T = -\frac{F}{2\pi} \left(\frac{3}{2} \cos \phi - \phi \sin \phi\right)
\]

\[
= -\frac{40}{2\pi} (-1.5 - 0) = +9.5 \text{ lb/in.}
\]

\[q = \frac{F}{\pi R \sin \phi} = 0 \]

At \(\phi = 90 \) deg

\[
M = \frac{(55)(35)}{2\pi} \left(1 - (1.57)(1.00) + 0.5(0)\right) = -175 \text{ in. lb/in.}
\]

\[
T = \frac{40}{2\pi} \left((1.5)(0) - (1.57)(1)\right) = +10 \text{ lb/in.}
\]

\[q = \frac{(40)}{\pi (35)} (1) = 0.36 \text{ lb/in.} \]

Station 54.50 Loads

- \(P_{\text{net}} = +7.80 \text{ psi} \)
- \(-1.10 \text{ psi} \)

- \(M(\text{bending moment}) = 1.68 \times 10^6 \text{ in. lb} \)

- \(P(\text{axial load}) = +49,125 \text{ lb tension} \)

- \(V(\text{transverse shear}) = +53,700 \text{ lb} \)
Stresses

\[\sigma_\text{Hoop} = + \frac{PR}{t} - \frac{6M}{bt^2} = + \frac{7.8 \ (35)}{0.15} - \frac{6 \ (460)}{1 \ (0.152)} \]

\[\sigma_\text{H} = + 1,820 + 122,500 = + 124,320 \text{ psi} \]

\[- 120,680 \text{ psi} \]

\[\sigma_\text{Axial} = + \frac{P + MC}{A - I} + 0.3 \ (122,500) = + \frac{49,125}{2\pi \ (35) \ (0.15)} + \frac{1.68 \ (10^6) \ (35)}{\pi \ (35)^3 \ (0.15)} + 36,800 \]

\[\sigma_\text{Axial} = + 1,500 + 2,900 + 36,800 = + 41,200 \text{ psi} \]

\[- 38,200 \text{ psi} \]

\[\sigma_\text{Shear} = \frac{P}{A} = \frac{53,700}{2\pi \ (35) \ (0.15)} = 1,630 \text{ psi (neg)} \]

\[\text{F.S.} = \frac{200,000}{124,320} = + 1.60 \]
(4) Local Stress at Station 61.25—The section at Station 61.25 is designed by the local unsymmetrical LITVC wall pressure, internal and external pressure, side load, bending moment and axial load, and acceleration g load.

Flight Condition (Refer Section III)

![Diagram](image)

Loads

\[
\text{p net} = \text{p ext} + \text{p int} + p \text{ (shock)} = -6.94 + 7.8 + \frac{95 \text{ lb/in. (30g/s)}}{2\pi (38)} = +12.81 \text{ psf}
\]

\[
\text{xx-Moment} = +800,000 + 459,150 + \text{Zero} = 1.26 \times 10^6 \text{ in. lb}
\]

(LITVC) (Acceleration) (Tanks)

* Steel thickness neglects assistance of injector pads and ring. Revision A design analysis will reflect a thickness change.
Axial Load = + 22,000 + 80,000
(Acceleration) (Internal Pressure - Atmospheric Pressure)

\[- 8,400 - \pi (R_E^2 - R^2) (14.7 - 6.9) \]
(LITVC)

= + 93,600 - 3.14 (60.8^2 - 39.3^2) (7.8) = + 93,600 - 52,700

= + 40,900 lb

yy-Transverse Shear = + 26,500 + 14,000 + 9,900 * = +50,400 lb
(LITVC) (Acceleration) (Tanks)

The analysis assumes the shell is divided into 1 in. length rings with resulting local loads and stresses (Reference 15).

Chord = 2 \sin 15.25 \text{ deg} (35.6 \text{ in.}) = 18.7 \text{ in.}

P_1 = P_5 = \frac{0.50 (22.0 \sin 3.05 (35.6)^2}{2.5} = 16.5 \text{ lb at} \frac{12.20}{57.3} = 0.213 \text{ rad}

P_2 = P_4 = \frac{1.5}{2.5} (22.0) 3.78 = 50.0 \text{ lb at}

P_3 = \frac{2.25}{2.50} (22) (3.78) = 75.0 \text{ lb at} 0 \text{ rad}

\[\Sigma P = 33 + 100 + 75 = 208 \text{ lb} \]

*Assume tank loads transposed from x'x' to xx axis with no change.
\[M = \Sigma PW_1 \]
\[= 35.6 \left[2(16.5)(0.15) + 2(50)(0.19) + 75(0.25) \right] \]
\[= 35.6 (42.65) = 1,520 \text{ in. lb tangential} \]

\[N = \Sigma PW_2 \]
\[= 16.5(0.325)^2 + 2(50)(0.275) + 75(0.25) \]
\[= 56.9 \text{ lb} \]

\[S = \Sigma PW_3 \]
\[= 2(16.5)(0.45) + 2(50)(0.475) + 75(0.50) \]
\[= 99.7 \text{ lb} \]

\[\sigma_{\text{hoop}} = \frac{PR}{t} + \frac{6M}{bt^2} = \frac{+12.8(38,0)}{0.245} = \frac{+6(1,520)}{(0.060)} \]
\[= +1,980 \pm 152,000 = +153,980 \text{ outside} \]
\[-150,020 \text{ inside} \]

\[\sigma_{\text{hoop shear}} = \frac{S}{bt} = \frac{99.7}{(1) 0.245} = 406 \text{ psi (neg)} \]

\[\sigma_{\text{radial}} = \frac{p_{\text{int}}}{t} = +12.8 \text{ psi (neg)} \]

\[\sigma_{\text{axial shear}} = \frac{V/\text{area}}{6.28(38)(0.245)} = 964 \text{ psi (neg)} \]

\[\sigma_{\text{axial}} = \frac{P_{\text{axial}} + MC}{\text{area}} I \]
\[= \pm \frac{40,900}{6.28(38)(0.245)} \pm \frac{1.26(10^6)38}{\pi R^2 t} \times 45,500 \pm 0.3 (152,000) \]
\[= +700 \pm \frac{47.0(10^6)}{42,000} \pm 45,000 \pm 700 \pm 1,120 \pm 45,000 + 47,320 \]
\[= +45,920 \]

\[\sigma_{\text{allowable}} = 200,000 \text{ psi yield} \]
\[\text{F.S.} = \frac{200,000}{150,985} = +1.30 \]
Deflections

LITVC Load (Reference 13, pg 270)

Max radial displacement under load = \(+ \frac{0.135PR^2}{Et^2} \). To determine displacement of all LITVC loads use \(P=208 \) lb.

\[\delta = \frac{0.135(208)(38^2)}{27(10^6)(0.0148)} = + 2.65 (0.045) = 0.101 \text{ in.} \]

Pressure (Reference 14)

\[\delta = \frac{PR^2(1-\mu/2)}{Et} = + \frac{12.41(38^2)(0.85)}{27(10^6)(0.245)} = 0.0024 \text{ in.} \]

Total Deflection

\[\delta_T = 0.101 + 0.002 = 0.103 \]

\[\Delta R/R = \frac{0.103}{38.0} = 0.00321 (100) = 0.27 \text{ percent} \]

Local Buckling

The static test condition is critical for local buckling load

\[P_{\text{net}} = P_{\text{ext}} + P_{\text{int}} + P_{\text{shock}} \]

\[= 12.5 + 7.8 + 11.9 \text{ psi} = -16.6 \text{ psi} \]

Neglect bending moment, shear, torsion and axial load buckling.

The allowable is very high for existing loads.
Lateral External Pressure Buckling

\[P_{cr} = \frac{Cp\pi^2D}{RL^2} = \frac{5.5(3.14^2)(36,600)}{38(13.65)^2} = 282 \text{ psi} \]

\[Z = \frac{L^2\sqrt{1-\mu^2}}{Rt} = \frac{(13.65)^2(0.954)}{38(0.245)} = 19.1 \]

\[D = \frac{Et^3}{12(1-\mu^2)} = \frac{27(10^6)(0.0148)}{10.91} = 36.300 \]

\[\therefore \text{Cp} = 5.5 \]

Assume \(R = 38 \text{ deg for a 13.65 in. length cylinder with } t = 0.23 \text{ in.} \)

\[\mu = 0.30 \]

\[\text{F.S.} = \frac{282}{16.6} = + \text{ high} \]
The exit cone sandwich is designed for the external and initial shock pressure and the tangential bending moments due to the LITVC wall pressure distribution. Column and local buckling in addition to deformation under loads are checked the length of the exit cone.

Special end blocks and spacers are placed into the sandwich to attach the structure to the flange shell and static test diffuser and to allow pressure transducers to be placed through the shell.

(1) Column Buckling Analysis—A check of column buckling for the sandwich panel between Station 68.0 and 133.30 for flight and static test conditions indicates the following factors of safety.

Flight Test Loads

\[
\begin{align*}
\text{P} &= 30,550 \text{ lb} \\
\text{p} &= 6.9 \text{ psi} \\
\text{p int} &= 6.48 \\
\text{V} &= 36,600 \text{ lb} \\
\text{R} &= 40 \text{ in.} \\
\text{L} &= 65.3 \\
\text{M} &= 1.03 \times 10^6 \text{ in. lb} \\
\text{p int} &= 6.48 \\
\text{P-O} &= 0 \\
\text{P} &= 0 \\
\text{R} &= 59.3 \text{ in.} \\
\text{M} &= 0 \\
\text{V} &= 0 \\
\end{align*}
\]
Loads

average pressure \((p) \) = \[-6.9 + \frac{6.48 + 2.0}{2} + \frac{32 \text{ lb/in.} \times 60 \text{ g's}}{2 \pi R \text{ avg}} \]

\[= -6.9 + 4.24 + \frac{1.920}{6.28(49.65)} = 2.66 \pm 6.15 \]

\[\therefore \text{avg } R = \frac{59.3 + 40.0}{2} = 49.65 \]

average pressure = \[+3.49 \text{ psi} \]

average pressure = \[-8.81 \text{ psi} \]

Average Axial Load, \(P \)

\[P_{\text{exit}} = 0 \]

\[P_{\text{station 68}} = +19,800 - 7,800 + 19,350 = +30, \]

\[\text{(Pressure)} - \text{(LITVC)} + \text{(Acceleration)} \]

\[\text{avg } P = \frac{30,550 + 0}{2} = +15,275 \text{ lb tension} \]

Average Bending Moment - Longitudinal

\[M_{\text{exit}} = 0 \]

\[xx \text{ moment} = +650,000 \text{ in. lb} + 379,000 = 1,029,000 \text{ in} \]

\[\text{(LITVC)} + \text{(Acceleration)} \]

\[\text{avg moment} = \frac{1,029,000}{2} = 514,500 \text{ in. lb} \]

Average Shear Load

\[\text{shear exit} = 0 \]

\[\text{shear at 68.0} = 24,500 \text{ lb} + 12,100 = 36,600 \text{ lb} \]

\[\text{(LITVC)} + \text{(Acceleration)} \]

\[\text{avg shear} = \frac{36,600}{2} = 18,300 \text{ lb} \]
Sandwich Properties and Equivalent Section Properties

Face Sheets - 143 glass cloth epoxy (longitudinal); 20 end S-HTS roving epoxy (hoop). (Reference 12 and Figure 9)

- hoop $E_c = 5.40 \times 10^6$
- hoop $\mu_{hoop} = 0.15$
- hoop $\sigma_c = 55,000$ psi
- long. $E_c = 2.28 \times 10^6$
- long. $\mu_{long.} = 0.15$
- long. $\sigma_c = 27,400$ psi

For design analysis the sandwich shell has an effective thickness (t_e) and modulus of elasticity (E_E) for use in formulas for solid isotropic plates. The values obtained for critical loads and deflections are unconservative but for large factors of safety are satisfactory.

$$I_E = 2ay^2 = 2(1) (0.07) (0.715^2) = 0.070 \text{ in.}^4$$

Sandwich Properties - Hoop

$$E_E = \frac{H}{2\sqrt{3} \lambda F \frac{D}{H}}$$

$$D = \frac{E_F}{12F} \left(t^3 - t_c^3 \right) = \frac{5.40 \times 10^6}{12 (0.98)} (1.50^3 - 1.36^3) = 390,000$$

$$\lambda F = 1-\mu^2 = 1-(0.15^2) = 0.98$$

$$H = E_F \left(t - t_c \right) = 5.40 \times 10^6 \left(1.50 - 1.36 \right) = 755,000$$

$$E_F = 3.14 \times 10^6$$
\[
E_e = \frac{755,000}{2 \sqrt{3(0.98)} \cdot 390,000} = \frac{755,000}{2.46} = 307,000 \text{ psi}
\]

\[
te = 2 \sqrt{3(0.98)} \cdot 390,000 = \frac{755,000}{2.46} = 2.46 \text{ in.}
\]

Sandwich Properties-Longitudinal

\[
E_e = \sqrt{\frac{H}{3 \lambda_F \frac{D}{H}}} \quad \text{and} \quad t_e = \frac{2 \sqrt{3 \lambda_F \frac{D}{H}}}{(\text{Reference 1})}
\]

\[
D = \frac{E_F}{12 \lambda_F} (t^3 - t_c^3) = \frac{2.28 (10^6)}{12 (0.98)} (1.50^3 - 1.36^3) = 164,500 \text{ in.}
\]

\[
\lambda_F = 1 - \mu^2 = 1 - (0.15)^2 = 0.98
\]

\[
H = E_F (t - t_c) = 2.28 (10^6) (1.50 - 1.36) = 319,000 \text{ lb/in.}
\]

\[
E_e = \frac{319,000}{2 \sqrt{3 (0.98)} \cdot 318,500} = \frac{319,000}{2 (1.23)} = 129,500
\]

\[
te = 2 \sqrt{3 (0.98)} \cdot \frac{164,500}{318,500} = 2.46 \text{ in.}
\]
External Pressure Buckling (Reference 13, p 318)

\[P_{cr} = \frac{0.807 E t^2}{l r} \left[1 - \mu^2 \right]^{\frac{4}{3}} \sqrt{\frac{3}{\pi^2}} \]

\[R = 49.65 \]

\[= \frac{0.807(207,000)(2.46)^2}{65.3(49.65)} \sqrt{1.07 (2.46)^2} \]

\[= 460 \frac{1.59}{7.06} = 103 \text{ psi} \quad R_p \frac{8.81}{103} = 0.085 \]

Axial Bending Moment Buckling (Reference 11)

\[M_{cr} = C_b \pi Er^2 = 0.495(3.14) 129,500 (49.65)(2.46)^2 \]

\[= 60.5 \times 10^6 \text{ in. lb} \]

\[R/t = \frac{49.65}{2.46} = 20.2 \quad \therefore C_b = 0.495 \]

\[R_B = 1.029(10^6) = 0.017 \]

Transverse Shear

\[V_{cr} = \frac{C_s \pi^3 DR}{L^2} = \frac{17.53(3.14)^3(129,500)(49.65)}{(65.3)^2} = 0.81 \times 10^6 \]

\[Z = \frac{L^2 (0.99)}{R t} = \frac{(65.3)^2 (0.99)}{9.65 (2.46)} = 34.6 \]

\[R_v = \frac{0.018 (10^6)}{0.81 (10^6)} = 0.022 \quad \therefore C_s = 17.5 \]

\[F.S. = \frac{1}{\sqrt{R_c^2 + R_p^2}} = \frac{1}{\sqrt{0.085^2 + 0.017^2}} \]

\[= \frac{1}{0.0835} \geq + 12.0 \]
(2) Local Stress at Station 68.0 (Glass cloth-aluminum sandwich)—The start of sandwich fabrication at Station 68.0 is designed by axial, bending and shear loads in addition to the local LITVC pressure effects. Two load conditions exist: flight and static test, Utah conditions.

Local Stress

Flight Test Utah Conditions

Moment = +650,000 + 379,000 = 1,029,000 in. lb
(LITVC)+(Acceleration)

Axial = +19,000 - 7,800 + 19,350 = +30,550 lb
(Pressure)-(LITVC)+(Acceleration)

Shear = +24,500 + 12,100 = +36,600 lb
(LITVC) + (Acceleration)

Pressure = +6.48 - 6.9 + 32 lb/in. \(\frac{60 \text{ g} \cdot \text{in}}{2 \pi R_{avg}} \) - 0.4 ± 6.15 = +5.75 psi - 6.55 psi

\[t = 1.50 \text{ in} \]

\[R = 40.0 \text{ in} \]

STA 68.0 (65.30 in. from exit)
Static Test Loads

Axial = +70,000 - 7,800 + 3,750 = +65,950 lb
(Pressure) - (LITVC) + (Acceleration)

Moment = +650,000 + 114,000 = +764,000 in. lb
(LITVC) + (Acceleration)

Shear = +24,500 + 3,630 = +28,130 lb
(LITVC) - (Acceleration)

Pressure = 12.5 psi + 6.45 psi + 30 lb/in. (60 g's) \(\frac{2\pi R}{2\pi R} \) = + 1.5 psi
(External) (Internal) - 13.5 psi

Note: Use flight test load for local stresses and static test load for buckling stress.

Determination of loads \(P_1 \rightarrow P_7 \) is the average pressure in each arc times the chord width. The radial loads on the cone ring 1 in. wide are covered in Reference 15, p 269.

\[
P_1 = P_5 = \frac{0.50}{2.50} (20, 25) \sin 4.425 \text{ deg} (40, 0) (2)
\]

\[
= 25.0 \text{ lb at 17.70 rad} = 0.309 \text{ rad}
\]

\[
P_2 = P_4 = \frac{1.50}{2.50} (20, 25) 6.17 = 75 \text{ lb}
\]

\[
= 6.17 \text{ lb at } 0.1545 \text{ rad}
\]

\[
P_3 = \frac{2.25}{2.50} (20, 25) 6.17 = 112.5 \text{ lb}
\]

\[
= 112.5 \text{ lb at } 0 \text{ rad}
\]

\[
\Sigma P = 50 + 150 = 112 = 312 \text{ lb}
\]
Solve for the moment, shear and axial load under the middle of the pressure distribution.

\[M = R \Sigma PW \]

\[= 40.0 \left[25(0.12) + 75(0.17) + 112.5(0.25) \right] \]

\[= 40(60) = 2,400 \text{ in. lb} \tan \theta \]

\[N = \Sigma PW_2 \]

\[= 25(2)(0.36) + 75(2)(0.33) + 112.5(0.25) \]

\[= 94.0 \text{ lb} \]

\[\tau = \Sigma PW_3 \]

\[= 2(25)(0.42) + 2(75)(0.4) + 112.5(0.5) \]

\[= 147.7 \text{ lb} \]

The following stresses in three directions (radial, tangential and longitudinal) combine the local and beam loads.

\[\sigma_{\text{hoop}} = \frac{N}{A} - \frac{mL}{t^2} + \frac{M}{I} = \frac{6.55(40)}{0.14(1)} + \frac{2,400(0.725)}{0.070} + \frac{94}{1(0.14)} \]

\[I = \frac{1}{12} bd^3 + ay^2 \]

\[= \left[\frac{1}{12} (1)(0.103) + (0.07)(1)(0.71) \right] \]

\[= \left[\text{neg} + 0.035 \right] 2 \]

\[= 0.070 \text{ in.}^4 \]
\[\sigma_{\text{hoop}} = -1,872 \text{ psi} + 24,900 \text{ psi} = +23,702 \text{ psi} \]

\[\text{F.S.} = \frac{55,000}{26,098} = 2.11 \]

\[I = \pi R^3 t \]

\[\sigma_{\text{axial}} = \frac{P}{A} + \frac{M_c}{I} = \frac{30,550}{6.28 (40)(0.14)} + \frac{1,029,000 (40)}{3.14 (40^3)(0.14)} \]

\[= +868 \pm 1,460 = +2,328 \text{ psi} - 592 \text{ psi} \]

\[\text{F.S.} = \frac{27,400}{2,328} = \text{high} \]

\[\sigma_{\text{radial}} = p = -6.55 \text{ psi} \quad \sigma_{\text{allowable}} = 326 \text{ psi} \quad \text{F.S.} = \text{high compression} \]

\[\sigma_{\text{hoop shear}} = \frac{S}{bt} = \frac{147.7}{(1)(1.50)} = 99 \text{ psi} \]

\[\sigma_{\text{allowable}} = 210 \text{ psi} \]

\[\text{F.S.} = \frac{210}{99} = 2.12 \]

\[\sigma_{\text{axial shear}} = \frac{V/A}{2 \pi R} = \frac{36,600}{6.28 (40)(1.50)} = 97 \text{ psi} \]

\[\sigma_{\text{allowable}} = 360 \text{ psi} \]

\[\text{F.S.} = \frac{360}{97} = 3.71 \]

Local Buckling - Static Test Condition

\[p_{\text{actual}} = -12.50 \text{ psi} + 6.48 \text{ psi} \pm \left(\frac{30 \text{ lb/in}}{2 \pi R} \right) (60 \text{ g's}) \]

\[\text{(External)} \quad \text{(Internal)} \quad \text{(shock)} \]

\[= -6.02 \pm \frac{1,800}{6.28 (38.0)} = -13.56 \text{ psi} + 1.51 \text{ psi} \]

187
\[p_{cr} = \frac{0.807 \cdot Et^2}{1r} \sqrt{\frac{1}{1-\mu^2}} \left(\frac{r^2}{1^2} \right) \]
(Refer: Ref 13, p 318)

\[R = 40 \]

\[p_{cr} = 579 \frac{1.59}{6.33} = 145.5 \]

\[F.S. = \frac{145.5}{13.56} = + \text{high} \]

Local Deformation - Flight Test Condition

Pressure (Reference 14)

\[\delta = \frac{pr^2(1-\mu/2)}{Et} = + \frac{5.75 \cdot (40^2) \cdot (0.9375)}{307,000 \cdot (2.34)} = + 0.011 \text{ in.} \]

LITVC Load (Reference 13, p 270)

\[\delta = + \frac{0.135 \cdot PR^2}{Et^3} = + \frac{0.135 \cdot (312) \cdot (40^2)}{307,000 \cdot (2.34^3)} \]

\[= + 0.017 \]

Total Deflection

\[+ 0.017 + 0.011 = 0.028 \text{ in.} \]

\[\Delta R/R = \frac{0.028}{40.0} (100) = 0.07 \text{ percent} \]
(3) Local Stress at Station 100.60 (Glass Cloth-Aluminum Sandwich)--Section at half the length of sandwich cone is subjected to the same type of loads as at station 61.25.

Local Stress

Flight Test - Utah Conditions

\[
p = 6.9 \text{ psi}
\]

\[
p_{\text{int}} = 3.5
\]

\[
t = 1.50 \text{ in.}
\]

\[
r = 49.8
\]

\[
32.7 \text{ in. from exit}
\]

\[
\text{Pressure, } p = +0.0049(705) - 6.9 = +3.5 - 6.9 = 3.4 \text{ psi} + \frac{25 \text{ lb/in.}(60 \text{ g/s})}{2\pi(49.8)}
\]

\[
= +3.3 \text{ psi}
\]

\[
- 10.1 \text{ psi}
\]

\[
\text{Axial Load} = +15,600 - 3,100 + 8,800 = +21,300 \text{ lb}
\]

\[
(\text{Pressure}) - (\text{LITVC}) + (\text{Acceleration})
\]

\[
\text{Moment} = +170,000 + 190,000 = 360,000 \text{ in. lb}
\]

\[
(\text{LITVC}) + (\text{Acceleration})
\]

\[
\text{Transverse Shear} = +9,500 + 5,500 = +15,000 \text{ lb}
\]

\[
(\text{LITVC}) + (\text{Acceleration})
\]
With the determination of loads $P_1 \rightarrow P_7$, the bending moments, shear, and axial ring load may be determined (Reference 15)

$P_1 = P_7 = \frac{0.5}{3.5} (10) \sin 7.92 \text{ deg} (49.8^2) = 1.42 (13.7) = 19.5 \text{ lb at } \frac{47.5}{57.3} = 0.83 \text{ rad}$

$\gamma = 15.85 \text{ deg}$

$P_2 = P_6 = \frac{1.5}{3.5} (10) (13.7) = 58.6 \text{ lb at } 0.55 \text{ rad}$

$P_3 = P_5 = \frac{2.5}{3.5} (10) (13.7) = 97.8 \text{ lb at } 0.28 \text{ rad}$

$P_4 = \frac{3.25}{3.50} (10) (13.7) = 127 \text{ lb at } 0.0 \text{ rad}$

$\Sigma P = 39 + 117 + 195 + 127 = 481 \text{ lb}$

Solve for the moment, shear, and axial load under the middle of the pressure distribution.

$M = R \Sigma PW_1$

$= 49.8 \left[2(19.5)(-0.05) + 2(58.6)(0.03) + 2(97.8)(0.12) + 127(0.25) \right]$

$= 49.8 (56.66) = 2,820 \text{ in. lb tangential}$

$N = \Sigma PW_2$

$= 19.5 (0.44)2 + 58.6(0.42) + 97.8(0.12) + 127(0.25)$

$= 168 \text{ lb}$

$S = \Sigma PW_3$

$= 19.5(2)(0.18) + 58.6(2)(0.32) + 97.8(2)(0.42) + 127(0.5)$

$= 191 \text{ lb}$
\[
\sigma_{\text{hoop}} = -\frac{PR + MC + N}{t - \frac{MC}{A}} = \frac{10.1 (49.8)}{0.14} + \frac{2,820 (0.725)}{0.070} 1(0.14)
\]
\[
= -3,590 \pm 30,350 + 1,200 = +19,720 \text{ psi} - 24,080 \text{ psi}
\]
\[
= +27,960 \text{ psi} - 32,740 \text{ psi}
\]
\[
\text{F. S.} = \frac{55,000}{32,740} = +1.68
\]

\[
\sigma_{\text{axial}} = +\frac{P + \frac{MC}{I}}{A} = +\frac{21,300}{6.28 (49.8) (0.14)} + \frac{360,000 (49.8)}{3.14 (49.8^3) (0.14)}
\]
\[
= +487 \pm 330 = +817 \text{ psi} - 157 \text{ psi}
\]
\[
\text{F. S.} = \frac{27,400}{817} = +\text{high}
\]

\[
\sigma_{\text{radial}} = p = -10.1 \text{ psi}
\]
\[
\sigma_{\text{allowable}} = 326 \text{ psi}
\]
\[
\text{compression}
\]
\[
\text{F. S.} = \frac{326}{10.1} = +\text{high}
\]

\[
\sigma_{\text{hoop shear}} = \frac{S}{bt} = \frac{191}{1(1.50)} = 127 \text{ psi}
\]
\[
\sigma_{\text{allowable}} = 210 \text{ psi}
\]
\[
\text{shear}
\]
\[
\text{F. S.} = \frac{210}{127} = +1.65
\]

\[
\sigma_{\text{axial shear}} = \frac{V}{A} = \frac{15,000}{2 \pi R t} = \frac{15,000}{6.28 (49.8) (1.50)} = 32 \text{ psi}
\]
\[
\sigma_{\text{allowable}} = 269 \text{ psi}
\]
\[
\text{shear}
\]
\[
\text{F. S.} = \frac{360}{32} = +\text{high}
\]

191
Local Buckling - Static Test Condition

\[P_{\text{actual}} = -12.5 \text{ psi} + 3.5 + 27 \text{ lb/in. (60 g's)} \]

\(\frac{2\pi R}{(\text{External}) (\text{Internal})} \)

\[= -9.0 \pm 5.17 = -14.17 \text{ psi} \]

\[P_{\text{cr}} = 0.807 \frac{E_t^2}{l/r} \left(\frac{1}{1-\mu^2} \right) \left(\frac{R}{r} \right)^2 \]

\[R = 49.8 \text{ (Reference 13, p 104 psi) \]

\[= 104 \text{ psi} \]

\[\text{F. S.} = \frac{104}{14.2} = 7.33 \]

Local Deformation - Flight Test Condition

Pressure (Reference 14)

\[\delta = \frac{p r^2 (1-\mu/2)}{E_t} = + \frac{3.3(49.8)^2 (0.9375)}{307,000 \times 2.46} = + 0.010 \text{ in.} \]

LITVC Load

\[\delta = + \frac{0.135 PR^2}{E_t^3} = \frac{0.135 (481) (49.8^2)}{307,000 \times 2.46^3} \]

\[= + 0.035 \]

Total Deflection

\[\delta_{\text{tot}} = + 0.035 + 0.004 = 0.039 \text{ in.} \]

\[\frac{\Delta R}{R} = \frac{0.039}{49.8} (100) = + 0.078 \text{ percent} \]
Local Stress at Station 130.30

Exit Cone Buckling

The Utah ground test load condition is critical for the exit cone. The only load is the external pressure and the radial shock load at ignition - moment and shear = zero at exit

\[p = -12.5 + 2.0 \pm \frac{35.0 \text{ lb/sq in.}}{6.28} (60.0) \]

(External Pressure) (Internal Ambient Pressure)

\[p = 10.5 \text{ psi} \pm 5.65 \text{ psi} = -4.35 \text{ psi} \]

\[-16.15 \text{ psi} \]

\[t = 1.50 \text{ in.} \]

For typical sections close to the exit plane and at the exit, the end ring block is not considered in the crippling analysis.

Local Deformation

\[\delta = \frac{pr^2 (1 - \mu/2)}{Et} = \frac{-16.15 (58.3)^2 (0.9375)}{307,000 (2.46)} = 0.068 \text{ in.} \]

\[\frac{\Delta R}{R} = \frac{0.068}{58.3} (100) = -0.12 \text{ percent} \]
An analysis is supplied in Reference 18.

1. Determine minimum face thickness from allowable compression strength:

\[f_{cy} = 20,000 \text{ psi} \quad p = -16.20 \text{ psi} \]

\[t = \frac{pr}{2F_f} = \frac{(1.25)(16.2(60.5))}{2(20,000)} = 0.030 \]

Use 0.070 in. face sheets

2. Select a core material from bare flat compressive strength \(F_c \)

\[F_c \geq \frac{p}{1.5} = \frac{16.2}{1.5} = 10.8 \leq F_c (360) \]

Use 1/4 -5,052 - 0.0025 \(F_c = 360 \quad G_c = 30,500 \)

\(\omega_c = 5.2 \text{ lb/cu ft} = 0.00301 \text{ lb/cu in.} \)

Assume \(t_c = 1.36 \)

\(d = 1.50 \text{ in.} \)

then \(r_0 = 59.765 \text{ in.} \quad r_1 = 58.335 \text{ in.} \)

\(r_{lc} = 58.37 \text{ in.} \quad r_c = 59.05 \text{ in.} \)

3. Determine actual radial compressive stresses in the core using:

\[f_c = K \left(\frac{r_0}{r_{lc}} \right) \]

\[K = \frac{1}{\left(1 + \frac{r_1}{r_o} \right) \left[\frac{E_f \ln \left(\frac{r_1}{r_o} \right)}{E_c r_o} \right]} = \frac{1}{1 \left(\frac{58.335}{59.765} \right) \left[\frac{59.1}{60.4} \right] \left(-5.4(10^6)(0.07) \ln \left(\frac{59.1}{60.4} \right) \right) \}^{0.53,000 \quad 60.45} \]

194
6. Critical pressure at which compressive buckling of the cylinder wall will occur is:

\[P_{cr} = K \left(\frac{E \pi t}{\lambda d} \right) \]

\[V = \frac{E \pi t}{\lambda G_{cl} d} = \frac{5.4 \times 10^6 \times 0.07}{(0.98) \times 30,500 \times 1.50} = 8.45 \]

\[\frac{L}{rc} = \frac{65.3}{59.05} = 1.105 \]

\[\frac{rc}{d} = \frac{59.05}{1.50} = 39.30 \]

\[\lambda = 1 - \mu^2 = 1 - 0.15^2 = 0.98 \]

195
K^1 is determined from charts X-1 thru X-3. Use chart X-2.

$$K^1 = 0.00028$$

$$P_{cr} = \frac{K^1 E \text{ ft}}{\lambda d} = \frac{0.00028 (5.4) 10^6 (0.07)}{0.98 (1.50)}$$

$$P_{cr} = 72.0 \text{ psi} \quad \text{F.S.} = \frac{72.0}{16.2} = + 4.45$$

7. Check interface buckling

$$\frac{F_{cr}}{E_f} = 0.125$$

$$\Gamma_{cr} = 0.125 (5.4) (10^6) = 660,000 \text{ psi allowable}$$

$$\text{F.S.} = \frac{660,000}{7,000} = + \text{ high}$$

Exit Cone Deformation

Neglect assistance of end ring - consider sandwich resisting -16.15 psi

$$\delta = \frac{pr^2 (1-\mu/2)}{E_z \lambda \nu \text{ in.} c} = \frac{-16.15 (58.3^2) (0.9375)}{307,000 (2.46)}$$

$$\delta = 0.068 \text{ in.}$$

$$\frac{\Delta R}{R} = \frac{0.068}{58.3} (100) = 0.12 \text{ percent}$$
(5) Local Stress at Station 133.30 Nozzle Exit Plane Ring (Reference 11)--

The exit plane ring is analyzed to insure an adequate moment of inertia and
polar moment of inertia to provide a nodal point at the exit plane.

\[I_{xx} = \frac{1}{12} bd^3 = \frac{1}{12} (2.4)(1.4^3) = 0.55 \text{ in.}^4 \]
\[I_{yy} = \frac{1}{12} (1.4)(2.4)^3 = 1.61 \text{ in.}^4 \]
\[EI_{xx} = 8.1(10^6)(0.55) = 4.45(10^6) \]
\[J = I_x + I_y = 0.55 + 1.61 = 2.16 \text{ in.}^4 \]

Flight Loads

\[\text{Avg } P = +15,275 \text{ lb} \quad \text{P in formula equals } 0 \text{ when load is tension.} \]
\[\text{Avg } M = \pm 514,500 \text{ in. lb avg} \]

Avg Pressure = -8.81 psi

Required \(EI_{xx} \), \(J \)

\[EI = 2 \left[\frac{2.4(10^{-4}) PR^3}{L} + \frac{2.4(10^{-4}) 2MR^2}{L} \right] + \frac{2.4(10^{-4}) 2MR^2}{L} \]
\[= (2)(0) + \frac{48(10^{-4})(515,000)(3,600)}{65.3} \]
\[EI = 0 + 27,200 = 27,200 \]
\[= 0.027(10^6) \]
\[J = 2(31) \]
\[J = \frac{6(27,200)}{8.1(10^6)} \]
\[J = 0.022 \text{ in.}^4 \quad \text{Section is satisfactory.} \]

NOTE: No requirement for transverse shear or axial tension loads.
f. **Flange Shell - Exit Cone Shell Discontinuity Analysis**— As the main structure in the nozzle, the steel shell distributes the blowout, acceleration, and LITVC loads into the case-nozzle flange from the exit cone. Components are broken down into small free bodies with all loads and reactions shown and then the deflections and rotations of the bodies are equated equal to each other to solve for the shear and moments per circumferential inch.

Figure 68 indicates the present design of flange and submerged shell and the stresses at critical locations in the cross section. Inspection of the stresses and allowables indicates all exhibited a factor of safety of at least 1.25.

The exit cone discontinuity analysis was made under flight conditions.

Torque Box Area (Figure 69).

Deflection and Rotation Equations at Flight Conditions.

Input to program 16 deg

```
161 glass fabric
E₁ = E₂ = 2.5 x 10⁶

t = 0.10 in.
```

Axial stiffness (Dy)

\[Dy = 229 \times 10^{3} \text{ lb/sq in.} \]

Damping function (β)

\[\beta = \frac{4}{4 (2.5 \times 10^{6}) (0.2) (\sin^2 74 \text{ deg})} \]

\[\beta = \frac{4}{41 (229 \times 10^{3})} \]

\[\beta = \frac{4}{3 \times 10^{-4}} \]

\[\beta^2 = 1.73 \times 10^{-2} \]

\[\beta = 1.315 \times 10^{-1} \]

\[\beta^3 = 2.275 \times 10^{-3} \]
Figure 68. Submerged Nozzle Discontinuity at the Torque Box
(Loads During Static Firing at MEOP)
\[\Delta \vartheta = \left(\frac{\sin \phi}{2 \beta^2 D} \right) Q \left(\frac{1}{\beta D} \right) M \]

\[\Delta \vartheta = \frac{0.9613 Q}{2(1.73 \times 10^{-2}) (229 \times 10^{+3})} - \frac{M}{(1.315 \times 10^{-1}) (229 \times 10^{+3})} \]

\[\Delta \vartheta = 10^{-6} (121.3 Q - 33.2 M) \]

\[\Delta R = \frac{E R^2}{\sin \phi t} \left(\frac{1}{E_g} - \frac{\mu}{2E_g} \right) \left(\sin^2 \phi \right) Q \left(\frac{\sin \phi}{2 \beta^2 D} \right) M \]

\[\Delta R = \frac{(6)(41)^2}{(0.9613)(0.2)} \left(\frac{1}{2.5} - \frac{21}{2(2.5)} \right) 10^{-6} + \frac{(0.9613)^2}{2(2.275 \times 10^{-3}) (229 \times 10^{+3})} \]

\[\Delta R = 10^{-6} (+ 19,931 + 886.8 Q - 121.3 M) \]

Axial Load (T)

\[T = -440 \text{ lb/in. (Summation of Back Pressure and LITVC Loads)} \]

Results of Discontinuity Analysis (loads, stresses, radial deflections and rotations).

- 7 psi torque box and conical shell 18 percent nickel steel
- honeycomb with 181 fiberglass reinforced plastic facings

Sign Convention

- \(M, \Delta \vartheta \) positive
- \(Q, \Delta R \) positive
- Station on Computer Output
Station No. 1

\[M = +37.4 \text{ in.} \text{ lb/in.} \]
\[\Delta \theta = +0.000729 \text{ rad} \]
\[Q = -30.6 \text{ lb/in.} \]
\[\Delta R = -0.000152 \text{ in.} \]
\[N_d = -502 \text{ lb/in.} \]

ID of Cone

\[\sigma_\phi = +3,040 \text{ psi} \]
\[\sigma_\theta = +1,040 \text{ psi} \]

OD of Cone

\[\sigma_\phi = -8,180 \text{ psi} \]
\[\sigma_\theta = -2,330 \text{ psi} \]

F.S. = High (including additional stress due to bending induced by LITVC and 5g loading).

Station No. 2

5/16 dia bolt (200)

\[M = -50 \text{ in.} \text{ lb/in.} \]
\[\text{Bolt Space} = \frac{2\pi (41)}{200} = 1.29 \text{ in.} \]
\[Q = -109 \text{ lb/in.} \]
\[A_8 = 0.058 \text{ sq in.} \]
\[N_d = -452 \text{ lb/in.} \]

\[T_b = \frac{M (\text{bolt space})}{d} - Q (\text{bolt space}) \]
\[T_b = \frac{(50) 1.29}{1.0} - 109 (1.29) \]

\[T_b = 205 \text{ lb (loading due to discontinuity)} \]
Station No. 3

\(M = -256 \text{ in.} \cdot \text{lb/in.} \)
\(Q = -64.2 \text{ lb/in.} \)
\(N_g = -440 \text{ lb/in.} \)
\(\Delta \theta = +0.000729 \text{ rad} \)
\(\Delta R = -0.00589 \text{ in.} \)

\(I_{(\text{wall})} = 0.0916 \text{ in.}^4 \)

\[\sigma_{\theta}^{(C)} = \frac{N_g}{A} = \frac{-440}{2(0.1)} = -2,200 \text{ psi} \]

\[\sigma_{\theta}^{(D)} = \frac{M_c}{I} = \frac{(256)(0.725)}{0.0916} \]

\(= +2,030 \text{ (due to discontinuity moment)} \)
The results of the nozzle discontinuity analyses (IBM 7040 computer program No. 3239) in the torque box area at flight test conditions are shown on pages 205 through 211.

TL-193 NOZZLE STRUCTURAL ANALYSIS

TOWEL BOX AREA

C.W.C. 24 JUNE 65

SIL CONE SECTION (18% NI STEEL)

HEL PEDA NUMBER 1 SEMI-INFINITE CONE

<table>
<thead>
<tr>
<th>7.00000</th>
<th>INTERNAL PRESSURE, PSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.35000</td>
<td>RADIUS (1 MIU-PHAT OF STATION 1), IN.</td>
</tr>
<tr>
<td>0.00000</td>
<td>RADIUS (1 THROAT), IN.</td>
</tr>
<tr>
<td>37.25705</td>
<td>PRESSURIZED RADIALS AT STATION 1), IN.</td>
</tr>
<tr>
<td>67.00000</td>
<td>PHI, DEGREES</td>
</tr>
<tr>
<td>-0.39073</td>
<td>COSINE OF PHI</td>
</tr>
<tr>
<td>0.92050</td>
<td>SINE OF PHI</td>
</tr>
<tr>
<td>40.57556</td>
<td>MEAN RADIUS OF CURVATURE NORMAL TO MERIDIAN (R2), IN.</td>
</tr>
</tbody>
</table>

| 37.3874132 | M (1) - MOMENT, IN-LBS/IN. |
| -30.5655164 | G (1) - SHEAR FORCE, LBS/IN. |

<table>
<thead>
<tr>
<th>DELTA THETA (1)</th>
<th>DELTA RADIUS (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>112.0466176 M (1)</td>
<td>114.2820880 U (1)</td>
</tr>
<tr>
<td>-114.2820880 M (1)</td>
<td>-233.1360000 U (1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SIGMA(1P)</th>
<th>SIGMA(1U)</th>
<th>SIGMA(1P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2510.300000</td>
<td>SIGMA(1P)</td>
<td>SIGMA(1U)</td>
</tr>
<tr>
<td>-59.7145000</td>
<td>SIGMA(1U)</td>
<td>SIGMA(1P)</td>
</tr>
<tr>
<td>5607.0613968</td>
<td>SIGMA(1U)</td>
<td>SIGMA(1P)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SIGMA(1P)</th>
<th>SIGMA(1U)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3037.3475328</td>
<td>SIGMA(1P)</td>
</tr>
<tr>
<td>-8172.7769368</td>
<td>SIGMA(1U)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SIGMA(2P)</th>
<th>SIGMA(2U)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1420.144016</td>
<td>SIGMA(2P)</td>
</tr>
<tr>
<td>-5151.286864</td>
<td>SIGMA(2U)</td>
</tr>
<tr>
<td>3088.1289472</td>
<td>SIGMA(2P)</td>
</tr>
<tr>
<td>1682.1185684</td>
<td>SIGMA(2U)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SIGMA(2P)</th>
<th>SIGMA(2U)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1039.1052288</td>
<td>SIGMA(2P)</td>
</tr>
<tr>
<td>-2325.1318784</td>
<td>SIGMA(2U)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SIGMA(10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIGMA(10)</td>
</tr>
<tr>
<td>SIGMA(10)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SIGMA(11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIGMA(11)</td>
</tr>
<tr>
<td>SIGMA(11)</td>
</tr>
</tbody>
</table>

STRESSES AT STATION (1)

<table>
<thead>
<tr>
<th>BASIC MERIDIONAL STRESS, PSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>MERAIONAL STRESS DUE TO SHEAR, PSI</td>
</tr>
<tr>
<td>MERAIONAL STRESS DUE TO MOMENT, PSI</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAXIMUM COMBINED INSIDE MERIDIONAL STRESS, PSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAXIMUM COMBINED OUTSIDE MERIDIONAL STRESS, PSI</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BASIC TANGENTIAL STRESS, PSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>TANGENTIAL STRESS DUE TO SHEAR, PSI</td>
</tr>
<tr>
<td>TANGENTIAL STRESS DUE TO MOMENT, PSI</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAXIMUM COMBINED INSIDE TANGENTIAL STRESS, PSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAXIMUM COMBINED OUTSIDE TANGENTIAL STRESS, PSI</td>
</tr>
</tbody>
</table>
TORQUE BOX AND FLANGE (1% PERCENT STEEL)

FREE BODY NUMBER 2 RING

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.0000000</td>
<td>INTERNAL PRESSURE 11, PSI</td>
</tr>
<tr>
<td>0.0000000</td>
<td>THROAT RADIUS 11, IN.</td>
</tr>
<tr>
<td>37.3499996</td>
<td>RADIUS TO MID-POINT OF STATION 11, IN.</td>
</tr>
<tr>
<td>7.0000000</td>
<td>INTERNAL PRESSURE 21, PSI</td>
</tr>
<tr>
<td>0.0000000</td>
<td>THROAT RADIUS 21, IN.</td>
</tr>
<tr>
<td>30.8999996</td>
<td>RADIUS TO MID-POINT OF STATION 21, IN.</td>
</tr>
<tr>
<td>40.0533984</td>
<td>RADIUS TO CENTROID, IN.</td>
</tr>
<tr>
<td>113.0000000</td>
<td>PMI AT STATION 11, DEGREES</td>
</tr>
<tr>
<td>0.9205048</td>
<td>SINE PMI AT STATION 11</td>
</tr>
<tr>
<td>-0.3997312</td>
<td>COSINE PMI AT STATION 11</td>
</tr>
<tr>
<td>89.0000000</td>
<td>PMI AT STATION 21, DEGREES</td>
</tr>
<tr>
<td>0.0000000</td>
<td>SINE PMI AT STATION 21</td>
</tr>
<tr>
<td>0.0000000</td>
<td>COSINE PMI AT STATION 21</td>
</tr>
<tr>
<td>27.0000000</td>
<td>1.0D6 - ELASTIC MODULUS, PSI.</td>
</tr>
</tbody>
</table>

<p>| 4.2356004 | AREA OF CROSS-SECTION OF RING, SQ. IN. |
| 0.0000000 | HORIZONTAL COMPONENT OF PRESSURE, P1, LB/IN. |
| 30.0000000 | VERTICAL COMPONENT OF PRESSURE, P2, LB/IN. |
| 12.3999999 | HORIZONTAL COMPONENT OF PRESSURE, P3, LB/IN. |
| -2.7033984 | VERTICAL DISTANCE FROM CENTROID TO AXIAL LOAD 11, IN. |
| -0.3533984 | VERTICAL DISTANCE FROM CENTROID TO AXIAL LOAD 21, IN. |
| 37.2579492 | PRESSURIZED RADIUS AT STATION 11, IN. |
| 40.6999996 | PRESSURIZED RADIUS AT STATION 21, IN. |
| 2.8533984 | VERTICAL DISTANCE TO CENTROID, IN. |
| 15.2671058 | MOMENT OF INERTIA ABOUT THE Y-AXIS, IN.(4TH) |
| 2.8533984 | VERTICAL DISTANCE FROM CENTROID TO P1, IN. |
| 0.5067324 | VERTICAL DISTANCE FROM CENTROID TO P2, IN. |
| -2.8533984 | VERTICAL DISTANCE FROM CENTROID TO P3, IN. |
| 2.6317329 | HORIZONTAL DISTANCE FROM CENTROID TO AXIAL LOAD 11, IN. |
| 1.6182671 | HORIZONTAL DISTANCE FROM CENTROID TO AXIAL LOAD 21, IN. |
| -502.2000000 | AXIAL LOAD AT STATION 11, LB/IN. |
| -552.2000000 | AXIAL LOAD AT STATION 21, LB/IN. |
| 2.6317329 | HORIZONTAL DISTANCE TO CENTROID, IN. |
| 37.3804132 | MI 11 - MOMENT, IN-LB/IN. |
| -50.4490126 | MI 21 - MOMENT, IN-LB/IN. |
| -30.4655164 | Q1 11 - SHEAR, LB/IN. |
| -104.1928032 | Q1 21 - SHEAR, LB/IN. |
| -0.0001521 | DELTA RADIUS 11 - CHANGE IN RADIUS, IN. |
| -0.0032484 | DELTA RADIUS 21 - CHANGE IN RADIUS, IN. |
| 0.0007285 | DELTA THETA 11 - ROTATION, RADIANS |
| 0.0007285 | DELTA THETA 21 - ROTATION, RADIANS |</p>
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CINELI</td>
<td>-1.0000 Q(1)</td>
<td>Q(1) 2)</td>
<td>-226.1470</td>
</tr>
<tr>
<td>DELTA RADIUS (C)</td>
<td>14.0284 Q(1)</td>
<td>Q(2) 2)</td>
<td>-3172.4215</td>
</tr>
<tr>
<td>M(NEF)</td>
<td>-1.0000 M(1)</td>
<td>M(2) 2)</td>
<td>1.6183 Q(2)</td>
</tr>
<tr>
<td>DELTA THETA (1)</td>
<td>10.2424 Q(1)</td>
<td>Q(2) 2)</td>
<td>6.2981 Q(2)</td>
</tr>
<tr>
<td>DELTA RADIUS(1)</td>
<td>10.9833 Q(1)</td>
<td>Q(2) 2)</td>
<td>2.5467 Q(2)</td>
</tr>
<tr>
<td>DELTA THETA (2)</td>
<td>10.2424 Q(1)</td>
<td>Q(2) 2)</td>
<td>6.2981 Q(2)</td>
</tr>
<tr>
<td>DELTA RADIUS(2)</td>
<td>6.2981 Q(1)</td>
<td>Q(2) 2)</td>
<td>-24.2201 Q(2)</td>
</tr>
</tbody>
</table>

207
BOLT CONNECTING TORQUE BOX AND LIFT CONE FLANGE

BOLT NO. 1

- **8.000000** --- BOLT SPACING, IN.
- **1.000000** --- DISTANCE TO PIVOT POINT, IN.
- **0.000000** --- STRESS AREA OF BOLT, SC, IN.
- **0.000000** --- EFFECTIVE LENGTH OF BOLT, IN.
- **30.000000** --- YIELD - ELASTIC MODULUS OF BOLT, PSI
- **92.000000** --- PSI, DEGREES
- **40.000000** --- PRESSURIZED RADII, IN.

- **-50.496371** --- M (2) - MOMENT, IN-LB/IN.
- **-169.1928412** --- W (2) - SHEAR, LN/LN.

-0.000000 --- DELTA THETA (β) - ANGLE OF SEPARATION BETWEEN MATING SURFACES, RADIANS

<table>
<thead>
<tr>
<th>DELTA THETA (β)</th>
<th>SIGMA 11</th>
<th>SIGMA 12</th>
<th>SIGMA 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>-18469.6547328</td>
<td>SIGMA 11P</td>
<td>SIGMA 11Y</td>
<td>SIGMA 11T</td>
</tr>
<tr>
<td>-2082.1307776</td>
<td>SIGMA 11Y</td>
<td>SIGMA 11T</td>
<td>SIGMA 11O</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SIGMA 11P</th>
<th>SIGMA 11Y</th>
<th>SIGMA 11T</th>
<th>SIGMA 11O</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASIC BOLT STRESS, PSI</td>
<td>BASIC BOLT STRESS DUE TO BENDING, PSI</td>
<td>TOTAL TENSILE STRESS, PSI</td>
<td>TOTAL TENSILE STRESS DUE TO SHEAR, PSI</td>
</tr>
<tr>
<td>1134.9154048</td>
<td>SIGMA 11M</td>
<td>SIGMA 11P</td>
<td>SIGMA 11PO</td>
</tr>
<tr>
<td>9238.1773312</td>
<td>SIGMA 112</td>
<td>SIGMA 11O</td>
<td>SIGMA 11PO</td>
</tr>
<tr>
<td>Description</td>
<td>Value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exit Cone Plane (flame)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Free Bending Number 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exit Cone Pressure 1</td>
<td>7.00 COLC00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exit Cone Pressure 2</td>
<td>0.00 COLC00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radius to Mid-point of Station 2</td>
<td>39.6596565</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exit Cone Pressure 3</td>
<td>7.00 COLC00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exit Cone Pressure 4</td>
<td>0.00 COLC00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radius to Mid-point of Station 3</td>
<td>40.6494552</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radius to Centroid</td>
<td>40.3132166</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area of Cross-section of Wing, sq. in.</td>
<td>6.1257997</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizontal Component of Pressure, P1, lb/in.</td>
<td>0.00 COLC0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertical Component of Pressure, P2, lb/in.</td>
<td>25.8359996</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizontal Component Pressure, P3, lb/in.</td>
<td>6.8599999</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertical Distance from Centroid to Axial Load 1, in.</td>
<td>-6.6133174</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertical Distance from Centroid to Axial Load 2, in.</td>
<td>0.3866826</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressurized Radius at Station 1, in.</td>
<td>40.6499996</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressurized Radius at Station 2, in.</td>
<td>40.000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertical Distance to Centroid, in.</td>
<td>1.3133174</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moment of Inertia about the Y-axis, in. (in-lb)</td>
<td>11.7200846</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertical Distance from Centroid to Axial Load 2, in.</td>
<td>1.3133174</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertical Distance from Centroid to Axial Load 3, in.</td>
<td>1.3133174</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertical Distance to Centroid, in.</td>
<td>1.3133174</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moment, in-lb/in.</td>
<td>50.4901216</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moment, in-lb/in.</td>
<td>-256.3962144</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delta Radius 2, Change in Radius, in.</td>
<td>-0.0032484</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delta Radius 3, Change in Radius, in.</td>
<td>-0.0058929</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delta Theta 2, Rotation, Radians</td>
<td>0.0007285</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delta Theta 3, Rotation, Radians</td>
<td>0.0007285</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flexural Modulus, psi</td>
<td>10.500 x 10^6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2)</td>
<td>(3)</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>CENT</td>
<td>1.0000</td>
<td>-1.0000</td>
<td>-146.1804</td>
</tr>
<tr>
<td>DELTA RADIUS (C)</td>
<td>25.2665</td>
<td>-25.2665</td>
<td>-1744.6002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2)</td>
<td>(3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-1.0000</td>
<td>2.2411</td>
<td>1.0000</td>
</tr>
<tr>
<td>DELTA THETA (2)</td>
<td>-13.2062</td>
<td>29.5957</td>
<td>13.2062</td>
</tr>
<tr>
<td></td>
<td>-29.5957</td>
<td>91.5941</td>
<td>29.5957</td>
</tr>
<tr>
<td>DELTA THLTA (3)</td>
<td>-13.2062</td>
<td>29.5957</td>
<td>13.2062</td>
</tr>
<tr>
<td></td>
<td>18.3427</td>
<td>-15.8404</td>
<td>18.3427</td>
</tr>
</tbody>
</table>
-256.3962149 -- XI (3) -- MUSCLE, IN-LS/IN.
-64.1912192 -- GI (3) -- SHEAR FORCE, LS/IN.

DELTA THETA (3) --- -33.2059556 -- XI (3)
DELTA RADIUS (3) --- -121.2959556 -- XI (3)

0.0097245 --- DELTA THETA (3) -- ROTATION, RADIANS
-0.0058429 --- DELTA RADIUS (3) -- CHANGE IN RADIUS, IN.

19930.9998080

0.0000000
The results of the nozzle discontinuity analysis in the torque box area at static test conditions are provided on pages 213 through 221.
TU-399 NOZZLE STRUCTURAL ANALYSIS
TORUS BOX AREA (65%70LB AXIAL LOAD DURING STATIC FIRING)
C.V.C.G.T 29 JUNE 65

STL CONE SECTION (10% NI STEEL)
FREE BODY NUMBER 1 SEMI-INFINITE CONE

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>-6.00000 --- INTERNAL PRESSURE, PSI</td>
<td>0.200000 --- THICKNESS FOR STRESSES AT STATION 11, IN.</td>
</tr>
<tr>
<td>37.35000 --- RADIUS TO MID-POINT OF STATION 11, IN.</td>
<td>0.200000 --- THICKNESS FOR DEFLECTIONS, IN.</td>
</tr>
<tr>
<td>0.00000 --- RADIUS OF THROAT, IN.</td>
<td>27.000000 X 106 --- MODULUS OF ELASTICITY, PSI</td>
</tr>
<tr>
<td>37.25795 --- PRESSURIZED RADIUS AT STATION 11, IN.</td>
<td>0.300000 --- POISSON'S RATIO</td>
</tr>
<tr>
<td>67.00000 --- PHI, DEGREES</td>
<td>0.451225 --- DAMPING FUNCTION</td>
</tr>
<tr>
<td>-0.39073 --- COSINE OF PHI</td>
<td>0.019780 X 106 --- FLEXURAL RIGIDITY, IN-LBS.</td>
</tr>
<tr>
<td>0.92050 --- SINE OF PHI</td>
<td>287.000000 --- AXIAL LOAD AT STATION 11, LBS/IN.</td>
</tr>
<tr>
<td>40.97356 --- MEAN RADIUS OF CURVATURE NORMAL TO MERIDIAN (R2), IN.</td>
<td></td>
</tr>
<tr>
<td>-54.044352 --- MI 11 - MOMENT, IN-LBS/IN.</td>
<td>-0.0009235 --- D'YA Theta (11) - ROTATION, RADIANS</td>
</tr>
<tr>
<td>44.8926700 --- QI 11 - SHEAR FORCE, LBS/IN.</td>
<td>-0.0020104 --- DELTA RADIUS (11) - CHANGE IN RADIUS, IN.</td>
</tr>
</tbody>
</table>

| Delta Theta (11) --- | 112.04007166 MI 11 | 114.2820880 QI 11 | -28.7055810 |
| Delta Radius (11) --- | -114.2380880 MI 11 | -233.1360000 QI 11 | 2279.4106480 |

STRESSES AT STATION 11

<table>
<thead>
<tr>
<th>Stress</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1435.0000000000 --- SIGMA(1P)</td>
<td></td>
</tr>
<tr>
<td>67.7048272 --- SIGMA(1Q)</td>
<td></td>
</tr>
<tr>
<td>-916.6021760000 --- SIGMA(1N)</td>
<td></td>
</tr>
<tr>
<td>-6583.9752400000 --- SIGMA(11)</td>
<td></td>
</tr>
<tr>
<td>9629.5849080000 --- SIGMA(10)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stress</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1217.2680320000 --- SIGMA(2P)</td>
<td></td>
</tr>
<tr>
<td>7965.8798000000 --- SIGMA(2Q)</td>
<td></td>
</tr>
<tr>
<td>-4444.8113520000 --- SIGMA(2M)</td>
<td></td>
</tr>
<tr>
<td>-2492.0040440000 --- SIGMA(2N)</td>
<td></td>
</tr>
<tr>
<td>-548.2023616000 --- SIGMA(21)</td>
<td></td>
</tr>
<tr>
<td>4315.8564960000 --- SIGMA(20)</td>
<td></td>
</tr>
<tr>
<td>Value</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>-6.000000</td>
<td>INTERNAL PRESSURE (1), PSI.</td>
</tr>
<tr>
<td>0.000000</td>
<td>THROAT RADIUS (1), IN.</td>
</tr>
<tr>
<td>37.349986</td>
<td>RADIUS TO MID-POINT OF STATION (1), IN.</td>
</tr>
<tr>
<td>7.000000</td>
<td>INTERNAL PRESSURE (2), PSI.</td>
</tr>
<tr>
<td>0.000000</td>
<td>THROAT RADIUS (2), IN.</td>
</tr>
<tr>
<td>40.699999</td>
<td>RADIUS TO MID-POINT OF STATION (2), IN.</td>
</tr>
<tr>
<td>40.053390</td>
<td>RADIUS TO CENTROID, IN.</td>
</tr>
<tr>
<td>113.000000</td>
<td>PHI AT STATION (1), DEGREES</td>
</tr>
<tr>
<td>0.9205046</td>
<td>SINE PHI AT STATION (1)</td>
</tr>
<tr>
<td>-0.3907312</td>
<td>COSINE PHI AT STATION (1)</td>
</tr>
<tr>
<td>89.999994</td>
<td>PHI AT STATION (2), DEGREES</td>
</tr>
<tr>
<td>1.000000</td>
<td>SINE PHI AT STATION (2)</td>
</tr>
<tr>
<td>-0.000000</td>
<td>COSINE PHI AT STATION (2)</td>
</tr>
<tr>
<td>27.000 x 10^6</td>
<td>ELASTIC MODULUS, PSI.</td>
</tr>
<tr>
<td>4.2356024</td>
<td>AREA OF CROSS-SECTION OF RING, SQ. IN.</td>
</tr>
<tr>
<td>15.2671058</td>
<td>MOMENT OF INERTIA ABOUT THE Y-AXIS, IN. (4TH)</td>
</tr>
<tr>
<td>0.000000</td>
<td>HORIZONTAL COMPONENT OF PRESSURE, P1, LB/IN.</td>
</tr>
<tr>
<td>30.000000</td>
<td>VERTICAL COMPONENT OF PRESSURE, P2, LB/IN.</td>
</tr>
<tr>
<td>12.599999</td>
<td>HORIZONTAL COMPONENT OF PRESSURE, P3, LB/IN.</td>
</tr>
<tr>
<td>-2.0703984</td>
<td>VERTICAL DISTANCE FROM CENTROID TO AXIAL LOAD (1), IN.</td>
</tr>
<tr>
<td>0.6468016</td>
<td>VERTICAL DISTANCE FROM CENTROID TO AXIAL LOAD (2), IN.</td>
</tr>
<tr>
<td>37.2579492</td>
<td>PRESSURIZED RADIUS AT STATION (1), IN.</td>
</tr>
<tr>
<td>40.699996</td>
<td>PRESSURIZED RADIUS AT STATION (2), IN.</td>
</tr>
<tr>
<td>2.053390</td>
<td>VERTICAL DISTANCE TO CENTROID, IN.</td>
</tr>
<tr>
<td>-54.0445352</td>
<td>MI 1) --- MOMENT, IN-LB/IN.</td>
</tr>
<tr>
<td>-18.4821798</td>
<td>MI 2) --- MOMENT, IN-LB/IN.</td>
</tr>
<tr>
<td>44.8926700</td>
<td>Q1 1) --- SHEAR, LB/IN.</td>
</tr>
<tr>
<td>92.2530616</td>
<td>Q1 2) --- SHEAR, LB/IN.</td>
</tr>
<tr>
<td>-0.0020104</td>
<td>DELTA RADIUS (1) - CHANGE IN RADIUS, IN.</td>
</tr>
<tr>
<td>-0.0029953</td>
<td>DELTA RADIUS (2) - CHANGE IN RADIUS, IN.</td>
</tr>
<tr>
<td>Q(NEKT)</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>1.0000 Q(1)</td>
<td>-1.0000 Q(2)</td>
</tr>
<tr>
<td>DELTA RADIUS (C)</td>
<td></td>
</tr>
<tr>
<td>14.0281 Q(1)</td>
<td>-14.0281 Q(2)</td>
</tr>
<tr>
<td>M(NFT)</td>
<td></td>
</tr>
<tr>
<td>-1.0000 M(1)</td>
<td>2.6317 Q(1)</td>
</tr>
<tr>
<td>DELTA THETA (1)</td>
<td></td>
</tr>
<tr>
<td>-3.8919 M(1)</td>
<td>10.2424 Q(1)</td>
</tr>
<tr>
<td>DELTA RADIUS(1)</td>
<td></td>
</tr>
<tr>
<td>-10.2424 M(1)</td>
<td>40.9833 Q(1)</td>
</tr>
<tr>
<td>DELTA THETA (2)</td>
<td></td>
</tr>
<tr>
<td>-3.8919 M(1)</td>
<td>10.2424 Q(1)</td>
</tr>
<tr>
<td>DELTA RADIUS(2)</td>
<td></td>
</tr>
<tr>
<td>10.1900 M(1)</td>
<td>-12.7891 Q(1)</td>
</tr>
</tbody>
</table>
5/16 BOLT CONNECTING TORQUE BOX AND EXITCONE FLANGE

BOLT NO. 1 CONNECTING FREE BODIES 2 AND 3

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOLT SPACING, IN.</td>
<td>1.2800000</td>
</tr>
<tr>
<td>DISTANCE TO PIVOT POINT, IN.</td>
<td>0.6500000</td>
</tr>
<tr>
<td>STRESS AREA OF BOLT, SQ. IN.</td>
<td>0.0580000</td>
</tr>
<tr>
<td>EFFECTIVE LENGTH OF BOLT, IN.</td>
<td>0.0000000</td>
</tr>
<tr>
<td>30.00000000 X 10^6 - ELASTIC MODULUS OF BOLT, PSI</td>
<td>90.0000000</td>
</tr>
<tr>
<td>PHI. DEGREES</td>
<td>40.6979996</td>
</tr>
<tr>
<td>PRESSURIZED RADIUS, IN.</td>
<td></td>
</tr>
<tr>
<td>-18.4821798 --- M1 (2) - MOMENT, IN-LB/IN.</td>
<td></td>
</tr>
<tr>
<td>92.2530616 --- Q1 (2) - SHEAR, LB/IN.</td>
<td></td>
</tr>
<tr>
<td>-0.0000000 --- DELTA THETA (2) - ANGLE OF SEPARATION BETWEEN MATING SURFACES, RADIANS</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DELTA THETA (2)</th>
<th>0.0000000 M1 (2)</th>
<th>0.0000000</th>
</tr>
</thead>
<tbody>
<tr>
<td>604.6964352</td>
<td>SIGMA (1P)</td>
<td>BASIC BOLT STRESS, PSI</td>
</tr>
<tr>
<td>-627.5116608</td>
<td>SIGMA (1M)</td>
<td>BOLT STRESS DUE TO BENDING, PSI</td>
</tr>
<tr>
<td>6674.4081408</td>
<td>SIGMA (T)</td>
<td>TOTAL TENSILE STRESS, PSI</td>
</tr>
<tr>
<td>2035.9296000</td>
<td>SIGMA (10)</td>
<td>BOLT STRESS DUE TO SHEAR, PSI</td>
</tr>
<tr>
<td>7246.4162816</td>
<td>SIGMA (M)</td>
<td>MAXIMUM PRINCIPAL TENSILE STRESS, PSI.</td>
</tr>
<tr>
<td>3909.2122112</td>
<td>SIGMA (MO)</td>
<td>MAXIMUM PRINCIPAL SHEAR STRESS, PSI.</td>
</tr>
<tr>
<td>Description</td>
<td>Value</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------------------------------------</td>
<td></td>
</tr>
<tr>
<td>Internal Pressure (2), PSI.</td>
<td>-6.0000000</td>
<td></td>
</tr>
<tr>
<td>Throat Radius (2), In.</td>
<td>0.0000000</td>
<td></td>
</tr>
<tr>
<td>Radius to Mid-Point of Station 21, In.</td>
<td>40.6999996</td>
<td></td>
</tr>
<tr>
<td>Internal Pressure (3), PSI.</td>
<td>-6.0000000</td>
<td></td>
</tr>
<tr>
<td>Throat Radius (3), In.</td>
<td>0.0000000</td>
<td></td>
</tr>
<tr>
<td>Radius to Mid-Point of Station 31, In.</td>
<td>40.6999992</td>
<td></td>
</tr>
<tr>
<td>Radius to Centroid, In.</td>
<td>40.2933168</td>
<td></td>
</tr>
<tr>
<td>Area of Cross-Section of Ring, Sq. In.</td>
<td>6.1257997</td>
<td></td>
</tr>
<tr>
<td>Horizontal Component of Pressure, P1, Lb/In.</td>
<td>0.0000000</td>
<td></td>
</tr>
<tr>
<td>Vertical Component of Pressure, P2, Lb/In.</td>
<td>26.8999996</td>
<td></td>
</tr>
<tr>
<td>Vertical Component of Pressure, P3, Lb/In.</td>
<td>6.8999999</td>
<td></td>
</tr>
<tr>
<td>Vertical Distance from Centroid to Axial Load (2), In.</td>
<td>0.4066826</td>
<td></td>
</tr>
<tr>
<td>Vertical Distance from Centroid to Axial Load (3), In.</td>
<td>0.3866826</td>
<td></td>
</tr>
<tr>
<td>Pressurized Radius at Station 21, In.</td>
<td>40.6999996</td>
<td></td>
</tr>
<tr>
<td>Pressurized Radius at Station 31, In.</td>
<td>40.0000000</td>
<td></td>
</tr>
<tr>
<td>Vertical Distance to Centroid, In.</td>
<td>1.3133174</td>
<td></td>
</tr>
<tr>
<td>Moment at Station (2), In-Lb/In.</td>
<td>-18.4821798</td>
<td></td>
</tr>
<tr>
<td>Moment, In-Lb/In.</td>
<td>-61.3384008</td>
<td></td>
</tr>
<tr>
<td>Delta Radius (2) - Change in Radius, In.</td>
<td>0.0029953</td>
<td></td>
</tr>
<tr>
<td>Delta Radius (3) - Change in Radius, In.</td>
<td>0.0095029</td>
<td></td>
</tr>
<tr>
<td>Phi at Station (2), Degrees</td>
<td>89.9999984</td>
<td></td>
</tr>
<tr>
<td>Sine Phi at Station (2)</td>
<td>1.0000000</td>
<td></td>
</tr>
<tr>
<td>Cosine Phi at Station (2)</td>
<td>-0.0000000</td>
<td></td>
</tr>
<tr>
<td>Phi at Station (3), Degrees</td>
<td>73.9999984</td>
<td></td>
</tr>
<tr>
<td>Sine Phi at Station (3)</td>
<td>0.9612617</td>
<td></td>
</tr>
<tr>
<td>Cosine Phi at Station (3)</td>
<td>0.2756373</td>
<td></td>
</tr>
<tr>
<td>Elastic Modulus, PSI.</td>
<td>10.500 x 10E8</td>
<td></td>
</tr>
<tr>
<td>Moment of Inertia about the Y-Axis, In. (4th)</td>
<td>11.7200846</td>
<td></td>
</tr>
<tr>
<td>Vertical Distance from Centroid to P1, In.</td>
<td>1.3133174</td>
<td></td>
</tr>
<tr>
<td>Vertical Distance from Centroid to P2, In.</td>
<td>0.3.10535</td>
<td></td>
</tr>
<tr>
<td>Vertical Distance from Centroid to P3, In.</td>
<td>-0.833174</td>
<td></td>
</tr>
<tr>
<td>Horizontal Distance from Centroid to Axial Load (2), In.</td>
<td>1.2410535</td>
<td></td>
</tr>
<tr>
<td>Horizontal Distance from Centroid to Axial Load (3), In.</td>
<td>1.3899465</td>
<td></td>
</tr>
<tr>
<td>Horizontal Distance to Centroid, In.</td>
<td>2.2410535</td>
<td></td>
</tr>
<tr>
<td>Axial Load at Station (2), Lb/In.</td>
<td>274.0000000</td>
<td></td>
</tr>
<tr>
<td>Axial Load at Station (3), Lb/In.</td>
<td>274.0000000</td>
<td></td>
</tr>
<tr>
<td>Shear, Lb/In.</td>
<td>92.2530616</td>
<td></td>
</tr>
<tr>
<td>Shear, Lb/In.</td>
<td>-24.6661448</td>
<td></td>
</tr>
<tr>
<td>Delta Theta (2) - Rotation, Radians</td>
<td>0.0009535</td>
<td></td>
</tr>
<tr>
<td>Delta Theta (3) - Rotation, Radians</td>
<td>0.0095035</td>
<td></td>
</tr>
<tr>
<td>QI NET</td>
<td>1.0000 QI (2)</td>
<td>-1.0000 QI (3)</td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
<td>----------------</td>
</tr>
<tr>
<td>DELTA RADIUS (C)</td>
<td>25.2414 QI (2)</td>
<td>-25.2414 QI (3)</td>
</tr>
<tr>
<td>M IN ET</td>
<td>-1.0000 MI (2)</td>
<td>1.2411 QI (2)</td>
</tr>
<tr>
<td>DELTA THETA (2)</td>
<td>-13.1931 MI (2)</td>
<td>16.3733 QI (2)</td>
</tr>
<tr>
<td>DELTA RADIUS (2)</td>
<td>-16.3733 MI (2)</td>
<td>45.5616 QI (2)</td>
</tr>
<tr>
<td>DELTA THETA (3)</td>
<td>-13.1931 MI (2)</td>
<td>16.3733 QI (2)</td>
</tr>
<tr>
<td>DELTA RADIUS (3)</td>
<td>18.3245 MI (2)</td>
<td>2.4998 QI (2)</td>
</tr>
</tbody>
</table>
EXIT CONE D#229000 LBS-IN2 BETA#1315 I/IN4
FREE BODY NUMBER 4

-61.3834008 --- M (3) - MOMENT, IN-LBS/IN. -0.0009935 --- DELTA THETA (3) - ROTATION, RADIANS
-24.6661448 --- Q(3) - SHEAR FORCE, LBS/IN. 0.0059029 --- DELTA RADIUS (3) - CHANGE IN RADIUS, IN.

DELTA THETA (3) --- -33.2099992 M (3) 121.2999984 Q(3) 0.0000000
DELTA RADIUS(3) --- -121.2999984 M (3) 886.7999872 Q(3) 19930.9998080
SECTION PROPERTY DATA FOR FREE BODY NO. 3

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000000</td>
<td>1.420000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>2.240000</td>
<td>2.680000</td>
<td>2.500000</td>
<td>0.640000</td>
</tr>
<tr>
<td>2.400000</td>
<td>1.860000</td>
<td>2.500000</td>
<td>0.850000</td>
</tr>
<tr>
<td>4.470000</td>
<td>2.950000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>4.980000</td>
<td>4.950000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>0.000000</td>
<td>0.600000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
</tbody>
</table>
g. **Injector Ring Analysis**—The analysis checks the torque box and injector pad for stress and deflection under tank load with flight test g loads.

Maximum Loading of Injector Ring

![Diagram of Torque Box Tank Loads](image)

Figure 70. Torque Box Tank Loads, View Looking Forward

Assume lateral g loads act perpendicular and parallel to tank plane.
Section A-A Properties

<table>
<thead>
<tr>
<th>Item</th>
<th>Area</th>
<th>x</th>
<th>Ax</th>
<th>y</th>
<th>Ay</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.59</td>
<td>1.95</td>
<td>1.15</td>
<td>0.075</td>
<td>0.04</td>
<td>3.90 x 0.15</td>
</tr>
<tr>
<td>2</td>
<td>0.25</td>
<td>3.75</td>
<td>0.94</td>
<td>0.275</td>
<td>0.07</td>
<td>1.00 x 0.25</td>
</tr>
<tr>
<td>3</td>
<td>0.25</td>
<td>4.15</td>
<td>1.04</td>
<td>0.75</td>
<td>0.19</td>
<td>0.25 x 1.00</td>
</tr>
<tr>
<td>4</td>
<td>0.57</td>
<td>4.10</td>
<td>2.35</td>
<td>2.09</td>
<td>1.20</td>
<td>0.30 x 1.91</td>
</tr>
<tr>
<td>5</td>
<td>1.02</td>
<td>2.20</td>
<td>2.22</td>
<td>3.81</td>
<td>3.89</td>
<td>0.24 x 4.20</td>
</tr>
<tr>
<td>6</td>
<td>0.26</td>
<td>0.275</td>
<td>0.07</td>
<td>4.04</td>
<td>1.05</td>
<td>0.25 x 1.05</td>
</tr>
<tr>
<td>7</td>
<td>0.63</td>
<td>0.075</td>
<td>0.05</td>
<td>2.11</td>
<td>1.33</td>
<td>0.15 x 4.21</td>
</tr>
<tr>
<td>Totals</td>
<td>3.57</td>
<td></td>
<td></td>
<td>7.82</td>
<td>7.77</td>
<td></td>
</tr>
</tbody>
</table>

Centroid:
\[
\bar{x} = \frac{7.82}{3.57} = 2.19
\]
\[
\bar{y} = \frac{7.77}{3.57} = 2.18
\]
<table>
<thead>
<tr>
<th>Item</th>
<th>(I_o)</th>
<th>(\text{Area})</th>
<th>(y_o)</th>
<th>(y_o^2)</th>
<th>(A_y^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\frac{3}{12})</td>
<td>0.001</td>
<td>0.59</td>
<td>-2.11</td>
<td>4.45</td>
</tr>
<tr>
<td>2</td>
<td>(\frac{3}{12})</td>
<td>0.001</td>
<td>0.25</td>
<td>-1.90</td>
<td>3.61</td>
</tr>
<tr>
<td>3</td>
<td>(\frac{3}{12})</td>
<td>0.021</td>
<td>0.25</td>
<td>-1.43</td>
<td>2.04</td>
</tr>
<tr>
<td>4</td>
<td>(\frac{3}{12})</td>
<td>0.174</td>
<td>0.57</td>
<td>-0.09</td>
<td>0.01</td>
</tr>
<tr>
<td>5</td>
<td>(\frac{3}{12})</td>
<td>0.218</td>
<td>1.02</td>
<td>1.63</td>
<td>2.66</td>
</tr>
<tr>
<td>6</td>
<td>(\frac{3}{12})</td>
<td>0.024</td>
<td>0.26</td>
<td>1.86</td>
<td>3.46</td>
</tr>
<tr>
<td>7</td>
<td>(\frac{3}{12})</td>
<td>0.933</td>
<td>0.63</td>
<td>-0.07</td>
<td>0.695</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>1.372</td>
<td>(1.372) + (7.65) = 9.02 in. (^4)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Section Properties

\(I_{x_0} = \sum I_o + \sum A_y^2 = 1.372 + 7.65 = 9.02 \text{ in.}^4 \)
### Item	Area	x	Ax	y	Ay	Dimensions
1 | 0.70 | 3.93 | 2.75 | -0.47 | -0.33 | 1.00 x 1.40
2 | 2.34 | 2.13 | 4.98 | 0.28 | 0.66 | 4.26 x 0.55
3 | 3.84 | 1.42 | 5.45 | 1.15 | 4.42 | 4.26 x 1.80
4 | -1.23 | 1.50 | -1.85 | 0.77 | -0.95 | 0.80 x 1.54
5 | -0.18 | 1.36 | -0.25 | 1.65 | -0.30 | 0.90 x 0.40
Totals | 5.47 | | | | |

Centroid:
\[
\begin{align*}
x &= \frac{11.08}{5.47} = 2.02 \\
y &= \frac{3.50}{5.47} = 0.64
\end{align*}
\]

Moment of inertia about Xo axis through centroid:

Item	I_o	Area	y_o	y_o^2	Ay_o^2
1 | bh \(\frac{3}{36}\) | 0.70 | -1.11 | 1.23 | 0.86
2 | bd \(\frac{3}{12}\) | 0.059 | -0.36 | 0.13 | 0.30
3 | bh \(\frac{3}{36}\) | 0.69 | 0.51 | 0.26 | 1.00
4 | bd \(\frac{3}{12}\) | -0.24 | -1.23 | 0.13 | 0.02
5 | bh \(\frac{3}{36}\) | -0.002 | -0.18 | 1.01 | -0.18
Totals | | | | | 1.96

I_{x_o} = \sum I_o + \sum Ay_o^2 = 0.58 + 1.96 = 2.54 \text{ in.lb}
The injector ring stresses (at the minimum diameter) resulting from the strut load were determined as follows.

1. Maximum strut loads were determined and resolved into radial and tangential loads.

2. Using the coefficient curves [stress coefficient vs angle from applied load for a wide range of stiffness parameters (d)] in NACA Technical Note No. 929, the following components were considered around the ring.
 a. Bending moment stress for each radial load.
 b. Bending moment stress for each tangential load.
 c. Axial stress for each radial load.
 d. Axial stress for each tangential load.
 e. Shear stress for each radial load.
 f. Shear stress for each tangential load.

The relative stiffness parameter (d) was determined as follows:

\[
d = \frac{KR^3}{EI} = \frac{(8.8 \times 10^6) (40.2)^3}{(30 \times 10^6) (9.0)} = 2,100
\]

where

- \(R \) = radius of centroid (40.2 in.)
- \(I \) = moment of inertia of ring cross section (9.0 in.⁴)
- \(E \) = modulus of elasticity (30 x 10^6)

and

\[
K = \frac{RtG}{L} = \frac{(40.2) (0.15) (10.2 \times 10^6)}{7} = 8.8 \times 10^6
\]

where

- \(R \) = radius of centroid (40.2 in.)
- \(t \) = thickness of shell (0.15 in.)
\[G = \text{shear modulus} \ (10.2 \times 10^6) \]

\[L = \text{distance along shell to a section which is not distorted from a circle (7 in.)} \]

The loads and their locations are as follows (see Figure 70).

<table>
<thead>
<tr>
<th>Radial Load (lbf)</th>
<th>Tangential Load (lbf)</th>
<th>Location (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ 1,180</td>
<td>- 400</td>
<td>100</td>
</tr>
<tr>
<td>- 1,430</td>
<td>- 460</td>
<td>140</td>
</tr>
<tr>
<td>+ 1,120</td>
<td>+ 2,920</td>
<td>160</td>
</tr>
<tr>
<td>+ 1,120 \sqrt{2}</td>
<td>- 2,190</td>
<td>280</td>
</tr>
<tr>
<td>+ 1,100</td>
<td>+ 4,160</td>
<td>320</td>
</tr>
<tr>
<td>- 2,500</td>
<td>- 6,860</td>
<td>340</td>
</tr>
</tbody>
</table>

+ radial load indicates direction towards ring center

- radial load indicates direction away from ring center

+ tangential load indicates clockwise direction in Figure 70

- tangential load indicates counterclockwise direction in Figure 70

The greatest stress occurs at the location of the greatest radial load (approximately 320 deg). The determination of the stress at this point will be used here as a sample calculation.

The bending moment stress, resulting from radial loads, at 320 deg was determined by adding the contribution of each radial load at this point. The contribution of each load was determined as follows:

\[
\sigma_{mr} = \frac{C_{mr} P_r R C}{I} = \frac{C_{mr} P_r (40.2)(2.6)}{9.0} = 11.6 C_{mr} P_r
\]
where \(m_r \) = bending moment stress resulting from radial load

\[P_r = \text{radial load} \]

\[R = \text{radius of ring} \]

\[C = \text{distance from ring cross section centroid to minimum radius} \]

\[I = \text{moment of inertia of ring cross section} \]

\(C_{mr} = \text{bending moment coefficient} \)

Bending moment stress \(\sigma_{mr} \) at 320 deg location resulting from radial loads:

\[
\begin{array}{cccccc}
\text{Location of load (deg)} & \text{Angle to 320 deg location (deg)} & C_{mr} & P_r & \sigma_{mr} \text{ (psi)} \\
100 & -140 & 0 & +1,180 & 0 \\
140 & +180 & 0 & -1,430 & 0 \\
160 & +160 & 0 & +1,120 & 0 \\
280 & +40 & -0.023 & +6,010 & -1,600 \\
320 & +0 & +0.09' & +12,100 & +13,200 \\
340 & -20 & -0.613 & -2,500 & +380 \\
\end{array}
\]

Total = +11,980

In a similar manner the other components of stress were determined.

Axial stress \(\sigma_{ar} \) at 320 deg resulting from radial loads:

\[
\sigma_{ar} = \frac{C_{ar} P_r}{\text{Area}} = 0.28 \ C_{ar} P_r
\]

Total = -3,610 psi (comp)

Bending moment stress \(\sigma_{mt} \) at 320 deg resulting from tangential loads:

\[
\sigma_{mt} = \frac{C_{mt} P_t R C}{I} = 11.6 \ C_{mt} P_t
\]

Total = -750 psi (comp)
Axial stress σ_{at} at 320 deg resulting from tangential loads:

$$\sigma_{at} = \frac{C_{at} \ t}{Area} = 0.28 \ C_{at} \ t$$

Total = + 800 psi (tension)
- 360 psi (compression)

Summation of stresses from radial loads = +11,900 - 3,610 = + 8,370 psi

(at 320 deg). Stresses resulting from tangential loads are small.

Shear stress σ_{sr} at 320 deg resulting from radial loads:

$$\sigma_{sr} = \frac{C_{sr} \ P_{r}}{Area} = 0.28 \ C_{sr} \ P_{r}$$

Total = + 1,680 psi
- 1,720 psi

Shear stress σ_{st} at 320 deg resulting from tangential loads:

$$\sigma_{st} = \frac{C_{st} \ P_{t}}{Area} = 0.28 \ C_{st} \ P_{t}$$

Total = - 80 psi

Summation of shear stresses at 320 deg = +1,600 psi
-1,800 psi

Discontinuities in the ring occur near the 90 deg, 180 deg, 270 deg, and 360 deg locations. See Figure 70. It is assumed that little error is introduced by using a constant ring stiffness parameter (d) around the ring. All the indicated loads are applied on the cross section used in determining this stiffness parameter (d). The stresses in these four short 10 deg sections were determined by first assuming the ring to be of uniform cross section and then applying an appropriate correction factor to compensate for changes in R, C, I and A.
Figure 71 is a plot of the tension and compression at the ring minimum diameter resulting from the bending moments and axial loads induced in the ring by the six radial loads. The maximum tension is 8,370 psi at 320 deg and the maximum compression is 8,000 psi at 355 deg.

The other components are small; when they are all added to the values indicated in Figure 71 the maximum tension is still at 320 deg but increased slightly to 8,420 psi. The maximum compression is still at 355 deg but reduced to 7,000 psi. Shear stresses are small at all points.

Factor of Safety

Material - Injector Torque Box

\[F_{TU} = 20,000 \text{ psi} \]
\[T_{TY} = 200,000 \text{ psi} \]
\[F_{SU} = 125,000 \text{ psi} \]

\[\sigma_{Hoop} = 8,370 \text{ psi at 320 deg in Section A-A (Figure 70).} \]

\[F.S. = \frac{200,000}{8,370} = + \text{ high} \]

\[\sigma_{Shear} = -1,720 - 80 = -1,800 \text{ psi at 320 deg in Section A-A (Figure} \]

\[F.S. = \frac{125,000}{1,800} = + \text{ high} \]

Deflection

Assume ring supported by conical shell with the deflection on one side of ring not affecting the other side (Reference 19).
Figure 71. Total Stress in Injector Ring from Strut Radial Loads vs Location
Radial Load

\[K = \frac{R \cdot L}{L} = 8.8 \times 10^6 \]

\[d = \frac{K R^3}{E I} = 2,100 \]

\[\Delta R = C \Delta R = \frac{P r}{K} = \frac{12,100}{8.8 \cdot (10^6)} = 0.011 \text{ in.} \]

Tangential Load Negligible Deflection

Moment

At 0 deg at \(\Delta R = C \frac{M}{K} = 0 \frac{53,700}{8.8 \cdot (10^6)} = 0 \)

Total Deflection

\[\delta_{\text{Total}} = 0.011 + \]

\[\Delta R = \frac{0.016}{R} = \frac{0.016}{40.2} = 0.027 \text{ percent} \]

Maximum Shear Stress in Shell Adjacent to Ring

Radial Load = 12,000 lb

\[d = 20,300 \text{ (Reference 19, Figure 14)} \]

\[q = C q = \frac{4.35 \cdot (12,100)}{40.62} = 1,295 \text{ lb/in.} \]

Maximum at 18 deg from load application

\[\sigma_s = \frac{1,295}{0.15} = 8,620 \text{ psi} \]

Material grade 200, 18 percent nickel steel

\[\sigma_s \text{ allowable} = 120,000 \]

\[\text{F.S.} = \frac{120,000}{8,620} = + \text{high} \]
h. Exit Cone Attachment Analysis--The major attachments are analyzed for tension shear loads in the connector and tension bearing and shear in the structure.

The case-nozzle flange-exit cone shell, injector torque box, diffuser and motor LiTVc attachments are examined.

(1) Torque Box Shear Screws--

Maximum Shear in Bolts (Torque Box)

\[
\begin{align*}
I_x & = 9.02 \text{ in.}^4 \\
\text{Area 1} & = 1.46 \text{ in.}^2 \\
\bar{y}_1 & = 1.80 \text{ in.} \\
\text{Area 2} & = 0.5625 \text{ in.}^2 \\
\bar{y}_2 & = 1.97 \text{ in.}
\end{align*}
\]

\[
Q = A_1 \bar{y}_1 = 263 \text{ in.}^3
\]

\[
Q = A_2 \bar{y}_2 = 1.11 \text{ in.}^3
\]

Maximum Shear Stress at Area 1

\[
q = \frac{VQ}{I} = \frac{P}{\frac{Q}{2} (2.63)} = 0.146 P
\]

\[
p = 12,100 \text{ lb}
\]

\[
q = 1,770 \text{ lb/in.}
\]

233
Bolts: 3/16 dia, 1.0 in. bolt spacing, $A_b = 0.024$ in.2

$$T_{\text{bolt}} = \frac{q \times \text{bolt spacing}}{2 A_b} = \frac{(1,770) (1.0)}{2 (0.024)} = 36,900 \text{ psi}$$

$$F.S. = \frac{120,000 (0.6)}{36,900} = + \frac{72,000}{36,900} = + 1.95$$

(2) Exit Cone Attachment—180 bolts, 5/16 in. 24 UNF 3A.

<table>
<thead>
<tr>
<th>Loads</th>
<th>Flight</th>
<th>Static</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axial Load</td>
<td>+30,550 lb</td>
<td>+65,950 lb</td>
</tr>
<tr>
<td>Transverse Shear</td>
<td>+36,600 lb</td>
<td>28,130 lb</td>
</tr>
<tr>
<td>Bending Moment</td>
<td>+1,030,000 in. lb</td>
<td>764,000 in. lb</td>
</tr>
</tbody>
</table>

\[
y = \frac{4}{3} \left(\frac{40}{3.14} \right) = 17.0
\]

80.0 in. dia
Section Properties of Bolts

\[I_{\text{Bolts}} = AD^2 = 0.07 (180) (17^2) \]
\[= 290 (12.6) \]
\[= 3,660 \]

Static Test Condition

Avg Load/Bolt

Bending Load

\[\text{Bolt Load} = \frac{764,000 (17)}{3,660} (0.07) = \frac{MC}{I} (A) = 249 \text{ lb shear} \]

Transverse Shear Load

\[\text{Bolt Load} = \frac{28,130 \text{ lb}}{90 \text{ Bolts}} = 313 \text{ lb tension - one side} \]

Axial Load

\[\text{Bolt Load} = \frac{69,950}{180} = 388 \text{ lb shear} \]

Pressure Leak Load at Middle Exit Cone Joint

\[\text{Bolt Load} = \pi (R_o^2 - R_i^2) \times 8.5 \times (0.148) (58^2 - 32^2) = 346 \text{ lb shear} \]

Bolt Load

\[\text{Bolt Load} = 249 + 388 + 346 = 983 \text{ lb} \]

Bolt Spacing

\[S = \frac{2\pi R}{\text{no. of bolts}} = \frac{6.28 (40)}{180} = 1.39 \text{ in. spacing} \]

\[\frac{S}{\text{Bolt Dia}} = \frac{1.39}{0.3129} = 4.45 \text{ dia spacing} \]
Sandwich Joint

Sandwich Face Sheets

Doubler Effective

Load Carry into Doubler by 1.25 in. of bond

\[p = 1.25 \times (2,000) \times 25 \text{ deg} = 5,000 \text{ lb} \]

Glass Cloth Doubler and Face Sheet Stress

\[\text{Shear Stress} = \frac{p}{A} = \frac{983}{2(0.40)(0.90)} = 1,365 \text{ psi} \]

Properties (Reference 12)

- Shear = 11,600 psi
- Bearing = 33,000 psi
- Tension = 33,000 psi

Adhesive bond = 2,000 lb/in.

143 glass cloth epoxy doubler and face sheet
Bearing Stress = \(\frac{P}{A} = \frac{983}{0.40 (0.3125)} = 7880 \text{ psi} \)
F.S. = \(\frac{33,000}{7880} = +5.7 \)

Tension Stress = \(\frac{P}{A} = \frac{983(180)}{2\pi R t (\frac{198}{254})} = \frac{177,000}{6.28 (40.5) (0.40) (0.78)} \)

= 2,240 psi
F.S. = \(\frac{33,000}{2,240} = + \text{high} \)

(a) **181 Glass Cloth Epoxy End Block to Glass Cloth Doubler and Face Sheet**

Attachment

\[t_1 = 1.50 - 0.30 - 0.03 = 1.14 \]
(Glass) (Bond)

\[t = 1.25 \text{ in.} \]

\[t_1 = 1.14 \text{ in.} \]

181 Glass Cloth Epoxy Properties (Reference 12)

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shear</td>
<td>13,800 psi</td>
</tr>
<tr>
<td>Bearing</td>
<td>33,000 psi</td>
</tr>
<tr>
<td>Tensile</td>
<td>33,000 psi</td>
</tr>
</tbody>
</table>

Glass Cloth Epoxy Properties (Reference 12)

\[\text{Shear Stress} = \frac{P}{A} = \frac{983}{2(1.14)(1.10)} = 195 \text{ psi} \]
F.S. = \(\frac{13,800}{195} = + \text{high} \)

\[\text{Bearing Stress} = \frac{P}{A} = \frac{983}{0.312 (1.14)} = 1436 \text{ psi} \]
F.S. = \(\frac{33,000}{1436} = + \text{high} \)

\[\text{Tension Stress} = \frac{P}{A} = \frac{983(180)}{2\pi R t (\frac{198}{254})} = \frac{198,000}{6.28 (40.5) (1.14)} \]

= 783 psi
F.S. = \(\frac{33,000}{783} = + \text{high} \)

(b) **Glass Cloth to Steel Connection--Ok by inspection**

Steel Support for Exit Cone 18 percent Nickel Steel

Load = 983 lb/bolt
R = 39.75 in.

\[\text{Shear Stress} = \frac{P}{A} = \frac{983}{2(0.45) 0.30} = 3,650 \text{ psi} \]
F.S. = \(\frac{120,000}{3,650} = + \text{high} \)
Bearing Stress = \(\frac{P}{A} = \frac{983}{0.312} \approx 3160 \text{ psi} \)

\[\text{F.S.} = \frac{200,000}{3160} \]

Tension Stress = \(\frac{P}{A} = \frac{983 (180)}{6.28 (39.75) (0.3) 0.78} \approx 3030 \text{ psi} \)

\[\text{F.S.} = \frac{200,000}{3030} \]

18 Percent Nickel Steel Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile</td>
<td>200,000 psi</td>
</tr>
<tr>
<td>Shear</td>
<td>120,000 psi</td>
</tr>
<tr>
<td>Bearing</td>
<td>200,000 psi</td>
</tr>
</tbody>
</table>

Steel Discontinuity Stress at Exit Cone Joint

Load = 983 lb/bolt, Assume 983 lb/in.

Local Bending Moment = 983 (1.75) = 1720 in. lb

\[\sigma_{\text{long.}} = \frac{P + 6M}{A} = \frac{983}{1 (0.30)} + \frac{1720 (6)}{1 (0.30)} \]

\[= +3280 \text{ psi} + 115,000 \]

\[\sigma_{\text{long.}} = +118,280 \]

\[\text{F.S.} = \frac{200,000}{118,280} = + \]

5/16 In. Pin B Attachment—Sandwich to Glass Cloth End Ring

Material: Steel Pin—125,000 psi ultimate tensile strength
Shear = 491 lb per face sheet

Moment = 491 (0.25) = 123 in. lb/in.

\[\sigma_{\text{Bending}} = \frac{MC}{I} = \frac{123 (0.156)}{0.000468} = 41,000 \text{ psi} \]

F.S. = \frac{100,000}{41,000} = + 2.44

\[\sigma_{\text{Shear}} = \frac{P}{A} = \frac{491}{0.076} = 647 \text{ psi} \]

F.S. = \frac{75,000}{647} = + \text{high}

5/16 In. Pin A Attachment-181 Glass Cloth Epoxy End Block to Steel Shell

The transfer of the load/in. from the sandwich through the glass end block is accompanied by a small bending moment at the glass to steel interface.
Pin Stress

\[\sigma_{\text{Bending}} = \frac{MC}{I} = \frac{983 \times (0.23) \times (0.156)}{0.00046} = 76,500 \text{ psi} \]

\[\text{F.S.} = \frac{100,000}{76,500} = 1.31 \]

\[\sigma_{\text{Shear}} = \frac{P}{A} = \frac{983}{0.076} = 12,950 \text{ psi} \]

\[\text{F.S.} = \frac{75,000}{12,950} = 5.78 \]

Glass Cloth Stress

\[\sigma_{\text{Bearing}} = \frac{P}{A} = \frac{983}{(0.312)(0.40)} = 7,880 \text{ psi} \]

\[\text{F.S.} = \frac{33,000}{7,880} = 4.18 \]

(c) Exit Cone Liner Attachment

To insure retention of the exit cone liner, three lines of pins penetrate 0.250 in. into the carbon cloth to hold the T-U surface against gas leakage pressure of 8.8 psia.
Blow Out Load

Axial Load \(= \pi \left(R_o^2 - R_i^2 \right) p = 3.14 \left(58.3^2 - 35.435^2 \right) 8.8 \)

\(= 27.6 \left(3400 - 1260 \right) = 59,000 \text{ lb} \)

Neglect blow in load from internal wall pressure.

Pin Loads

The distribution of the blow out load is based on pin diameters.

\[59,000 = p (360) \]
(forward end pins)

\[360p = 59,000 \]

\[P = 164 \text{ lb} \]

Pin Stress - Row B

Material: Steel, 125,000 ultimate tensile strength

\[\sigma_{\text{Bending}} = \pm \frac{MC}{I} = \pm \frac{78.6 (0.156)}{0.006468} \]

Allowables

Ultimate Tensile = 125,000 psi
Yield = 100,000 psi
Shear = 75,000 psi
\[M = 164 (0.48) = 78.6 \]
\[I = 0.785 R^4 = 0.785 (0.156^4) = 0.785 (0.00059) \]
\[= 0.000468 \]
\[\sigma_{\text{Bending}} = 26,200 \text{ psi} \]
\[F.S. = \frac{100,000}{26,200} = +3.82 \]
\[\sigma_{\text{Shear}} = \frac{P}{A} = \frac{164}{\pi R^2} = \frac{164}{3.14 (0.152^2)} = 2,260 \text{ psi} \]
\[F.S. = \frac{75,000}{2,260} = + \text{high} \]

Liner Stress - Row B

Material: Carbon Cloth Phenolic
Material Properties at Room Temperature
Bearing Stress = 10,000 psi
Shear Stress = 10,000 psi
Tension Stress = 10,000 psi

\[\sigma_{\text{Bearing}} = \frac{P}{A} = \frac{164}{(0.312)(0.300)} = 1,750 \text{ psi} \]
\[F.S. \text{ crit} = \frac{10,000}{1,750} = +5.72 \]

\[\sigma_{\text{Shear}} = \frac{P}{A} = \frac{164}{2 (0.150)(0.310)} = 1,750 \text{ psi} \]

\[\sigma_{\text{Tension}} = \frac{P}{A} = \frac{180(164)}{[2 \pi R - 180 (0.312)]t} = \frac{29,500}{(250 - 0.56)(1)} = 152 \text{ psi} \]
(4) Case to Nozzle Attachment—3/4 in. 16 UNF Bolt. Ultimate tensile strength = 220,000 psi, yield = 200,000 psi, shear = 132,000 psi.

The discontinuity stress at the bolt is 134,000 psi. With tank struts RX, RX', AF, A' F' attached to the flange, an additional load is applied locally to the bolts (Reference Section IV-3h(7)).

Tension = 8,720 lb
Shear = 3,880 lb

\[\sigma_{\text{Tension}} = 134,000 + \frac{8,720}{0.4418} = 153,700 \text{ psi} \quad R_t = \frac{153,700}{200,000} = 0.767 \]

\[\sigma_{\text{Shear}} = \frac{3,880}{0.4418} = 8,780 \text{ psi} \quad R_s = \frac{8,780}{132,000} = 0.066 \]

\[U = \frac{0.767}{0.990} = 0.775 \quad F.S. = \frac{1}{U} = +1.29 \]

(Reference 20 Figure 1535)

(5) Diffuser Attachment—Not Available.

(6) Nitrogen Tetroxide Tank Attachments—The nitrogen tetroxide tank is supported by four brackets on the injector ring and two brackets on the nozzle flange. The four basic brackets are analyzed for bending and axial loads in the plates with bearing shear and axial load in the fittings.

The bracket bolts sustain axial and shear loads and resist bending moments in addition to the standard loads at the injector ring and flange.
Steel: 4,130 normalized
Ultimate = 90,000 psi
Yield = 70,000 psi
Shear = 36,000 psi
Bearing = 70,000 psi
(Reference Thiokol Dwg 7U37801 and 7U37785)

F_{su} = 32,000 psi (Reference 20, p 55)
Welds

Weld Line \(\sigma = \frac{5,500 \text{ lb}}{4.25 (0.707) (0.25)} \)

\[\sigma = \frac{P}{Lt} \]

\(\sigma_{\text{Shear}} = 7,320 \text{ psi} \)

\[\text{F.S.} = \frac{32,000}{7,320} = + 4.37 \]

Clevis Plate Stress

\(\sigma_{\text{Axial}} = \frac{5,500/2}{1.50 (0.235)} = 7,830 \text{ psi} \)

\[\text{F.S.} = \frac{70,000}{7,830} = + \text{high} \]

Support Plate Bending Stress—Use 2 in. Beam Width

\[\sigma_{\text{Stress}} = \frac{P}{A} + \frac{MC}{I} = \frac{5,500}{2.0 (0.625)} + \frac{0.88 (5,500) (6)}{2 (0.625^2)} \]

\[= + 4,400 \pm 37,100 = + 41,500 \text{ psi} \]

\[- 32,700 \text{ psi} \]

\[\text{F.S.} = \frac{70,000}{41,500} = + 1.69 \]

Plate Stress at Flange Bolt Hole

\(\sigma_{\text{Shear}} = 3,880/2 (0.50) (0.625) = 6,200 \text{ psi} \)

\[\text{F.S.} = \frac{36,000}{6,200} = + 5.8 \]

\(\sigma_{\text{Bearing}} = 3,880/0.75 (0.625) = 8,280 \text{ psi} \)

\[\text{F.S.} = \frac{70,000}{8,280} = + 8.5 \]

245
Flange Bolt Load—Assume Load is All in One Bolt

\[
\text{Shear} = 3,880 \text{ lb}
\]

\[
\text{Tension} = 3,880 + \frac{5,500 \times 0.88}{1.00} = 3,880 + 4,840 = 8,720 \text{ lb}
\]

(Reference Section D3h (4) for factor of safety)

Fitting Stress

Bolts and tension, shear, and bearing stress checked out by structures in tank-strut analysis.

\[
\sigma_{\text{Bearing}} = \frac{2,750}{0.56 (0.235)} = 20,900 \text{ psi}
\]

\[
\text{F.S.} = \frac{70,000}{27,900} = +3.34
\]

\[
\sigma_{\text{Shear}} = \frac{2,750}{2 \times (0.47) \times (0.235)} = 12,450 \text{ psi}
\]

\[
\text{F.S.} = \frac{36,000}{12,450} = +2.90
\]

\[
\sigma_{\text{Tension}} = \frac{2,750}{0.90 \times (0.235)} = 13,000 \text{ psi}
\]

\[
\text{F.S.} = \frac{70,000}{13,000} = +5.40
\]
Material: Steel, 4130 normalized

4130 Steel Properties (psi)

Ultimate = 90,000
Yield = 70,000
Shear = 36,000
Bearing = 70,000
(Reference Dwg 7U37784)
Assuming two brackets:

Bracket No. 1 with bolts A_1, A_2, and A_3 has applied load $\frac{0.84}{0.04 + 1.48}$ of total applied load.

\[
T_H = 772
\]

\[
T_V = 2,180
\]

\[
\Sigma F_x = 0
\]

\[
A_1 x + A_2 x + A_3 x = 772
\]

\[
A_1 x = A_2 x = A_3 x = \frac{772}{3} = 257 \text{ lbf shear}
\]

\[
\Sigma F_y = 0
\]

(1) \[
A_1 y + A_2 y + A_3 y = 2,180
\]

\[
\Sigma M_{A_3} = 0
\]

(2) \[
2 A_1 y + A_2 y = -772 + (1.343) (2,180)
\]
Considering the bolts elongated in tension:

\[A_1 y - A_2 y - A_2 y - A_3 y \]

(3) \[A_1 y + A_3 y = 2 A_2 y \]

(1) and (3) \[A_2 y = 727 \text{ lbf tension} \]

(1) and (3) \[A_1 y = 716 \text{ lbf tension} \]

and (2) \[A_3 y = 737 \text{ lbf tension} \]

Substituting in (1):

\[A_3 y = 737 \text{ lbf tension} \]

Bracket No. 2 with bolts B_1, B_2, and B_3 has applied load \[\frac{1.48}{0.84 + 1.48} \] of total applied load.

\[T_H = 1,360 \]
\[T_V = 3,840 \]

Bracket No. 2 is the same as Bracket No. 1 with all forces multiplied by a factor of \[\frac{1.48}{0.84} \].

\[\therefore B_1 x = B_2 x = B_3 x = (1.76) (257) = 452 \text{ lbf} \]
\[B_1 y = (1.76) (716) = 1,260 \text{ lbf} \]
\[B_2 y = (1.76) (727) = 1,280 \text{ lbf} \]
\[B_3 y = (1.76) (737) = 1,300 \text{ lbf} \]
Summary of Bolt Loads

Bolts used: 5/16 in. Huck Lockbolts with ultimate tensile strength of 7,190 lbf and ultimate shear strength of 3,250 lbf.

<table>
<thead>
<tr>
<th>Bolts</th>
<th>Tension</th>
<th>Shear</th>
</tr>
</thead>
<tbody>
<tr>
<td>A₁</td>
<td>716</td>
<td>257</td>
</tr>
<tr>
<td>A₂</td>
<td>727</td>
<td>257</td>
</tr>
<tr>
<td>A₃</td>
<td>737</td>
<td>257</td>
</tr>
<tr>
<td>B₁</td>
<td>1260</td>
<td>452</td>
</tr>
<tr>
<td>B₂</td>
<td>1280</td>
<td>452</td>
</tr>
<tr>
<td>B₃</td>
<td>1300</td>
<td>452</td>
</tr>
</tbody>
</table>

With member in tension (6,390 lbf)

Max Stress (lbf)

<table>
<thead>
<tr>
<th>Bolts</th>
<th>Compression</th>
<th>Shear</th>
</tr>
</thead>
<tbody>
<tr>
<td>A₁</td>
<td>716</td>
<td>257</td>
</tr>
<tr>
<td>A₂</td>
<td>727</td>
<td>257</td>
</tr>
<tr>
<td>A₃</td>
<td>737</td>
<td>257</td>
</tr>
<tr>
<td>B₁</td>
<td>1260</td>
<td>452</td>
</tr>
<tr>
<td>B₂</td>
<td>1280</td>
<td>452</td>
</tr>
<tr>
<td>B₃</td>
<td>1300</td>
<td>452</td>
</tr>
</tbody>
</table>

Critical Bolt Stress

\[R_2 = R_T = R_{Tension} = \frac{1.300}{3,250} = 0.400 \]

\[R_{Shear} = \frac{452}{7,290} = 0.062 \]

\[U = \frac{0.400}{0.975} = 0.41 \]

Use \(R_T + R_S^{10} \) = 1.0 curve (Reference 20, Figure 1535)

F.S. = \(\frac{1}{U} = + 2.4 \)

Bracket Stress Analysis—Not Available

250
(c) Strut A'D' Attachment at Injector Torque Box

Material: Steel, 4130 normalized

4130 Steel Properties (psi)

- Ultimate: 90,000
- Yield: 70,000
- Shear: 36,000
- Bearing: 70,000

(Reference Thiokol Dwg 7U37784)
Assuming two brackets:

Bracket No. 1 with bolts A_1, A_2, and A_3 has applied load $\frac{0.95}{0.95} \times 1.50$ of total applied load.

\[
\begin{align*}
T_H &= 1,590 \\
T_V &= 4,700 \\
\sum F_x &= 0 \\
A_1x + A_2x + A_3x &= 1,590 \\
A_1x &= A_2x = A_3x = \frac{1,590}{3} = 530 \text{ lbf shear} \\
\sum F_y &= 0 \\
(1) \ A_1y + A_2y + A_3y &= 4,700 \\
\sum M_{A_3} &= 0 \\
(2) \ 2A_1y + A_2y &= (1.186)(1,590) + (0.445)(4,700) \\
\text{Considering the bolts elongated in tension:} \\
A_2y - A_2y &= A_2y - A_1y \\
(3) \ A_1y + A_3y &= 2A_2y \\
(1) \text{ and } (3) \quad A_2y &= 1,567 \text{ lbf tension} \\
(1) \text{ and } (3) \text{ and } (2) \quad A_1y &= 1,212 \text{ lbf tension} \\
\text{Substituting in (1): } A_3y &= 1,921 \text{ lbf tension}
\end{align*}
\]
Bracket No. 2 with bolts B_1, B_2, and B_3 has applied load $\frac{1.50}{0.95 + 1.50}$ of total applied load.

\[T_H = 2,520 \]
\[T_V = 7,410 \]

7,840 lbf

Bracket No. 2 is the same as bracket No. 1 with all forces multiplied by a factor of $\frac{1.50}{0.95}$.

\[B_1 x = B_2 x = B_3 x = (1.58)(530) = 836 \text{ lbf} \]

\[B_1 y = (1.58)(1,212) = 1,910 \text{ lbf} \]

\[B_2 y = (1.58)(1,567) = 2,470 \text{ lbf} \]

\[B_3 y = (1.58)(1,921) = 3,030 \text{ lbf} \]
Summary of Bolt Loads

Bolts used: 5/16 in. Huck Lockbolts with ultimate tensile strength of 7,290 lbf and ultimate shear strength of 3,250 lbf.

With member in tension* (10,533 lbf) Max Stress (lbf)	With member in compression (12,800 lbf) Max Stress (lbf)				
Bolts	Tension	Shear	Bolts	Compression	Shear
A₁	995	436	A₁	1,210	530
A₂	1,295	436	A₂	1,570	530
A₃	1,580	436	A₃	1,920	530
B₁	1,570	688	B₁	1,910	836
B₂	2,040	688	B₂	2,470	836
B₃	2,500	688	B₃	3,030**	836

*Values reduced by \(\frac{10,533}{12,800} \) ratio

Critical Bolt Stress

\[
R_2 = R_T - R_s = R_{Tension} = \frac{2,500}{3,250} = 0.770
\]

\[
R_{Shear} = \frac{836}{7,290} = 0.115
\]

\[
U = \frac{0.770}{0.975} = 0.788
\]

Use \(R_T + R_s^{10} \) = 1.0 curve

(Reference 20, Figure 1535)

\[
F.S. = \frac{1}{U} = + 1.27
\]

Bracket Stress Analysis - Not Available
(d) Strut BE and CE Attachment at Injector Torque Box

Assuming two brackets:

Bracket No. 1 with bolts A and B has applied load \(\frac{0.911}{0.401 + 0.911}\) of total applied load.

Assuming also that load applied to this bracket is carried entirely by bolts.

Bracket No. 2 with bolts C and D has applied load \(\frac{0.401}{0.401 + 0.911}\) of total applied load.

\[T_H = 1,040 \]
\[T_V = 380 \]

\[T_H = 2,350 \]
\[T_V = 860 \]

(Reference Thiokol Dwg 7U37784)
Material: Steel, 4130 normalized

4130 Steel Material Properties (psi)

Ultimate = 90,000
Yield = 70,000
Shear = 36,000
Shearing = 70,000

Bracket No. 1

Vertical shear load on A = \frac{860}{2} + \frac{(1.249)(2.350)}{1.50} = \frac{2.386}{lb}

Horizontal shear load on A = \frac{2.350}{2} = 1,175 lb

Total shear load on A = (2.380^2 + 1.175^2) \frac{1}{2} = 2,650 lb

Vertical shear load on B = \frac{860}{2} - \frac{(1.249)(2.350)}{1.50} = 1,520 lb

Horizontal shear load on B = \frac{2.350}{2} = 1,175 lb

Bracket No. 2

Tensile load on C = \frac{380}{2} + \frac{(0.812)(1.040)}{(1.50)} = 753 lb

Shear load on C = \frac{1.040}{2} = 520 lb

Tensile load on D = \frac{380}{2} = 190 lb

Shear load on D = \frac{1.040}{2} = 520 lb

256
Summary of Bolt Loads

Bolts used: 5/16 in. Huck Lockbolts with ultimate tensile strength of 7,290 lbf and ultimate shear strength of 3,250 lbf.

<table>
<thead>
<tr>
<th>With member in tension (3,615 lbf)</th>
<th>With member in compression (3,616 lbf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bolts</td>
<td>Max Stress (lbf)</td>
</tr>
<tr>
<td>A</td>
<td>Tension</td>
</tr>
<tr>
<td>B</td>
<td>2,650</td>
</tr>
<tr>
<td>C</td>
<td>753</td>
</tr>
<tr>
<td>D</td>
<td>520</td>
</tr>
</tbody>
</table>

Where both tension and compression occur, the maximum stresses (used to determine margin of safety) were determined as follows:

\[
\begin{align*}
\text{Max Principal Stress} & = \frac{S_T}{2} + \left[\left(\frac{S_T}{2} \right)^2 + S_S^2 \right]^{1/2} \\
\text{Max Shear Stress} & = \left[\left(\frac{S_T}{2} \right)^2 + S_S^2 \right]^{1/2}
\end{align*}
\]

Critical Bolt Stress

Bolt A

\[
F.S. = \frac{7,290}{2,650} = 2.75 \text{ shear}
\]

Bracket Stress Analysis—Not Available

(7) Nitrogen Tank Attachments—The nitrogen tank is supported by the same six brackets used in supporting the nitrogen tetroxide tank. Since the nitrogen tank bracket loads are less than the nitrogen tetroxide tank loads, the material and bolt stresses are satisfactory by inspection.

(8) LITVC Injector Attachment—Not Available.
1. **Flange Joint (Steel to Plastic)**—Several analyses were completed on the nozzle design in an effort to verify the nozzle design confidence level. Subsection (1) below discusses the analysis of the interlaminar shear at the submerged glass cloth to steel connection. Subsection (2) summarizes a study conducted on the hoop compression and tension of the carbon to silica cloth liner, and the bond tension stress due to the rotational and radial movement of the steel flange.

 (1) **Submerged Nozzle Assembly Shear Analysis**—The critical shear stress exists at the base of the submerged assembly, the interface between the glass cloth-phenolic structural cone, and the steel flange shell. In subsection 3.b, Discontinuity Analysis of Flange-Submerged Shell and Case Polar Boss, a discussion is provided on the glass cloth to steel discontinuity analysis for the static firing at MEOP load condition. The following moments and shears exist at the following stations.

<table>
<thead>
<tr>
<th>Station</th>
<th>Moment (in.-lb/in.)</th>
<th>Shear (lb/in.)</th>
<th>Deflection (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.0</td>
<td>+1587 Comp Out Face</td>
<td>+845 Outward</td>
<td>+0.072</td>
</tr>
<tr>
<td>10.0</td>
<td>-345</td>
<td>+1647</td>
<td>+0.025</td>
</tr>
<tr>
<td>9.0</td>
<td>-3912</td>
<td>+3267</td>
<td>-0.010</td>
</tr>
</tbody>
</table>
Individual free bodies illustrate the shear and moment distribution.
The stress analysis and material factor of safety is indicated in the present TU-393 design analysis report. A shear analysis will be shown for free bodies 12, 11, 10, and 5. The shear stress is limited to the glass cloth for Item 12, to the steel in Item 5, and shared between the glass cloth and steel for Items 11 and 10. The structural adhesive between the glass cloth and 18 percent nickel steel is Epon-913/919, Shell Chemical.

The following tabulation indicates the thickness of steel and glass cloth for each item.

<table>
<thead>
<tr>
<th>Item</th>
<th>Total Thickness</th>
<th>Avg Steel Thickness</th>
<th>Avg Glass Cloth Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>1.40</td>
<td>--</td>
<td>1.40</td>
</tr>
<tr>
<td>11</td>
<td>1.40</td>
<td>0.25</td>
<td>1.15</td>
</tr>
<tr>
<td>10</td>
<td>1.40</td>
<td>0.55</td>
<td>0.85</td>
</tr>
<tr>
<td>9</td>
<td>0.85</td>
<td>0.85</td>
<td>--</td>
</tr>
</tbody>
</table>

The shear allowables for the indicated materials are listed below.

<table>
<thead>
<tr>
<th>Material</th>
<th>Ultimate Axial at Room Temp (Interlaminar Shear) (psi)</th>
<th>Ultimate Transverse at Room Temp (Edge Shear) (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18% Nickel Steel Grade 200</td>
<td>120,000</td>
<td>120,000</td>
</tr>
<tr>
<td>Glass Cloth Phenolic</td>
<td>3,700** Beam Shear Test</td>
<td>7,440**</td>
</tr>
<tr>
<td>Epon 913/919 Adhesive</td>
<td>3,200* Cure - 5 hr @ 140°F</td>
<td>3,200</td>
</tr>
</tbody>
</table>

* Ref Shell Chemical Technical Data and Rohr Process Control Tests.
(a) **Shear Analysis**

Item 12 - Glass Cloth Reinforced Plastic

\[\sigma_{S_{\text{Max}}} = \frac{VQ}{It} = \frac{3}{2} \frac{V}{A} \quad \text{(Rectangular Cross Section)} \]

\[= (1.5) \frac{845}{1(1.40)} = \frac{1130}{905} = 905 \, \text{psi} \]

Factor of Safety \[= \frac{3700}{905} = +4.08 \]

Item 11

Section Properties

<table>
<thead>
<tr>
<th>Section</th>
<th>Area (A)</th>
<th>Y</th>
<th>AY</th>
<th>AY^2</th>
<th>Io</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.250</td>
<td>1.275</td>
<td>2.89</td>
<td>3.68</td>
<td>0.046</td>
</tr>
<tr>
<td>2</td>
<td>1.150</td>
<td>0.575</td>
<td>0.66</td>
<td>0.37</td>
<td>0.127</td>
</tr>
<tr>
<td></td>
<td>3.400</td>
<td>3.55</td>
<td>4.05</td>
<td>0.163</td>
<td></td>
</tr>
</tbody>
</table>

* Glass cloth area equivalent of steel \[= \frac{E_s}{E_c} (A_s) = \frac{27}{3} (A_s) \]

\[A_1 = 9A_s \]

\[Y = \frac{3.55}{3.40} = 1.045 \]

\[I = (4.05 + 0.163) - 3.4 (1.045^2) = 4.213 - 3.720 = 0.493 \, \text{in.}^4 \]

Adhesive Shear Stress

\[\sigma_{S_{A-A}} = \frac{V_{\text{avg}} AY}{It} = \frac{1.246 (2.250) (0.230)}{0.493 (1.0)} = 1.305 \, \text{psi} \]

\[V_{\text{avg}} = \frac{845 + 1647}{2} = 1246 \, \text{lb/in.} \]

Factor of Safety \[= \frac{3200}{1305} = +2.45 \]
Glass Cloth Shear Stress

\[\sigma_S \text{ Neutral Axis} = \frac{VAY}{It} \frac{1,246 (1.045 \times 1) (0.522)}{0.493 (1)} = 1,375 \text{ psi} \]

Factor of Safety \[\frac{3,700}{1,375} = +2.69 \]

Item 10

Section Properties - Neglect Assistance of 7U-37734-12 Support Ring

Glass Cloth Area Equivalent of Steel \[\frac{E_G}{E_C} \cdot (A_s) = \frac{27}{3} \cdot (A_s) \]

\[A_2 = 9A_s \]

<table>
<thead>
<tr>
<th>Section</th>
<th>Area</th>
<th>Y</th>
<th>AY</th>
<th>AY²</th>
<th>I₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.85</td>
<td>0.425</td>
<td>0.361</td>
<td>0.180</td>
<td>0.051</td>
</tr>
<tr>
<td>2</td>
<td>4.95</td>
<td>1.125</td>
<td>5.570</td>
<td>6.260</td>
<td>0.124</td>
</tr>
<tr>
<td></td>
<td>5.80</td>
<td></td>
<td>5.931</td>
<td>6.440</td>
<td>0.175</td>
</tr>
</tbody>
</table>

\[Y = \frac{5.931}{5.80} = 1.022 \]

\[I = (6.440 + 0.175) - 5.80 \cdot (1.022)^2 - 6 \cdot 0.15 - 6.080 \]

\[I = 0.535 \text{ in.}^4 \]
Adhesive to Glass Cloth Shear Stress, Sec A-A

\[\sigma_{S\text{ A-A}} = \frac{V_{\text{avg, Y}}}{It} = \frac{2.457 (0.85) (0.597)}{0.535 (1.00)} = 2.320 \text{ psi} \]

Adhesive Allowable = 3.200 psi

\[V_{\text{avg}} = \frac{3.267 + 1.647}{2} = 2.457 \text{ lb/in.} \]

Factor of Safety = \[\frac{3.200}{2.320} = +1.37 \]

Item 5 - Steel - 18 Percent Nickel

\[\sigma_{S \text{ Max}} = \frac{QV}{It} = \frac{3}{2} \frac{V}{A} \text{ (Rectangular Cross Section)} \]

\[= 1.5 \frac{3.267}{1 (85)} = 5.770 \text{ psi} \]

Factor of Safety = \[\frac{120,000}{5,770} = + \text{High} \]

(2) Stress in Nozzle Insulation and Adhesive Bond--In subsection 3.b, Discontinuity Analysis of Flange, Submerged Shell and Case Polar Boss, a discussion is provided on the discontinuity analysis of the submerged glass structural and flange shell. The deflections (radial and rotational) are shown in Figure 72. The materials and design criteria for the nozzle section are shown in Figure 73.

An analysis determines the interface pressure between the liner and the steel. This pressure value can be used to check the adhesive bond and liner for compression or tension.

263
Figure 73. Nozzle Section Materials and Design Criteria
Materials allowable at room and elevated temperatures are listed below.

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
<th>Average Temperature (°F)</th>
<th>Poisson's Ratio</th>
<th>Modulus (psi x 10^6)</th>
<th>Stress (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Cloth Phenolic</td>
<td>B-B</td>
<td>2,040</td>
<td>0</td>
<td>0.375</td>
<td>7,500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80</td>
<td></td>
<td>Compression</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B-B</td>
<td>80 (Room Temp)</td>
<td>0.25</td>
<td>2.00</td>
<td>25,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Compression</td>
<td></td>
</tr>
<tr>
<td>Silica Cloth Phenolic</td>
<td>A-A</td>
<td>1,940</td>
<td>0</td>
<td>0.250 Tension</td>
<td>1,250 Tension</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A-A</td>
<td>80 (Room Temp)</td>
<td>0.20</td>
<td>2.25 Tension</td>
<td>12,000 Tension</td>
</tr>
</tbody>
</table>

Section A-A - Silica Cloth-Phenolic

At Room Temperature @ t = 0 sec

Interface Pressure

\[\delta = \frac{pR^2}{Et} (1-V/2) \]

Ref. Timoshenko, *Plates and Shells*

- \(p \) = Interface Pressure
- \(R \) = Radius = 33.28 in.
- \(E \) = Modulus of Elasticity = 2.25 x 10^6
- \(t \) = Thickness = 1.35 in.
- \(V \) = Poisson's Ratio = 0.20
- \(\delta \) = Deflection = 0.113 in.

\[p = \frac{E \cdot \delta}{R^2(1-V/2)} = \frac{2.25 \cdot (10^6) \cdot (0.113) \cdot (1.35)}{(33.28)^2 \cdot (0.90)} = 343 \text{ psi} \]

Bond Stress

- \(\sigma \) allowable in tension = 1,000 psi
- \(\sigma \) actual = 343 psi

Factor of Safety = \(\frac{1,000}{343} = +2.92 \)
Silica Cloth Hoop Tension Stress

\[\sigma_{HT} = \frac{pR}{t} = \frac{343 \times 33.28}{1.35} = 8,450 \]

Factor of Safety = \(\frac{12,000}{8,450} = +1.42 \)

At Elevated Temperature at \(t = 110 \text{ sec} \)

Interface Pressure

\[p = \frac{E \cdot \delta}{R^2(1-V/2)} = \frac{0.25 \times 10^6 \times 0.113 \times 1.25}{(33.28)^2} \times (1) = 31.7 \text{ psi} \]

Bond Stress

Factor of Safety = \(\frac{1,000}{31.7} = + \text{High} \)

Silica Cloth Hoop Stress

\[\sigma_{Hoop} = \frac{pR}{t} = \frac{31.7 \times 33.28}{1.29} = 845 \text{ psi} \]

Factor of Safety = \(\frac{1,250}{845} = +1.47 \)

Section B-B - Carbon Cloth-Phenolic

At Room Temperature @ \(t = 0 \text{ sec} \)

Interface Pressure

\[p = \frac{E \cdot \delta}{R^2(1-V/2)} = \frac{2.00 \times 1.25 \times 0.070 \times 10^6}{(30.20)^2 \times 0.875} = 219 \text{ psi} \]

Bond Stress Compression

Ok by Inspection

Carbon Cloth Hoop Compression Stress

\[\sigma_{Hc} = \frac{pR}{t} = \frac{219 \times 30.20}{1.25} = 5,300 \text{ psi} \]

Factor of Safety = \(\frac{25,000}{5,000} = +4.72 \)
At Elevated Temperature @ t = 110 sec

Interface Pressure

\[
p = \frac{Et^6}{R^2(1-V/2)} = \frac{0.375 \times 10^6 (1.25) (0.070)}{(30.20)^2 (1)} = 35.9 \text{ psi}
\]

Bond Stress

"Ok by Inspection"

Carbon Cloth Hoop Stress

\[
\sigma_{HT} = \frac{pR}{t} = \frac{35.9 (30.20)}{1.25} = 866 \text{ psi}
\]

Factor of Safety = \[
\frac{7,500}{866} = +8.70
\]
SECTION V
WEIGHT ANALYSIS

An accurate weight analysis was required to complete the motor mass fraction, acceleration, and vibration analyses and material and configuration design studies. The analysis included the plane area and mass properties of the components and the total nozzle assembly.

A total nozzle weight of 5,384 lb was reported in Quarterly Progress Report No. 1 October, 1965. Since then the OD insulation Figure 5 Item 18 was changed to silica cloth foam V-44 for a weight increase of 183 pounds.

In addition, a total of 133.11 lb was added with Items 11, 13, and 14 (Figure 9) to accommodate the diffuser attachment. This attachment would not be included in a flightweight nozzle. The present nozzle with gains and decreases is 5,677 pounds.

Without the diffuser attachment the total nozzle weight is 5,544 lb, an increase of 160 lb from the last reported value. Nozzle mass properties data are shown in Figure 72.
<table>
<thead>
<tr>
<th></th>
<th>Weight (lb)</th>
<th>Long.</th>
<th>Lat.</th>
<th>Vert</th>
<th>Pitch</th>
<th>Roll</th>
<th>Yaw</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Nozzle</td>
<td>5584.869</td>
<td>232.051</td>
<td>100.000</td>
<td>100.000</td>
<td>2544.685</td>
<td>1001.553</td>
<td>2544.685</td>
</tr>
<tr>
<td>Total Graphite Cloth</td>
<td>450.136</td>
<td>171.520</td>
<td>100.000</td>
<td>100.000</td>
<td>12.909</td>
<td>24.125</td>
<td>13.909</td>
</tr>
<tr>
<td>Graphite Cloth - Rem 1</td>
<td>221.703</td>
<td>169.099</td>
<td>100.000</td>
<td>100.000</td>
<td>3.533</td>
<td>15.603</td>
<td>8.333</td>
</tr>
<tr>
<td>Graphite Cloth - Rem 2</td>
<td>45.405</td>
<td>168.935</td>
<td>100.000</td>
<td>100.000</td>
<td>1.106</td>
<td>2.193</td>
<td>1.106</td>
</tr>
<tr>
<td>Graphite Cloth - Rem 3</td>
<td>43.944</td>
<td>170.350</td>
<td>100.000</td>
<td>100.000</td>
<td>0.871</td>
<td>1.730</td>
<td>0.871</td>
</tr>
<tr>
<td>Graphite Cloth - Rem 4</td>
<td>136.184</td>
<td>176.556</td>
<td>100.000</td>
<td>100.000</td>
<td>2.517</td>
<td>4.660</td>
<td>2.517</td>
</tr>
<tr>
<td>Carbon Cloth</td>
<td>485.985</td>
<td>205.505</td>
<td>100.000</td>
<td>100.000</td>
<td>48.666</td>
<td>60.182</td>
<td>48.666</td>
</tr>
<tr>
<td>Total Silica Cloth</td>
<td>1747.795</td>
<td>257.112</td>
<td>100.000</td>
<td>100.000</td>
<td>816.106</td>
<td>727.668</td>
<td>816.106</td>
</tr>
<tr>
<td>Silica Cloth - Rem 6</td>
<td>31.705</td>
<td>174.652</td>
<td>100.000</td>
<td>100.000</td>
<td>0.827</td>
<td>1.664</td>
<td>0.827</td>
</tr>
<tr>
<td>Silica Cloth - Rem 7</td>
<td>127.069</td>
<td>178.500</td>
<td>100.000</td>
<td>100.000</td>
<td>4.217</td>
<td>7.456</td>
<td>4.217</td>
</tr>
<tr>
<td>Silica Cloth - Rem 8</td>
<td>1588.481</td>
<td>265.037</td>
<td>100.000</td>
<td>100.000</td>
<td>574.047</td>
<td>718.768</td>
<td>574.047</td>
</tr>
<tr>
<td>Structural T/wrap Fiberglass</td>
<td>695.157</td>
<td>201.550</td>
<td>100.000</td>
<td>100.000</td>
<td>73.898</td>
<td>83.855</td>
<td>73.896</td>
</tr>
<tr>
<td>Support Ring Glass</td>
<td>20.345</td>
<td>272.234</td>
<td>100.000</td>
<td>100.000</td>
<td>2.419</td>
<td>4.835</td>
<td>2.419</td>
</tr>
<tr>
<td>V-44</td>
<td>303.583</td>
<td>204.545</td>
<td>100.000</td>
<td>100.000</td>
<td>38.526</td>
<td>43.973</td>
<td>38.526</td>
</tr>
<tr>
<td>Structural Steel</td>
<td>1020.178</td>
<td>229.316</td>
<td>100.000</td>
<td>100.000</td>
<td>155.511</td>
<td>208.630</td>
<td>155.511</td>
</tr>
<tr>
<td>Forward Glass Cloth End Ring</td>
<td>106.544</td>
<td>242.948</td>
<td>100.000</td>
<td>100.000</td>
<td>18.618</td>
<td>37.497</td>
<td>18.618</td>
</tr>
<tr>
<td>Liner - Nozzle Flange</td>
<td>1.964</td>
<td>223.276</td>
<td>100.000</td>
<td>100.000</td>
<td>0.207</td>
<td>0.413</td>
<td>0.207</td>
</tr>
<tr>
<td>Dohlers</td>
<td>14.855</td>
<td>245.392</td>
<td>100.000</td>
<td>100.000</td>
<td>2.676</td>
<td>5.350</td>
<td>2.676</td>
</tr>
<tr>
<td>Fastings - Fiberglass</td>
<td>297.395</td>
<td>276.964</td>
<td>100.000</td>
<td>100.000</td>
<td>106.744</td>
<td>166.832</td>
<td>106.744</td>
</tr>
<tr>
<td>Hexcel Core</td>
<td>79.629</td>
<td>275.953</td>
<td>100.000</td>
<td>100.000</td>
<td>27.595</td>
<td>44.531</td>
<td>27.593</td>
</tr>
<tr>
<td>Total Bolts</td>
<td>35.908</td>
<td>245.379</td>
<td>100.000</td>
<td>100.000</td>
<td>14.383</td>
<td>16.707</td>
<td>14.383</td>
</tr>
<tr>
<td>Hi-424 Adhesive</td>
<td>24.163</td>
<td>278.084</td>
<td>100.000</td>
<td>100.000</td>
<td>8.673</td>
<td>13.555</td>
<td>8.673</td>
</tr>
<tr>
<td>Packing</td>
<td>0.659</td>
<td>241.320</td>
<td>100.000</td>
<td>100.000</td>
<td>0.115</td>
<td>0.229</td>
<td>0.115</td>
</tr>
<tr>
<td>3150 Adhesive</td>
<td>12.326</td>
<td>282.662</td>
<td>100.000</td>
<td>100.000</td>
<td>6.056</td>
<td>7.263</td>
<td>6.056</td>
</tr>
<tr>
<td>Glass Cloth Support Block</td>
<td>94.776</td>
<td>310.356</td>
<td>100.000</td>
<td>100.000</td>
<td>34.674</td>
<td>72.860</td>
<td>34.674</td>
</tr>
</tbody>
</table>

Figure 74. 156-7 Nozzle Mass Properties Data
SECTION VI

LIST OF REFERENCES

5. Thiokol Chemical Corporation: Design Report, Semisubmerged Gimbaled Nozzle, IR & D Project No. 64-203. TWR-647. Thiokol Chemical Corporation, Wasatch Division, Brigham City, Utah.

6. Thiokol Chemical Corporation: Final Program Report, Submerged Gimbal Nozzle, IR & D Project No. 64-203. Thiokol Chemical Corporation, Wasatch Division, Brigham City, Utah.

26. Test Evaluation Report (Ground Test) XSR 47-UT-1-3 (UA 1205-3). Report No. ER-UTC-64-98. Unit-d Technology Center, Sunnyvale, California.

<table>
<thead>
<tr>
<th>Organization</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>U. S. Department of the Interior Bureau of Mines</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: M. M. Dollmar, Repts Librarian Explosives Research Center 4800 Forbes Avenue Pittsburgh, Pennsylvania 15213</td>
<td>1</td>
</tr>
<tr>
<td>Central Intelligence Agency ATTN: OCD, Standard Dist. 2430 E Street, N.W. Washington, D.C. 20505</td>
<td>1</td>
</tr>
<tr>
<td>National Aeronautics and Space Administration Lewis Research Center ATTN: Library 21000 Brookpark Road Cleveland, Ohio 44135</td>
<td>1</td>
</tr>
<tr>
<td>John F. Kennedy Space Center NASA ATTN: Library Cocoa Beach, Florida 32931</td>
<td>1</td>
</tr>
<tr>
<td>National Aeronautics and Space Administration Manned Spacecraft Center ATTN: Library P. O. Box 1537 Houston, Texas 77001</td>
<td>1</td>
</tr>
<tr>
<td>National Aeronautics and Space Administration Langley Research Center ATTN: Library Langley Air Force Base Virginia 23365</td>
<td>3</td>
</tr>
<tr>
<td>National Aeronautics and Space Administration ATTN: Office of Technical Information and Educational Programs, Code ETL Washington, D.C. 20546</td>
<td>1</td>
</tr>
<tr>
<td>Scientific and Technical Information Facility ATTN: NASA Representative P. O. Box 5700 Bethesda, Maryland 20014</td>
<td>2</td>
</tr>
<tr>
<td>National Aeronautics and Space Administration ATTN: R. W. Ziem (RPS) Washington, D.C. 20546</td>
<td>1</td>
</tr>
<tr>
<td>National Aeronautics and Space Administration Goddard Space Flight Center ATTN: Library Greenbelt, Maryland 20771</td>
<td>1</td>
</tr>
<tr>
<td>Defense Documentation Center Cameron Station Alexandria, Virginia 22314</td>
<td>20</td>
</tr>
<tr>
<td>RTD (RTNP) Bolling AFB Washington, D.C. 20332</td>
<td>1</td>
</tr>
<tr>
<td>Arnold Engineering Development Center Air Force Systems Command ATTN: AEOIM Tullahoma, Tennessee 37389</td>
<td>1</td>
</tr>
<tr>
<td>AFSC (SCTR) Andrews AFB Washington, D.C. 20331</td>
<td>1</td>
</tr>
<tr>
<td>AFRPL (RPR) Edwards California 93523</td>
<td>1</td>
</tr>
<tr>
<td>AFRPL (RPM) Edwards California 93523</td>
<td>1</td>
</tr>
<tr>
<td>AFFTC (FTBPP-2) Technical Library Edwards AFB California 93523</td>
<td>1</td>
</tr>
<tr>
<td>Office of Research Analyses (OAR) ATTN: RRRT Holloman AFB, New Mexico 88330</td>
<td>1</td>
</tr>
<tr>
<td>Air Force Office of Scientific Research ATTN: SREP, Dr. J. F. Mais Washington, D.C. 20333</td>
<td>1</td>
</tr>
<tr>
<td>Organization</td>
<td>Copies</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>United Aircraft Corporation Library</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: Dr. David Rix</td>
<td></td>
</tr>
<tr>
<td>400 Main Street</td>
<td></td>
</tr>
<tr>
<td>East Hartford, Connecticut 06112</td>
<td></td>
</tr>
<tr>
<td>United Aircraft Corporation</td>
<td>1</td>
</tr>
<tr>
<td>Pratt & Whitney Fla. Res. & Dev. Ctr.</td>
<td></td>
</tr>
<tr>
<td>ATTN: Library</td>
<td></td>
</tr>
<tr>
<td>P. O. Box 2801</td>
<td></td>
</tr>
<tr>
<td>W. Palm Beach, Florida 33402</td>
<td></td>
</tr>
<tr>
<td>United Aircraft Corporation</td>
<td>1</td>
</tr>
<tr>
<td>United Technology Center</td>
<td></td>
</tr>
<tr>
<td>ATTN: Librarian</td>
<td></td>
</tr>
<tr>
<td>P. O. Box 358</td>
<td></td>
</tr>
<tr>
<td>Sunnyvale, California</td>
<td></td>
</tr>
<tr>
<td>General Electric Company</td>
<td>1</td>
</tr>
<tr>
<td>Apollo Support Department</td>
<td></td>
</tr>
<tr>
<td>ATTN: C. Day</td>
<td></td>
</tr>
<tr>
<td>P. O. Box 2500</td>
<td></td>
</tr>
<tr>
<td>Daytona Beach, Florida 32015</td>
<td></td>
</tr>
<tr>
<td>Naval Ordnance Systems Command</td>
<td>2</td>
</tr>
<tr>
<td>Department of the Navy</td>
<td></td>
</tr>
<tr>
<td>ATTN: ORD-9312</td>
<td></td>
</tr>
<tr>
<td>Washington, D. C. 20360</td>
<td></td>
</tr>
<tr>
<td>Naval Ordnance Systems Command</td>
<td>2</td>
</tr>
<tr>
<td>Department of the Navy</td>
<td></td>
</tr>
<tr>
<td>ATTN: ORD-033</td>
<td></td>
</tr>
<tr>
<td>Washington, D. C. 20360</td>
<td></td>
</tr>
<tr>
<td>Naval Air Systems Command</td>
<td>2</td>
</tr>
<tr>
<td>Department of the Navy</td>
<td></td>
</tr>
<tr>
<td>ATTN: AIR-330</td>
<td></td>
</tr>
<tr>
<td>Washington, D. C. 20360</td>
<td></td>
</tr>
<tr>
<td>Commanding Officer</td>
<td>1</td>
</tr>
<tr>
<td>Ammunition Procurement & Supply Agency</td>
<td></td>
</tr>
<tr>
<td>ATTN: Engr. Library</td>
<td></td>
</tr>
<tr>
<td>Joliet, Illinois 60400</td>
<td></td>
</tr>
<tr>
<td>Department of Commerce</td>
<td>1</td>
</tr>
<tr>
<td>Office of Export Control</td>
<td></td>
</tr>
<tr>
<td>ATTN: Chief, Chemistry & Fuels Section</td>
<td></td>
</tr>
<tr>
<td>Paul M. Terlizzi</td>
<td></td>
</tr>
<tr>
<td>Washington, D. C. 20230</td>
<td></td>
</tr>
<tr>
<td>AFRPPL (RPCE)</td>
<td>1</td>
</tr>
<tr>
<td>Edwards, California 93523</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Organization</td>
<td>Copies</td>
</tr>
<tr>
<td>--------------</td>
<td>--------</td>
</tr>
<tr>
<td>AFRL (RPC)</td>
<td></td>
</tr>
<tr>
<td>Edwards</td>
<td></td>
</tr>
<tr>
<td>California</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Wright-Patterson AFB</td>
<td></td>
</tr>
<tr>
<td>ATTN: AFML (MAAE)</td>
<td></td>
</tr>
<tr>
<td>Ohio</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Commanding Officer</td>
<td></td>
</tr>
<tr>
<td>Ballistic Research Laboratories</td>
<td></td>
</tr>
<tr>
<td>ATTN: AMXBR-I</td>
<td></td>
</tr>
<tr>
<td>Aberdeen Proving Ground, Maryland 21005</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Commanding Officer</td>
<td></td>
</tr>
<tr>
<td>Franklind Arsenal</td>
<td></td>
</tr>
<tr>
<td>ATTN: Propellant and Explosives Section, 1331</td>
<td></td>
</tr>
<tr>
<td>Philadelphia, Pennsylvania 19137</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Commanding Officer</td>
<td></td>
</tr>
<tr>
<td>Picatinny Arsenal</td>
<td></td>
</tr>
<tr>
<td>ATTN: Library</td>
<td></td>
</tr>
<tr>
<td>Dover, New Jersey 07801</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>U.S. Army Missile Command</td>
<td></td>
</tr>
<tr>
<td>Redstone Scientific Information Center</td>
<td></td>
</tr>
<tr>
<td>ATTN: Chief, Document Section</td>
<td></td>
</tr>
<tr>
<td>Redstone Arsenal, Alabama 35808</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Commanding General</td>
<td></td>
</tr>
<tr>
<td>White Sands Missile Range</td>
<td></td>
</tr>
<tr>
<td>ATTN: Technical Library</td>
<td></td>
</tr>
<tr>
<td>New Mexico 88002</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Naval Air Systems Command</td>
<td></td>
</tr>
<tr>
<td>Department of the Navy</td>
<td></td>
</tr>
<tr>
<td>ATTN: AIR-604</td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20360</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Naval Air Systems Command</td>
<td></td>
</tr>
<tr>
<td>Department of the Navy</td>
<td></td>
</tr>
<tr>
<td>ATTN: AIR-5367</td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20360</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Naval Ordnance Systems Command</td>
<td></td>
</tr>
<tr>
<td>Department of the Navy</td>
<td></td>
</tr>
<tr>
<td>ATTN: ORD-0824</td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20360</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Naval Air Systems Command</td>
<td></td>
</tr>
<tr>
<td>Department of the Navy</td>
<td></td>
</tr>
<tr>
<td>ATTN: AIR-5366</td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20360</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>U.S. Naval Missile Center</td>
<td></td>
</tr>
<tr>
<td>ATTN: Technical Library</td>
<td></td>
</tr>
<tr>
<td>Point Mugu, California 93041</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Command U.S. Naval Ordnance Laboratory</td>
<td></td>
</tr>
<tr>
<td>ATTN: Library</td>
<td></td>
</tr>
<tr>
<td>White Oak</td>
<td></td>
</tr>
<tr>
<td>Silver Spring, Maryland 20910</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Command (Code 753)</td>
<td></td>
</tr>
<tr>
<td>U.S. Naval Ordnance Test Station</td>
<td></td>
</tr>
<tr>
<td>ATTN: Technical Library</td>
<td></td>
</tr>
<tr>
<td>China Lake, California 93557</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Superintendent</td>
<td></td>
</tr>
<tr>
<td>U.S. Naval Postgraduate School</td>
<td></td>
</tr>
<tr>
<td>Naval Academy</td>
<td></td>
</tr>
<tr>
<td>Monterey, California 93900</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Commanding Officer</td>
<td></td>
</tr>
<tr>
<td>Office of Naval Research</td>
<td></td>
</tr>
<tr>
<td>1030 E. Green Street</td>
<td></td>
</tr>
<tr>
<td>Pasadena, California 91101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Director</td>
<td></td>
</tr>
<tr>
<td>Special Projects Office</td>
<td></td>
</tr>
<tr>
<td>Department of the Navy</td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20360</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Commanding Officer</td>
<td></td>
</tr>
<tr>
<td>U.S. Naval Underwater Ordnance Station</td>
<td></td>
</tr>
<tr>
<td>ATTN: W. W. Bartlett</td>
<td></td>
</tr>
<tr>
<td>Newport, Rhode Island 02844</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Commander</td>
<td></td>
</tr>
<tr>
<td>U.S. Naval Weapons Laboratory</td>
<td></td>
</tr>
<tr>
<td>ATTN: Technical Library</td>
<td></td>
</tr>
<tr>
<td>Dahlgren, Virginia 22448</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Commanding Officer (AD-2)</td>
<td></td>
</tr>
<tr>
<td>U.S. Naval Air Development Center</td>
<td></td>
</tr>
<tr>
<td>Johnsville, Pennsylvania 18974</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Aerojet-General Corporation</td>
<td></td>
</tr>
<tr>
<td>ATTN: Librarian</td>
<td></td>
</tr>
<tr>
<td>P. O. Box 296</td>
<td></td>
</tr>
<tr>
<td>Azusa, California 91703</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Organization</td>
<td>Copies</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Aerojet-General Corporation</td>
<td>4</td>
</tr>
<tr>
<td>ATTN: P. M. West, Chief Librarian</td>
<td></td>
</tr>
<tr>
<td>11711 South Woodruff Avenue</td>
<td></td>
</tr>
<tr>
<td>Downey, California 90241</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Aerojet-General Corporation</td>
<td>4</td>
</tr>
<tr>
<td>ATTN: Technical Library 2484-2015A</td>
<td></td>
</tr>
<tr>
<td>P. O. Box 1947</td>
<td></td>
</tr>
<tr>
<td>Sacramento, California 95809</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Aerospace Corporation</td>
<td>2</td>
</tr>
<tr>
<td>ATTN: Library-Documents</td>
<td></td>
</tr>
<tr>
<td>P. O. Box 95005</td>
<td></td>
</tr>
<tr>
<td>Los Angeles, California 90045</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Allied Chemical Corporation</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: Security Office</td>
<td></td>
</tr>
<tr>
<td>P. O. Box 70</td>
<td></td>
</tr>
<tr>
<td>Morristown, New Jersey 07960</td>
<td></td>
</tr>
<tr>
<td>Northrop Carolina, Inc.</td>
<td>1</td>
</tr>
<tr>
<td>Box 3049</td>
<td></td>
</tr>
<tr>
<td>Asheville, North Carolina 28102</td>
<td></td>
</tr>
<tr>
<td>American Cyanamid Company</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: Security Officer</td>
<td></td>
</tr>
<tr>
<td>1937 W. Main Street</td>
<td></td>
</tr>
<tr>
<td>Stamford, Connecticut 06902</td>
<td></td>
</tr>
<tr>
<td>BT Research Institute</td>
<td>1</td>
</tr>
<tr>
<td>Technology Center</td>
<td></td>
</tr>
<tr>
<td>ATTN: C. K. Hersch, Chemistry</td>
<td></td>
</tr>
<tr>
<td>Division</td>
<td></td>
</tr>
<tr>
<td>Chicago, Illinois 60616</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>ARO, Inc.</td>
<td>1</td>
</tr>
<tr>
<td>Arnold Engineering Development</td>
<td></td>
</tr>
<tr>
<td>Center</td>
<td></td>
</tr>
<tr>
<td>ATTN: Dr. B. H. Goethert</td>
<td></td>
</tr>
<tr>
<td>Chief Scientist</td>
<td></td>
</tr>
<tr>
<td>Arnold AF Station, Tennessee 37389</td>
<td></td>
</tr>
<tr>
<td>Atlantic Research Corporation</td>
<td>2</td>
</tr>
<tr>
<td>ATTN: Security Office for Library</td>
<td></td>
</tr>
<tr>
<td>Shirley Highway and Ed mall Road</td>
<td></td>
</tr>
<tr>
<td>Alexandria, Virginia 22314</td>
<td></td>
</tr>
<tr>
<td>University of Denver</td>
<td>1</td>
</tr>
<tr>
<td>Denver Research Institute</td>
<td></td>
</tr>
<tr>
<td>ATTN: Security Office</td>
<td></td>
</tr>
<tr>
<td>P. O. Box 10127</td>
<td></td>
</tr>
<tr>
<td>Denver, Colorado 80210</td>
<td></td>
</tr>
<tr>
<td>Organization</td>
<td>Copies</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>Allison Division</td>
<td>1</td>
</tr>
<tr>
<td>General Motors Corporation</td>
<td></td>
</tr>
<tr>
<td>ATTN: Plant 8, Tech Library</td>
<td></td>
</tr>
<tr>
<td>Mr. W. H. Richardson</td>
<td></td>
</tr>
<tr>
<td>4700 W. 10th Street Indianapolis, Indiana 46208</td>
<td></td>
</tr>
<tr>
<td>Allegany Ballistics Laboratory</td>
<td></td>
</tr>
<tr>
<td>ATTN: Library</td>
<td></td>
</tr>
<tr>
<td>P. O. Box 210</td>
<td></td>
</tr>
<tr>
<td>Cumberland, Maryland 21501</td>
<td></td>
</tr>
<tr>
<td>Hercules Powder Company</td>
<td>1</td>
</tr>
<tr>
<td>Kenvil Works</td>
<td></td>
</tr>
<tr>
<td>ATTN: Library</td>
<td></td>
</tr>
<tr>
<td>Kenvil, New Jersey 07847</td>
<td></td>
</tr>
<tr>
<td>Institute for Defense Analyses</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: Classified Library</td>
<td></td>
</tr>
<tr>
<td>400 Army-Navy Drive</td>
<td></td>
</tr>
<tr>
<td>Arlington, Virginia 22202</td>
<td></td>
</tr>
<tr>
<td>Jet Propulsion Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>4800 Oak Grove Drive</td>
<td></td>
</tr>
<tr>
<td>Pasadena, California 91103</td>
<td></td>
</tr>
<tr>
<td>Lockheed Propulsion Company</td>
<td>2</td>
</tr>
<tr>
<td>ATTN: Miss Belle Berlad, Librarian</td>
<td></td>
</tr>
<tr>
<td>P. O. Box 111</td>
<td></td>
</tr>
<tr>
<td>Redlands, California 92374</td>
<td></td>
</tr>
<tr>
<td>Martin Company</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: Science - Technology Library - Mail 398</td>
<td></td>
</tr>
<tr>
<td>Baltimore, Maryland 21203</td>
<td></td>
</tr>
<tr>
<td>Martin Company</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: Res. Library, 6366</td>
<td></td>
</tr>
<tr>
<td>P. O. Box 179</td>
<td></td>
</tr>
<tr>
<td>Denver, Colorado 80201</td>
<td></td>
</tr>
<tr>
<td>Union Carbide Corporation</td>
<td>1</td>
</tr>
<tr>
<td>Rocket Research Corporation</td>
<td>1</td>
</tr>
<tr>
<td>520 South Portland Street</td>
<td></td>
</tr>
<tr>
<td>Seattle, Washington 98108</td>
<td></td>
</tr>
<tr>
<td>Lockheed Corporation</td>
<td>3</td>
</tr>
<tr>
<td>ATTN: Library, Dept. 596-306</td>
<td></td>
</tr>
<tr>
<td>6633 Canoga Avenue</td>
<td></td>
</tr>
<tr>
<td>Canoga Park, California 91304</td>
<td></td>
</tr>
<tr>
<td>Texaco Experiment Incorporated</td>
<td>1</td>
</tr>
<tr>
<td>One Space Park</td>
<td></td>
</tr>
<tr>
<td>Union Carbide Corporation</td>
<td>1</td>
</tr>
<tr>
<td>Plastics Co. Division</td>
<td></td>
</tr>
<tr>
<td>ATTN: Librarian</td>
<td></td>
</tr>
<tr>
<td>Rocket Research Corporation</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: Library, Dept. 596-306</td>
<td></td>
</tr>
<tr>
<td>6633 Canoga Avenue</td>
<td></td>
</tr>
<tr>
<td>Canoga Park, California 91304</td>
<td></td>
</tr>
<tr>
<td>Organization</td>
<td>Copies</td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>Los Alamos Scientific Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>University of California</td>
<td></td>
</tr>
<tr>
<td>P. O. Box 1863</td>
<td></td>
</tr>
<tr>
<td>Los Alamos, New Mexico 87544</td>
<td></td>
</tr>
<tr>
<td>University of Utah</td>
<td>1</td>
</tr>
<tr>
<td>College of Engineering</td>
<td></td>
</tr>
<tr>
<td>ATTN: Professor M. L. Williams</td>
<td></td>
</tr>
<tr>
<td>1400 E. Second South</td>
<td></td>
</tr>
<tr>
<td>Salt Lake City, Utah 84112</td>
<td></td>
</tr>
</tbody>
</table>
Abstract

The 156 in. diameter case LITVC motor program was conducted by the Wasatch Division, Thiokol Chemical Corporation for the Air Force Space Systems Division with technical direction by the Air Force Research Propulsion Laboratory. The two major objectives were (1) the design and fabrication of a lightweight 156 in. diameter monolithic solid propellant motor utilizing a fiberglass reinforced plastic monolithic case, a 34 to 1 expansion ratio submerged fixed nozzle, and a N₂O₄/LITVC system; and (2) the demonstration static test of the motor in a simulated altitude environment to provide meaningful LITVC data in a high expansion ratio nozzle. Both objectives were successfully attained. The program was culminated on 25 May 1966 with a static test of the motor utilizing a 10 ft diameter by 63 ft long diffuser for altitude simulation. The motor had a mass fraction of excess of 0.90 and operated for 110 sec at an average thrust level of approximately 6,000 lb. The static test was successful and all motor components were intact and in good condition at the completion of the firing. Two abnormalities occurred during the firing. At approximately 70 sec, a burnthrough occurred in the diffuser tube approximately four feet aft of the nozzle exit plane, apparently due to high localized erosion of the ablative insulation on the inside diameter. The diffuser continued to operate throughout the test although at a lower simulated altitude. A malfunction of the pressure regulating subsystem portion of the LITVC system caused a degradation of injectant pressure during the firing and subsequent degradation of the LITVC performance. Post-test inspection of the motor and components revealed that internal insulation, nozzle design, and case design were satisfactory and the motor had functioned as expected. The static test demonstrated attainment of all program objectives. After post-test analysis of the fired motor and components, the fired case was hydroburst tested to obtain additional data on fiberglass case design. The case burst at 935 psig, very near the design ultimate pressure of 970 psig. This hydroburst, performed under a supplemental agreement to the contract, demonstrated the validity of the design and fabrication techniques used for this case. (1)
Table: Instructions

<table>
<thead>
<tr>
<th>Key Words</th>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Instructions

1. **Originating Activity**: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity, or other organization (corporate author) issuing the report.

2a. **Report Security Classification**: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. **Group**: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. If applicable, show title classification in all capitals in parentheses. Do not include a space after the parentheses.

3. **Report Title**: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capital letters in parenthesis immediately following the title.

4. **Descriptive Notes**: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. **Author(s)**: Enter the name(s) of author(s) as shown on the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. **Report Date**: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.

7a. **Total Number of Pages**: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. **Number of References**: Enter the total number of references cited in the report.

8a. **Contract or Grant Number**: If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b. **& 8c. Project Number**: Enter the appropriate military department identification, such as project number, subproject number, system number, task number, etc.

9a. **Originator's Report Number(s)**: Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. **Other Report Number(s)**: If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter these numbers.

10. **Availability/Limitation Notices**: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

 1. "Qualified requesters may obtain copies of this report from DDC."
 2. "Foreign announcement and dissemination of this report by DDC is not authorized."
 3. "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through DDC."
 4. "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified military users shall request through DDC."
 5. "All distribution of this report is controlled. Qualified DDC users shall request through DDC."

 NOTE: If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. **Supplementary Notes**: Use for additional explanatory notes.

12. **Sponsoring Military Activity**: Enter the name of the departmental project office or laboratory sponsoring the research and development. Include address.

13. **Abstract**: Enter an abstract giving a brief and factual summary of the document, indicating the military security classification of the information in the paragraph, represented as (TS); (S); (C); or (L).

 There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. **Key Words**: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.