AD NUMBER

AD803651

NEW LIMITATION CHANGE

TO
Approved for public release, distribution unlimited

FROM
Distribution authorized to U.S. Gov't. agencies and their contractors; Critical Technology; NOV 1966. Other requests shall be referred to Air Force Weapons Lab., AFSC, Kirtland AFB, NM.

AUTHORITY

AFWL ltr, 30 Nov 1971
THEORETICAL CALCULATIONS OF THE
PHENOMENOLOGY OF HE DETONATIONS

Volume II

William A. Whitaker, Captain, USAF
Edmund A. Nawrocki, Captain, USAF
Charles E. Needham
William W. Troutman

TECHNICAL REPORT NO. AFWL-TR-66-141, Vol. II

November 1966

AIR FORCE WEAPONS LABORATORY
Research and Technology Division
Air Force Systems Command
Kirtland Air Force Base
New Mexico

Best Available Copy
THEORETICAL CALCULATIONS OF THE PHENOMENOLOGY OF HE DETONATIONS

Volume II

William A. Whitaker, Captain, USAF
Edmund A. Nawrocki, Captain, USAF
Charles E. Needham
William W. Troutman

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of AFWL (WLRT), Kirtland AFB, N.M. Distribution of this document is limited because of the technology discussed.
FOREWORD

This research was performed under Program Element 7.60.08.01.D, Project 5710, Subtask 1.027, and was funded by the Defense Atomic Support Agency (DASA).

Inclusive dates of research were 1 September 1965 to 1 June 1966. The report was submitted 27 October 1966 by the Project Officer, Capt William A. Whitaker (WLRTH).

This report has been reviewed and is approved.

WILLIAM A. WHITAKER
Captain, USAF
Project Officer

RALPH H. PENNINGTON
Colonel, USAF
Chief, Theoretical Branch

CLAUDE K. STAMBAUGH
Colonel, USAF
Chief, Research Division
ABSTRACT

The phenomenology of two atmospheric high-explosive detonations were calculated theoretically. The first was a 20-short-ton spherical charge of TNT (loading density--1.56 gms/cc). The second was a methane-oxygen mixture (mole ratio 1 to 1.5) contained in a 55-ft-radius balloon. Both detonations took place at an altitude of 670 meters (ambient pressure 13.6 psi) with a reflecting surface 85 feet below burst point. The calculations, taken out to 300 milliseconds after detonations, were performed by using SAP, a one-dimensional Lagrangian hydrodynamic code and SHELL-OIL, a two-dimensional pure Eulerian hydrodynamic code. Volume II of this report contains the details of the results in graphical form. Included are pressure and density contours, velocity vector plots, and wave forms for 19 test stations.
This page intentionally left blank.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II THE TNT CALCULATION</td>
<td>3</td>
</tr>
<tr>
<td>III THE METHANE CALCULATION DISTRIBUTION</td>
<td>183 357</td>
</tr>
</tbody>
</table>
This page intentionally left blank.
SECTION I

INTRODUCTION

Volume II is divided into three sections, the last two of which are, in turn, divided into three parts.

Section II contains plots of the TNT calculations. Part 1 consists of profiles of the thermodynamic variables at selected times as calculated by SAP. Part 2 consists of pressure and density contours and velocity vectors at selected times as calculated by SHELL-OIL. Part 3 consists of traces of overpressure, dynamic pressure impulse, radial velocity and axial velocity as a function of time at the various test stations; again, the results of SHELL-OIL.

Section III contains plots of the methane calculation. The format of this section is the same as in Section II: first, SAP profiles; second, SHELL-OIL contours and velocity vectors; third, SHELL-OIL tracings at the test stations.

The output contained in this volume is small compared to that available. More detailed, or additional output, in graphical form is available upon request to AFWL (WLRT8).
Table I

POSITION OF TEST STATIONS

<table>
<thead>
<tr>
<th>Test Stations</th>
<th>Range</th>
<th>Altitude</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Meters</td>
<td>(Feet)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>7.62 (25)</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>15.24 (50)</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>24.38 (80)</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>38.0 (125)</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>50.0 (164)</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>63.8 (209)</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>78.0 (256)</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>93.3 (306)</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>26.0 (85)</td>
<td>2.8</td>
</tr>
<tr>
<td>11</td>
<td>38.0 (125)</td>
<td>2.8 (9)</td>
</tr>
<tr>
<td>12</td>
<td>50.0 (164)</td>
<td>2.8 (9)</td>
</tr>
<tr>
<td>13</td>
<td>38.0 (125)</td>
<td>7.6 (25)</td>
</tr>
<tr>
<td>14</td>
<td>50.0 (164)</td>
<td>7.6 (25)</td>
</tr>
<tr>
<td>15</td>
<td>63.8 (209)</td>
<td>7.6 (25)</td>
</tr>
<tr>
<td>16</td>
<td>50.0 (164)</td>
<td>15.2 (50)</td>
</tr>
<tr>
<td>17</td>
<td>63.8 (209)</td>
<td>18.0 (59)</td>
</tr>
<tr>
<td>18</td>
<td>78.0 (256)</td>
<td>15.2 (50)</td>
</tr>
<tr>
<td>19</td>
<td>78.0 (256)</td>
<td>22.8 (75)</td>
</tr>
</tbody>
</table>
SECTION II

THE TNT CALCULATION

SAP Profiles

This part contains profiles of pressure, density, and velocity as calculated by SAP for the TNT detonation scaled to 20 short tons. There are plots for 25 different times.

The first plot contains the profiles describing the flow field behind the detonation front in the TNT. Also shown on this plot, as indicated by the symbols, is the similarity solution for the detonation wave, obtained using the LSZK equation of state for TNT. Agreement between the SAP "burn" calculation, which provides a nonself-similar solution, and the similarity solution is excellent.

Succeeding plots show the convergence of the rarefaction wave on the origin, the formation and expansion of the free-air shock, and the formation and motion of secondary shocks.
This page intentionally left blank.
SHELL Contours and Velocity Vectors

This part contains pressure and density contours and velocity vector plots of the results of the SHELL-OIL calculation of the TNT detonation (20 short-tons). There are plots for 8 different times.

The first plot shows the reflection of the free-air shock at the ground. Subsequent plots show the formation and movement of the triple point and mach stem. The heavy black line on each plot shows the location of the massless trace particles that represent the TNT-air interface at that time.

The numbers along the top of each plot represent the horizontal index of each cell of the mesh used in the calculation. The numbers along the right edge of the plot refer to vertical indices. The number associated with each contour line represents a value for that line appearing in the upper right hand corner of each contour plot. The velocity vector scale is similarly given in the upper right hand corner of each velocity vector plot.
This page intentionally left blank.
AFWL SHELL OIL CALC. OF 20 TONS TNT ON 85 FT. TOWER, P0=13.6
TIME: 61.4 SEC CYCLE: 61 PROBLEM: 201.406
AFWL SHELL OIL CALC. OF 20 TONS TNT ON 85 FT. TOWER PO=3.46
TIME 0.19 SEC CYCLE 111 PROBLEM 201.004
REAL SHELL OIL CALC. OF 20 TONS TNT ON 85 FT TOWER: P0=1316
TIME: 0.42 SEC CYCLE 283 PROBLEM 201.008
AFW SHELL OIL CALC. OF 20 TONS TNT ON 85 FT. TOWER PO=136
TIME 056 SEC CYCLE 328 PROBLEM 201004
AFWH SHELL OIL CALC. OF 20 TONS TNT ON 85 FT. TOWER PO=13.6
TIME .056 SEC CYCLE 32B PROBLEM 201.009
AFW, SHELL OIL, CALC. OF 20 TONS TNT ON 85 FT. TOWER P0 = 13.6
TIME: 300 SEC CYCLE: .748 PROBLEM: 20, 000
AFWI SHELL OIL CALC. OF 20 TONS TNT ON 65 FT. TOWER P0=13.6
TIME .300 SEC CYCLE 248. PROBLEM 201.000
SHELL Tracings

This part contains the tracings recorded at each test station of overpressure, dynamic pressure overpressure impulse, dynamic pressure impulse and velocity resulting from the TNT detonation. These are SHELL-OIL results.

Table 1 gives the location of each test station.
This page intentionally left blank.
VERTICAL DYNAMIC PRESSURE IMPULSE VS TIME: STATION NUMBER 9
HORIZONTAL DYNAMIC PRESSURE VS TIME STATION NUMBER 2

TIME (SEC.)

0.040 6 0.080 0.120 0.160 0.200 0.240 0.280 0.320 0.360 0.400 0.440
OVER PRESSURE IMPULSE VS TIME. STATION NUMBER 10.
This page intentionally left blank.
SECTION III
THE METHANE CALCULATION

SAP Profiles

This part contains profiles of pressure, density and velocity as calculated by SAP for the methane detonation. This charge, a 1.5 to 1 molar mixture of oxygen and methane, was initially contained in a balloon of 55 ft radius. There are plots for 16 different times.

The first plot contains the profiles describing the flow field behind the detonation front in the methane. Unlike the TNT detonation ambient pressure (13.6 psi) is not negligible; therefore the similarity solution differs from the SAP calculation by approximately 5 percent as can be seen in the first figure. The similarity solution for the methane detonation using the following parameters: detonation velocity, 2.7522×10^5 cm/sec; loading density, 1.07197×10^{-3} gm/cm3; gamma = 1.2136.

Succeeding plots show the convergence of the rarefaction wave on the origin, the formation and expansion of the free-air shock, and the formation and motion of secondary shocks.
This page intentionally left blank.
SHEE-L Contours and Velocity Vectors

This part contains pressure and density contours and velocity vector plots of the results of the SHEE-L-OIL calculation of the Methane detonation. There are plots for eight different times.

The first plot shows the reflection of the free-air shock at the ground. Subsequent plots show the formation and movement of the triple point and mach stem. The heavy black line on each plot shows the location of the massless trace particles which represent the methane-air interface at that time.

The numbers along the top of each plot represent the horizontal index of each cell of the mesh used in the calculation. The numbers along the right edge of the plot refer to vertical indices. The number associated with each contour line represents a value for that line appearing in the upper right-hand corner of each contour plot. The velocity vector scale is similarly given in the upper right-hand corner of each velocity vector plot.
This page intentionally left blank.
AFHL SHELL OIL CALCULATIONS OF 110 FT. METHANE BALLOON AT 85 FT.

TIME 0.026 SEC CYCLE 181 PROBLEM EOL.004 /9

207
APRIL SHELL OIL CALCULATIONS OF 110 FT - METHANE BALLOON AT 85 FT.

TIME .026 SEG CYCLE 151 PROBLEM 201.05N

208
SHELL Tracings

This part contains the tracings recorded at each test station of overpressure, dynamic pressure overpressure impulse, dynamic pressure impulse and velocity resulting from the methane detonation. These are SHELL-OIL results.

Table I gives the location of each test station.
This page intentionally left blank.
OVERRIDE PRESSURE VS TIME STATION NUMBER 1
OVER PRESSURE VS TEMP: STATION (RUGER. 2)
HORIZONTAL COMPONENT VELOCITY VS TIME STATION NUMBER 3
This page intentionally left blank.
THEORETICAL CALCULATIONS OF THE PHENOMENOLOGY OF HE DETONATIONS

1. September 1965 to 1 June 1966

Whitaker, William A., Capt, USAF; Nawrocki, Edmund A., Capt, USAF; Needham, Charles E.; Troutman, William W.

November 1966

AFWL-TR-66-141, Vol. II

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of AFWL (WLRTH), Kirtland AFB, N.M. Distribution of this document is limited because of the technology discussed.

13. ABSTRACT

The phenomenology of two atmospheric high-explosive detonations were calculated theoretically. The first was a 20-short-ton spherical charge of TNT (loading density--1.56 gms/cc). The second was a methane-oxygen mixture (mole ratio 1 to 1.5) contained in a 55-ft-radius balloon. Both detonations took place at an altitude of 670 meters (ambient pressure 13.6 psi) with a reflecting surface 85 feet below burst point. The calculations, taken out to 300 milliseconds after detonations, were performed by using SAP, a one-dimensional Lagrangian hydrodynamic code and SHELL-OIL, a two-dimensional pure Eulerian hydrodynamic code. Volume II of this report contains the details of the results in graphical form. Included are pressure and density contours, velocity vector plots, and wave forms for 19 test stations.
S2a. Sth report from DDC. ci tlh- contractor, aub ctiher, grantee, Department of De- ruchon, show title clessification in all capitals in parenthesis. Titles in all cases should be followed immediately following the title. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parentheses immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b. c & d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system number, task number, etc.

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

1. "Qualified requesters may obtain copies of this report from DDC." (2) "Foreign announcement and dissemination of this report by DDC is not authorized." (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through...

4. "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through...

5. "All distribution of this report is controlled. Qualified DDC users shall request through..."

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS). (S). (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.
DEPARTMENT OF THE AIR FORCE
AF Weapons Laboratory, RTD (AFSC)
Kirtland Air Force Base, New Mexico 87117

12 April 1967

ERRATA

AFWl-TR-66-141,
Volume II

1. Replace pages 5 through 29 with the attached pages 5 through 29.

2. The units for the values appearing in the contour scales in Sections II and III are: grams/cm3 for the density contours and dynes/cm2 for the pressure contours.

AUTHORITY:
EDWARD A. NAWROCKI
Capt, USAF
4 April 1967

C. W. HAIG
Chief, Reports and Data Branch
Technical Information Division