TO:
Approved for public release; distribution is unlimited.

FROM:
Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; JUN 1952. Other requests shall be referred to Ballistic Research Laboratories, Aberdeen Proving Ground, 21005-5066.

AUTHORITY
USAARDC ltr dtd 17 Nov 1970
REPORT No. 812

A Least Square Attitude Solution

GEORGE R. TRIMBLE, JR.

ABERDEEN PROVING GROUND, MARYLAND
BALLISTIC RESEARCH LABORATORIES

REPORT NO. 812

June 1952

A LEAST SQUARE ATTITUDE SOLUTION

George R. Trimble, Jr.

Project No. TB3-0838 of the Research and Development Division, Ordnance Corps

ABERDEEN PROVING GROUND, MARYLAND
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>3</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>5</td>
</tr>
<tr>
<td>PRELIMINARY REMARKS</td>
<td>7</td>
</tr>
<tr>
<td>THE LEAST SQUARE ATTITUDE SOLUTION</td>
<td>11</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>14</td>
</tr>
</tbody>
</table>
A LEAST SQUARE ATTITUDE SOLUTION

ABSTRACT

A method of determining the orientation of the axis of a missile in flight is presented. Several solutions to this problem have evolved for the case of two stations where there is no overdetermination of the parameters. If it is desirable to use data from more than two stations there is an overdetermination of the orientation of the missile axis and some adjustment procedure must be used. The solution presented herein is a least square procedure developed to solve this problem.
INTRODUCTION

Several procedures have been developed for determining the orientation of the axis of a missile in flight. All of the procedures examined thus far have made use of the data from only two stations, thus there is no overdetermination of the parameters involved.

It frequently occurs that more than two stations observe the flight of the missile; consequently, the data obtained from the additional stations are of no use. If more than two stations are available, it would be possible to use one of the above mentioned procedures for each combination of two stations. The averages of the results of each combination could then be taken as the final values. This procedure greatly increases the computing time and the improvement in the final data would not justify this increase.

It becomes apparent that some adjustment procedure should be applied in order that the additional data may be utilized in case more than two stations are available. The solution presented in this paper is based upon the formulation of the problem according to the principle of least squares.

The missiles fired on large ranges are observed by more than two cameras and the least square procedure may be used. In this case, however, the cameras have a narrow field of view and the assumption that the optic axis of the camera coincides with the line of sight to the missile from the camera will be valid. This assumption will be made in the following derivations. It has been shown that the error committed in making this assumption is negligible.

The missiles fired on small ranges are, in general, observed by only two, wide angle, fixed cameras. In this case the least square procedure is not applicable because there is no overdetermination and the above assumption is not valid because of the wide field of view.

---

1 See Bibliography, page 14.
FIGURE 1
PRELIMINARY REMARKS

Before proceeding to the least square solution it is necessary to introduce several other concepts, the first of which is the coordinate system used. Any rectangular coordinate system will suffice, however, for the sake of giving some physical meaning to the concepts involved let the O-XYZ system be defined as follows (See Figure I):

(a) The origin, O, is a point on the range whose geodetic coordinates are known;
(b) The XY-plane is tangent to the earth at the origin;
(c) The X-axis is positive in the direction of the line of fire;
(d) The Y-axis is perpendicular to the X-axis positive to the right;
(e) The Z-axis is perpendicular to the XY-plane positive upward.

Let \( \zeta, \eta, \) and \( \zeta' \) be unit vectors which lie along the X, Y, and Z axes respectively.

Point \( O_1' \) is the nodal point of the lens of the \( i \)th camera, line \( O_1'X' \) is parallel to the X-axis, line \( O_1'M \) is the line of sight to some point on the missile and point \( O_1 \) is a point between \( O_1' \) and \( M \) such that distance \( O_1O_1' \) is unity.

Vector \( \xi_1 \) is a unit vector along the line of sight to the missile.

Vector \( \eta_1 \) is a unit vector parallel to the XY-plane, perpendicular to \( \xi_1 \) and directed to the right of \( \xi_1 \).

Vector \( \zeta_1 \) is a unit vector perpendicular to \( \xi_1 \) and \( \eta_1 \), directed according to the vector right-hand thread rule.

The elevation angle, \( \varepsilon_1 \), is the angle between the line of sight and the XY-plane measured upward from the XY-plane.

The azimuth angle, \( \alpha_1 \), is the angle between the projection of the line of sight upon the XY-plane and the X-axis, measured positive clockwise from the line \( O_1'X' \), that is, from the X-axis.

In view of these definitions it is seen that
\[ \begin{align*}
\xi_1 &= (\cos \epsilon_1 \cos \alpha_1) \xi + (\cos \epsilon_1 \sin \alpha_1) \eta + (\sin \epsilon_1) \zeta \\
\eta_1 &= (-\sin \alpha_1) \xi + (\cos \alpha_1) \eta \\
\zeta_1 &= (-\sin \epsilon_1 \cos \alpha_1) \xi - (\sin \epsilon_1 \sin \alpha_1) \eta + (\cos \epsilon_1) \zeta
\end{align*} \]

Let \( m \) be a unit vector which lies along the missile axis directed from tail to nose.

The azimuth of the missile axis, \( A \), is the angle between the projection of the missile axis upon the \( XY \)-plane and the \( X \)-axis, measured positive clockwise from the \( X \)-axis.

The elevation of the missile axis, \( E \), is the angle between the missile axis and the \( XY \)-plane, measured upward from the \( XY \)-plane.

The vector \( m \) may be expressed in terms of the basis vectors \( \xi, \eta, \) and \( \zeta \) as follows:

\[ m = (\cos E \cos A) \xi + (\cos E \sin A) \eta + (\sin E) \zeta \]

Vectors \( \eta_1 \) and \( \zeta_1 \) determine a plane, commonly referred to as the "standard coordinate" plane, which is parallel to the plane of the film. Distances measured on the standard coordinate plane are simply a constant multiple of distances on the film plane. Hereafter we shall treat the standard coordinate plane as though it were the film plane since this scale change does not affect what follows.

The missile image lies along the intersection of two planes; one plane is the plane containing the missile axis and the line of sight to the missile, the other plane is the film plane. Let \( m_i \) be a unit vector which lies along the missile image.

The angle \( V_i \) is the angle between \( m_i \) and \( \zeta_i \) measured positive clockwise from \( \xi_i \). Vector \( \xi_i \) lies along the intersection of the vertical plane through the line of sight with the film plane. This intersection can be determined physically by having fiducial marks on the film. It is then possible to measure the angle \( V_i \) directly.

It is seen that

\[ m_i \cdot \eta_i = \sin V_i, \]

and

\[ m_i \cdot \zeta_i = \cos V_i. \]
Define the vector \( n_i \) by

\[
n_i = \frac{(m \times \xi_i)}{\|m \times \xi_i\|}
\]

Then \( n_i \) is a unit vector normal to the plane containing \( m \) and \( \xi_i \), consequently \( n_i \) is perpendicular to \( m \), \( (n_i, \xi_i, m, n_i) \) are thus coplanar.

Since \( m \) is perpendicular to both \( n_i \) and \( \xi_i \), we have

\[
m_i = \xi_i \times n_i
\]

\[
= \frac{\xi_i \times (m \times \xi_i)}{\|m \times \xi_i\|}
\]

\[
= \frac{[(\xi_i \cdot \xi_i) m - (\xi_i \cdot m) \xi_i]}{\|m \times \xi_i\|}
\]

\[
= \frac{[m - (\xi_i \cdot m) \xi_i]}{\|m \times \xi_i\|},
\]

consequently, from equation 3 we obtain

\[
\sin \theta_i = \frac{\left[ m - (m \cdot \xi_i) \xi_i \right] \cdot \eta_i}{\|m \times \xi_i\|}
\]

\[
= \frac{m \cdot \eta_i}{\sqrt{1 - (m \cdot \xi_i)^2}}
\]

and finally

(5) \( \sin \theta_i = \frac{m \cdot \eta_i}{\sin \theta_i} \)

where \( \theta_i \) is the angle between missile axis and the line of sight to the missile.

Making use of equations 1 and 2 equation 5 becomes

(6) \[
\sin \theta_i = \frac{\cos \theta \sin (\alpha_i - \alpha_i)}{\sqrt{\cos \theta \sin \alpha_i \cos (\alpha_i - \alpha_i) + \sin \theta \cos \alpha_i}^2 + \left[ \cos \theta \sin (\alpha_i - \alpha_i) \right]^2}
\]

and the sign of cosine \( \theta_i \) as given by equation 4 may be used with the above expression to completely determine \( \theta_i \) and the quadrant in which it lies.
Equation 6 is convenient for computing purposes because the denominator is nothing more than sin $\theta_i$ for which it is possible to determine a lower bound. This fact is very important when the procedure is programmed for a high speed automatic computing machine. It also gives a numerical means of determining the reliability of the V-angle itself. If $\theta = 0$, the missile axis lies along the line of sight to the missile and there would be no V-angle. For small values of $\theta$, the missile image would be greatly foreshortened and the measured V-angle would not be very reliable. An estimate of the smallest value of $\theta$ for which the V-angles are measurable is $\theta=20^\circ$. However, to make certain that this bound is never reached, a value of $\theta=10^\circ$ has been suggested as the minimum.

Mr. W. R. Clancey has developed a formula for tan $V_i$ rather than sin $V_i$.\(^1\) Since most of the high speed automatic computing machines now in operation do not use a floating decimal system it would be very difficult to deal with the tangent formula on these machines because of the large values the tangent may take. For this reason the sine formula given above is used.

THE LEAST SQUARE ATTITUDE SOLUTION

The theory of least squares requires that

\[
S = \sum_{i=1}^{n} P_i (V_i - \bar{V}_i)^2
\]

be minimized, where \( V_i \) is the observed \( V \)-angle and \( P_i \) is a weighting factor. Differentiating \( S \) with respect to \( \alpha \) and \( \beta \) and setting the derivatives equal to zero we obtain normal equations which are non-linear. These equations are very hard, if not impossible, to solve. We make use of a method described by K. Levenberg \footnote{K. Levenberg, A Method for the Solution of Certain Non-Linear Problems in Least Squares, Quarterly of Applied Mathematics, Vol. 2, No. II, 1944, pp. 164-168.} which reduces the normal equations to a system of linear equations. This system of linear equations can be solved iteratively and Levenberg has shown that the iterative process converges to the "true" solution. Levenberg calls the method "Damped Least Squares".

Replace \( V_i \) by a Taylor series expansion about an approximate solution \( A_0, B_0, \) to obtain

\[
V_i = V_i^0 + c_{1,i}(B-B_0) + c_{2,i}(A-A_0)
\]

where

\[
V_i^0 = \sin^{-1} \left[ \frac{\cos E_0 \sin (A_0-\alpha_i)}{\sqrt{\left[ \cos E_0 \sin \epsilon_i \cos (A_0-\alpha_i) + \sin E_0 \cos \epsilon_i \right]^2 + \left[ \cos E_0 \sin (A_0-\alpha_i) \right]^2}} \right]
\]

\[
c_{1,i} = \frac{\cos \epsilon_i \sin (A_0-\alpha_i)}{\left[ \left[ \cos E_0 \sin \epsilon_i \cos (A_0-\alpha_i) + \sin E_0 \cos \epsilon_i \right]^2 + \left[ \cos E_0 \sin (A_0-\alpha_i) \right]^2 \right]}
\]
\[
C_{2,i} = \frac{-\cos^2E_0\sin\epsilon_i + \sin E_0 \cos E_0 \cos \epsilon_i \cos (A_0 - \alpha_i)}{\left[\cos E_0 \sin \epsilon_i \cos (A_0 - \alpha_i) + \sin E_0 \cos \epsilon_i\right]^2 + \left[\cos E_0 \sin (A_0 - \alpha_i)\right]^2}
\]

and

\[
\begin{align*}
C_{1,i} &= \frac{\partial V_i}{\partial E} (E_0, A_0)^	op, \\
C_{2,i} &= \frac{\partial V_i}{\partial A} (E_0, A_0)^	op.
\end{align*}
\]

Denote by \( \bar{S} \) the expression obtained by replacing \( v_i \) in equation 7 by \( \bar{V}_i \). The procedure Levenberg describes requires the minimization of the function

\[(5)\quad F = \omega\bar{S} + (\Delta A)^2 + (\Delta E)^2\]

where

\[
\Delta A = A - A_0, \quad \Delta E = E - E_0
\]

and \( \omega \) is a constant to be determined later. It is seen from equation 8 that not only are the squares of the residuals minimized but also the squares of the corrections which must be added to the approximate solution are minimized.

Differentiating \( F \) with respect to \( A \) and \( E \) and setting the derivatives equal to zero we obtain the linear normal equations

\[(9)\quad
\begin{align*}
\Delta E \left[ \sum_{i=1}^{n} F_{1,i} C_{1,i}^2 + \frac{1}{\omega} \right] + \Delta A \sum_{i=1}^{n} F_{1,i} C_{1,i} C_{2,i} &= \sum_{i=1}^{n} P_{1,i} (\bar{V}_i - V_0) \\
\Delta E \sum_{i=1}^{n} P_{1,i} C_{2,i} + \Delta A \left[ \sum_{i=1}^{n} P_{2,i} C_{2,i}^2 + \frac{1}{\omega} \right] &= \sum_{i=1}^{n} P_{2,i} (\bar{V}_i - V_0)
\end{align*}
\]

It is a simple matter to solve this system of equations for \( \Delta E \) and \( \Delta A \). The improved values are then given by

\[(10)\quad A = A_0 + \Delta A, \quad E = E_0 + \Delta E.
\]
If the values of $A$ and $E$ obtained in this manner are not sufficiently accurate the procedure may be repeated using these improved values as the approximations. This process may be repeated as many times as required to insure accuracy commensurate with the data being analyzed.

Levenberg has shown that the best value of $\omega$ is given by

$$\omega = \frac{1}{2} \sum_{i=1}^{n} \frac{p_i}{v_i - v_i^0} \left( \frac{\sum_{i=1}^{n} c_{1,i}(v_i^1 - v_i^0)}{\sum_{i=1}^{n} c_{1,i}(v_i - v_i^0)} \right)^2 \left( \frac{\sum_{i=1}^{n} c_{2,i}(v_i^1 - v_i^0)}{\sum_{i=1}^{n} c_{2,i}(v_i - v_i^0)} \right)^2$$

Trial computations indicate a value of $1/\omega = 4.5$ for the first iteration and $1/\omega = 0.1$ for the second iteration for three station reductions of Muroc bomb drops in which the final values of $A$ and $E$ obtained on one frame of data were used as the approximate solution for the following frame of data, and the weighting factors, $p_i$, were taken as unity. Experience should improve these estimates. Two iterations are sufficient to obtain an accuracy of $0.1$. 

GEORGE R. TRIMBLE, JR.


DISTRIBUTION LIST

2 Chief of Ordnance
Washington 25, D.C.
ATTN: ORDTB-Bal. Sec.

1 Commander
Naval Proving Ground
Dahlgren, Virginia

10 British - to ORDTB for Distribution

4 Canadian Joint Staff
to ORDTB for Distribution

4 Chief, Bureau of Ordnance
Department of the Navy
Washington 25, D.C.
ATTN: Re3

1 Dirctor
Naval Research Laboratory
Anacostia Station
Washington 20, D.C.

2 Commander
Naval Ordnance Laboratory
White Oak
Silver Spring, 19 Maryland

1 Commanding General
Air Force Missile Test Center
Cocoa, Florida
ATTN: LRTTAI

1 Commanding Officer
Holloman Air Force Base
Alamagordo, New Mexico

1 Commander
Naval Ordnance Test Station
Inyokern
P.O. China Lake, California
ATTN: Technical Library
and Editorial Section

1 Commanding General
WADC
Wright-Patterson Air Force Base
Dayton, Ohio
ATTN: WCRRM1

1 Commanding Officer
Naval Aviation Ordnance
Test Center
Chincoteague, Virginia

5 Director
Armed Services Technical
Information Agency
Document Services Sec.
U B Building
Dayton 2, Ohio
ATTN: DCS-SA

1 Commanding Officer
U.S. Naval Air Missile Test Center
Point Mugu, California

1 Commanding General
Air University Library
Maxwell Air Force Base,
Alabama

5 Superintendent
Naval Postgraduate School
Monterey, California

1 Commanding Officer
Naval Aviation Ordnance
Test Center
Chincoteague, Virginia

2 Chief of Naval Research
Department of the Navy
Washington 25, D.C.
ATTN: Scientific Documents
Office (408)

1 Aberdeen Bombing Mission
Computing Unit
1206 Santee Street
Los Angeles, California

1 Director
National Bureau of Standards
Connecticut Ave. and Van Ness
St., N.W.
Washington 25, D.C.
ATTN: Dr. J. H. Curtiss
1 Sandia Corporation
   Sandia Base
   Albequerque, New Mexico

2 Commanding General
   White Sands Proving Ground
   Las Cruces, New Mexico
   ATTN: Chief, Data Reduction Branch, FDL

1 President
   Army Field Forces Board No. 4
   Fort Bliss, Texas

1 Commanding Officer
   Signal Corps Engineering Laboratory
   Fort Monmouth, New Jersey

1 Commanding Officer
   Guided Missile Center
   Redstone Arsenal
   Huntsville, Alabama

1 New Mexico School of Agriculture and Mechanical Arts
   State College, New Mexico
   ATTN: Dr. George Gardiner

1 Commanding Officer
   Chemical Radiological Laboratory
   Army Chemical Center, Maryland
   ATTN: Stanley Abramson

1 Dr. L. H. Thomas
   Watson Computing Laboratory
   612 West 116th Street
   New York, New York

1 Richard Taylor
   IBM Corporation
   Endicott, New York

1 Applied Physics Laboratory
   Johns Hopkins University
   8621 Georgia Avenue
   Silver Spring, Maryland

1 Department of Engineering Research
   University of Michigan
   Ann Arbor, Michigan
   ATTN: Mr. L. M. Jones

1 Douglas Aircraft Corporation
   3000 Ocean Boulevard
   Santa Monica, California

1 Department of Engineering Research
   University of Michigan
   Ann Arbor, Michigan
   ATTN: Mr. L. M. Jones

1 Douglas Aircraft Corporation
   3000 Ocean Boulevard
   Santa Monica, California

1 Department of Engineering Research
   University of Michigan
   Ann Arbor, Michigan
   ATTN: Mr. L. M. Jones

1 Douglas Aircraft Corporation
   3000 Ocean Boulevard
   Santa Monica, California
A method of determining the orientation of the axis of a missile in flight is presented. Several solutions to this problem have evolved for the case of two stations where there is no over-determination of the parameters. If it is possible to use data from more than two stations there is an over-determination of the orientation of the missile axis and some...
adjustment procedure must be used. The solution presented herein is a least-square procedure developed to solve this problem.
A least square attitude solution - Project No. TB3-0838, by George R. Trimble, Jr. June '52, 16 pp. incl. drwg.

UNCLASSIFIED

A method of determining the orientation of the axis of a missile in flight is presented. Several solutions to this problem have evolved for the case of two stations where there is no overdetermination of the parameters. If it is desirable to use data from more than two stations there is an overdetermination of the orientation of the missile axis and some adjustment procedure is necessary.
must be used. The solution presented herein is a least square procedure developed to solve this problem.