TECHNICAL REPORT NO. 74-64

RADIO - TELEPHONE VOX

by

John P. Francis
Communications and Electronics Branch

June 1974

Final Report

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

U.S. ARMY LAND WARFARE LABORATORY
Aberdeen Proving Ground, Maryland 21005
The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

DISPOSITION INSTRUCTIONS

Destroy this report when no longer needed. Do not return it to the originator.
The Radio-Telephone Vox system provides a radio-wire integration arrangement which does not require a dedicated operator. The Voice Operated Switch (VOX) is unique because, in contrast with existing systems, it is not actuated by either random or systematic ambient noise. It responds only to voice sounds. The present system was evaluated by using it to interface the AN/PRC-77 Tactical Radio and a Field Telephone, TA-312/PT, using field communications wire WD-1 between the radio and the telephone. (Con't on reverse.)
Prototype development and Engineering/Operational Testing are recommended.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPORT DOCUMENTATION PAGE (DD FORM 1473)</td>
<td>iii</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>3</td>
</tr>
<tr>
<td>SYSTEM DESCRIPTION</td>
<td>4</td>
</tr>
<tr>
<td>TEST PROCEDURES & RESULTS</td>
<td>7</td>
</tr>
<tr>
<td>CONCLUSIONS AND RECOMMENDATIONS</td>
<td>8</td>
</tr>
<tr>
<td>DISTRIBUTION LIST</td>
<td>9</td>
</tr>
</tbody>
</table>
INTRODUCTION

For several years the need for a Voice Operated Switch (VOX) to be used in conjunction with Military Communications equipment has been recognized. Among the advantages offered by VOX operation is hands free operation of the communications device. Existing VOX devices usually are operated by all sounds within the audio portion of the spectrum and are thus susceptible to actuation by either random or repetitive noise such as gunfire, typewriters or other ambient sources. Investigation revealed that VOX type control devices which respond only to voice sounds had been developed by two companies. One device, the Noise Immune Switch (NIX) developed by the Xetron Corporation, was originally designed to reduce the effect of non-voice sounds for hearing aids. The other system, developed by Westinghouse Electric Corporation, is called Voice Operated Simplex Adapter (VOSA) and was originally designed for use in noisy aircraft environments. Two models of each system were modified to control the AN/PRC-77 tactical radio from a telephone wire pair, such as WD-1, using a TA-312/PT field telephone as the terminal. Although both the NIX and the VOSA accomplish a similar result, the circuit designs are quite different, and the evaluation was to determine which system best satisfies the requirement.
SYSTEM DESCRIPTION

The NIX "F" system (Figure 1) consists of a control unit which attaches to the carrying handle of the AN/PRC-77 Tactical Radio. A plug connects the NIX to the power connector of the radio. A pair of binding posts are used for the connection to the telephone line. The NIX device is 5" x 3" x 1½" overall and weighs 1 lb 4 oz. It uses power from the PRC-77 Battery. An acoustic coupler is also included as a separate component. This permits the use of a commercial telephone system to control the radio without physical connection to the telephone line. The coupler is 12" x 8" x 3" and weighs about 4 lbs with 4 self-contained BA-30 Batteries (D cells).

The VOSA 1-D system (Figure 2) consists of a control unit which is 12" x 12" x 2" and weighs 3 lbs 14 oz without battery. It connects to the power plug of the AN/PRC-77 and requires an external source of 28 volts DC. Binding posts are provided to allow connection of the telephone line and the external battery.

The NIX "F" has been reduced to nearly the final configuration expected for field application. The VOSA 1-D is in "Brass Board" form and would require redesign to operate from the radio internal battery. The VOSA could be reduced significantly in size.

These systems are similar in function with the primary purpose to provide control of a remotely located radio by use of a telephone line such as WD-1 combat wire. In use with military field telephones, one end of the telephone line connects to the Radio-Telephone VOX device attached to the radio. The other end of the telephone line connects to a telephone instrument such as the TA 312/PT. The operator at the telephone is able to listen to the radio with his hand set and also transmit over the radio by depressing the hand switch and talking. As soon as the operator stops talking the radio reverts to the receive condition. Both systems employ special filtering techniques so that only voice signals, not ambient noise, control the operation of the radio. The equipment obtained from the manufacturers was for feasibility evaluation. It had not been environmentally packaged.

The acoustic coupler provides an added capability which allows the use of a commercial telephone to operate the NIX switch without having to make a physical wire connection to the phone system. The user places the hand set on the coupler after placing the call. The person at the other end of the phone connection may then operate the radio as previously described. At the conclusion of the communication the hand set must be removed from the coupler and placed on the regular cradle or hook manually.
Both systems were tested at LWL under laboratory conditions using AN/PRC-77 tactical radios and TA-312 telephone units. The units were operated with the handset of the TA-312 in close proximity to a typewriter in use. In the past, this had been found to be an especially stringent test of voice-selective filtering devices.

At all times, both systems rejected noise sources and responded only to voice signals. It was noticed that a loss of the first syllable of speech occurred during transmission. This was found to result from the normal delays of a few hundred milliseconds designed into the AN/PRC-77. The minimal effect on information transmission can be avoided by proper operating discipline. During the tests, it was noted that the VOSA system showed some sensitivity to radio frequency interference (RFI) from nearby PRC-77 radios. It appears that the difficulty is not a serious one and could be eliminated by simple improvements in shielding and/or filtering.

Subsequently, the NIX system was demonstrated to personnel of the SE Signal School at Fort Gordon, GA. During this demonstration "white noise" from an external source was injected into the phone line in an attempt to trigger the VOX circuits. The system did not respond to the noise until its amplitude was increased sufficiently to obscure normal telephone voice communications. The NIX systems were left with the Signal School for further evaluation.
CONCLUSIONS AND RECOMMENDATIONS

Conclusions

1. Both systems achieve the desired Radio-Wire integration without the use of a dedicated operator.

2. Ordinary military or commercial telephone lines of several miles long, can be used to operate the Tactical Radio from a remote location.

3. The VOX operation is not affected by random or periodic audio noises. However, one of the systems showed some sensitivity to RFI.

Recommendations

2. Hardened versions of the system (s) should be developed for Engineering/Operational tests.

3. The systems should be evaluated with a variety of tactical radio equipments.
DISTRIBUTION LIST

Commander
US Army Materiel Command
ATTN: AMCDL
5001 Eisenhower Avenue
Alexandria, VA 22333

Copies
1

Commander
US Army Materiel Command
ATTN: AMCRD
5001 Eisenhower Avenue
Alexandria, VA 22333

Copies
3

Commander
US Army Materiel Command
ATTN: AMCRD-P
5001 Eisenhower Avenue
Alexandria, VA 22333

Copies
1

Director of Defense, Research & Engineering
Department of Defense
WASH DC 20301

Copies
1

Director of Defense, Research & Engineering
Department of Defense
WASH DC 20301

Copies
3

Defense Advanced Research Projects Agency
WASH DC 20301

Copies
4

HQDA (DARD-DUC)
WASH DC 20310

Copies
4

HQDA (DARD-ARZ-C)
WASH DC 20310

Copies
1

HQDA (DAFU-ZB)
WASH DC 20310

Copies
1

HQDA (DAM0-PLW)
WASH DC 20310

Copies
1

Commander
US Army Training & Doctrine Command
ATTN: ATCD
Fort Monroe, VA 23651

Copies
1
Commander
US Army Combined Arms Combat Developments Activity
Fort Leavenworth, KS 66027

Commander
US Army Logistics Center
Fort Lee, VA 23801

TRADOC Liaison Office
HQS USATECOM
Aberdeen Proving Ground, MD 21005

Commander
US Army Test and Evaluation Command
Aberdeen Proving Ground, MD 21005

Commander
US Army John F. Kennedy Center for Military Assistance
Fort Bragg, NC 28307

Commander-In-Chief
US Army Pacific
ATTN: GPOP-FD
APO San Francisco 96558

Commander
Eighth US Army
ATTN: EAGO-P
APO San Francisco 96301

Commander
Eighth US Army
ATTN: EAGO-FD
APO San Francisco 96301

Commander-In-Chief
US Army Europe
ATTN: AEAGC-ND
APO New York 09403

Commander
US Army Alaska
ATTN: ARACD
APO Seattle 98749
US Marine Corps Liaison Officer
Aberdeen Proving Ground, MD 21005

Director
Night Vision Laboratory
US Army Electronics Command
ATTN: AMSEL-NV-D (Mr. Goldberg)
Fort Belvoir, VA 22060

Commander
US Air Force Special Communications Center (USAFSS)
ATTN: SUR
San Antonio, TX 78243

Commander
US Army Armament Command
ATTN: AMSAR-ASF
Rock Island, IL 61201

Mr. John Francis
110 Oakdale Avenue
Catonsville, MD 21228