INTERNAL MULTI-DIMENSIONAL SCALING OF CATEGORICAL VARIABLES

Jeffrey Chit-Fu/Chang, et al

Georgia University
Athens, Georgia

July 1974
The purpose of the study in this dissertation is to translate raw categorized data into numerical values on which standard statistical analyses can be performed. When raw observations are recorded on a nominal scale, they are to be transformed so that the resulting numbers can be regarded as lying on an interval scale.

A scaling technique is developed on the basis of a generalization of Lancaster's approach (canonical correlation for two sets). In order to generalize the measurement of internal dependence to more than two sets, a single number is needed i.e. \(|P|\), the determinant of the correlation matrix. We seek a set of canonical weights \(a_i\) for all sets \(i = 1, 2, \ldots, k\), such that \(|P|\) is a minimum; this is Steel's approach (restatement and expansion), and called the Minimum-Determinant approach. The reason for choosing this approach is that there exists a relationship between the minimum likelihood-ratio statistic and maximum likelihood estimates; several examples have been presented. Since \(|P|\) is the minimum-determinant (and that is the minimum likelihood-ratio statistic for testing the \(H_0: P = I\)) the weights \(a_i\) for all \(i\)'s will be maximum likelihood estimates of canonical weights.
This dissertation also presents computer programs starting from data in contingency tables which are converted into a correlation matrix. Initial values are used in order to start the minimum-determinant process. Various initial weights and the final minimum-determinant solution have been compared. A good initial guess for the canonical weights is the "canonical-multiple correlation" approach (the characteristic vector associated with the largest characteristic root -- the square of the canonical-multiple correlation of one set vs. the totality of the others). If high accuracy of the estimate of canonical weights is desired, the Fletcher and Powell process can be used to obtain the minimum-determinant solution.

Four numerical examples have been presented and a validation study demonstrates the quality of results.

In the appendices, listing of computer programs and input card layout have been given.
<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINK A</th>
<th></th>
<th>LINK B</th>
<th></th>
<th>LINK C</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CANONICAL WEIGHTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MINIMUM-DETERMINANT SOLUTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CANONICAL-MULTIPLE CORRELATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MINIMUM LIKELIHOOD-RATIO STATISTIC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCALING</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MULTI-DIMENSIONAL SCALING</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEPENDENCE IN MULTIPLE SETS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MULTIVARIATE ANALYSIS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
INTERNAL MULTI-DIMENSIONAL SCALING OF CATEGORICAL VARIABLES

by

JEFFREY CHIT-FU CHANG & ROLF E. BARGMANN

Reproduction in whole or in part is permitted for any purpose of the United States Government. This Research was supported, in part, by the Office of Naval Research, Contract Number N00014-69-A-0423, NR 042-261

Rolf Bargmann
Principal Investigator

The University of Georgia
Department of Statistics and Computer Science
Athens, Georgia

July 1974
TABLE OF CONTENTS

LIST OF TABLES .. vi

CHAPTER I : INTRODUCTION 1
 1.1 Introduction 1
 1.2 Literature Review 5

CHAPTER II : CANONICAL WEIGHTS IN CATEGORICAL SCALING 18
 2.1 Relation Between Two Sets 18
 2.2 Categorical Analysis (Lancaster) 20

CHAPTER III: MEASUREMENT OF INTERNAL DEPENDENCE IN A SINGLE SET OF VARIABLES 25
 3.1 Generalization of Canonical Correlation Concept ... 25
 3.2 Justification of Minimum-Determinant Criterion 26

CHAPTER IV : MULTI-DIMENSIONAL CATEGORICAL SCALING 33
 4.1 Conversion of Contingency Tables to Reduced Correlation Matrix 33
 4.1.1 Description of Algorithm 33
 4.1.2 Description of the Computer Program for CER 36
 4.2 Initial Estimate and Approximate Scale Values 47
 4.2.1 Description of Algorithm 47
 4.2.1.1 Arbitrary Determination of the Initial Values 47
 4.2.1.2 Average Canonical Scales 47
 4.2.1.3 Further Improvement of 4.2.1.2 49
 4.2.1.4 Multiple Regression Approach 49
<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.1.5 Canonical-Multiple Correlation Approach</td>
</tr>
<tr>
<td>4.2.2 Description of the Computer Program for ICW</td>
</tr>
<tr>
<td>4.3 Minimum-Determinant Solution</td>
</tr>
<tr>
<td>4.3.1 Description of Algorithm</td>
</tr>
<tr>
<td>4.3.2 Description of the Computer Program for FPM</td>
</tr>
<tr>
<td>4.4 Reduction to Original Scales</td>
</tr>
<tr>
<td>4.4.1 Description of Algorithm</td>
</tr>
<tr>
<td>4.4.2 Description of the Computer Program for RTE</td>
</tr>
</tbody>
</table>

CHAPTER V : RELATION TO INVERSE OF CANONICAL-PARTIAL AND CANONICAL-MULTIPLE CORRELATION MATRICES

CHAPTER VI : ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 (3 x 3 x 3) Case</td>
</tr>
<tr>
<td>6.2 (2 x 5 x 2) Case</td>
</tr>
<tr>
<td>6.3 (4 x 4 x 3 x 3) Case</td>
</tr>
<tr>
<td>6.4 (4 x 4 x 4 x 4) Case</td>
</tr>
<tr>
<td>6.5 A Validation Study</td>
</tr>
<tr>
<td>6.6 Comparison of Initial Trials</td>
</tr>
</tbody>
</table>

CHAPTER VII : SUMMARY AND CONCLUSION

BIBLIOGRAPHY

APPENDICES
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.1</td>
<td>The ((3 \times 3 \times 3)) Contingency Table</td>
<td>78</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Two-way Table (Taste vs Color)</td>
<td>79</td>
</tr>
<tr>
<td>6.1.3</td>
<td>Two-way Table (Region vs Color)</td>
<td>79</td>
</tr>
<tr>
<td>6.1.4</td>
<td>Two-way Table (Taste vs Region)</td>
<td>79</td>
</tr>
<tr>
<td>6.2.1</td>
<td>The ((2 \times 5 \times ?)) Contingency Table</td>
<td>89</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Two-way Table (Sex vs Age)</td>
<td>90</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Two-way Table (Sex vs Risk)</td>
<td>90</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Two-way Table (Age vs Risk)</td>
<td>91</td>
</tr>
<tr>
<td>6.3.1</td>
<td>The ((4 \times 4 \times 3 \times 3)) Contingency Table</td>
<td>99</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Two-way Table (A vs B)</td>
<td>99</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Two-way Table (A vs C)</td>
<td>100</td>
</tr>
<tr>
<td>6.3.4</td>
<td>Two-way Table (A vs D)</td>
<td>100</td>
</tr>
<tr>
<td>6.3.5</td>
<td>Two-way Table (B vs C)</td>
<td>100</td>
</tr>
<tr>
<td>6.3.6</td>
<td>Two-way Table (B vs D)</td>
<td>101</td>
</tr>
<tr>
<td>6.3.7</td>
<td>Two-way Table (C vs D)</td>
<td>101</td>
</tr>
<tr>
<td>6.4.1</td>
<td>The ((4 \times 4 \times 4 \times 4)) Contingency Table</td>
<td>113</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Two-way Table (A vs B)</td>
<td>114</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Two-way Table (A vs C)</td>
<td>114</td>
</tr>
<tr>
<td>6.4.4</td>
<td>Two-way Table (A vs D)</td>
<td>114</td>
</tr>
<tr>
<td>6.4.5</td>
<td>Two-way Table (B vs C)</td>
<td>115</td>
</tr>
<tr>
<td>6.4.6</td>
<td>Two-way Table (B vs D)</td>
<td>115</td>
</tr>
<tr>
<td>6.4.7</td>
<td>Two-way Table (C vs D)</td>
<td>115</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Categories and Expected Values</td>
<td>128</td>
</tr>
<tr>
<td>6.5.2</td>
<td>The ((4 \times 4 \times 4)) Contingency Table</td>
<td>128</td>
</tr>
<tr>
<td>6.5.3</td>
<td>Two-way Table ((A \text{ vs } B))</td>
<td>129</td>
</tr>
<tr>
<td>6.5.4</td>
<td>Two-way Table ((A \text{ vs } C))</td>
<td>129</td>
</tr>
<tr>
<td>6.5.5</td>
<td>Two-way Table ((B \text{ vs } C))</td>
<td>129</td>
</tr>
</tbody>
</table>
CHAPTER I
INTRODUCTION

1.1 Introduction

In an article in Science, S. S. Stevens [1946] suggested some definitions of scales for observations, which have become rather widely adopted. Most statistical analyses, especially multivariate methods, require that measurement be available in an "interval scale" (in Stevens' terminology), i.e. that distance from a point on the scale to another can be related to distance between two points at a different location of the scale. The weaker assumption that data be on an "ordinal scale" presents no serious problem either. Rank ordering methods can be applied, or empirical transformations can be made from such ordinal scales to marginally normal interval scales; methods to do this were widely used in the late 19th century, especially in Psychophysics.

The last of Stevens' scales, the "nominal scale", poses quite different problem. A variable possessing a nominal scale can be formally translated into numbers, but such numbers serve for identification only. For example, the variable "color of hair" could be recorded as blond = 1; brown = 2; black = 3; red = 4; etc. It would obviously be absurd to obtain "mean values", linear combination, or
"standard deviations" of such numbers. But what is one to do if a study of relationship between, say, eye color and hair color (and other nominally scaled variables) is desired?

The object of scaling is the translation of raw data into some other numerical values so that standard statistical analyses may be performed on the latter. The standard statistical analyses - paired and pooled t tests, analysis of variance, etc. - assume that the data are scored on an interval scale. Where the raw data are in the form of ranks, or in the form of grouped ordinal data, analyses are often adequate even if no transformations are made. For example, in the Kruskal-Wallis technique, ranks are treated as if they were numbers on an interval scale. Only where the number of sequential categories is very small, or where the proportion of data in each category is far removed from the expected proportion under a normal distribution, is it necessary to apply one of the marginal normalization techniques.

Where raw observations are recorded on a nominal scale, the object of scaling is to transform them so that the resulting numbers can be regarded as lying on an interval scale. Such translation is impossible unless some additional information is available - criterion groups or, as in the present case, information on other nominal variables. As some form of distribution must be approximated in such scaling, the normal distribution is usually chosen as the one to be approached by the transformed data. The reason for choosing
the normal distribution, univariate or multivariate, is that the various forms of linear analyses lead to "best" test statistics when errors are additive and normally distributed. According to Gauss, when errors are additive and when linear estimators are the maximum likelihood estimators of the location parameters ("Axiom of the Mean") the errors will have a normal distribution, provided only that data be continuous, and that there be three or more observations.

For scaling of nominal variables it became clear to earlier workers that some criterion, some principle, must be utilized to transform the category numbers or levels in a nominal scale into new scale values which have, approximately the properties of interval scales. In contrast to Stevens' terminology, such variables have been called "categorical" or "categorized", in the literature (M.G. Kendall [1948]); we shall employ that designation. R.A. Fisher [1940] proposed a set of weights (i.e. numbers into which the original nominal values are to be translated) chosen in such a way that, in terms of the new scaled values, Euclidean distances between some well defined criterion groups become as large as possible. Lancaster [1957] regards the criterion variable also as a random variable, and shows that a scaling procedure based on this criterion variable gives the closest approach to bivariate normality. However, the same author [1960] then proceeds in a direction of stepwise regression rather than multivariate normality, and thus has merely an approximation to
the more general problem of several sets of categorized variables. The bivariate methods proposed by Fisher and Lancaster produce identical scales under all conditions; they are, in modern terminology, discriminant functions for dummy variables \(y_1, y_2, \ldots, y_k \), where \(y_i = 1 \) if the categorical scale value \(i \) has been applied to an observation, and 0 otherwise. The equivalence of this technique with Lancaster's canonical correlation approach was used by Kundert and Bargmann \[1972\] in order to scale each categorical variable against several criteria.

A multivariate generalization of Lancaster's approach is not available. Such an approach is needed when it is impossible to classify categorized variables into criteria and responses, where, in fact \((k - 1)\) variables would have to serve as criteria for the \(k^{th} \) in a set of \(k \) nominal variables. In this dissertation, a scaling technique is developed on the basis of such an approach. Frequencies of occurrence of each combination of \(k \) values are recorded in a \(k \)-dimensional contingency table (see \textit{CHAPTER IV}). Experimental units occurring in the same cell of the \(k \)-way contingency table have the same vector of categorical responses \([c_1, c_2, \ldots, c_k]\), where the \(c_j \) are integers. In analogy with Lancaster's model, \(k \) sets of dummy variables are constructed, each set having as many members as the categorical variable has levels. From this information, a super-matrix can be constructed, consisting of \(k(k + 1)/2 \) submatrices \(R_{ij} \), where \(R_{ij} \) contains
the sample correlations between the dummy variables in the
i-set and those in the j-set. The internally-scaled variables
are then found, in much the same way as the approaches by
Fisher and Lancaster, as canonical weights on each of the k
sets of dummy variables. To solve this problem, however, we
must make a choice, based on the problem on hand, among the
many proposed generalization of canonical correlation; we
chose the Minimum-Determinant criterion proposed by R.G.D.
Steel [1949], i.e. the set of weights which minimizes
the determinant of the resulting correlation matrix. The
reasons for the preference are stated, in some detail, in
section 3.2. To be usable in conjunction with likelihood-
ratio testing, Steel's results must be restricted to the
correlation matrix. The determinant of the variance-
covariance matrix, inappropriately called "generalized variance", has no meaning in likelihood-ratio testing.

1.2 Literature Review

H. Hotelling [1936] proposed the canonical correlation
as a measure of dependence between two sets of random
variables. The definition has no distributional assumptions;
however, the use of linear combinations restricts the distri-
bution to classes which are closed under linear operations;
there are very few such classes (multivariate normal and
Dirichlet, for example). From a set of response variables y
, a single variable $u = a'y$ is formed and from a set z, a
linear combination $v = \beta'z$ can be formed where α and β are chosen in such a way that $|\text{corr}(u, v)|$ is a maximum. An elementary derivation shows that this "canonical correlation" is the positive square root of the largest characteristic root of a matrix product $\Sigma_{y' y}^{-1} \Sigma_{y' z}^{-1} \Sigma_{z' z}$, where $\Sigma_{y y}$ denotes the variance-covariance matrix for the y set, $\Sigma_{z z}$ that for the z set and $\Sigma_{y z}$ the covariance matrix whose (i, j) element is the covariance between y_i and z_j. The ideal weights α and β are called "regression-like" parameters (S.N. Roy [1957]) and "weights of the best-predictable criterion" (Hotelling [1936]), respectively. Given observations obtained from a sample, sample covariance or correlation matrices can be employed to obtain the maximum likelihood estimates r^2, α and β of the above-mentioned parameters ρ^2, α and β, for the multivariate normal case. The sample canonical correlation coefficient is a test statistic (based on the "Union-Intersection" principle) for the test of independence between two sets of random variables.

Although S.S. Wilks [1935] obtained likelihood-ratio test statistics for the test of independence in two (and several) sets of random variables, the sample canonical correlation, which was discovered later, does not yield the same test; where the latter is the largest characteristic root of $R^{-1}_{y y} R_{y z} R^{-1}_{z z} R'_{y z}$, the likelihood-ratio statistic is $|I - R^{-1}_{y y} R_{y z} R^{-1}_{z z} R'_{y z}|$, i.e. the product of the complements
of all the roots. The same author [1932] also found the likelihood-ratio statistic for the test for one set \(y \), of internal independence, to be \(|R_i| \), the sample correlation matrix of the \(y \) set. He also found that the statistic to test \(H_0: \sum = I \) is \(|S| e^{-\text{tr} S} \) but, unfortunately, called the meaningless first factor of this expression the "generalized variance".

In his dissertation, R.G.D. Steel [1949] studied the problem of generalizing the canonical correlation to \(k (>2) \) sets of variables but this problem should not be confused with the likelihood-ratio test statistic for independence in \(k \)-sets, which was described by Wilks [1935] and Wald-Brookner [1941]. Steel's approach consisted in constructing \(k \) sets of weights \(a_1', a_2', \ldots, a_k' \) to be applied to the \(k \) sets of random variables \(X_1, X_2, \ldots, X_k \) in such a way that if \(u_i = a_i' X_i \) \((i = 1, 2, \ldots, k)\), the determinant of the matrix of correlations between the \(u_i \)'s is a minimum. Steel thus appears to be the first author to estimate parameters in such a way that the resulting likelihood-ratio statistic (here the correlation determinant, the L.R. statistic for the test of internal independence) is maximized or minimized. This principle has been applied to advantage by several later authors.

A single Union-Intersection test statistic for the test of independence has not been described. Roy and Bargmann [1958] proposed a set of several statistic ("step-down
correlation") for this purpose. For estimation purposes, however, a single criterion function is required. Social scientists have described a multitude of indices to express the relationship between \(k \) sets of variables by a single number; however, since such indices are invariably defined for a sample only (and not, as they must be, as parametric functions) they are of no value for statistical inference and must be regarded as descriptive statistics only.

P. Horst [1961] offers four different suggestions for indices of correlations among several sets of variables. As in the previous papers by him and others, these indices are defined for samples only. Initially, Horst performs the same reduction as Steel [1949], (an algorithm which is explained in section 4.1) in order to obtain identity matrices for the correlations within each set. In one of the cases, a weighted sum of the correlations is employed. In another index, the matrices are approximated by matrices of rank one. "Maximum variance" (actually, weighted sums of squares) methods are suggested on correlation elements. To some social scientists who report numerous indices in their studies such an index number may have some relative meaning (just as the Dow-Jones index does to economists, or the Intelligence-Quotient to some educators).

Such numbers cannot be used as criteris for statistical estimation or inference, since they have no relation to estimable parameters. As demonstrated in section 4.1, Steel's
Minimum-Correlation-Determinant seems to be the only currently known generalization that is based on a parametric representation, and can therefore be used for the estimation of weights.

The following treatments of the nominal scaling problem constitute a more comprehensive approach. Again, a choice had to be made from an abundance of material (e.g. the different, often contradictory, approaches scattered throughout Vol. II: Inference and Relation, of Kendall and Stuart [1961]).

R.A. Fisher [1949] regarded each categorical variable as \(k \) (zero-one) variables \((y_1 = 1 \text{ if the response was } i, 0 \text{ otherwise}) \). His scale values are what we would today call the estimated weights of the discriminant function, i.e. those that produce maximum discrimination between defined groups according to a single criterion. He proposed an iterative solution rather than the simpler characteristic root and vector approach which is used today.

H.C. Lancaster [1957] obtained the same results as R.A. Fisher, using characteristic root-characteristic vector methods and starting from different assumptions. However, his objective was to approximate a pair of categorical variables by a bivariate normal pair of variables. For Lancaster [1957] the "criterion" of R.A. Fisher is itself a categorical variable. Thus, Lancaster has two sets of dummy variables: \(y' = [y_1, y_2, \ldots, y_r] \) for the \(r \) levels of categorical variable \(y \), and \(z' = [z_1, z_2, \ldots, z_s] \)
for the s levels of categorical variable z. An experimental unit which has response i on categorical variable y and response j on categorical variable z would thus have s + r responses on the dummy variables with $y_i = 1$, $z_j = 1$ and all other dummy variables equal to zero (of course the resulting correlation matrices are singular). Lancaster then shows that, if scale values a are chosen for y and scale values b are chosen for z so that $|\text{est.corr}(a'y, b'z)|$ is a maximum, then the scaled variates have a best approximation to normality. In a later attempt to generalize the method to k categorical variables, Lancaster [1960] uses different arguments, which are not as convincing as the method used for the scaling of two nominal variables.

Hays [1963] suggests a quantity η^2, to measure the ability of a predictor to explain the variance of each dependent variable code dichotomized against the others. A natural generalization of this across codes would be the ratio of the sum of within-group sums of squares to the sum of total sums of squares, i.e.

$$\eta_i^2 = \frac{\sum V_{ip}}{\Sigma T_p} \quad \text{or} \quad \eta_i^2 = \frac{\sum S_p^2 \eta_{ip}^2}{\Sigma S_p^2}$$

where

$$V_{ip} = \sum w_{ij}(y_{ij} - \bar{y}_p)^2$$, within-group sums of squares for the p^{th} dummy dependent variable on i^{th} predictor.

$$T_p = \sum w_k (y_{kp} - \bar{y}_p)^2$$, total sums of squares for the p^{th} dummy dependent variable.
The sample variance of the p^{th} dummy variable is given by:

$$s_p^2 = \frac{\sum_k w_k (y_{kp} - \bar{y}_p)^2}{\sum_k w_k}$$

where w_k is the sampling weight for $k \in Q_{ij}$, and Q_{ij} is the subset of individuals having j^{th} code value on predictor i.

The ratio of within-group sum of squares to the total sum of squares on the p^{th} dummy variable on the i^{th} predictor is defined as:

$$\eta_{ip}^2 = \frac{V_{ip}}{T_p}$$

Messenger and Mandell [1972] suggest a bivariate θ_i to measure strength of association using a criterion of correct placement in the dependent variable code which is a linear transformation of the Goodman-Kruskal Lambda statistic (Goodman and Kruskal [1954]). They claim that it has more intuitive appeal than Lambda and fits more naturally with a multivariate model. Theta is defined simply as the proportion of the sample correctly classified when using a prediction-to-the-mode-strategy in the frequency distribution of each category.

For multivariate cases, two statistics are used to
measure the multivariate strength of association. These are the generalized squared multiple regression coefficient R^2 and a multivariate version of Θ, the Theta statistic. This statistic generalizes the bivariate prediction-to-the-mode concept. It is defined as the proportion correctly classified using a decision rule that assigns each individual to that dependent variable category which has the maximum forecast value for that individual; this latter principle is, of course, similar to R.A. Fisher's. It appears that the Messenger and Mandell technique bears the same relation to the Fisher-Lancaster technique as the step-wise 0-1 multiple regression approximation bears to the discriminant function.

In an attempt to define single indices of correlation among k sets, J. McKeon [1962] starts with the correlation between two measurements x and y, based on a paired sample of size n. He then defines a generalized measure of product moment correlation among k sets of variates by

$$\rho(x_1, x_2, \ldots, x_k) = \max r_i(a_1x_1, a_2x_2, \ldots, a_kx_k)$$

$$= \frac{2}{n-1} \left[\sum_{i,j} a_ia_j SP(x_i, x_j) \right] \sum a_i^2 SSx_i \quad (1.2.1)$$

where r_i is the intraclass correlation a_i is an arbitrary set of weights, each $SP(x_i, x_j)$ is a sum of products, and each SSx_i is a sum of
He then defines the "Generalized Canonical Correlation" for \(k \) sets of variates as the maximum value of the generalized product moment correlation for the \(k \) linear composites \(a_i' x_i \) \((i = 1, 2, \ldots, k)\), with respect to variation of the \(a_i \).

Then

\[
\rho(x_1, x_2, \ldots, x_k) = \max r_L(a_1' x_1, a_2' x_2, \ldots, a_k' x_k)
\]

\[
= \max \frac{1}{k - 1} \left[\frac{\Sigma a_i' S_{ij} a_i}{\Sigma a_i' S_{ii} a_i} - 1 \right] \quad (1.2.2)
\]

where

\[
S_{ij} = \sum_{x=1}^{p} (x_a - \bar{x})(y_a - \bar{y})' \quad (1.2.3)
\]

\[
x_a' = [x_{1a}, x_{2a}, \ldots, x_{pa}]
\]

\[
y_a' = [y_{1a}, y_{2a}, \ldots, y_{qa}]
\]

\((i = 1, 2, \ldots, p \text{ variates})\)

\((j = 1, 2, \ldots, q \text{ variates})\)

\((a = 1, 2, \ldots, n \text{ observations})\)

This is equivalent to maximizing the quantity

\[
\gamma = \frac{\Sigma a_i' S_{ij} a_i}{\Sigma a_i' S_{ii} a_i} = (k - 1)r_L + 1 \quad (1.2.4)
\]

Let \(S \) be the sum of products matrix for the \(k \) sets combined and let \(S_d \) be the diagonal super-matrix with element \(S_{ii} \).

Let \(a' = [a_1', a_2', \ldots, a_k'] \) be the vector of combined
weights, then
\[
\gamma = \frac{a' S a}{a' S_d a} \tag{1.2.5}
\]

As usual, the maximizing \(\gamma \) and \(a \) satisfies the relation
\[
(S_d^{-1} S - \gamma I) a = 0, \quad r_I = \frac{\gamma - 1}{k - 1} \tag{1.2.6}
\]

and \(\gamma = \text{Ch}_{\max} (S_d^{-1} S) \tag{1.2.7} \)

where \(\text{Ch}_{\max} \) denotes the largest characteristic root.

He extends canonical correlation to more than two sets of variables, based upon a generalized association measure.
\[
r_I = \frac{2}{k - 1} \left[\frac{\Sigma \sigma_{ij}}{\Sigma \sigma_i^2} \right] = \frac{\sigma_t^2 - \Sigma \sigma_i^2}{(k-1) \Sigma \sigma_i^2} \tag{1.2.8}
\]

where \(\sigma_{ij} \) are the covariance of variables,
\(\sigma_t^2 \) are the variance of their sums. \(^1\)

He also discussed another possible generalization from a maximization of
\[
h = \frac{\Sigma \sigma_{ij}}{\Sigma \sigma_i \sigma_j} = \frac{\sigma_t^2 - \Sigma \sigma_i^2}{(\Sigma \sigma_i)^2 - \Sigma \sigma_i^2} \tag{1.2.9}
\]

\(h \) has a solution in terms of roots and vectors for the case of a single variate per set, and this is closely related to Lovinger's \([1947]\) coefficient of homogeneity.

\(^1\) This is McKeon's notation, although what he calls \(\sigma_{ij} \) are actually sample quantities.
In dealing with the problem of weights in the absence of a criterion, some authors describe sample index-numbers which assign weights to each standardized variable according to its loading on the first principal component of the resulting correlation matrix (Horst [1936], Edgerton and Kolbe [1936], Wilks [1938], Lord [1958]).

Kundert and Bargmann [1972] use the similarities between the Fisher and Lancaster techniques to derive a series of test statistics and their distributions in the case of bivariate categorical scaling. As was stated earlier, these techniques produce identical scale values; however, Kundert and Bargmann use other interpretive statistics (correlations against discriminant function) to identify those levels of a categorical variable which contribute most strongly to its association with some criterion. The main objective of their scale analysis is to try to interpret the dependence between criteria and categorized variables.

In the same general spirit, F.M. Andrew and R.C. Messenger [1973], in their multivariate Nominal Scale Analysis, stated that a general goal of multivariate data analysis is to understand how a dependent variable is affected by a set of independent variables. They raise five general questions: (1) as a whole, how well do the independent variables explain the variability in the dependent variables? (2) what is the relationship of a particular independent variable to the dependent variables, while other independent
variables are held constant? (3) to what extent the dependent variables can be explained by a particular independent variable, over and above the other independent variables? (4) taking into account a subject's scores on an independent variable, what score should one predict on the dependent variable, and (5) what is the deviation of the prediction from an observable score?

The Multivariate Nominal Scale Analysis is designed to handle problems where (a) the dependent variable is a set of mutually exclusive categories, (b) the independent variables may be observed at any level, and (c) any form or pattern of relationship may exist between any independent variables and dependent variable and also between any pair of independent variables.

The method is designed to be relevant for "theoretical-oriented" and "conceptual-oriented" analysis. A second characteristic of Multivariate Nominal Scale Analysis is its ability to analyse relative large number of predictors with moderate sized data sets. A third characteristic is its focus on the magnitudes of relationships rather than the statistical significance of those relationships.

Finally, both the one-way analysis of variance eta-square statistic η^2_{ip} by Hays [1963] and bivariate Theta by Messenger and Mandell [1972] are used to measure

2) This is a traditional name given to $\frac{SSH}{SSH+SSE}$, the incomplete Beta statistic derived from F.
the strength of the bivariate relationship between the dependent variables and each predictor.

P.H. Dubois [1957] and E. Jenning [1965] defined semi-partial correlation and multiple semi-partial correlation (extended to the canonical semi-partial correlation) when the third set is partialed out from only one of the two sets.

C.A. Smith [1953] has shown that the generalization of the "intraclass" correlation to p measurement on n groups is the largest characteristic root and the associated vector of a certain matrix.
CHAPTER II

CANONICAL WEIGHTS IN CATEGORICAL SCALING

2.1 Relation Between Two Sets

In this section, the well-known results of canonical correlation analysis (analysis of dependence between two sets) will be summarized.

Let

\[y' = \begin{bmatrix} y_1, y_2, \ldots, y_p \end{bmatrix}, \quad z' = \begin{bmatrix} z_1, z_2, \ldots, z_q \end{bmatrix} \]

(2.1.1)

and then form new variables as linear combinations of all \(y \)'s and all \(z \)'s,

\[u = \alpha'y, \quad v = \beta'z \]

(2.1.2)

Choose the vectors \(\alpha \) and \(\beta \) in such a way that \(\text{corr}(u, v) \) is a maximum, and call this maximum the canonical correlation between the sets \(y \) and \(z \). If \(y \) is considered to be the predictor set then call the elements of \(\alpha \) "regression-like" parameters and if \(z \) is thought of as the criterion set, then call \(\beta'z \) the "best-predictable-criterion" (Hotelling [1936]).

Now

\[\text{cov}(u, v) = \text{cov}(\alpha'y, \beta'z) = \alpha' \cdot \text{cov}(y, z') \cdot \beta \]

\[= \alpha' \sum_{12} \beta \]

(2.1.3)

where \(\sum_{12} \) is the upper right block of the covariance matrix and \(\alpha, \beta \) are the weights of the canonical variables \(y \) and \(z \).
\[\begin{pmatrix} \mathbf{y}' \\ \mathbf{z}' \end{pmatrix} = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{12}' & \Sigma_{22} \end{pmatrix} \begin{pmatrix} \mathbf{p} \\ \mathbf{q} \end{pmatrix} \quad (2.1.4) \]

Since the length of \(\alpha \) and \(\beta \) are indeterminate, they can be chosen so that
\[\alpha' \Sigma_{11} \alpha = 1 \quad \beta' \Sigma_{22} \beta = 1 \quad (2.1.5) \]
hence \(\text{var}(u) = 1 \) and \(\text{var}(v) = 1 \), therefore, under the above constraints, \(\text{corr}(u,v) = \text{cov}(u,v) = \alpha' \Sigma_{12} \beta \).

It is well-known that the square of this maximum correlation, is the largest characteristic root of
\[\Sigma_{11}^{-1} \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{12}' , \]
and \(\alpha \) is the associated characteristic vector; \(\beta \) is easily found to be
\[\beta = \Sigma_{22}^{-1} \Sigma_{12}' \alpha \quad (2.1.6) \]

Of course, multiplication of each of the vectors \(\alpha \) and \(\beta \) by an arbitrary -positive or negative- constant will produce equally valid weights, which maximize the correlation between \(u \) and \(v \). The constraints (2.1.5) would then not be satisfied.

1) Letters in parentheses at the left and top margin identify sets of variables; letter on the bottom and at the righthand margin denote the order of the matrices.
2.2 Categorical Analysis (Lancaster)

The results of section 2.1 can now be applied to a two-way contingency table of size $p \times q$, where p is the number of levels of one categorized response variable and q is the number of states of the other response variable\(^2\). In order to scale the states of the response variables, dummy variables are introduced, as follows:

Let x_i be the dummy variable for "row" ($i = 1, 2, \ldots, p$) and y_j be that for "column" ($j = 1, 2, \ldots, q$), associated with each tally in the contingency table, there are $p + q$ dummy variables.

$$
\begin{align*}
 x_{ik} &= 1, \text{ if the } k^{th} \text{ observation appear in row } i \\
 &= 0, \text{ otherwise.} \\
 y_{jk} &= 1, \text{ if the } k^{th} \text{ observation appear in column } j \\
 &= 0, \text{ otherwise.} \\
\end{align*}
$$

where $k = 1, 2, \ldots, n$.

Therefore

$$
\begin{align*}
 \sum_k x_{ik}^2 &= n_i, & \sum_k y_{jk}^2 &= n_j \\
 \sum_k x_{ik} &= n_i, & \sum_k y_{jk} &= n_j \\
 \sum_k x_{ik} y_{hk} &= \sum_k y_{jk} y_{mk} &= 0
\end{align*}
$$

since an observation cannot be in row i and row h or column j and column m at the same time.

\(^2\) Both expressions, "level" and "state" are customary; we will regard them as equivalent.
Let $s(x)$ denotes the corrected sums of squares and products for the dummy variables x; the i^{th} diagonal element is

$$s_{ii} = \sum x_{ik}^2 - \left(\frac{\sum x_{ik}}{n} \right)^2$$

$$= n_i - \frac{n_i^2}{n}$$

(2.2.3)

The (i,h) element is

$$s_{ih} = \sum x_{ik} x_{hk} - \left(\frac{\sum x_{ik}}{n} \right) \left(\frac{\sum x_{hk}}{n} \right)$$

$$= - \frac{n_i n_h}{n}$$

(2.2.4)

If the k^{th} individual's tally occurs in row i and column j of the contingency table, there are thus $(p + q)$ scores on the dummy variables, $[0,0,\ldots,0,1,0,\ldots,0]_i$ on x and $[0,0,\ldots,0,1,0,\ldots,0]_j$ on y.

The matrix of sums of squares and products for the x variable is thus

$$E_{xx} = D_{n_i} - \frac{n_i n'_i}{n}$$

(i=1,2,\ldots,p) (2.2.5)

where D_{n_i} is a diagonal matrix with typical element n_i.

(i=1,2,\ldots,p) and n'_i is the row vector $[n_1,n_2,\ldots,n_p]$ the vector of row sums. For the response variable y, the matrix of sums of squares and products is accordingly

$$E_{yy} = D_{n'_j} - \frac{n_j n'_j}{n}$$

(j=1,2,\ldots,q) (2.2.6)
where $D_{n,j}$ is a diagonal matrix with typical element n_{j} (j=1,2,...,q) and $n_j = [n_{1},n_{2},...,n_{q}]$, the vector of column sums.

Since $\sum x_{ik}y_{jk} = n_{ij}$ which is the cell frequency for cell (i,j) of the two-way contingency table, the corrected sums of products between x_i and y_j is

$$S_{ij}^{(xy)} = n_{ij} - \frac{n_i \cdot n_j}{n} \quad (i=1,2,...,p) \quad (j=1,2,...,q)$$

in matrix form

$$E_{xy} = N - \frac{n_i \cdot n_j}{n} \quad (2.2.8)$$

where N is the incidence matrix, and its typical element n_{ij} is the cell frequency in row i and column j of the contingency table.

Now we can perform the "Canonical Analysis" :

Since $E_{xx}^{(-1)} = D_{n_i}^{-1}$ and $E_{yy}^{(-1)} = D_{n_j}^{-1}$

$$E_{xx}^{(-1)} E_{xy} E_{yy}^{(-1)} E_{xy} = D_{n_i}^{-1} (N - \frac{n_i \cdot n_j}{n}) D_{n_j}^{-1} (N' - \frac{n_i' \cdot n_j'}{n})$$

$$= (D_{n_i}^{-1} N - \frac{i \cdot n_j}{n}) (D_{n_j}^{-1} N' - \frac{i \cdot n_j'}{n}) \quad (2.2.9)$$

where

$$i' = [1,1,...,1] \ , \ \text{thus} \ . \ D_{n_i}^{-1} n_i = i$$

$$D_{n_j}^{-1} n_j = i$$

3) $A^{(-1)}$ denotes a conditional inverse of A, i.e. any matrix for which $AA^{(-1)}A = A$ (Bargmann [1966], rule 9.1).
Hence
\[\mathbf{E}_{xx}^{(-1)} \mathbf{E}_{xy} \mathbf{E}_{yy}^{(-1)} \mathbf{E}_{xy} = D_{n_i}^{-1} N D_{n_j}^{-1} N' - \frac{D_{n_i}^{-1} \mathbf{N_1} \mathbf{N_1}'}{n} \]
\[= D_{n_i}^{-1} (N D_{n_j}^{-1} N' - \frac{\mathbf{N_1} \mathbf{N_1}'}{n}) \] \quad (2.2.10)

since \(\mathbf{N_1} = \mathbf{N_1} \).

Denote the final matrix by \(Q^* \); then the square of the maximum canonical correlation between the \(x \) set and the \(y \) set can be obtained by finding the largest characteristic root of \(Q^* \), since
\[\rho^2 = \text{Ch}_{\text{max}}(Q^*) = \lambda, \text{ say.} \] \quad (2.2.11)

We will determine the \(\lambda \) and the associated characteristic vector \(\mathbf{a} \), so that
\[Q^* \mathbf{a} = \lambda \mathbf{a} \] \quad (2.2.12)

Let \(W = (N D_{n_j}^{-1} N' - \frac{\mathbf{N_1} \mathbf{N_1}'}{n}) \) \quad (2.2.13)
then
\[D_{n_i}^{-1} W \mathbf{g} = \lambda \mathbf{g} \] \quad (2.2.14)
where \(\mathbf{g} \) is a characteristic vector.

Let \(\mathbf{g} = D_{n_i}^\frac{1}{2} \mathbf{a} \) and
premultiply \(D_{n_i}^{-1} W \mathbf{g} = \lambda \mathbf{g} \) by \(D_{n_i}^\frac{1}{2} \); then
\[D_{n_i}^{-\frac{1}{2}} W \mathbf{g} = \lambda D_{n_i}^\frac{1}{2} \mathbf{g} \] \quad (2.2.16)
therefore
and since \(\text{Ch}(ABC) = \text{Ch}(CAB) \), hence

\[
\rho^2 = \text{Ch}_{\max}(Q^*) = \text{Ch}_{\max}(D^{-1} W) = \text{Ch}_{\max}(D^{-\frac{1}{2}} WD^{-\frac{1}{2}})
\]

(2.2.18)

and, denoting by \(Q \) the symmetric matrix in (2.2.17) then

\[
Q \mathcal{A} = \lambda \mathcal{A}
\]

so

\[
b = -E_{yy}^{-1} E_{xy} \mathcal{A} = -D^{-1} (N' - \frac{n_i n_j}{n}) \mathcal{A}
\]

(2.2.19)

are the weights that maximize \(|\text{corr}(u,v)| \) where

\[
u = a' x \quad \text{and} \quad v = b' y
\]

(2.2.20)

Now, recall that \(x \) and \(y \) are \((0,1)\) variables; let \(x_k^i \) denote the \(x \)-vector of the \(k \)th subject and \(y_k^j \) denote his \(y \)-vector. If he was in state \(i \) in variable \(x \) (rows) and in state \(j \) in variable \(y \) (columns), \(u_k = a' x_k = a_i \) and \(v_k = b' y_k = b_j \); thus \(a_i \) is the scaled response for state \(i \) in \(x \), and \(b_j \) is the scaled response for state \(j \) in \(y \).
CHAPTER III
MEASUREMENT OF INTERNAL DEPENDENCE
IN A SINGLE SET OF VARIABLES

3.1 Generalization of the Canonical Correlation Concept

Before we can generalize the bivariate results of CHAPTER II, we must discuss the generalization of the canonical correlation concept.

Let \(x \) be a given single set of variables with \(p \) variables in the set, and let

\[
P = \begin{bmatrix}
1 & \rho_{12} & \rho_{13} & \cdots & \rho_{1p} \\
\rho_{12} & 1 & \rho_{23} & \cdots & \rho_{2p} \\
\rho_{13} & \rho_{23} & 1 & \cdots & \rho_{3p} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\rho_{1p} & \rho_{2p} & \rho_{3p} & \cdots & 1
\end{bmatrix}
\]

(3.1.1)

be their correlation matrix. Let \(E \) be a matrix of corrected sums of squares and products \(^1\) for \(x \) and let \(\Sigma \) be the covariance matrix. Let \(D \) be a diagonal matrix with diagonal elements of \(E \) in the principal diagonal and zero elsewhere. The sample correlations are then

\[
r_{ij} = \frac{e_{ij}}{\sqrt{e_{ii} e_{jj}}} \quad \text{and} \quad r_{ii} = 1
\]

(3.1.2)

1) Or a matrix of S.S. and S.P. error if the sample came from some same analysis of variance design
Since we want to test internal dependence, a null hypothesis is $H_0: P = I$; this is equivalent to saying that the covariance matrix is a diagonal matrix i.e. $H_0: \Sigma = D$ where the principal diagonal elements are σ_{ii} (arbitrary) and off-diagonal elements are zero. Then, as is well known, the likelihood-ratio test statistic is $|R|$, the determinant of the sample correlation matrix.

To compare with available table, one uses $-m \ln |R|$ as a test statistic distributed under null hypothesis as a series of x^2-variables (Wald-Brookner [1941], Morrison [1967]).

Thus $|R|$ is the likelihood-ratio statistic for the test of internal independence. Since all diagonal elements are unity, it has a maximum value of 1 (which occurs when $R = I$) and a minimum value of 0 (since $|R|$ is, of course, positive-definite or positive-semidefinite). We will demonstrate in the next section that maximization (or minimization) of parametric functions analogous to likelihood-ratio statistics is equivalent to obtaining maximum likelihood estimates. Hence, we will obtain weights in k-dimensional categorical scaling by minimizing the determinant of the resulting correlation matrix.

3.2 Justification of Minimum-Determinant Criterion

Among many different index numbers for measuring the multiple dependence between sets of variables, we choose
Steel's "Minimum Correlation Determinant", with some generalized transformation on each set for the following reason:

There is, in all known situations, a relationship between estimation by minimizing a likelihood-ratio statistic (LR) and maximum likelihood estimation (MLE). We will demonstrate this relationship below for several simple examples. We seek a parametric function, and maximum likelihood estimators have the invariance property, i.e. under certain conditions of uniqueness, if t is the maximum likelihood estimator of θ then $f(t)$ is the maximum likelihood estimator of $f(\theta)$. It is this relationship between a function of maximum likelihood estimators and the corresponding function of parameters which is used to obtain the parametric function. In the present instance we cannot formulate a parametric model for which the "Minimum Correlation Determinant" estimates would be maximum likelihood estimates. This is not necessarily a hindrance to its use, for a similar lack exists in Factor Analysis, and even in multivariate analysis of variance, where the rather artificial non-centrality parameters must be introduced before the problem can be stated as one of maximum likelihood estimation (Bargmann [1969]).

Estimation by "Minimum Likelihood-Ratio" is, of course similar to "Minimum Chi-square Estimation" (e.g. Cramer [1946]). In either case, parameters are estimated in such a way that a test statistic ("Goodness-of-fit" statistic) is
minimized. It is, of course, well known that the "modified" minimum Chi-square Statistic (Cramer, ibid), i.e. the goodness-of-fit statistic with E_1 omitted in the denominator, leads to maximum likelihood estimates. The choice of the minimum determinant procedure is thus based on a conjecture which has not been proven (except in the trivial cases where the likelihood-ratio can attain the value 1) but for which no counterexample is known. The conjecture is (as in the case of modified minimum Chi-square) that estimates obtained by minimizing likelihood-ratio statistics are maximum likelihood estimates of parameters for some model that fits the sample most closely.

Example:

Estimation of a common variance.

a) For the Simple Univariate Case:

Given a sample of size n_1 from $N(\mu_1, \sigma_1^2)$ and a sample of size n_2 from $N(\mu_2, \sigma_2^2)$:

In Ω we have

$$\ln L(\hat{\theta}) = -\frac{n}{2}\ln(2\pi) - \frac{n_1}{2}\ln\hat{\sigma}_1^2 - \frac{n_2}{2}\ln\hat{\sigma}_2^2 - \frac{n}{2}$$

where

$$\hat{\mu}_1 = \frac{\Sigma y_{1i}}{n_1}, \quad \hat{\sigma}_i^2 = \frac{\Sigma (y_{1i} - \hat{\mu}_1)^2}{n_1}.$$ \hspace{1cm} (3.2.1)

In ω, $\sigma_1^2 = \sigma_2^2 = \sigma^2$. This common σ^2 is to be estimated in such a way that the resulting likelihood-ratio statistic becomes a maximum. The logarithm of the likelihood
function is
\[\ln L(\omega | \mu_1 = \hat{\mu}_1, \mu_2 = \hat{\mu}_2) = -\frac{n}{2} \ln(2\pi) - \frac{n}{2} \ln \sigma^2 - \frac{1}{2\sigma^2} (n_1 \hat{\sigma}_1^2 + n_2 \hat{\sigma}_2^2) \]
hence, as a function of \(\sigma^2 \)
\[\ln \lambda = -\frac{n}{2} \ln \sigma^2 - \frac{1}{2\sigma^2} (n_1 \hat{\sigma}_1^2 + n_2 \hat{\sigma}_2^2) \]
\[+ \frac{n_1}{2} \ln \sigma_1^2 + \frac{n_2}{2} \ln \sigma_2^2 + \frac{n}{2} \]
\[\frac{\partial \ln \lambda}{\partial (\sigma^2)^{-1}} = \frac{n}{2} \sigma^2 - \frac{1}{2} (n_1 \hat{\sigma}_1^2 + n_2 \hat{\sigma}_2^2) \]
Trivially,
\[\hat{\sigma}^2 = \frac{n_1 \hat{\sigma}_1^2 + n_2 \hat{\sigma}_2^2}{n} \]
b) In the Multivariate Case:
We wish to test \(H_0 : \Sigma_1 = \Sigma_2 \).
In \(\omega \), the likelihood-ratio statistic will be expressed
as a function of the common \(\Sigma \).
Let \(\Sigma = \hat{\Sigma} \) be the matrix of sums of squares and products
for error in sample No. 1, \(E_2 \) the same for the sample No. 2.
Let \(\hat{\Sigma}_1 = \frac{1}{n_1} E_1 \), \(\hat{\Sigma}_2 = \frac{1}{n_2} E_2 \), then
\[\ln L(\hat{\Sigma}) = -\frac{np}{2} \ln(2\pi) - \frac{n_1}{2} \ln \left(\frac{1}{n_1} E_1 \right) - \frac{n_2}{2} \ln \left(\frac{1}{n_2} E_2 \right) \]
\[- \frac{np}{2} \]
In \(\omega \), \(\Sigma_1 = \Sigma_2 = \Sigma \) and the \(\ln L(\omega) \) as a function of \(\Sigma \), is

\[
-\frac{np}{2} \ln(2\pi) - \frac{n_1}{2} \ln |\Sigma| - \frac{n_2}{2} \ln |\Sigma| - \frac{1}{2} \text{tr} \Sigma^{-1}(E_1 + E_2)
\]

thus

\[
\ln \lambda = \frac{n}{2} \ln |\Sigma| - \frac{1}{2} \text{tr} \Sigma^{-1}(E_1 + E_2) + \frac{n_1}{2} \ln \left(\frac{1}{n_1} E_1\right) + \frac{n_2}{2} \ln \left(\frac{1}{n_2} E_2\right) + \frac{np}{2}
\]

\[
\frac{\partial \ln \lambda}{\partial \Sigma^{-1}} = \frac{n}{2} \Sigma^{-1} - \frac{1}{2}(E_1 + E_2)
\]

is that value which maximizes the likelihood-ratio statistic \(\ln \lambda \); equating \(\frac{\partial \ln \lambda}{\partial \Sigma^{-1}} \) to zero, we obtain

\[
\Sigma = \frac{E_1 + E_2}{n},
\]

the well known pooled maximum likelihood estimate.

c) In the Uniform Distribution Case:

We discuss the hypothesis \(H_0 : \theta = \theta_0 \) in \(y = [0, \theta] \).

The likelihood function is

\[
L(y) = \begin{cases}
\left(\frac{1}{\theta}\right)^n & \text{if } y_{\max} \theta \\
0 & \text{otherwise.}
\end{cases}
\]

(3.2.10)

Hence in \(\Omega \), \(\theta = y_{\max} \), since \(\theta \) cannot be less than \(y_{\max} \).

\[
L(\widehat{\theta}) = \left(\frac{1}{y_{\max}}\right)^n
\]

(3.2.11)

\[
\lambda = \left(\frac{y_{\max}}{\theta_0}\right)^n
\]

(3.2.12)
Since θ_0 must be greater than y_{max}, the θ_0 which maximizes λ is y_{max}, which is also the maximum likelihood estimate of θ.

For a more complicated relationship (e.g. estimation in Factor Analysis) see Howe [1955] and Bargmann [1957].

Because of the striking connection between minimum likelihood-ratio and maximum likelihood estimation, we will now attack the problem of canonical weights in k sets of variables by choosing the weights in such a way that the determinant of the resulting correlation matrix is a minimum (since a large determinant for the correlation matrix indicates approach to independence).

Let a_i be a set of weights for the i^{th} set, and let

$$u_i = a_i y_i \text{ then } \text{corr}(u_i, u_j) = \frac{a_i R_{ij} a_j}{h_i h_j}$$

(3.2.13)

where $h_i = \sqrt{a_i a_i}$.

Since, for the u-set, a test of independence would employ the determinant of the resulting matrix of sample correlation, we will estimate the weights a_i in such a way that $|P|$ is a minimum, where ρ_{ij}, the elements of P, are

$$\rho_{ij} = \text{corr}(u_i, u_j)$$

(3.2.14)

and hence functions of the unknown a_i.

2) We use R for the large matrix of correlation between the y's, even though the elements are parameters (ρ's), so that we can use P for the small matrix of correlation between the canonical variables.
This is Steal's approach to obtaining a single measure of dependence for k sets of variates. It has obvious relevance to the problem of categorical scaling, where the \(x_i \)-sets will be dummy variables, and hence that \(a_i \) which minimizes the determinant will have the scale values for the states of the \(i^{th} \) categorical variables.
CHAPTER IV
MULTI-DIMENSIONAL CATEGORICAL SCALING

4.1 Conversion of Contingency Tables to Reduced Correlation Matrix

4.1.1 Description of Algorithm

The information required for multi-dimensional categorical scaling is contained in the k-way contingency table. An analysis which employs moments only up to the second order derives its information from every possible two-dimensional marginal of these tables. This restriction is, necessarily, the same as that in any other instance where the central limit theorem is employed (e.g. sign-tests, goodness-of-fit, Chi-square tests). In obtaining the elements of the super-correlation matrix we thus proceed, for each pair of categorical variables, directly as in section 2.2 (formula 2.2.5, 2.2.6 and 2.2.8). For example, for four sets we construct a matrix

\[
\begin{bmatrix}
E_{11} & E_{12} & E_{13} & E_{14} \\
E_{12} & E_{22} & E_{23} & E_{24} \\
E_{13} & E_{23} & E_{33} & E_{34} \\
E_{14} & E_{24} & E_{34} & E_{44}
\end{bmatrix}
\]

(4.1.1.1)

where \(E_{11} \) has elements

\[
e_{i1}^{(1,1)} = n_{i...} - \frac{n_{i1}^{2}}{n}
\]

(4.1.1.2)
\[e_{ij}^{(1,1)} = e_{ji}^{(1,1)} = - \frac{n_{i} \ldots n_{i} \ldots}{n} \quad (4.1.1.3) \]

\[E_{12} \text{ has elements} \]
\[e_{ij}^{(1,2)} = n_{ij} - \frac{n_{i} \ldots n_{i} \ldots}{n} \quad (4.1.1.4) \]

\[\ldots \text{ etc} \]

\[E_{34} \text{ has elements} \]
\[e_{ij}^{(3,4)} = n_{i} \ldots i_{j} - \frac{n_{i} \ldots n_{i} \ldots i_{j}}{n} \quad (4.1.1.5) \]

and finally, \(E_{44} \)
\[e_{ii}^{(4,4)} = n_{i} \ldots i_{i} - \frac{n_{i} \ldots i_{i}}{n} \quad (4.1.1.6) \]

\[\text{and } e_{ij}^{(4,4)} = - \frac{n_{i} \ldots i_{j} \ldots i_{j}}{n} \quad (4.1.1.7) \]

For \(p \) categorical variables, there will thus be a super-matrix of corrected sums of squares and products, hence
\[
\begin{bmatrix}
E_{11} & E_{12} & \cdots & E_{1p} \\
E_{12} & E_{22} & \cdots & E_{2p} \\
& \ddots & \ddots & \ddots \\
E_{1p} & E_{2p} & \cdots & E_{pp}
\end{bmatrix}
\begin{bmatrix}
\ell_{1} \\
\ell_{2} \\
\vdots \\
\ell_{p}
\end{bmatrix}
\quad (4.1.1.8)
\]

where \(E_{ij} \) is of order \((\ell_{i} \times \ell_{j})\), and \(\ell_{i} \) denotes the number of states or levels of categorical variable \(i \).

For the maximum likelihood estimation of scale values (weights) it would now be necessary to reduce the \(E \) matrix.
to a matrix of correlations. Steel [1949], however, suggested a further reduction to a correlation super-matrix in which the diagonal submatrices are identity matrices. We note further that the E matrix has rank $l_1 + l_2 + \ldots + l_p - p$; hence reduction of E to a normalized R of that smaller order would be desirable.

Since E_{ii} is Gramian of rank $(l_i - 1)$, there exists real-valued, rectangular matrices T_i (order $l_i \times (l_i - 1)$) such that $T_i T_i' = E_{ii}$; among the infinitely many T_i's satisfying this relation we prefer to use that which can be obtained from the Gauss-Doolittle algorithm (see formula 11.10 and 9.14 of Bargmann [1966]), mainly because the same algorithm also produces a conditional inverse from the left, i.e. a matrix $T_i^{(-1)}$ such that $T_i^{(-1)} T_i = I ((l_i - 1) \times (l_i - 1))$. If we now premultiply E by the matrix

$$T^{(-1)} = \begin{bmatrix} T_1^{(-1)} & 0 & \ldots & 0 \\ 0 & T_2^{(-1)} & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & T_p^{(-1)} \end{bmatrix}$$

and postmultiply by $T^{(-1)'}$, the transpose of the above matrix, we will obtain a matrix
which is non-singular, and has a reduced form which makes further calculation easier.

4.1.2 Description of the Computer Program for C-E-R

This is the computer program for the contingency table to E matrix to R matrix, in brief: C-E-R. A listing of this computer program is given in Appendix A2. The layout for INPUT is in Appendix A1.

The computer program is written in FORTRAN IV and has been used on an IBM 360/65 (and also, with several overlays, on an IBM 1130). It uses some of the routine from the IBM Scientific Subroutine Package (SSP).

This computer program is designed to read a set of records with the necessary parameters (in FORMAT 512) and a multiple dimension contingency table (in FORMAT 412,514) and up to five sets, each set would have up to five levels.

The super-matrix index is designed as follow; where K is an index stepped up in accordance with IBM SSP storage mode 1 packing.
The computer program proceeds as follows:

(1) READ in the parameters:

NVAR - No. of sets (response variables).
ND1 - No. of levels in the first set.
ND2 - No. of levels in the second set.
ND3 - No. of levels in the third set.
ND4 - No. of levels in the fourth set.
ND5 - No. of levels in the fifth set.

READ in the multiple dimension contingency table for cell frequencies.

(2) Using a FUNCTION subprogram LT, this program assigns all entries of all contingency tables into a single dimension array AR.

(3) Pick up the limit of K i.e. the number of submatrices contained in the upper triangular part of E.

If NVAR = 2 then KMAX= 3.
If NVAR = 3 then KMAX = 6.
If NVAR = 4 then KMAX = 10.
If NVAR = 5 then KMAX = 15.
(4) The program now proceeds to (5) or (6) depending on whether submatrices are in the diagonal or off-diagonal portions of E.

(5) If \(K = 1, 3, 6, 10, 15 \) then call the subroutines to construct the \(E_{ii} \) matrix for \(i = 1, 2, 3, 4, 5 \).

(6) If \(K \neq 1, 3, 6, 10, 15 \) then call the subroutine to construct \(E_{ij} \) for \(i \neq j \), the off-diagonal submatrices in the super-matrix E.

(7) Compare the index with the corresponding NVAR designated KMAX value. If they are not equal then go back to loop to finish the construction of E matrix otherwise go to next step.

(8) After all \(E_{ii} \) matrices have been constructed, proceed to the calculation of the T conditional inverses for all the diagonal submatrices in E.

(9) Calculate \(R_{ij} = T_i^{(-1)} E_{ij} T_j^{(-1)} \).

(10) OUTPUT the parameters and the multiple dimensional contingency tables as in (1), the E and R matrices, also the T conditional inverses. The above results along with marginal totals for each set and the grand total are written in TAPE 10, the temporary tape storage for further usage. All these intermediate results will be used later to express the scale values in terms of the original states.
The card layout is described in Appendix A1, the reason for using Response Variable (2) as the last subscripted variable is that when k-way contingency tables are recorded, it is customary to record them as sets of two-way tables with the third, fourth, etc dimensions fixed. Each two-way table then has the first dimension as rows and the second dimension as columns. To avoid key punch errors it is advisable to punch the cards for such pairwise contingency tables so that there is one card per row. Thus, if the k-dimensional array is expanded into a one-dimensional string, the levels of Response (1) should vary fastest; however, the levels of Response (2) are columns of a two-way contingency table which, if key-punched row-wise, would occur on the same punched card.
Computer Program C-E-R

Flow-Chart

Main Calling Program
READ in parameters which control the no. of sets and no. of levels of each set

Assign single array number for elements in the multiple dimensional contingency table

Proceed to find out all possible two-way contingency tables, the sums of rows and columns

Call Subroutine to construct E_{ii}

Call Subroutine to construct E_{ij} (i \neq j)

Diagonal matrix?

K = K_{MAX}?

yes

For all diagonal submatrices E_{ii}, find the T_i conditional inverses

Calculate the reduced super-matrix R

WRITE parameters and E matrix, R matrix and the above results with the intermediate information in TAPE 10, the temporary storage for later usage.
An example of **INPUT** and **OUTPUT** data of the C-E-R computer program as follows:

(1) **INPUT** data:

a. NVAR = 3, ND1 = 3, ND2 = 3, ND3 = 3, ND4 = 1, ND5 = 1

b. Contingency table:

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>75</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>37</td>
<td>28</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>27</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>53</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>35</td>
<td>25</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>30</td>
<td>0</td>
</tr>
</tbody>
</table>

(2) **OUTPUT** information:

Direct print-out from the computer is on page 42 - 46.
THE CONTINGENCY TABLE INPUT DATA

THE NUMBER OF SETS (NSETS) = 3
THE NUMBER OF RESPONSES OF FIRST LEVEL (ND1) = 3
THE NUMBER OF RESPONSES OF SECOND LEVEL (ND2) = 3
THE NUMBER OF RESPONSES OF THIRD LEVEL (ND3) = 3
THE NUMBER OF RESPONSES OF FOURTH LEVEL (ND4) = 1
THE NUMBER OF RESPONSES OF FIFTH LEVEL (ND5) = 1

CONTINGENCY TABLE

<table>
<thead>
<tr>
<th>LEVEL</th>
<th>LEVEL</th>
<th>LEVEL</th>
<th>LEVEL</th>
<th>LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(1...3)</td>
</tr>
</tbody>
</table>

1 1 1 1 30 70 30
2 1 1 1 10 50 40
3 1 1 1 75 20 5
1 2 1 1 37 28 10
2 2 1 1 15 25 30
3 2 1 1 27 0 23
1 3 1 1 53 5 7
2 3 1 1 35 25 20
3 3 1 1 30 0 20

1) LEVEL = 1 indicates that there is no fourth and fifth responses.
The E_{11} Matrix

$$
\begin{bmatrix}
0.168750 \times 10^3 & -0.937500 \times 10^2 & -0.750000 \times 10^2 \\
-0.937500 \times 10^2 & 0.168750 \times 10^3 & -0.694444 \times 10^2 \\
-0.750000 \times 10^2 & -0.694444 \times 10^2 & 0.168750 \times 10^2 \\
\end{bmatrix}
$$

The E_{12} Matrix

$$
\begin{bmatrix}
0.300000 \times 10^1 & 0.193750 \times 10^2 & -0.223750 \times 10^2 \\
-0.483333 \times 10^2 & 0.225694 \times 10^2 & 0.257638 \times 10^2 \\
0.453333 \times 10^2 & -0.264194 \times 10^2 & 0.225694 \times 10^2 \\
\end{bmatrix}
$$

The E_{13} Matrix

$$
\begin{bmatrix}
0.625000 \times 10^1 & 0.187500 \times 10^1 & -0.812500 \times 10^1 \\
-0.145833 \times 10^2 & 0.229166 \times 10^1 & 0.122916 \times 10^2 \\
0.833333 \times 10^1 & -0.416666 \times 10^1 & 0.122916 \times 10^2 \\
\end{bmatrix}
$$

The E_{21} Matrix

$$
\begin{bmatrix}
0.176800 \times 10^3 & -0.966333 \times 10^2 & -0.801666 \times 10^2 \\
-0.966333 \times 10^2 & 0.153931 \times 10^3 & -0.572986 \times 10^2 \\
-0.801666 \times 10^2 & -0.572986 \times 10^2 & 0.153931 \times 10^3 \\
\end{bmatrix}
$$

The E_{22} Matrix

$$
\begin{bmatrix}
0.176800 \times 10^3 & -0.966333 \times 10^2 & -0.801666 \times 10^2 \\
-0.966333 \times 10^2 & 0.153931 \times 10^3 & -0.572986 \times 10^2 \\
-0.801666 \times 10^2 & -0.572986 \times 10^2 & 0.153931 \times 10^3 \\
\end{bmatrix}
$$

The E_{23} Matrix

$$
\begin{bmatrix}
-0.280000 \times 10^2 & -0.550000 \times 10^1 & 0.335000 \times 10^2 \\
0.377916 \times 10^2 & -0.739583 \times 10^1 & -0.303958 \times 10^2 \\
-0.979166 \times 10^1 & 0.128958 \times 10^2 & -0.310416 \times 10^1 \\
\end{bmatrix}
$$

The E_{31} Matrix

$$
\begin{bmatrix}
-0.280000 \times 10^2 & -0.550000 \times 10^1 & 0.335000 \times 10^2 \\
0.377916 \times 10^2 & -0.739583 \times 10^1 & -0.303958 \times 10^2 \\
-0.979166 \times 10^1 & 0.128958 \times 10^2 & -0.310416 \times 10^1 \\
\end{bmatrix}
$$

The E_{32} Matrix

$$
\begin{bmatrix}
-0.280000 \times 10^2 & -0.550000 \times 10^1 & 0.335000 \times 10^2 \\
0.377916 \times 10^2 & -0.739583 \times 10^1 & -0.303958 \times 10^2 \\
-0.979166 \times 10^1 & 0.128958 \times 10^2 & -0.310416 \times 10^1 \\
\end{bmatrix}
$$

The E_{33} Matrix

$$
\begin{bmatrix}
0.178750 \times 10^3 & -0.893750 \times 10^2 & 0.893750 \times 10^2 \\
0.893750 \times 10^2 & 0.142187 \times 10^3 & -0.528125 \times 10^2 \\
-0.893750 \times 10^2 & -0.528125 \times 10^2 & 0.142187 \times 10^3 \\
\end{bmatrix}
$$
INFORMATION STORED IN DISK

FILE NAME IS $$$$$$

NUMBER OF VARIABLES = 6
MAXIMUM NUMBER OF ITERATIONS = 150
MINIMUM VALUE OF THE FUNCTION = 0.000000E 00
PERMISSIBLE ERROR DURING ITERATION = 0.100000E-02

NUMBER OF SETS (NSETS) = 3
NUMBER OF ROWS (1,1) = 2
NUMBER OF ROWS (2,2) = 2
NUMBER OF ROWS (3,3) = 2
NUMBER OF ROWS (4,4) = 0
NUMBER OF ROWS (5,5) = 0
WRITE IN WEIGHTS 2)

0.500000E 00 0.500000E 00 0.500000E 00
0.500000E 00 0.500000E 00 0.500000E 00

THE MARGINAL TOTAL FOR SET 1
270 250 200

THE MARGINAL TOTAL FOR SET 2
312 223 185

THE MARGINAL TOTAL FOR SET 3
330 195 195

THE GRAND TOTAL = 720

2) Dummy numbers at this stage.
THE T CONDITIONAL INVERSE

<table>
<thead>
<tr>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.769800E-01</td>
<td>0.000000E 00</td>
<td>0.000000E 00</td>
</tr>
<tr>
<td>0.527046E-01</td>
<td>0.948683E-01</td>
<td>0.000000E 00</td>
</tr>
</tbody>
</table>

THE T CONDITIONAL INVERSE

<table>
<thead>
<tr>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.752071E-01</td>
<td>0.000000E 00</td>
<td>0.000000E 00</td>
</tr>
<tr>
<td>0.543546E-01</td>
<td>0.994470E-01</td>
<td>0.000000E 00</td>
</tr>
</tbody>
</table>

THE T CONDITIONAL INVERSE

<table>
<thead>
<tr>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.747957E-01</td>
<td>0.000000E 00</td>
<td>0.000000E 00</td>
</tr>
<tr>
<td>0.506369E-01</td>
<td>0.101273E 00</td>
<td>0.000000E 00</td>
</tr>
<tr>
<td></td>
<td>The R11 Matrix</td>
<td>The R12 Matrix</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td>0.100000E 01</td>
<td>0.000000E 00</td>
</tr>
<tr>
<td></td>
<td>0.000000E 00</td>
<td>0.100000E 01</td>
</tr>
<tr>
<td></td>
<td>0.173683E-01</td>
<td>0.160876E 00</td>
</tr>
<tr>
<td></td>
<td>-0.332955E 00</td>
<td>0.738409E-01</td>
</tr>
<tr>
<td></td>
<td>0.100000E 01</td>
<td>0.000000E 00</td>
</tr>
<tr>
<td></td>
<td>0.000000E 00</td>
<td>0.100000E 01</td>
</tr>
<tr>
<td></td>
<td>0.359861E-01</td>
<td>0.389803E-01</td>
</tr>
<tr>
<td></td>
<td>-0.788416E-01</td>
<td>-0.213504E-01</td>
</tr>
<tr>
<td></td>
<td>-0.157504E 00</td>
<td>-0.148522E 00</td>
</tr>
<tr>
<td></td>
<td>0.167268E 00</td>
<td>0.847920E-02</td>
</tr>
<tr>
<td></td>
<td>0.100000E 01</td>
<td>0.000000E 00</td>
</tr>
<tr>
<td></td>
<td>0.000000E 00</td>
<td>0.100000E 01</td>
</tr>
</tbody>
</table>
4.2 Initial Estimate and Approximate Scale Values

4.2.1 Description of Algorithm

After the reduced super-matrix R has been constructed, the minimization of a given function (the log determinant of the resulting correlation matrix P) is needed to obtain the categorical scales for each set; we must first find some initial values for categorical scales to start the minimization.

The Fletcher and Powell Descent Method [1963] is used for the minimization. Initial values must be chosen very carefully, so that the numerical analysis converges in a reasonable number of steps (or, for that matter, converges at all). The following methods are available:

4.2.1.1 Arbitrary Determination of the Initial Values

The initial values for categorical scales can be determined arbitrarily. We may start with all 1's or all 0.5's or any other values which we may conveniently think of. It is very unusual for this method to converge.

4.2.1.2 Average Canonical Scales

Starting from the off-diagonal matrices of the super-matrix R, obtain

\[Q_i = R_{ij} R_{ij} \]

where \(R_{ij} \) is the transpose of \(R_{ij} \), and the largest characteristic root \(\lambda_i = \chi_{\text{max}}(Q_i) \), with associated
vector \(u_i \). Note that \(u_i \) is not the same when response (i) is compared with response \((k) \neq (j)\). Thus, for each response variable we have \((p - 1)\) different characteristic vectors. Of course the characteristic root-characteristic vector analysis needs to be done for \(p(p - 1)/2\) matrices only since, if

\[
R_{ij} R_{ij}^* u_i = \lambda \ u_i
\]

then \(R_{ij} R_{ij}^* \) has the same largest characteristic root \(\lambda \), and the associated characteristic vector, say \(u_j^* \), equals \(R_{ij}^* u_i \).

As a starting value we may average the \((p - 1)\) \(u_i \) vectors obtained for each pairing of the \(i^{th} \) response with the others. As in every characteristic root-characteristic vector analysis, the length of the \(u_i \) are indeterminate. In the above-mentioned method they are all taken to be unit length. Thus, if

\[
R_{ii} R_{ii}^* u_i(1) = \lambda_1 \ u_i(1)
\]

and \(u_i(1) \ u_i(1) = 1, \)

then

\[
y_i = \frac{\sum_{j \neq i} u_i(1)}{(p - 1)}
\]

\(y_i \) is the initial vector of weights for response \(i \). The weakness of this averaging procedure is that the same weights are applied to each characteristic vector, regardless of whether response \(i \) has a low or high correlation with the other responses with which it is paired.
4.2.1.3 This leads to a further improvement of the starting value

As in 4.2.1.2, we obtain all \((p - 1)\) characteristic vectors for each response \(i\); our initial estimate now is a weighted average, using the largest characteristic root for each pairing as weights. Thus, if \(\text{Ch}(R_{i1}R_{i1}) = \lambda_1\) and the corresponding characteristic vector is \(u_i(1)\) then

\[
Y_i = \frac{\sum_{j=1}^{p-1} Y_{ij} u_i(1)}{\sum_{j=1}^{p-1} \lambda_j}
\]

(4.2.1.3.1)

is the initial vector of weights for response \(i\). This method works very well (see section 6.6); however, a problem regarding the signs of \(u_i(j)\), since it is unknown whether, say, \((+ - + +)\) or \((- + - -)\) is the "proper" sign (possibility of "negative canonical correlation"). For the weights which are appreciably different from zero we used the sign pattern obtained for the characteristic vector associated with the largest of the \((p - 1)\) maximum characteristic root, so as to define the largest correlation to be positive.

4.2.1.4 Multiple Regression Approach

If the \((l_i - 1)\) dummy variables in response \(i\) are considered as concomitant variables, and the \((l_j - 1)\) dummy variables in response \(j\) are considered as \((l_j - 1)\) predictands (response variables), then the matrix \(R_{ij}\) would be a matrix of regression weights estimates,
since \(R_{ii} = I \) and \(R_{ij}^{-1} R_{ij} = B \), the regression weights estimates. From this analogy, another starting value can be obtained. To determine the weights to be applied to the \((p - 1) u_i\) vectors (characteristic vectors) we set up a \((p - 1) \times (p - 1)\) matrix \(A \) whose elements are the canonical correlations (positive square-roots of largest characteristic roots of \(R_{jk} R_{jk}^\top \)) between the response sets other than \(i \). As a right-hand side for the regression-like equation we use the canonical correlations of response set \(i \) versus the other \((p - 1)\) response sets. The multiple regression weights obtained as solutions from this system of equations are used as weights for the averaging of the \(u_i(j) \) (in place of the \(\lambda_j \) in 4.2.1.3.1).

4.2.1.5 Canonical-multiple Correlation Approach

For each response set partition the super-matrix \(R \) into two parts

\[
\begin{bmatrix}
I & R^*_i \\
\end{bmatrix}
\begin{bmatrix}
R(i) \\
\end{bmatrix} = \begin{bmatrix}
\ell_{i-1} \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
R^*_i \\
R(i) \\
\end{bmatrix}
\begin{bmatrix}
R_{jj} \\
\end{bmatrix} = \begin{bmatrix}
\ell \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
\ell_{i-1} \\
\ell \\
\end{bmatrix} = \sum \ell_j - p + 1
\]

\(R^*_i = \begin{bmatrix} R_{i1} & R_{i2} & \ldots & R_{ip} \end{bmatrix} \) (except \(R_{ii} \))
and

\[R_{(jj)}^* = \begin{bmatrix} I & R_{12} & \cdots & R_{1p} \\ R_{12} & I & \cdots & R_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ R_{1p} & R_{2p} & \cdots & I \end{bmatrix} \]

(except the \(i^{th}\) pseudo-row and pseudo-column).

Thus obtain, for each response set, a single set of weights \(u_i\) which represents the canonical weights on the \(i^{th}\) response set when correlated with all other sets combined.

4.2.2 Description of the Computer Program for ICW

This is the computer program for obtaining the initial weights, in brief: ICW. The listing of the computer program is in Appendix B. The IBM Scientific Subroutine Package program used is \texttt{EIGEN} which obtains characteristic roots and vectors of real symmetric matrices using the Jacobi Method (see \texttt{System/360-SSP-360A-CM-03X-Version III, Programmer's Manual}, 164).

(1) The main calling program \texttt{READ} the information from TAPE 10.

i. The \(1^{st}\) record: which will not be used in this program.

ii. The \(2^{nd}\) record: NSET - no. of sets.

\[\text{NRST}(I), I=1, NSET \text{ - the size of } R_{ij} \text{ submatrices of } R. \]
iii. The 3rd record: X(I), I=1,N - dummy numbers of weights.
iv. The 4th, 5th and 6th are not used in this program.

(2) Initial LIMIT = 1.
(3) Subroutine REAIN - Read the 7th read from TAPE 10, the super-matrix R which is the reduced matrix from the program C-E-R.
(4) If LIMIT = 1, proceed to (5); if LIMIT = 2 proceed to (8).
(5) Subroutine RIOUT - It will output the information on the 2nd and 7th records, i.e. no. of sets, sizes of submatrices and the super-matrix R.
(6) Provides the working storage for the R* set, the Subroutine EMPTY will zero out the working storage.
(7) Subroutine RS1 - Calculates the R* = R R' where R' is the transpose of R, then proceeds to (11).
(8) Subroutine ROUT - Output the R' matrix.
(9) Same as (6).
(10) Subroutine RS2 - Calculates the R* = R'R matrix then proceeds to (11).
(11) Packed the R* matrix into a single-dimensioned array with storage mode 1, in order to use the SSP EIGEN.
(12) Subroutine EIGEN - Find the largest characteristic root and the associated characteristic vector.
(13) Subroutine SECOD - If LIMIT =1, the roots and vectors
and the square root of the characteristic roots will be packed into appropriate single-dimensioned variables for later usage. If LIMIT = 2, the subroutine will do the same thing except the single-dimensioned variables will be different from those when LIMIT = 1.

(14) If NSET is greater than 2, proceeds to (15), otherwise proceeds to (8).

(15) Subroutine RLOAD - Reload the other R^* matrix then set IGO value. If IGO = 2, proceeds to (11). If IGO = 1, proceeds to (16).

(16) If LIMIT \neq 1 then proceeds to (18), if LIMIT = 1, proceeds to (17).

(17) Set LIMIT = 2 then proceeds to (4).

(18) Subroutine FINAL - It will sum and average the characteristic vectors using the canonical correlations from step (13) as weights. These are the estimated initial weights.

(19) Subroutine DORMF - The resulting weights from (18) are normalized.

(20) Subroutine FILUP - This subroutine packs the normalized estimated initial weights into a single-dimensioned array.

(21) WRITE the normalized estimated initial weights which are calculated from (19), for each set. The packed initial weights from FILUP, will replace the
Some intermediate results are stated in section 6.6; however, since these were explanatory programs, no detailed illustrations have been provided. CHAPTER VI contains several illustrations using the best initialization, i.e. the canonical-multiple weights.

Computer Program ICW

Flow-Chart

Main Calling Program
READ in parameters
from TAPE 10

Initial LIMIT

Subroutine REAIN, READ
in R super-matrix.

LIMIT

Subroutine R1OUT
WRITE out parameters
and R super-matrix

Subroutine EMPTY
zero out the
R* matrix

Subroutine RS1
calculate
R* = RR'

Packed R* into
mode 1 single
array

Subroutine ROUT
WRITE out R super-matrix

Subroutine EMPTY
zero out the
R* matrix

Subroutine RS2
Calculate
R* = R*R

dummy numbers in storage— the 3rd record in TAPE 10.
Subroutine EIGEN (IBN SSP) to find largest characteristic root λ and vector

Subroutine SECOD
LIMIT=1, packed the first set of root, vector and $\sqrt{\lambda}$
LIMIT=2, packed the second set of root, vector and $\sqrt{\lambda}$

yes \rightarrow NSET = 2
no

Subroutine RLOAD
reload the other R_i^* matrix

yes \rightarrow IGO = 1
no

Subroutine FINAL
sum and average the characteristic vectors

Subroutine DORMF
normalizing the resulting vectors

Subroutine FILUP
packed all sets of characteristic vectors into a single array

WRITE out the normalized vectors for each set which are the resulting initial weights and WRITE the single array of packed weights from FILUP into TAPE 10, to replace the dummy numbers in storage

2) IGO = 2 refers to the left pass of the previous page.
IGO = 1 refers to the right pass.
It is reset by the Subroutine RLOAD.
4.3 Minimum Determinant Solution

4.3.1 Description of Algorithm

We want to find weights $a_i (i = 1, 2, ..., p)$ such that a variable (canonical variable) can be formed for each response set.

$$u_i = a_i y_i \quad (i = 1, 2, ..., p) \quad (4.3.1.1)$$

with $\text{corr}(a_i y_i, y_j a_j) = \text{corr}(u_i, u_j) = \beta_{ij}$

$$a_i^R y_j a_j \quad (4.3.1.2)$$

under the constraint $a_i^R a_i = a_i^i a_i = 1$ for all i's and P is the matrix with typical element ρ_{ij}.

Formally,

$$\begin{bmatrix}
1 & a_1^R R_{12} a_2 & \cdots & a_1^R R_{1p} a_p \\
a_2^R R_{12} a_1 & 1 & \cdots & a_2^R R_{2p} a_p \\
\vdots & \vdots & \ddots & \vdots \\
a_p^R R_{1p} a_1 & a_p^R R_{2p} a_2 & \cdots & 1
\end{bmatrix} \quad (4.3.1.3)$$

a ($p \times p$) matrix. We need to find the vector a_i which minimize $|P|$ (we use $\ln |P|$, for simplicity). Now

$$\frac{\partial \ln |P|}{\partial a_{1i}} = \text{tr} \frac{\partial \ln |P|}{\partial P} \frac{\partial P}{\partial a_{1i}} \quad (4.3.1.4)$$

$$=[(2 a_1)_{1} (R_{12} a_2)_{1} \cdots (R_{1p} a_p)_{1}] = \text{tr} P^{-1} \begin{bmatrix}
(a_2^R R_{12})_i & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
(a_p^R R_{1p})_i & 0 & \cdots & 0
\end{bmatrix}$$

3) Where $(R_{1i} a_1)_i$ denotes the i^{th} element of $R_{1i} a_1$.

Denote the inverse of P by
\[
P^{-1} = \begin{bmatrix}
\rho_{11} & \rho_{12} & \cdots & \rho_{1p} \\
\rho_{12} & \rho_{22} & \cdots & \rho_{2p} \\
\vdots & \vdots & \ddots & \vdots \\
\rho_{1p} & \rho_{2p} & \cdots & \rho_{pp}
\end{bmatrix}
\]
(4.3.1.5)

Simplifying \[\frac{\partial \ln |P|}{\partial a_{11}}\], we have
\[
\frac{\partial \ln |P|}{\partial a_{11}} = \text{tr} \begin{bmatrix}
\rho_{11} & \rho_{12} & \cdots & \rho_{1p} \\
0 & 0 & \cdots & 0 \\
\rho_{1p} & \rho_{2p} & \cdots & \rho_{pp}
\end{bmatrix}
\begin{bmatrix}
(2 a_1)_1 & \cdots & (R_{1p} a_p)_1 \\
0 & \cdots & 0
\end{bmatrix}
\]
(4.3.1.6)

Hence, in general
\[
\frac{\partial \ln |P|}{\partial a_1} = 2 \rho_{11} a_1 + 2 \rho_{12} R_{12} a_2 + \cdots + 2 \rho_{1p} R_{1p} a_p
\]
\[
\frac{\partial \ln |P|}{\partial a_2} = 2 \rho_{12} R_{12} a_1 + 2 \rho_{22} a_2 + \cdots + 2 \rho_{2p} R_{2p} a_p
\]
\[
\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots
\]
\[
\frac{\partial \ln |P|}{\partial a_p} = 2 \rho_{1p} R_{1p} a_1 + 2 \rho_{2p} R_{2p} a_2 + \cdots + 2 \rho_{pp} a_p
\]
(4.3.1.7)

the constraint is $a_1 a_1 = 1$ for all i's. By the method of Lagrangian multipliers, taking the partial derivatives with respect to a_1 and setting them to zero, for $i = 1$ we find
To determine the Lagrangian multiplier we premultiply by a_i, obtaining

$$
\rho^{11} a_{11} + \rho^{12} a_{12} + \ldots + \rho^{1p} a_{1p} - \lambda_1 a_{11} = 0
$$

(4.3.1.9)

but $\rho_{ii} = 1$ and $a_{11} = 1$, therefore

$$
\lambda_1 = 1
$$

The derivatives with respect to the other a_i's are obtained in the same manner.

A system of equations is thus set up in the following matrix form:

$$
\begin{bmatrix}
(\rho^{11} - 1) I & \rho^{12} R_{12} & \ldots & \rho^{1p} R_{1p} \\
\rho^{12} R_{12} & (\rho^{22} - 1) I & \ldots & \rho^{2p} R_{2p} \\
\vdots & \vdots & \ddots & \vdots \\
\rho^{1p} R_{1p} & \rho^{2p} R_{2p} & \ldots & (\rho^{pp} - 1) I
\end{bmatrix}
\begin{bmatrix}
a_1 \\
a_2 \\
\vdots \\
a_p
\end{bmatrix}
= \begin{bmatrix} 0 \\
0 \\
\vdots \\
0
\end{bmatrix}
$$

(4.3.1.10)

The problem is a rather complicated generalization of a characteristic root-vector problem. We must find element ρ^{ij} ($i = 1, 2, \ldots, p; j = 1, 2, \ldots, p$) such that the determinant of the super-matrix (4.3.1.10) is zero and such that ρ^{ij} are elements of an inverse of a correlation matrix, i.e. they form a positive-definite matrix whose principal cofactors are all equal to each other, and to the determinant
of P^{-1}.

By solving this system of equations (for non-trivial solutions) we have the set of canonical weights which maximize our measure of overall correlation between all categorical variables.

In the numerical solution, we employ the descent method of R. Fletcher and M.J.D. Powell [1963] to minimize the function $\ln |P|$ and obtain the canonical weights.

Since we cannot use the Lagrange method directly, we obtain the derivatives for the unconstrained problem.

The unconstrained correlation matrix P has typical element

$$P_{ij} = \frac{a_{i}^{R}a_{j}}{l_{i}l_{j}}, \quad (4.3.1.11)$$

where $l_{i} = \sqrt{a_{i}^{2}}$ and $l_{j} = \sqrt{a_{j}^{2}}$

Hence

$$P = \begin{bmatrix}
a_{1}^{R}a_{1} & a_{1}^{R}a_{2} & \cdots & a_{1}^{R}a_{p} \\
\frac{a_{1}^{R}a_{1}}{l_{1}^{2}} & \frac{a_{1}^{R}a_{2}}{l_{1}l_{2}} & \cdots & \frac{a_{1}^{R}a_{p}}{l_{1}l_{p}} \\
\frac{a_{1}^{R}a_{1}}{l_{1}l_{2}} & \frac{a_{2}^{R}a_{2}}{l_{2}^{2}} & \cdots & \frac{a_{2}^{R}a_{p}}{l_{2}l_{p}} \\
\cdots & \cdots & \cdots & \cdots \\
\frac{a_{p}^{R}a_{1}}{l_{1}l_{p}} & \frac{a_{p}^{R}a_{2}}{l_{2}l_{p}} & \cdots & \frac{a_{p}^{R}a_{p}}{l_{p}^{2}}
\end{bmatrix} \quad (4.3.1.12)$$

We take the derivatives of $\ln |P|$ with respect to α_{m} where m is a fixed subscript ($m = 1, 2, \ldots, p$).
\[\frac{\partial \ln |P|}{\partial a_m} = \sum_{ij} \frac{\partial \ln |P|}{\partial \rho_{ij}} \frac{\partial \rho_{ij}}{\partial a_m} \]

since
\[\frac{\partial \ln |P|}{\partial \rho_{ij}} = \rho_{ij} \quad \text{and} \quad \frac{\partial \rho_{ij}}{\partial a_m} = \frac{\partial a_i^T R_{ij} a_j}{\partial l_i} \frac{\partial l_i}{\partial a_m} \]

\[= \left[\delta_i^m \frac{1}{l_i l_j} R_{ij} a_j + \delta_j^m \frac{1}{l_i l_j} R_{ij} a_i \right] \]
\[- \left[\delta_i^m \frac{\rho_{ii} l_i}{l_i l_j} a_j + \delta_j^m \frac{\rho_{jj} l_j}{l_i l_j} a_i \right] \]

where \(\delta_i^m \) is the Kronecker delta.

Hence
\[\frac{\partial \ln |P|}{\partial a_m} = \sum_{ij} \left[\frac{m}{l_i l_j} \rho_{ii} R_{ij} a_j + \frac{m}{l_i l_j} \rho_{ij} R_{ij} a_i \right] \]
\[- \left[\delta_i^m \frac{\rho_{ii} l_i}{l_i l_j} a_j + \delta_j^m \frac{\rho_{jj} l_j}{l_i l_j} a_i \right] \]
\[= \left[\sum_j \frac{\rho_{mj} l_j}{l_m l_j} R_{mj} a_j + \sum_i \frac{\rho_{im} l_i}{l_i l_m} R_{im} a_i \right] \]
\[- \left[\sum_j \frac{\rho_{mj} l_j}{l_m} a_m + \sum_i \frac{\rho_{im} l_i}{l_m} a_m \right] \]
\[
\begin{align*}
\frac{1}{\ell_m} & \left[\Sigma_{j} \frac{\rho_{mj}}{\ell_j} R_{mj} a_j + \Sigma_{i} \frac{\rho_{im}}{\ell_i} R_{im} a_i \right] \\
& \quad - \frac{1}{\ell_m^2} a_m \left[\Sigma_{j} \rho_{mj} \rho_{mj} + \Sigma_{i} \rho_{im} \rho_{im} \right] \\
& = \frac{2}{\ell_m} \Sigma_{j} \frac{\rho_{mj}}{\ell_j} R_{mj} a_j - \frac{2}{\ell_m^2} a_m \tag{4.3.1.14}
\end{align*}
\]

since \(\Sigma_{j} \rho_{mj} \rho_{mj} = \Sigma_{i} \rho_{im} \rho_{im} = 1. \)

\[
\frac{\partial \ln |P|}{\partial a_m} = \frac{2}{\ell_m} \Sigma_{j} \frac{\rho_{mj}}{\ell_j} R_{mj} a_j - \frac{2}{\ell_m^2} a_m \tag{4.3.1.15}
\]

We must solve these equations in order to minimize \(\ln |P| \) and to obtain the canonical weights.

To obtain the gradient of \(\ln |P| \) we evaluate the \((l_1 + l_2 + \ldots + l_k - k) \) expressions

\[
\frac{\partial \ln |P|}{\partial a_m} = \frac{2}{\ell_m} \left[\frac{\rho_{m1}}{l_1} R_{m1} a_1 + \ldots + \frac{\rho_{m,m-1}}{l_{m-1}} R_{m,m-1} a_{m-1} \right. \\
\left. + \frac{(\rho_{mm}-1)}{l_m} a_m + \ldots + \frac{\rho_{mk}}{l_k} R_{mk} a_k \right] \tag{4.3.1.16}
\]

since \(R_{mm} = I \) and \(a_m \) has \((\ell_m - 1) \) components.

Subroutine FUNCT places \(\ln |P| \) into \(F \), and the gradient vector, calculated by the above formula, and into \(G \).
4.3.2 Description of the Computer Program for FPM

This is the computer program for obtaining Minimum Determinant Solution, in brief: FPM.

The listing of this program is in Appendix C; the data are stored in TAPE 10. This program proceeds as follows:

(1) The main calling program has the following operations:
 (a) Call Subroutine IO, for data INPUT from TAPE 10, the temporary storage.
 (b) Call Subroutine FMFP (IBM SSP) to find the minimum of \(\ln |P| \).
 (c) After the Subroutines have been completed, the main calling program will output:
 (i) The canonical weights.
 (ii) The determinant of the calculated correlation matrix, \(|P| \).
 (iii) The gradients of \(\ln |P| \).
 (iv) Canonical weights in normalized form.
 (Error codes, if any, and the number of iterations needed are also stated as output.)

(2) Subroutine IO: This Subroutine will READ from the TAPE 10, all needed information, and output:
 N - Number of variables involved.
 LIMIT - Maximum number of iterations.
 EPS - Permissible error during iterations.
 EST - Estimated minimum of the given function.
R - The super-matrix which has been produced from C-E-R program, in the form of a row-wise list.

The Subroutine CONEC is called to construct an array from the super-matrix R, needed for the Subroutine FMFP.

(3) Subroutine FMFP: This Subroutine is from IBM SSP (Scientific Subroutine Package) and was developed from the Fletcher and Powell process (System/360-CM-03X Version III - H20-0205-3, 223). \(^3\)

FUNCT - User written subroutine for minimizing given function and calculate gradients.

N - Number of variables.

X - Vector containing initial weights, and it will contain the final result.

F - A single variable containing the minimum function value.

G - Vector containing the gradients.

EST - Estimated minimum function value.

EPS - Expected absolute error.

LIMIT - Maximum number of iterations.

IER - Error codes:

\[\text{IER} = 0, \text{convergence was obtained.} \]

\[\text{IER} = 1, \text{no convergence in LIMIT iterations.} \]

\(^3\) But an error in the IBM SSP program had to be corrected first.
IER = -1, error in gradient calculation.
IER = 2, no minimum exists.

H - Working storage.

The Subroutine FUNCT is the user written subroutine for \(\ln |P| \) to be minimized. Our FUNCT subroutine will call Subroutine MINV (another IBM SSP) for finding a matrix inverse, needed for the intermediate calculations.

This user written subroutine FUNCT is called by the subroutine FMFP (IBM SSP) whenever a new set of canonical weights is determined. Within the FUNCT the correlation matrix \(P \) is calculated for each new set of canonical weights then the subroutine MINV (IBM SSP) is called to find \(P^{-1} \), the two-dimensional array of \(P \) is packed into a single-dimensioned array as INPUT argument for MINV (since \(P \) is in storage mode 1, only the upper triangular part of \(P \) is packed), as the \(P^{-1} \) is found through MINV, and back into the FUNCT the gradient is calculated for determining the convergency of the given function.

In the correlation matrix, the \((i, j)\) element is

\[
\rho_{ij} = \frac{a_i R_{ij} a_j}{\sqrt{a_i^2 a_j^2}}
\]
(4.3.2.1)

and for the gradient, it is the partial derivatives of \(\ln |P| \) with respect to \(a_m \) (the \(m^{th} \) categorical weights), hence
\[
\frac{\partial \ln |P|}{\partial a_m} = \frac{2}{l_m} \left[\sum_{j} \frac{\rho_m^{j \rho_m^{j a_j}} - a_m}{l_j} \right]
\] (4.3.2.2)

where \(l_m = \sqrt{a_m^2} \) and \(l_j = \sqrt{a_j^2} \), and at the same time, the value of \(\ln |P| \) is calculated.

Computer Program FPM

Flow-Chart

Main Calling Program

- **Output the final result** (8)
- **Subroutine IO** (2)
- **Subroutine FWFP (IBM SSP)** (4)
 - **Subroutine CONEC** (3)
 - **Subroutine FUNCTION** (5) user written
 - **Subroutine MINV (IBM SSP)** (7)
4.4 Reduction to Original Scales

4.4.1 Description of Algorithm

The a_i weights found by the Minimum Determinant Solution must now be translated into the desired categorical scales based upon the E matrix (section 4.1.1).

For the choice of standardized scales, we introduce the scalar

$$k_i = \frac{n'_{stuvq}w_i}{n}$$ \hspace{1cm} (4.4.1.1)

where n'_{stuvq} is a vector of marginal sums, viz.,

$$n'_{s\ldots} = [n_1, \ldots, n_2, \ldots, \ldots, n_r]$$

$$n'_{t\ldots} = [n'_{1\ldots}, n'_{2\ldots}, \ldots, n'_{r2\ldots}]$$

$$n'_{u\ldots} = [n'_{1\ldots}, n'_{2\ldots}, \ldots, n'_{r3\ldots}]$$

$$n'_{v\ldots} = [n'_{1\ldots}, n'_{2\ldots}, \ldots, n'_{r4\ldots}]$$

$$n'_{q\ldots} = [n'_{1\ldots}, n'_{2\ldots}, \ldots, n'_{r5\ldots}]$$ \hspace{1cm} (4.4.1.2)

$$w_i = a_i T_i^{-(-1)}$$ \hspace{1cm} (4.4.1.3)

$T_i^{-(-1)}$ is a conditional inverse found in the program C-E-R (section 4.1.1).

$$n = \text{grand total} = n'_{s\ldots}, i = n'_{t\ldots}, i = n'_{u\ldots}, i = n'_{v\ldots}, i = n'_{q\ldots}$$ \hspace{1cm} (4.4.1.4)

$$i' = [1, 1, \ldots, 1]$$ \hspace{1cm} (4.4.1.5)

n_{\ldots} are marginal totals which are obtained in the process of construction of the E matrix.

We now form a new vector w_i by subtracting k_i from each
element of w_{ij} i.e.

$$w_{ij}^* = w_{ij} - k_{ij}, \quad (4.4.1.6)$$

and thus

$$n_{s...i}w_{ij}^* = n_{1...i}w_{ij1}^* + n_{2...i}w_{ij2}^* + \ldots + n_{r_{ij}...i}w_{ijr_{ij}},$$

$$= n_{1...i}(w_{ij1} - k_{ij1}) + n_{2...i}(w_{ij2} - k_{ij2}) + \ldots + n_{r_{ij}...i}(w_{ijr_{ij}} - k_{ijr_{ij}}),$$

$$= n_{s...i}w_{ij} - nk_{ij} = nk_{ij} - nk_{ij} = 0 \quad (4.4.1.7)$$

and similarly

$$n.\ldots .w_{ij}^* = n.\ldots .w_{ij1}^* = n.\ldots .w_{ij2}^* = \ldots = n.\ldots .w_{iju}^* = 0 \quad (4.4.1.8)$$

This is consistent since each of the rows and columns of every E_{ij} matrix sums up to zero.

Now let

$$p_i = \frac{n_{stuv}w_{ij}^*(2)}{n} \quad (4.4.1.9)$$

where $w_{ij}^*(2) = [w_{ij1}^*, w_{ij2}^*, \ldots, w_{ijr_{ij}}^*]$ and

n_{stuvq} is defined as in $(4.4.1.2)$.

Let

$$w_{ij}^* = \frac{w_{ij}}{p_i} \quad \text{then} \quad w_{ij}^*(2) = \frac{w_{ij}^*(2)}{p_i} \quad (4.4.1.10)$$

hence w_{ij}^{**} for all i's are the categorical weight vectors for the entire E matrix.

Since

$$n_{stuvq}w_{ij}^*(2) = \frac{n_{stuvq}w_{ij}^*(2)}{p_i} = \frac{n_{stuvq}p_i}{p_i} = n \quad (4.4.1.11)$$

therefore
\[\frac{n^*_{stu} \mathbf{w}_i^{**}}{n} = \frac{n}{n} = 1 \]

(4.4.1.12)

We conclude that, if each of the original categorical responses is translated into a new set of scaled weights obtained in this manner then, for the sample at hand, the mean of the scaled weights will be zero and the standard deviation will be one.

Now we let, for \(j \)th subject

\[u_{ij} = \mathbf{w}_i^{**} \quad \text{and} \quad u_{kj} = \mathbf{w}_k^{**} \]

(4.4.1.13)

it remains to be shown that the \(\mathbf{w}_i \) can be replaced by \(\mathbf{w}_i^{**} \) without change of the correlation between resulting canonical variables.

Let there be \(s \) factors (response variables), let factor 1 have \(r_1 \) levels (i.e. variable 1 has \(r_1 \) distinct categorical states), factor 2 have \(r_2 \) levels, ... and factor \(s \) have \(r_s \) levels. In analogy with the Fisher-Lancaster approach, we introduce \(r_1 + r_2 + \ldots + r_s \) pseudo-variables. Each response vector consisting of \(s \) categorical responses (one to each factor), is translated into a vector of 0's and 1's; if the response was \([c_1, c_2, \ldots, c_s]\) the resulting vector will be a rolled out row vector, consisting of \(s \) parts; the first part will have a 1 in position \(c_1 \) and zeros elsewhere; the \(s^{th} \) part will have a 1 in position \(c_s \), and zeros elsewhere. For example, if there were four factors with \([3, 4, 2, 5]\) levels respectively, and if an experimental unit had a response of \([2, 1, 2, 3]\), the corresponding \(y \)-vector would be
The E matrix consists of the matrices of corrected sums of squares and products of these observations. Let y_{ij} denote the i^{th} part ($i = 1, 2, \ldots, s$) of this vector for subject No. j. Let \bar{y}_i denote the average over the entire sample, obviously
\[
\bar{y}_i = \frac{1}{n} \left[n_1, \ldots, n_2, \ldots, \ldots, n_{r_1}, \ldots \right]
\]
\[
\bar{y}_2 = \frac{1}{n} \left[n_1, \ldots, n_2, \ldots, \ldots, n_{r_2}, \ldots \right]
\]
\[
\ldots
\]
\[
(4.4.1.14)
\]

etc.

Let $y_{ij}^{**} = y_{ij} - \bar{y}_i$, then
\[
E_{ij} = \sum_{j=1}^{s} y_{ij} y_{ij}^{**} (4.4.1.15)
\]

the matrix of sums of squares and products of the elements of y_{ij}^{**}, and
\[
E_{ik} = \sum_{j=1}^{s} y_{ij}^{**} y_{kj}^{**} (4.4.1.16)
\]

Now we let $u_{ij} = w_i y_{ij}^{**}$ and $u_{kj} = w_k y_{kj}^{**}$ represent two scaled responses for subject j. Over the entire sample, we can thus calculate a canonical correlation between scaled responses i and k, as
\[
\begin{align*}
&= w_i E_{ik} w_k + k_i j E_{ik} w_k + w_i E_{ik} k_i j + k_i k_j E_{ik} j \\
&= w_i E_{ik} w_k (4.4.1.17)
\end{align*}
\]

where the k_i's are defined in $(4.4.1.1)$.
Since all row and column sums of E_{ik} are zero, the canonical correlation between U_i and U_k remains unchanged if each w_i is replaced by w_i^*. And since w_i^{**} differ from w_i^* only by a scalar multiplier, the canonical correlation between U_i and U_k is obviously unchanged if w_i^* is replaced by w_i^{**}.

Recall that $R = T(-1)E T(-1)'$, where

\[
T(-1) = \begin{bmatrix}
T_1(-1) & 0 & \ldots & 0 \\
0 & T_2(-1) & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & T_s(-1)
\end{bmatrix}
\]

(4.4.1.18)

hence $R_{ik} = T_{i}(-1)E_{ik} T_{k}(-1)'$, and

\[
\sum_{k=1}^{s} (\rho_{ik} - \delta_{ik})R_{ik}a_k = 0
\]

where δ_{ik} is the Kronecker delta (from 4.3.10).

Then

\[
\sum_{k=1}^{s} (\rho_{ik} - \delta_{ik})T_{ik}(-1)E_{ik} T_{ik}(-1)'a_k = 0 .
\]

(4.4.1.19)

Let $T_{k}(-1)a_k = w_k$, hence

\[
T_{i}(-1)\sum_{k=1}^{s} (\rho_{ik} - \delta_{ik})E_{ik} w_k = 0
\]

(4.4.1.20)

thus the w_k are the weights applicable to the unreduced matrices E_{ik} ($i = 1, 2, \ldots, s; k = 1, 2, \ldots, s$) and therefore to the original variables.

4.4.2 Description of the Computer Program for RTE

This is the computer program for obtaining the original categorical scales for E matrix, in brief: RTE. The listing
of this computer program is in Appendix E. And this program proceeds as follows:

(1) Data stored in TAPE 10, are read. In this program, we need the following information:

Record 1: NWTS - Number of weights.
Record 2: NSETS - Number of sets.

(NRST(I), I=1, NSETS) - Number of rows in each set.

Record 3: (X(I), I=1, NWTS) - Canonical weights from the Minimum-Determinant Solution.

Record 4: ((NT(JA, I), I=1, IA), JA=1, NSETS) - Marginal totals for each set.

Record 5: NTAL - The grand total.

Record 6: T(I, J, K) - T conditional inverses.

(2) Packed a_i for all i's, the canonical weights into a two-dimensional array for calculating w_i.

(3) Calculate:

(a) $w_i = a_i T_i^{-1}$

(b) $k_i = \frac{n_i w_i}{n}$

(c) $w_{i*} = w_i - k_i i$

(d) $p_i = \frac{n_i w_{i*2}^2 + n_2 w_{i2}^2 + \ldots + n_{i*} w_{i*}^2}{n}$

(4) Calculate:

$$w_i^{**} = \frac{w_i^*}{p_i}$$
(5) WRITE the resulting categorical weights for E matrix, i.e. w_i^{**} for all i's.

Computer Program RTE

Flow-Chart

READ data from TAPE

10

(1)

Packed canonical weights

a_i for all i, into a
two dimensional array

(2)

Find w_i, k_i, w_i^* and p_i

for all i's

(3)

Calculate w_i^{**} for

all i's

(4)

WRITE the resulting

w_i^{**}, the categorical

weights for E matrix

(5)
CHAPTER V

RELATION TO INVERSE OF CANONICAL-PARTIAL
AND CANONICAL-MULTIPLE CORRELATION MATRICES

It is well known that the diagonal elements of the
inverse of a correlation matrix are \[
\frac{1}{(1 - \rho_{i,\text{rest}}^2)}
\]
where \(\rho_{i,\text{rest}} \) is the multiple correlation between the \(i \)th
variable and the others in the set. Also, it is well known
that normalization of the inverse matrix into a correlation
matrix and change of all signs in the off-diagonal elements
produces the matrix of partial correlations of each pair of
variables, given the rest. Hence in the inverse matrix, the
off-diagonal elements are

\[
- \frac{\rho_{i,j,\text{rest}}}{\sqrt{(1 - \rho_{i,\text{rest}}^2)(1 - \rho_{j,\text{rest}}^2)}} \quad (5.1)
\]

Using this structure of an inverse we may, analogously,
calculate canonical-partial and canonical-multiple correlations and produce a matrix which could be regarded as the
inverse of the matrix \(P \). This procedure is outlined below.

We constructed an \(E \) matrix for some categorical variables
with different responses and transformed the \(E \) matrix into a
rank-reduced super-matrix \(R \) with the diagonal matrices equal
to \(I \) (the identity matrix). Hence
\[R = \begin{bmatrix}
R_{11} & R_{12} & \cdots & R_{1p} \\
R_{12} & R_{22} & \cdots & R_{2p} \\
\vdots & \vdots & \ddots & \vdots \\
R_{1p} & R_{2p} & \cdots & R_{pp}
\end{bmatrix} \quad (5.2) \]

where \(R_{11} = R_{22} = \cdots = R_{pp} = I \).

We first partitioned the super-matrix \(R \)

\[\begin{bmatrix}
I & R_{12} & R_{13} & \cdots & R_{1p} \\
R_{12} & I & R_{23} & \cdots & R_{2p} \\
R_{13} & R_{23} & I & \cdots & R_{3p} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
R_{1p} & R_{2p} & R_{3p} & \cdots & I
\end{bmatrix} \quad (5.3) \]

and then obtained a new matrix

\[R^* = \begin{bmatrix}
R_{11}^* & R_{12}^* \\
R_{12}^* & R_{22}^*
\end{bmatrix} \quad (5.4) \]

where

\[R_{11}^* = I - \begin{bmatrix}
R_{13} & \cdots & R_{1p}
\end{bmatrix} \begin{bmatrix}
I & \cdots & R_{3p}
\end{bmatrix}^{-1} \begin{bmatrix}
R_{13}
\end{bmatrix} \]

\[R_{22}^* = I - \begin{bmatrix}
R_{23} & \cdots & R_{2p}
\end{bmatrix} \begin{bmatrix}
I & \cdots & R_{3p}
\end{bmatrix}^{-1} \begin{bmatrix}
R_{23}
\end{bmatrix} \]
and \[R_{12}^* = R_{12} - \begin{bmatrix} R_{13} & \cdots & R_{1p} \\ \end{bmatrix} \begin{bmatrix} I & \cdots & R_{3p}^{-1} \\ \end{bmatrix} \begin{bmatrix} \cdots \\ R_{3p} & \cdots & I \end{bmatrix} \begin{bmatrix} \cdots \\ R_{2p}^* \end{bmatrix} \]

The square of the canonical-partial correlation of set 1 and set 2 given the others is the largest characteristic root of \(R_{11}^* R_{12}^* R_{22}^* R_{12} \), i.e.

\[\rho_{12.34\ldots p}^2 = \text{Ch}_{\max}(R_{11}^* R_{12}^* R_{22}^* R_{12}) \] (5.5)

But for convenience in calculating the characteristic root, we first find a \(T^* \) such that \(R_{11}^* = T^* T^* \) and then invert \(T^* \), obtaining \(T^{-1} \); then \(R_{11}^{*^{-1}} = (T^{-1})^*(T^{-1}) \). Since \(\text{Ch}(ABC) = \text{Ch}(CAB) \) then

\[\rho_{12.34\ldots p}^2 = \text{Ch}_{\max}(R_{11}^* R_{12}^* R_{22}^* R_{12}) \]

\[= \text{Ch}_{\max}(T^{-1} T^{-1} R_{12}^* R_{22}^* R_{12}) \]

\[= \text{Ch}_{\max}(T^{-1} R_{12}^* R_{22}^* R_{12} T^{-1}) \] (5.6)

in which the matrix inside \(\text{Ch}(\ldots) \) is symmetric and real.

By the same process we can obtain all of the sample canonical-partial correlation between any two sets of categorical variables given the others, by taking the square root of the characteristic roots

\[\rho_{13.24\ldots p} \quad \cdots \quad \rho_{1p.234\ldots(p-1)} \quad \cdots \quad \rho_{(p-1)p.123\ldots(p-2)} \] (5.7)

We can place these canonical-partial correlations into a \((p \times p) \) matrix (off-diagonal terms).
For the canonical-multiple correlations, we partitioned the super-matrix R

$$
\begin{bmatrix}
I & R_{12} & R_{13} & \cdots & R_{1p} \\
R_{12} & I & R_{23} & \cdots & R_{2p} \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
R_{1p} & R_{2p} & R_{3p} & \cdots & I
\end{bmatrix} = \begin{bmatrix}
I & R^*_{12} \\
R^*_{12} & R^*_{22}
\end{bmatrix}
$$

(5.8)

where $R^*_{12} = R_{12} R_{13} \cdots R_{1p}$, $R^*_{22} = R_{23} R_{24} \cdots R_{2p}$, and R^* is the transpose of R_{12}.

and the square of the canonical-multiple correlation of set 1 vs. the others is the largest characteristic root of the matrix $R^*_{12} R^*_{22} R^*_{12}$.

Hence $\rho^2_{1.23...p} = \text{Ch}_{\max}(R^*_{12} R^*_{22} R^*_{12})$ (5.9)

and by the same process we can find all of the squares of the canonical-multiple correlations of one set vs. the others i.e. $\rho^2_{2.13...p}$, $\rho^2_{3.124...p}$, ..., $\rho^2_{p.123...(p-1)}$ (5.10)

Let $v_1 = 1 - \rho^2_{1.23...p}$, $v_2 = 1 - \rho^2_{2.13...p}$, ..., $v_p = 1 - \rho^2_{p.12...(p-1)}$ (5.11)

Let us denote the canonical-partial correlation for i^{th}
and j^{th} sets given the others by

$$u_{ij} = \rho_{i,j,k,...}$$ \hspace{1cm} (5.12)

then the inverse of a correlation matrix would be

$$P^{-1} = \begin{bmatrix}
\frac{1}{v_1} & -\frac{u_{12}}{\sqrt{v_1 v_2}} & -\frac{u_{13}}{\sqrt{v_1 v_3}} & \cdots & -\frac{u_{1p}}{\sqrt{v_1 v_p}} \\
-\frac{u_{12}}{\sqrt{v_1 v_2}} & \frac{1}{v_2} & -\frac{u_{23}}{\sqrt{v_2 v_3}} & \cdots & -\frac{u_{2p}}{\sqrt{v_2 v_p}} \\
-\frac{u_{13}}{\sqrt{v_1 v_3}} & -\frac{u_{23}}{\sqrt{v_2 v_3}} & \frac{1}{v_3} & \cdots & -\frac{u_{3p}}{\sqrt{v_3 v_p}} \\
-\frac{u_{1p}}{\sqrt{v_1 v_p}} & -\frac{u_{2p}}{\sqrt{v_2 v_p}} & -\frac{u_{3p}}{\sqrt{v_3 v_p}} & \cdots & \frac{1}{v_p}
\end{bmatrix}$$ \hspace{1cm} (5.13)

In matrix form, $P^{-1} = D^{-\frac{1}{2}} (2I - U) D^{-\frac{1}{2}}$ \hspace{1cm} (5.14)

where U is the matrix of the canonical-partial correlations with typical element u_{ij}, and $D^{-\frac{1}{2}}$ is a diagonal matrix with typical element $\frac{1}{\sqrt{v_i}}$.
6.1 Three Categorical Variables, Each With Three States

Let us consider a three-set case, each having three states, for example: color, taste and harvesting region of fruit. The contingency table is then constructed as follows:

(1) The first set (color): Red, Blue and Yellow.
(2) The second set (taste): Sweet, Sour and Bitter.
(3) The third set (region): North, South and Central.

Assume that the contingency table (3 \times 3 \times 3) obtained from a taste testing experiment is

Table 6.1.1

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th></th>
<th>C</th>
<th></th>
<th>S</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SW</td>
<td>S</td>
<td>B</td>
<td>SW</td>
<td>S</td>
<td>B</td>
</tr>
<tr>
<td>R</td>
<td>30</td>
<td>70</td>
<td>30</td>
<td>37</td>
<td>28</td>
<td>10</td>
</tr>
<tr>
<td>B</td>
<td>10</td>
<td>50</td>
<td>40</td>
<td>15</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>Y</td>
<td>75</td>
<td>20</td>
<td>5</td>
<td>27</td>
<td>0</td>
<td>23</td>
</tr>
</tbody>
</table>

There are three two-way tables:

(a) Tastes vs. Colors.
(b) Regions vs. Colors.
(c) Tastes vs. Regions.
Table 6.1.2
Tastes vs. Colors

<table>
<thead>
<tr>
<th></th>
<th>SW</th>
<th>S</th>
<th>B</th>
<th>Sub-total</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>120</td>
<td>103</td>
<td>47</td>
<td>270</td>
</tr>
<tr>
<td>B</td>
<td>60</td>
<td>100</td>
<td>90</td>
<td>250</td>
</tr>
<tr>
<td>Y</td>
<td>132</td>
<td>20</td>
<td>48</td>
<td>200</td>
</tr>
<tr>
<td>Sub-total</td>
<td>312</td>
<td>223</td>
<td>185</td>
<td>720</td>
</tr>
</tbody>
</table>

Table 6.1.3
Regions vs. Colors

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>C</th>
<th>S</th>
<th>Sub-total</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>130</td>
<td>75</td>
<td>65</td>
<td>270</td>
</tr>
<tr>
<td>Y</td>
<td>100</td>
<td>70</td>
<td>80</td>
<td>250</td>
</tr>
<tr>
<td>Y</td>
<td>100</td>
<td>50</td>
<td>50</td>
<td>200</td>
</tr>
<tr>
<td>Sub-total</td>
<td>330</td>
<td>195</td>
<td>195</td>
<td>720</td>
</tr>
</tbody>
</table>

Table 6.1.4
Tastes vs. Regions

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>C</th>
<th>S</th>
<th>Sub-total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW</td>
<td>115</td>
<td>79</td>
<td>118</td>
<td>312</td>
</tr>
<tr>
<td>S</td>
<td>140</td>
<td>53</td>
<td>30</td>
<td>223</td>
</tr>
<tr>
<td>B</td>
<td>75</td>
<td>63</td>
<td>47</td>
<td>185</td>
</tr>
<tr>
<td>Sub-total</td>
<td>330</td>
<td>195</td>
<td>195</td>
<td>720</td>
</tr>
</tbody>
</table>
From these contingency two-way tables, we find the following E matrices:

\[
E_1 = \begin{bmatrix}
168.7500 & -93.7500 & -75.0000 \\
-93.7500 & 163.1944 & -69.4444 \\
-75.0000 & -69.4444 & 144.4444
\end{bmatrix}
\]

\[
E_2 = \begin{bmatrix}
176.8000 & -96.6333 & -80.6666 \\
-96.6333 & 153.9379 & -57.2986 \\
-80.6666 & -57.2986 & 137.4653
\end{bmatrix}
\]

\[
E_3 = \begin{bmatrix}
178.7500 & -89.3750 & -89.3750 \\
-89.3750 & 142.1875 & -52.8125 \\
-89.3750 & -52.8125 & 142.1875
\end{bmatrix}
\]

Using the Gauss-Doolittle forward method, we then find \(T(-1)\) matrices.

\[
T_1(-1) = \begin{bmatrix}
0.076980 & 0.0 & 0.0 \\
0.052705 & 0.094868 & 0.0
\end{bmatrix}
\]
\[T_2(-1) = \begin{bmatrix} 0.075207 & 0.0 & 0.0 \\ 0.054355 & 0.099447 & 0.0 \end{bmatrix} \]

\[T_3(-1) = \begin{bmatrix} 0.074958 & 0.0 & 0.0 \\ 0.050673 & 0.101273 & 0.0 \end{bmatrix} \]

and \[R = D_T(-1) E D_T(-1) \]

\[R = \begin{bmatrix} R_{11} & R_{12} & R_{13} \\ R_{12} & R_{22} & R_{23} \\ R_{13} & R_{23} & R_{33} \end{bmatrix} \]

\[R_{11} = \begin{bmatrix} 1.0 & 0.0 \\ 0.0 & 1.0 \end{bmatrix} = R_{22} = R_{33} \]

\[R_{12} = \begin{bmatrix} 0.017368 & 0.160876 \\ -0.322955 & 0.073841 \end{bmatrix} \]

\[R_{13} = \begin{bmatrix} 0.035986 & 0.038980 \\ -0.078842 & -0.021350 \end{bmatrix} \]

\[R_{23} = \begin{bmatrix} -0.157504 & -0.148522 \\ 0.167268 & 0.008479 \end{bmatrix} \]

where

\[D_T(-1) = \begin{bmatrix} T_1(-1) & 0 & 0 \\ 0 & T_2(-1) & 0 \\ 0 & 0 & T_3(-1) \end{bmatrix} \]

After initialization of the canonical weights, by the process of the Fletcher-Powell method, the normalized canonical weights for each set turned out to be
These canonical weights will minimize the log determinant of the canonical correlation matrix, we further calculate the matrix with elements

\[a_i^* R_{ij} a_j = \rho_{ij} \]

\[P = \begin{bmatrix} 1.00000 & -0.33853 & -0.07564 \\ -0.33853 & 1.00000 & -0.25115 \\ -0.07564 & -0.25115 & 1.00000 \end{bmatrix} \quad (6.1.1) \]

the inverse of \(P \) is

\[P^{-1} = \begin{bmatrix} 1.16571 & 0.44484 & 0.19992 \\ 0.44484 & 1.23707 & 0.34435 \\ 0.19992 & 0.34435 & 1.10160 \end{bmatrix} \quad (6.1.2) \]

and \(| P | = 0.80373\), the minimum determinant.

For comparison, an attempt will be made to approximate \(P^{-1} \) by the canonical-partial, canonical-multiple correlation described in CHAPTER V. We partition the super-matrix \(R \) in the following manner:

\[R^* = \begin{bmatrix} R_{11}^* & R_{12}^* \\ R_{12}^* & R_{22}^* \end{bmatrix} \]

\[R_{11}^* = I - R_{13}^* R_{13} = \begin{bmatrix} 0.997184 & 0.003669 \\ 0.003669 & 0.993328 \end{bmatrix} \]

\[R_{22}^* = I - R_{23}^* R_{23} = \begin{bmatrix} 0.953133 & 0.027605 \\ 0.027605 & 0.971942 \end{bmatrix} \]
\[R_{12}^* = R_{12} - R_{13}R_{23}^* = \begin{bmatrix} 0.028826 & 0.154526 \\ -0.348544 & 0.087210 \end{bmatrix} \]

\[T_{1}^{*-1} = \begin{bmatrix} 1.001410 & 0.0 \\ -0.003692 & 1.003350 \end{bmatrix} \]

\[U_{12,3} = T_{1}^{*-1} R_{12}^* R_{22}^* R_{12}^* T_{1}^{*-1} = \begin{bmatrix} 0.025269 & 0.004788 \\ 0.004788 & 0.138094 \end{bmatrix} \]

The canonical-partial correlation for set 1 and set 2 given set 3 is the square root of the largest characteristic root of \(U_{12,3} \):

\[\rho_{12,3} = \sqrt{\text{Ch}_{\text{max}}(U_{12,3})} = \sqrt{0.138296} = 0.371882 \]

We then continue the process and partition the super-matrix \(R \) as follow, in order to find \(\rho_{13,2} \):

\[
\begin{bmatrix}
1 & R_{13} & R_{12} \\
R_{13} & 1 & R_{23} \\
R_{12} & R_{23} & 1
\end{bmatrix},
\begin{bmatrix}
R_{11}^* & R_{13}^* \\
R_{13}^* & R_{33}^* \\
R_{12}^* & R_{23}^*
\end{bmatrix}
\]

where

\[
R_{11}^* = I - R_{12}^* R_{12} = \begin{bmatrix} 0.973817 & -0.006096 \\ -0.006096 & 0.883687 \end{bmatrix}
\]

\[
R_{33}^* = I - R_{23}^* R_{23} = \begin{bmatrix} 0.947213 & -0.024811 \\ -0.024811 & 0.977869 \end{bmatrix}
\]

\[
R_{13}^* = R_{13} - R_{12}^* R_{23} = \begin{bmatrix} 0.011812 & 0.040196 \\ -0.143635 & -0.071428 \end{bmatrix}
\]
The canonical-partial correlation of set 1 and set 3 given set 2 is the square root of the largest characteristic root of $U_{13.2}$:

$$
\rho_{13.2} = \sqrt{\text{Ch}_{\text{max}}(U_{13.2})} = \sqrt{0.032049} = 0.179023
$$

For the canonical-partial correlation $\rho_{23.1}$, we proceed as follow:

$$
\begin{bmatrix}
I & R_{23} & R'_{12} \\
R_{23} & I & R_{13}' \\
R_{12}' & R_{13} & I
\end{bmatrix}, \quad R = \begin{bmatrix} R_{23} & \ast \ast \\
R_{23} & R_{33} \end{bmatrix}
$$

where

$$
R_{22} = I - R_{12}' R_{12} = \begin{bmatrix} 0.888838 & 0.021792 \\ 0.021792 & 0.968666 \end{bmatrix}
$$

$$
R_{33} = I - R_{13}' R_{13} = \begin{bmatrix} 0.992489 & -0.003086 \\ -0.003086 & 0.996024 \end{bmatrix}
$$

$$
R_{23} = R_{23} - R_{12}' R_{13} = \begin{bmatrix} -0.184280 & -0.156307 \\ 0.167301 & 0.003785 \end{bmatrix}
$$

$$
T_{2}^{*-1} = \begin{bmatrix} 1.060690 & 0.0 \\ -0.024917 & 1.016320 \end{bmatrix}
$$

The canonical-partial correlation of set 2 and set 3
given set 1 is the square root of the largest characteristic root of $U_{23,1}$.

$$U_{23,1} = T^{-1}_2 R_{23}^* R_{33}^* R_{23}^* R_{23} T^{-1}_2$$

$$= \begin{bmatrix} 0.066282 & -0.035792 \\ -0.035792 & 0.030794 \end{bmatrix}$$

$$\rho_{23,1} = \sqrt{\text{Ch}_{\text{max}}(U_{23,1})} = \sqrt{0.088487} = 0.297466$$

Hence the canonical-partial correlation matrix is

$$\begin{bmatrix} 1.0 & 0.37188 & 0.17902 \\ 0.37188 & 1.0 & 0.29747 \\ 0.17902 & 0.29747 & 1.0 \end{bmatrix}$$

To find the canonical-multiple correlations from the super-matrix R, we will partition the R into the following form

$$R = \begin{bmatrix} I & R_{12} & R_{13} \\ R_{12} & I & R_{23} \\ R_{13} & R_{23} & I \end{bmatrix} = \begin{bmatrix} I & R_{12}^* \\ R_{12}^* & I & R_{22}^* \end{bmatrix}$$

where $R_{12}^* = [R_{12} \\ R_{13}]$ and $R_{22}^* = [I \\ R_{23}]$.

and $V_{1,23} = R_{12}^* R_{22}^* R_{12}^*$

$$= \begin{bmatrix} 0.028009 & 0.001189 \\ 0.001189 & 0.143878 \end{bmatrix}$$

The canonical-multiple correlation of set 1 vs the others is the square root of the largest characteristic root of $V_{1,23}$.
\[\rho_{1.23} = \sqrt{\text{Ch}_{\text{max}}(V_{1.23})} = \sqrt{0.143890} = 0.379328 \]

and the associated characteristic vector is

\[
\begin{bmatrix}
0.010257 \\
0.999947
\end{bmatrix}
\]

The canonical-multiple correlation of set 2 vs the others is obtained by partitioning the super-matrix \(R \) in the following manner:

\[
R = \begin{bmatrix}
I & R_{12} & R_{23} \\
R_{12} & I & R_{13} \\
R_{23} & R_{13} & I
\end{bmatrix} = \begin{bmatrix}
I & R_{23}^* \\
R_{23}^* & I
\end{bmatrix}
\]

where \(R_{23}^* = \begin{bmatrix} R_{12} & R_{23} \end{bmatrix} \) and \(R_{33}^* = \begin{bmatrix} I & R_{13} \end{bmatrix} \)

\[
V_{2.13} = R_{23}^* R_{33}^* \]

\[
= \begin{bmatrix}
0.170075 & -0.053549 \\
-0.053549 & 0.059554
\end{bmatrix}
\]

The canonical-multiple correlation of set 2 vs the others is the square root of the largest characteristic root of \(V_{2.13} \),

\[\rho_{2.13} = \sqrt{\text{Ch}_{\text{max}}(V_{2.13})} = \sqrt{0.191763} = 0.437908 \]

and the associated characteristic vector is

\[
\begin{bmatrix}
0.926861 \\
-0.375404
\end{bmatrix}
\]

The canonical-multiple correlation of set 3 vs the others is obtained by partitioning the super-matrix \(R \) in the following manner:
\[
R = \begin{bmatrix}
I & R_{13} & R_{23} \\
R_{13} & I & R_{12} \\
R_{23} & R_{12} & I
\end{bmatrix} = \begin{bmatrix}
I & R^*_{13} \\
R^*_{13} & I & R^*_{11} \\
R^*_{13} & R^*_{11} & I
\end{bmatrix}
\]

where
\[
R^*_{13} = \begin{bmatrix} R_{13} & R_{23} \end{bmatrix} \text{ and } R^*_{11} = \begin{bmatrix} I & R_{12} \\
R_{12} & I \end{bmatrix}.
\]

\[
V_{3.12} = R^*_{13} R^*_{11}^{-1} R^*_{13} = \begin{bmatrix} 0.076253 & 0.036862 \\
0.036862 & 0.029523 \end{bmatrix}
\]

The canonical-multiple correlation of set 3 vs the others is the square root of the largest characteristic root of \(V_{3.12}\):
\[
\rho_{3.12} = \sqrt{\text{Ch}_{\text{max}}(V_{3.12})} = \sqrt{0.096532} = 0.310695
\]

and the associated characteristic vector is
\[
\begin{bmatrix} 0.876174 & 0.481994 \end{bmatrix}
\]

In accordance with the discussion in CHAPTER V,
\[
\rho_{ij} = \frac{-\rho_{i,j,k}}{\sqrt{1 - \rho_{i,j,k}^2 \sqrt{1 - \rho_{j,ik}^2}}} \quad \text{for } i \neq j
\]
at this stage, the sign of the partial correlation become important. A canonical-partial correlation is defined to be positive but the entries in the inverse of a correlation matrix can be positive or negative. One technique of choosing signs is to use those which produce an inverse whose diagonal elements are near unity. In the present example,
assuming all partial correlations to be negative we obtained an inverse whose diagonal elements were close to one, namely:

\[p^{-1} = \begin{bmatrix}
1.16807 & 0.44707 & 0.20356 \\
0.44707 & 1.12373 & 0.34811 \\
0.20356 & 0.34811 & 1.10684
\end{bmatrix} \]

and

\[p = (p^{-1})^{-1} = \begin{bmatrix}
0.99946 & -0.33946 & -0.07705 \\
-0.33946 & 1.00199 & -0.25270 \\
-0.07705 & -0.25270 & 0.99711
\end{bmatrix} \]

This is quite similar to the correlation matrix (6.1.1) and (6.1.2) based upon the minimum-determinant solution.

Three principally different approaches (canonical-multiplication, minimum-determinant and construction of the inverse of a correlation matrix) lead to very similar results. This fact is additional evidence of the existence of optimum scale values derived from the data, quite independent of the method of analysis.

The reduction to the original categorical weights for the E matrix is as follows:

\[a_1' = \begin{bmatrix}
0.0547 \\
0.929 \\
0.856
\end{bmatrix} \]

\[a_2' = \begin{bmatrix}
0.998 \\
-0.369 \\
0.516
\end{bmatrix} \]

The marginal totals for each set are

\[n_1' = \begin{bmatrix}
270 & 250 & 200
\end{bmatrix} \]

\[n_2' = \begin{bmatrix}
312 & 223 & 185
\end{bmatrix} \]

\[n_3' = \begin{bmatrix}
300 & 195 & 195
\end{bmatrix} \]
The grand total is: \(n = 720 \)

Reduction to the original categorical weights results are

\[
\begin{align*}
\mathbf{W}_1 &= \begin{bmatrix} 0.07054 & 1.08735 & -1.45442 \end{bmatrix} \\
\mathbf{W}_2 &= \begin{bmatrix} 1.06254 & -1.25980 & -0.27338 \end{bmatrix} \\
\mathbf{W}_3 &= \begin{bmatrix} 0.93106 & -0.08640 & -1.48923 \end{bmatrix}
\end{align*}
\]

6.2 Three Categorical Variables, with 2, 5 and 2 States

Example of a contingency table:

Table 6.2.1

<table>
<thead>
<tr>
<th></th>
<th>Men</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Women</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
</tr>
<tr>
<td>Survive</td>
<td>741</td>
<td>742</td>
<td>345</td>
<td>188</td>
<td>79</td>
<td>896</td>
<td>718</td>
<td>276</td>
<td>93</td>
<td>35</td>
</tr>
<tr>
<td>Death</td>
<td>360</td>
<td>297</td>
<td>150</td>
<td>75</td>
<td>79</td>
<td>420</td>
<td>334</td>
<td>175</td>
<td>59</td>
<td>41</td>
</tr>
<tr>
<td>Sub-total</td>
<td>1101</td>
<td>1039</td>
<td>495</td>
<td>263</td>
<td>158</td>
<td>1316</td>
<td>1052</td>
<td>451</td>
<td>152</td>
<td>76</td>
</tr>
</tbody>
</table>

(1) The first set (sex): Men, women.

(2) The second set (age): A - 15 to 24 year-old group.
B - 25 to 34 year-old group.
C - 35 to 44 year-old group.
D - 45 to 54 year-old group.
E - 55 year-old and above.

Of course, categorical scaling is required for the five-
state set only since weights are arbitrary for the two-level factors. We will, however, proceed formally as in the previous case.

There are three two-way tables:

Table 6.2.2

Sex vs. Age

<table>
<thead>
<tr>
<th></th>
<th>Men</th>
<th>Women</th>
<th>Sub-total</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1101</td>
<td>1316</td>
<td>2417</td>
</tr>
<tr>
<td>B</td>
<td>1039</td>
<td>1052</td>
<td>2091</td>
</tr>
<tr>
<td>C</td>
<td>495</td>
<td>451</td>
<td>946</td>
</tr>
<tr>
<td>D</td>
<td>263</td>
<td>152</td>
<td>415</td>
</tr>
<tr>
<td>E</td>
<td>158</td>
<td>76</td>
<td>234</td>
</tr>
<tr>
<td>Sub-total</td>
<td>3056</td>
<td>3047</td>
<td>6103</td>
</tr>
</tbody>
</table>

Table 6.2.3

Sex vs. Risk

<table>
<thead>
<tr>
<th></th>
<th>Men</th>
<th>Women</th>
<th>Sub-total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Survive</td>
<td>2095</td>
<td>2018</td>
<td>4113</td>
</tr>
<tr>
<td>Death</td>
<td>961</td>
<td>1029</td>
<td>1990</td>
</tr>
<tr>
<td>Sub-total</td>
<td>3056</td>
<td>3047</td>
<td>6103</td>
</tr>
</tbody>
</table>
Table 6.2.4

Age vs. Risk

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>Sub-total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Survive</td>
<td>1637</td>
<td>1460</td>
<td>621</td>
<td>281</td>
<td>114</td>
<td>4113</td>
</tr>
<tr>
<td>Death</td>
<td>780</td>
<td>631</td>
<td>325</td>
<td>134</td>
<td>120</td>
<td>1990</td>
</tr>
<tr>
<td>Sub-total</td>
<td>2417</td>
<td>2091</td>
<td>946</td>
<td>415</td>
<td>234</td>
<td>6103</td>
</tr>
</tbody>
</table>

The E matrices are as follows:

$E_{11} = \begin{bmatrix} 1525.7467 & -1525.7467 \\ -1525.7467 & 1525.7467 \end{bmatrix}$

$E_{33} = \begin{bmatrix} 1341.1224 & -1341.1224 \\ -1341.1224 & 1341.1224 \end{bmatrix}$

$E_{13} = \begin{bmatrix} 35.4673 & -35.4673 \\ -35.4673 & 35.4673 \end{bmatrix}$

$E_{23} = \begin{bmatrix} 8.1091 & -8.1091 \\ 50.8106 & -50.8106 \end{bmatrix}$

$E_{23} = \begin{bmatrix} -16.5386 & 16.5386 \\ 1.3187 & -1.3187 \end{bmatrix}$

$E_{23} = \begin{bmatrix} -43.6998 & 43.6998 \end{bmatrix}$
The T conditional inverses are:

\[
T_1^{-1} = \begin{bmatrix} 0.025601 & 0.0 \\ 0.026173 & 0.0 \\ 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \end{bmatrix}
\]

\[
T_2^{-1} = \begin{bmatrix} 0.018859 & 0.033244 & 0.0 \\ 0.030230 & 0.030230 & 0.050969 & 0.0 \\ 0.052275 & 0.052275 & 0.052275 & 0.081750 & 0.0 \end{bmatrix}
\]

\[
T_3^{-1} = \begin{bmatrix} 0.027306 & 0.0 \\ \end{bmatrix}
\]

The super-matrix R is

\[
R_{11} = 1
\]
\[
R_{12} = \begin{bmatrix} -0.073226 & -0.059607 & -0.063003 & -0.012989 \end{bmatrix}
\]
\[
R_{22} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}
\]
\[
R_{13} = 0.024794
\]
\[
R_{23} = \begin{bmatrix} 0.005796 \\ 0.050301 \\ 0.025619 \\ 0.063440 \end{bmatrix}
\]
\[
R_{33} = 1
\]

By initialization of the canonical weights and by the Fletcher-Powell method, we found the normalized categorical weights for each set are

\[
a_1 = 1 = a_3
\]
\[
a_2 = [0.501 \ 0.598 \ 0.517 \ 0.349]
\]
Further, we calculate the canonical correlations with

\[(i, j) \text{ element } a_{ij}^2 R_{ij} R_j \]

\[
P = \begin{bmatrix}
1.00000 & -0.10956 & 0.02479 \\
-0.10956 & 1.00000 & -0.06845 \\
0.02479 & -0.06845 & 1.00000
\end{bmatrix} \quad \text{(6.2.1)}
\]

Here, the (1,3) and (3,1) elements are positive; if we want all off-diagonal elements to be negatives we can make the signs in \(a_{ij}^2 \) negative, which changes the sign in the (1,2) and (2,3) elements.

The inverse of \(P \) is

\[
P^{-1} = \begin{bmatrix}
1.01322 & 0.11326 & 0.03287 \\
0.11326 & 1.01736 & 0.07245 \\
0.03287 & 0.07245 & 1.00577
\end{bmatrix} \quad \text{(6.2.2)}
\]

and \(|P| = 0.982324\)

Again, to approximate the matrix \(P^{-1} \) by canonical-partial and canonical-multiple correlations we will make the usual partitions of the super-matrix \(R \). First, the canonical-partial correlation of set 1 and set 2 given set 3 is obtained from

\[
R = \begin{bmatrix}
I & R_{12} & R_{13} \\
R_{12} & I & R_{23} \\
R_{13} & R_{23} & I
\end{bmatrix}
\]

and

\[
R_{11}^* = I - R_{13} R_{13}^t = 0.999385
\]

\[
R_{22}^* = I - R_{23} R_{23}^t
\]
\[R_{12}^* = R_{12} - R_{13} R_{23}^t \]
\[= \begin{bmatrix}
0.073369 & -0.060854 & -0.063638 & -0.014562
\end{bmatrix} \]

Hence, the canonical-partial correlation of set 1 and set 3 given set 3 is the square root of the largest characteristic root of

\[U_{12.3} = R_{11}^* R_{12}^* R_{22}^* R_{12} = 0.013393 \]

and

\[\rho_{12.3} = \sqrt{\text{Ch}_{\text{max}}(U_{12.3})} = \sqrt{0.013393} = 0.115728 \]

For the canonical-partial correlation of set 1 and set 3 given set 2, we have

\[R_{11}^* = I - R_{12} R_{12}^t = 0.986946 \]
\[R_{33}^* = I - R_{23} R_{23}^t = 0.992755 \]
\[R_{13}^* = R_{13} - R_{12} R_{23}^t = 0.030655 \]

\[U_{13.2} = R_{11}^* R_{13}^* R_{33}^* R_{13} = 0.000959 \]

Therefore, the canonical-partial correlation of set 1 and set 3 given set 2 would be the square root of the largest characteristic root of \(U_{13.2} \), hence

\[\rho_{13.2} = 0.030969 \]

Finally, the canonical-partial correlation of set 2 and set 3 given set 1 is
\[\mathbf{R}_{22}^* = \mathbf{I} - \mathbf{R}_{12} \mathbf{R}_{12} \]
\[
= \begin{bmatrix}
0.994638 & -0.004365 & -0.004614 & -0.000951 \\
-0.004365 & 0.996447 & -0.003755 & -0.000774 \\
-0.004614 & -0.003755 & 0.996030 & -0.000818 \\
-0.000951 & -0.000774 & -0.000818 & 0.999831
\end{bmatrix}
\]
\[\mathbf{R}_{33}^* = \mathbf{I} - \mathbf{R}_{13} \mathbf{R}_{13} = 0.999385 \]
\[\mathbf{R}_{23}^* = \mathbf{R}_{23} - \mathbf{R}_{12} \mathbf{R}_{13} = \begin{bmatrix}
0.007611 \\
0.051779 \\
0.027181 \\
0.063763
\end{bmatrix} \]

The canonical-partial correlation of set 2 and set 3 given set 1 is the square root of the largest characteristic root of \(\mathbf{U}_{23,1} \), where
\[\mathbf{U}_{23,1} = \begin{bmatrix}
0.000058 & 0.000396 & 0.000209 & 0.000488 \\
0.000396 & 0.002696 & 0.001427 & 0.003316 \\
0.000209 & 0.001427 & 0.000755 & 0.001755 \\
0.000488 & 0.003316 & 0.001755 & 0.004078
\end{bmatrix} \]
\[\rho_{23,1} = 0.087103 \]

So the canonical-partial correlation matrix is
\[\begin{bmatrix}
1.00000 & 0.11573 & 0.03097 \\
0.11573 & 1.00000 & 0.08710 \\
0.03097 & 0.08710 & 1.00000
\end{bmatrix} \]

For the canonical-multiple correlations we will partition the super-matrix \(\mathbf{R} \) as described earlier; for the canonical-multiple correlation of set 1 vs. the others:
\[
R_{12}^* = \begin{bmatrix} R_{12} & R_{13} \end{bmatrix}
\]
\[
R_{22}^* = \begin{bmatrix} I & R_{23} \\ R_{23} & I \end{bmatrix}
\]

and \(V_{1.23} = R_{12}^* R_{22}^{*-1} R_{12}^* = 0.013999 \)

The square root of the largest characteristic root of \(V_{1.23} \) is the canonical-multiple correlation of set 1 vs the others:

\[\rho_{1.23} = 0.118320 \]

and the associated characteristic vector is, of course

\[[1] \]

For the canonical-multiple correlation of set 2 vs the others, we have

\[
R_{23}^* = \begin{bmatrix} R_{12} & R_{23} \end{bmatrix} \text{ and } R_{33}^* = \begin{bmatrix} I & R_{13} \\ R_{13} & I \end{bmatrix}
\]

\[V_{2.13} = R_{23}^* R_{33}^{*-1} R_{23}^* = \begin{bmatrix}
0.005419 & 0.004759 & 0.004821 & 0.001437 \\
0.004759 & 0.006236 & 0.005164 & 0.004078 \\
0.004821 & 0.005164 & 0.005164 & 0.002553 \\
0.001437 & 0.004077 & 0.002553 & 0.004237
\end{bmatrix} \]

The square root of the largest characteristic root of \(V_{2.13} \) is the canonical-multiple correlation of set 2 vs the others:

\[\rho_{2.13} = 0.13068 \]

and the associated characteristic vector is

\[[0.531723 \ 0.598517 \ 0.517728 \ 0.349290] \]
Finally, for the canonical multiple correlation of set 3 vs the others, we have

\[R_{13}^* = \begin{bmatrix} R_{13} & R_{23} \end{bmatrix} \quad \text{and} \quad R_{11}^* = \begin{bmatrix} 1 & R_{12} \\ R_{12} & 1 \end{bmatrix} \]

\[V_{3,12} = R_{13}^* R_{11}^* R_{13}^* = 0.006197 \]

Then the canonical-multiple correlation of set 3 vs the others is the square root of \(V_{3,12} \), hence

\[\rho_{3,12} = 0.090537 \]

and the associated characteristic vector is

\[[1] \]

So the inverse of a canonical correlation matrix \(P \) would be

\[
P^{-1} = \begin{bmatrix}
1.01419 & 0.11756 & 0.03132 \\
0.11756 & 1.01736 & 0.08822 \\
0.03132 & 0.08822 & 1.00826
\end{bmatrix}
\]

and

\[
P = (P^{-1})^{-1} = \begin{bmatrix}
0.99983 & -0.11369 & -0.02110 \\
-0.11369 & 1.00337 & -0.08426 \\
-0.02110 & -0.08426 & 0.99983
\end{bmatrix}
\]

and \(|P| = 0.982158 \), the minimum determinant.

Again, when compare with (6.2.1) and (6.2.2) the approximation is quite close.

For the reduction of the categorical weights for \(E \) matrix, we have from Fletcher-Powell method the normalized canonical weights.
\[a_1 = 1 = a_3 \]
\[a_2 = [0.501 \ 0.598 \ 0.517 \ 0.349] \]

The marginal totals for each set are
\[n_1 = [3956 \ 3047] \]
\[n_2 = [2417 \ 2091 \ 946 \ 415 \ 234] \]
\[n_3 = [4113 \ 1990] \]

with the grand total \(n = 6103 \).

The final categorical weights for the \(E \) matrix are
\[w_1 = [0.99853 \ -1.00147] \]
\[w_2 = [0.61940 \ 0.26653 \ -0.44928 \ -1.70580 \ -3.93789] \]
\[w_3 = [0.69558 \ -1.43764] \]

6.3 Four Categorical Variables, with 4, 4, 3 and 3 States

Let us consider a case of four sets with the first and the second sets having four states, the third and the fourth sets having three states (4 x 4 x 3 x 3).

There will be six two-way tables; the calculation process is the same as two previous cases (6.1 and 6.2).
The contingency table is

Table 6.3.1

<table>
<thead>
<tr>
<th></th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_1</td>
<td>2</td>
<td>12</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>B_2</td>
<td>10</td>
<td>15</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>B_3</td>
<td>1</td>
<td>10</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>B_4</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Sub-total</td>
<td>84</td>
<td>492</td>
<td>512</td>
<td>670</td>
</tr>
</tbody>
</table>

The six two-way tables:

Table 6.3.2

<table>
<thead>
<tr>
<th></th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>Sub-total</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_1</td>
<td>275</td>
<td>23</td>
<td>47</td>
<td>382</td>
<td>727</td>
</tr>
<tr>
<td>B_2</td>
<td>445</td>
<td>33</td>
<td>85</td>
<td>226</td>
<td>789</td>
</tr>
<tr>
<td>B_3</td>
<td>42</td>
<td>122</td>
<td>285</td>
<td>46</td>
<td>495</td>
</tr>
<tr>
<td>B_4</td>
<td>22</td>
<td>314</td>
<td>95</td>
<td>16</td>
<td>447</td>
</tr>
<tr>
<td>Sub-total</td>
<td>784</td>
<td>492</td>
<td>512</td>
<td>670</td>
<td>2458</td>
</tr>
</tbody>
</table>
Table 6.3.3

A vs C

<table>
<thead>
<tr>
<th></th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>Sub-total</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td>68</td>
<td>330</td>
<td>252</td>
<td>50</td>
<td>700</td>
</tr>
<tr>
<td>C_2</td>
<td>323</td>
<td>32</td>
<td>65</td>
<td>359</td>
<td>779</td>
</tr>
<tr>
<td>C_3</td>
<td>393</td>
<td>130</td>
<td>195</td>
<td>261</td>
<td>979</td>
</tr>
<tr>
<td>Sub-total</td>
<td>784</td>
<td>492</td>
<td>512</td>
<td>670</td>
<td>2458</td>
</tr>
</tbody>
</table>

Table 6.3.4

A vs D

<table>
<thead>
<tr>
<th></th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>Sub-total</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_1</td>
<td>81</td>
<td>341</td>
<td>237</td>
<td>57</td>
<td>716</td>
</tr>
<tr>
<td>D_2</td>
<td>384</td>
<td>94</td>
<td>207</td>
<td>300</td>
<td>985</td>
</tr>
<tr>
<td>D_3</td>
<td>319</td>
<td>57</td>
<td>68</td>
<td>313</td>
<td>757</td>
</tr>
<tr>
<td>Sub-total</td>
<td>784</td>
<td>492</td>
<td>512</td>
<td>670</td>
<td>2458</td>
</tr>
</tbody>
</table>

Table 6.3.5

B vs C

<table>
<thead>
<tr>
<th></th>
<th>B_1</th>
<th>B_2</th>
<th>B_3</th>
<th>B_4</th>
<th>Sub-total</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td>55</td>
<td>81</td>
<td>264</td>
<td>300</td>
<td>700</td>
</tr>
<tr>
<td>C_2</td>
<td>390</td>
<td>286</td>
<td>74</td>
<td>29</td>
<td>779</td>
</tr>
<tr>
<td>C_3</td>
<td>282</td>
<td>422</td>
<td>157</td>
<td>118</td>
<td>979</td>
</tr>
<tr>
<td>Sub-total</td>
<td>727</td>
<td>789</td>
<td>495</td>
<td>447</td>
<td>2458</td>
</tr>
</tbody>
</table>
Table 6.3.6

B vs D

<table>
<thead>
<tr>
<th></th>
<th>B_1</th>
<th>B_2</th>
<th>B_3</th>
<th>B_4</th>
<th>Sub-total</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_1</td>
<td>72</td>
<td>86</td>
<td>246</td>
<td>312</td>
<td>716</td>
</tr>
<tr>
<td>D_2</td>
<td>286</td>
<td>433</td>
<td>180</td>
<td>86</td>
<td>985</td>
</tr>
<tr>
<td>D_3</td>
<td>369</td>
<td>170</td>
<td>69</td>
<td>49</td>
<td>757</td>
</tr>
<tr>
<td>Sub-total</td>
<td>727</td>
<td>789</td>
<td>495</td>
<td>447</td>
<td>2458</td>
</tr>
</tbody>
</table>

Table 6.3.7

C vs D

<table>
<thead>
<tr>
<th></th>
<th>C_1</th>
<th>C_2</th>
<th>C_3</th>
<th>Sub-total</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_1</td>
<td>461</td>
<td>50</td>
<td>205</td>
<td>716</td>
</tr>
<tr>
<td>D_2</td>
<td>194</td>
<td>242</td>
<td>549</td>
<td>985</td>
</tr>
<tr>
<td>D_3</td>
<td>45</td>
<td>47</td>
<td>225</td>
<td>757</td>
</tr>
<tr>
<td>Sub-total</td>
<td>700</td>
<td>779</td>
<td>979</td>
<td>2458</td>
</tr>
</tbody>
</table>

The E matrix are as follow:

$$E_{22} = \begin{bmatrix} 511.976 & -233.361 & -146.404 & -132.208 \\ -233.361 & 535.736 & -158.891 & -143.483 \\ -146.405 & -158.891 & 395.315 & -90.018 \\ -132.208 & -143.483 & -90.018 & 365.710 \end{bmatrix}$$
\[
\begin{bmatrix}
500.650 & -221.847 & -278.803 \\
-221.847 & 532.115 & -310.268 \\
-278.803 & -310.268 & 589.072 \\
\end{bmatrix} -
\begin{bmatrix}
507.433 & -286.924 & -220.509 \\
-286.924 & 590.278 & -303.354 \\
-220.509 & -303.354 & 523.863 \\
\end{bmatrix} +
\begin{bmatrix}
43.117 & 193.341 & -115.864 & -120.574 \\
-122.518 & -124.928 & 22.919 & 224.527 \\
-104.433 & -79.348 & 181.891 & 1.890 \\
183.834 & 10.935 & -88.927 & -105.842 \\
\end{bmatrix} -
\begin{bmatrix}
-155.270 & 74.531 & 80.739 \\
189.886 & -123.926 & -65.959 \\
106.190 & -97.265 & -8.925 \\
-140.805 & 146.660 & -5.855 \\
\end{bmatrix} +
\begin{bmatrix}
-152.038 & 159.516 & -7.558 \\
-143.694 & 35.947 & 107.748 \\
123.031 & -82.878 & -40.154 \\
172.701 & -112.665 & -60.036 \\
\end{bmatrix} -
\begin{bmatrix}
-147.374 & 69.826 & 77.548 \\
197.683 & -103.160 & -94.523 \\
87.858 & 1.825 & -89.683 \\
-138.166 & 31.509 & 106.657 \\
\end{bmatrix} +
\begin{bmatrix}
-139.770 & -5.332 & 145.102 \\
-143.830 & 116.822 & 72.009 \\
101.809 & -18.362 & -83.447 \\
181.791 & -93.127 & -88.664 \\
\end{bmatrix}
\]
The T conditional inverses are

\[T_1^{(-1)} = \begin{bmatrix} 0.043279 & 0.0 & 0.0 & 0.0 \\ 0.015769 & 0.053652 & 0.0 & 0.0 \\ 0.025427 & 0.025427 & 0.058699 & 0.0 \\ 0.044195 & 0.0 & 0.0 & 0.0 \end{bmatrix} \]

\[T_2^{(-1)} = \begin{bmatrix} 0.044692 & 0.0 & 0.0 \\ 0.021997 & 0.048259 & 0.0 & 0.0 \\ 0.04287 & 0.034287 & 0.065248 & 0.0 \\ 0.021275 & 0.048012 & 0.0 & 0.0 \end{bmatrix} \]

\[T_3^{(-1)} = \begin{bmatrix} 0.044692 & 0.0 & 0.0 \\ 0.021275 & 0.048012 & 0.0 \end{bmatrix} \]

\[T_4^{(-1)} = \begin{bmatrix} 0.044393 & 0.0 & 0.0 \\ 0.027330 & 0.048335 & 0.0 \end{bmatrix} \]

Hence the super-matrix R consists of

\[R_{11} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = R_{22} \]

\[R_{33} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = R_{44} \]

\[R_{12} = \begin{bmatrix} 0.082467 & 0.444844 & 0.023633 \\ -0.260426 & -0.305975 & -0.306343 \\ -0.360152 & -0.322009 & 0.163962 \end{bmatrix} \]

\[R_{13} = \begin{bmatrix} -0.300315 & 0.011902 \\ 0.345889 & -0.098147 \\ 0.317918 & -0.183083 \end{bmatrix} \]
By some initialization of the canonical weights, and the Fletcher Powell method we obtain a set of normalized canonical weights which will minimize the log determinant of the canonical correlation matrix,

\[
\begin{pmatrix}
-0.300303 & 0.195692 \\
-0.459394 & 0.033157 \\
-0.094392 & 0.017331 \\
-0.283130 & -0.028251 \\
0.367669 & 0.012056 \\
0.285728 & 0.140120 \\
-0.444625 & -0.006904 \\
-0.136764 & 0.042654 \\
0.510076 & 0.127246 \\
-0.134265 & -0.334463
\end{pmatrix}
\]

By taking negative signs of \(a_2\), we can make the off-diagonal elements all positive, the inverse of \(P\) is then
We now calculate the canonical-partial correlations:

For \(\rho_{12,34} \)

\[
R_{11}^* = I - [R_{13} R_{14}] [I R_{34}]^{-1} [R_{13}]
\]

\[
= \begin{bmatrix}
0.886809 & 0.136459 & 0.115606 \\
0.136459 & 0.825142 & -0.149995 \\
0.115606 & -0.149995 & 0.848485
\end{bmatrix}
\]

\[
R_{12}^* = R_{12} - [R_{13} R_{14}] [I R_{34}]^{-1} [R_{23}]
\]

\[
= \begin{bmatrix}
-0.027496 & 0.270088 & -0.019955 \\
-0.118013 & -0.091662 & -0.308620 \\
-0.210162 & -0.141697 & 0.205016
\end{bmatrix}
\]

\[
R_{22}^* = I - [R_{23} R_{24}] [I R_{34}]^{-1} [R_{23}]
\]

\[
= \begin{bmatrix}
0.849399 & -0.168143 & -0.038132 \\
-0.168143 & 0.728007 & -0.070279 \\
-0.038032 & -0.070279 & 0.977854
\end{bmatrix}
\]
The canonical-partial correlation of set 1 and set 2 given the others is the square root of the largest characteristic root of $U_{12,34}^*$, hence

$$\rho_{12,34} = 0.579441$$

For $\rho_{13,24}$:

$$R_{11}^* = I - \begin{bmatrix} R_{12} & R_{14} \\ R_{24} & I \end{bmatrix} \begin{bmatrix} I & R_{24} \\ R_{24} & I \end{bmatrix}^{-1} \begin{bmatrix} R_{12} \\ R_{24} \end{bmatrix}$$

$$= \begin{bmatrix} 0.789515 & 0.175271 & 0.174976 \\ 0.175271 & 0.678013 & -0.141414 \\ 0.174976 & -0.141414 & 0.729794 \end{bmatrix}$$

$$T_1^{(-1)} = \begin{bmatrix} 1.061900 & 0.0 & 0.0 \\ -0.171596 & 1.115740 & 0.0 \\ -0.181826 & 0.233510 & 1.119140 \end{bmatrix}$$

and $R_{11}^{*-1} = T_1^{(-1)^T} T_1^{(-1)}$

$$U_{12,34} = T_1^{(-1)^*} R_{12}^* R_{22}^{*-1} R_{12}^{*-1} T_1^{(-1)^*}$$

$$= \begin{bmatrix} 0.114767 & -0.069291 & -0.103357 \\ -0.069291 & 0.200738 & 0.063874 \\ -0.103357 & 0.063874 & 0.205583 \end{bmatrix}$$
The canonical-partial correlation of set 1 and set 3 given the others is the square root of the largest characteristic root of $U_{13.24}$, hence
\[
\rho_{13.24} = 0.220117
\]

For $\rho_{23.14}$

\[
R_{22}^* = \begin{bmatrix}
0.774930 & -0.234182 & -0.038920 \\
-0.234182 & 0.585180 & -0.078306 \\
-0.038297 & -0.078306 & 0.835689
\end{bmatrix}
\]

\[
R_{23}^* = \begin{bmatrix}
-0.044353 & -0.059261 \\
-0.088416 & -0.053181 \\
-0.001943 & 0.015324
\end{bmatrix}
\]

\[
R_{33}^* = \begin{bmatrix}
0.620651 & 0.135421 \\
0.135421 & 0.855330
\end{bmatrix}
\]
\[T_2^{(-1)} = \begin{bmatrix} 1.135970 & 0.0 & 0.0 \\ 0.421434 & 1.394260 & 0.0 \\ 0.114051 & 0.193599 & 1.105690 \end{bmatrix} \]

\[U_{23.14} = \begin{bmatrix} 0.011512 & 0.009798 & 0.003749 \\ 0.009798 & 0.032873 & 0.005151 \\ 0.003749 & 0.005151 & 0.001377 \end{bmatrix} \]

and \[\rho_{23.14} = \sqrt{Ch_{\text{max}}(U_{23.14})} = \sqrt{0.037733} = 0.194250 \]

For \(\rho_{14.23} \):

\[R_{11}^* = \begin{bmatrix} 0.787713 & 0.174990 & 0.174636 \\ 0.174990 & 0.690170 & -0.174382 \\ 0.174636 & -0.174382 & 0.718933 \end{bmatrix} \]

\[R_{14}^* = \begin{bmatrix} -0.039524 & -0.007767 \\ 0.078144 & -0.004448 \\ 0.032788 & 0.021033 \end{bmatrix} \]

\[R_{44}^* = \begin{bmatrix} 0.636267 & -0.097197 \\ -0.097197 & 0.858221 \end{bmatrix} \]

\[T_1^{(-1)} = \begin{bmatrix} 1.126710 & 0.0 & 0.0 \\ -0.275169 & 1.230110 & 0.0 \\ -0.360182 & 0.361008 & 1.262850 \end{bmatrix} \]

\[U_{14.23} = \begin{bmatrix} 0.003404 & -0.006865 & -0.006351 \\ -0.006865 & 0.019815 & 0.013064 \\ -0.006351 & -0.013064 & 0.011859 \end{bmatrix} \]

\[\rho_{14.23} = \sqrt{Ch_{\text{max}}(U_{14.23})} = \sqrt{0.032470} = 0.180195 \]
For $\rho_{24,13}$

$$R_{22}^* = \begin{bmatrix}
0.774793 & -0.238515 & -0.041468 \\
-0.238515 & 0.583674 & -0.071973 \\
-0.041468 & -0.071973 & 0.838285
\end{bmatrix}$$

$$R_{24}^* = \begin{bmatrix}
-0.022346 & -0.079087 \\
-0.082556 & 0.051299 \\
-0.037265 & -0.030412
\end{bmatrix}$$

$$R_{44}^* = \begin{bmatrix}
0.635430 & -0.097427 \\
-0.097427 & 0.865801
\end{bmatrix}$$

$$t_2(-1) = \begin{bmatrix}
1.136070 & 0.0 & 0.0 \\
0.430962 & 1.399930 & 0.0 \\
0.115421 & 0.183174 & 1.102970
\end{bmatrix}$$

$$U_{24,13} = \begin{bmatrix}
0.002960 & 0.025073 & 0.012127 \\
-0.000382 & 0.012127 & 0.006164
\end{bmatrix}$$

$$\rho_{24,13} = \sqrt{\text{Ch}_{\max}(U_{24,13})} = \sqrt{0.031308} = 0.176941$$

For $\rho_{34,12}$

$$R_{33}^* = \begin{bmatrix}
0.645318 & 0.097515 \\
0.097515 & 0.941411
\end{bmatrix}$$

$$R_{34}^* = \begin{bmatrix}
0.166011 & 0.064476 \\
-0.042258 & -0.290438
\end{bmatrix}$$

$$R_{44}^* = \begin{bmatrix}
0.663253 & -0.054594 \\
-0.054594 & 0.958841
\end{bmatrix}$$
$T_{3}(-1) = \begin{bmatrix} 1.244830 & 0 \\ -0.156976 & 1.038810 \end{bmatrix}$

$U_{34.12} = \begin{bmatrix} 0.074305 & -0.054168 \\ -0.054168 & 0.113066 \end{bmatrix}$

$\rho_{34.12} = \sqrt{\text{Ch}_{\max}(U_{34.12})} = \sqrt{0.151216} = 0.388865$

Hence the canonical-partial correlation matrix is

$\begin{bmatrix} 1.00000 & 0.57944 & 0.22012 & 0.18019 \\ 0.57944 & 1.00000 & 0.19425 & 0.17694 \\ 0.22012 & 0.19425 & 1.00000 & 0.38886 \\ 0.18019 & 0.17694 & 0.38886 & 1.00000 \end{bmatrix}$

Now we want to find all of the canonical-multiples correlations of one set vs the others.

For $\rho_{1.234}$:

$R_{12}^* = \begin{bmatrix} R_{12} & R_{13} & R_{14} \\ I & R_{23} & R_{24} \\ R_{24}^* & R_{34}^* & I \end{bmatrix}$

and

$V_{1.234} = R_{12}^* R_{22}^* R_{12}^*$

$\begin{bmatrix} 0.214976 & -0.179312 & -0.177099 \\ -0.179312 & 0.320683 & 0.150404 \\ -0.177099 & 0.150404 & 0.283560 \end{bmatrix}$

The canonical-multiple correlation $\rho_{1.234}$ is the square root of the largest characteristic root of $V_{1.234}$:

$\rho_{1.234} = \sqrt{\text{Ch}_{\max}(V_{1.234})} = \sqrt{0.612946} = 0.782908$

and the associated characteristic vector is
With the same process we obtain, for $\rho_{2.134}$:

$$V_{2.134} \cdot R^* R_{11} R_{12} R_{12} =$$

$$= \begin{bmatrix}
0.233994 & 0.237671 & 0.040383 \\
0.237671 & 0.428806 & 0.077936 \\
0.040383 & 0.077936 & 0.164170
\end{bmatrix}$$

and $\rho_{2.134} = \sqrt{\text{Ch}_{\text{max}}(V_{2.134})} = \sqrt{0.605516} = 0.778149$

and the associated characteristic vector is

$$[0.543520, 0.816636, 0.194136]$$

For $\rho_{3.124}$:

$$V_{3.124} \cdot R^* R_{11} R_{13} R_{13} =$$

$$= \begin{bmatrix}
0.402631 & -0.132158 \\
-0.132158 & 0.151799
\end{bmatrix}$$

$\rho_{3.124} = \sqrt{\text{Ch}_{\text{max}}(V_{3.124})} = \sqrt{0.459410} = 0.677798$

and the associated characteristic vector is

$$[0.918793, -0.394738]$$

For $\rho_{4.123}$:

$$V_{4.123} \cdot R^* R_{11} R_{14} R_{14} =$$

$$= \begin{bmatrix}
0.384348 & 0.092996 \\
0.092996 & 0.144838
\end{bmatrix}$$

$\rho_{4.123} = \sqrt{\text{Ch}_{\text{max}}(V_{4.123})} = \sqrt{0.416216} = 0.645148$

and the associated characteristic vector is

$$[0.945997, 0.324174]$$
Therefore, the inverse of P is

$$
P^{-1} = \begin{bmatrix}
2.58362 & -1.48289 & -0.48121 & -0.37908 \\
-1.48289 & 2.53496 & -0.42064 & -0.36871 \\
-0.48121 & -0.42064 & 1.84983 & -0.62221 \\
-0.37908 & -0.36871 & -0.62221 & 1.71296
\end{bmatrix}
$$

and

$$
(P^{-1})^{-1} = \begin{bmatrix}
1.23264 & 0.98365 & 0.85492 & 0.82999 \\
0.98365 & 1.22961 & 0.84355 & 0.82324 \\
0.85492 & 0.84355 & 1.28837 & 0.89140 \\
0.82999 & 0.82324 & 0.89140 & 1.30488
\end{bmatrix}
$$

Compare with (6.3.1) and (6.3.2), here we can see that $(P^{-1})^{-1}$ is not a correlation matrix. If it is normalized, it would be close to the minimum-determinant correlation matrix, though.

The reduction to the E matrix, we have from the Fletcher-Powell method, the set of canonical weights:

$$
a_1^* = \begin{bmatrix}
-0.531 \\
0.561 \\
0.946 \\
0.958
\end{bmatrix}
$$

and

$$
a_2^* = \begin{bmatrix}
0.619 \\
0.804 \\
-0.321 \\
0.285
\end{bmatrix}
$$

and the marginal totals for each set are

$$
\begin{bmatrix}
784 & 492 & 512 & 670 \\
727 & 789 & 485 & 447 \\
700 & 779 & 976 \\
716 & 985 & 757
\end{bmatrix}
$$

and the grand total: $n = 2458$
The categorical weights for the E matrix are

\[
\begin{align*}
\mathbf{w}_1 &= [-0.776065, 1.527350, 0.832238, -0.84448] \\
\mathbf{w}_2 &= [0.866107, 0.683918, -0.946218, -1.568864] \\
\mathbf{w}_3 &= [1.500610, -1.023690, -0.258397, 1.568864] \\
\mathbf{w}_4 &= [1.495060, -0.317612, -1.000810, -0.946218]
\end{align*}
\]

6.4 Four Categorical Variables, With 4, 4, 4 and 4 States

Let us consider a case of four sets with each set having four states.

The contingency table is

Table 6.4.1

<table>
<thead>
<tr>
<th></th>
<th>(A_1)</th>
<th>(A_2)</th>
<th>(A_3)</th>
<th>(A_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_1)</td>
<td>(B_1)</td>
<td>(B_2)</td>
<td>(B_3)</td>
<td>(B_4)</td>
</tr>
<tr>
<td>(D_1)</td>
<td>10 25 20</td>
<td>5</td>
<td>45 20 30</td>
<td>25</td>
</tr>
<tr>
<td>(D_2)</td>
<td>5 10 5</td>
<td>5</td>
<td>20</td>
<td>10 25 30</td>
</tr>
<tr>
<td>(D_3)</td>
<td>15 15 10 15</td>
<td>10</td>
<td>10 10 10</td>
<td>10</td>
</tr>
<tr>
<td>(D_4)</td>
<td>10 15 15 15</td>
<td>30 35 30</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>(c_2)</td>
<td>(D_1)</td>
<td>40 40 0 30</td>
<td>5 10 40 35</td>
<td>10 5 0 5</td>
</tr>
<tr>
<td>(D_2)</td>
<td>5 10 10</td>
<td>5</td>
<td>25 25 25</td>
<td>30</td>
</tr>
<tr>
<td>(D_3)</td>
<td>25 35 35 40</td>
<td>10 10 5</td>
<td>5</td>
<td>10 10 10</td>
</tr>
<tr>
<td>(D_4)</td>
<td>25 30 30 5</td>
<td>20</td>
<td>5 35 25</td>
<td>5 5 5 5</td>
</tr>
<tr>
<td>(c_3)</td>
<td>(D_1)</td>
<td>40 20 30 5</td>
<td>5 0 0</td>
<td>10</td>
</tr>
<tr>
<td>(D_2)</td>
<td>40 10 10</td>
<td>5</td>
<td>35 10</td>
<td>20 10</td>
</tr>
<tr>
<td>(D_3)</td>
<td>10 5</td>
<td>20 30</td>
<td>25 25 25 10</td>
<td>10</td>
</tr>
<tr>
<td>(D_4)</td>
<td>25 30 20</td>
<td>10</td>
<td>10</td>
<td>10 20</td>
</tr>
<tr>
<td>(c_4)</td>
<td>(D_1)</td>
<td>0 20 10</td>
<td>0</td>
<td>20 25</td>
</tr>
<tr>
<td>(D_2)</td>
<td>30 10 20 10</td>
<td>10 20</td>
<td>0 10</td>
<td>10 20</td>
</tr>
<tr>
<td>(D_3)</td>
<td>25 30 10 10</td>
<td>20 20</td>
<td>5</td>
<td>5 20 10</td>
</tr>
<tr>
<td>(D_4)</td>
<td>5</td>
<td>40 10 0</td>
<td>0</td>
<td>10 10</td>
</tr>
</tbody>
</table>
We have six two-way tables:

Table 6.4.2

<table>
<thead>
<tr>
<th></th>
<th>A₁</th>
<th>A₂</th>
<th>A₃</th>
<th>A₄</th>
<th>Sub-total</th>
</tr>
</thead>
<tbody>
<tr>
<td>B₁</td>
<td>310</td>
<td>290</td>
<td>270</td>
<td>210</td>
<td>1080</td>
</tr>
<tr>
<td>B₂</td>
<td>345</td>
<td>245</td>
<td>240</td>
<td>190</td>
<td>1020</td>
</tr>
<tr>
<td>B₃</td>
<td>255</td>
<td>270</td>
<td>190</td>
<td>215</td>
<td>930</td>
</tr>
<tr>
<td>B₄</td>
<td>190</td>
<td>255</td>
<td>195</td>
<td>220</td>
<td>860</td>
</tr>
<tr>
<td>Sub-total</td>
<td>1100</td>
<td>1060</td>
<td>895</td>
<td>835</td>
<td>3890</td>
</tr>
</tbody>
</table>

Table 6.4.3

<table>
<thead>
<tr>
<th></th>
<th>A₁</th>
<th>A₂</th>
<th>A₃</th>
<th>A₄</th>
<th>Sub-total</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₁</td>
<td>195</td>
<td>370</td>
<td>320</td>
<td>190</td>
<td>1075</td>
</tr>
<tr>
<td>C₂</td>
<td>365</td>
<td>310</td>
<td>140</td>
<td>170</td>
<td>985</td>
</tr>
<tr>
<td>C₃</td>
<td>310</td>
<td>225</td>
<td>170</td>
<td>210</td>
<td>915</td>
</tr>
<tr>
<td>C₄</td>
<td>230</td>
<td>155</td>
<td>265</td>
<td>265</td>
<td>915</td>
</tr>
<tr>
<td>Sub-total</td>
<td>1100</td>
<td>1060</td>
<td>895</td>
<td>835</td>
<td>3890</td>
</tr>
</tbody>
</table>

Table 6.4.4

<table>
<thead>
<tr>
<th></th>
<th>A₁</th>
<th>A₂</th>
<th>A₃</th>
<th>A₄</th>
<th>Sub-total</th>
</tr>
</thead>
<tbody>
<tr>
<td>D₁</td>
<td>295</td>
<td>270</td>
<td>320</td>
<td>195</td>
<td>1080</td>
</tr>
<tr>
<td>D₂</td>
<td>190</td>
<td>305</td>
<td>225</td>
<td>210</td>
<td>930</td>
</tr>
<tr>
<td>D₃</td>
<td>330</td>
<td>205</td>
<td>165</td>
<td>285</td>
<td>985</td>
</tr>
<tr>
<td>D₄</td>
<td>285</td>
<td>280</td>
<td>185</td>
<td>145</td>
<td>895</td>
</tr>
<tr>
<td>Sub-total</td>
<td>1100</td>
<td>1060</td>
<td>895</td>
<td>835</td>
<td>3890</td>
</tr>
</tbody>
</table>
Table 6.4.5

<table>
<thead>
<tr>
<th></th>
<th>B₁</th>
<th>B₂</th>
<th>B₃</th>
<th>B₄</th>
<th>Sub-total</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₁</td>
<td>295</td>
<td>260</td>
<td>270</td>
<td>250</td>
<td>1075</td>
</tr>
<tr>
<td>C₂</td>
<td>220</td>
<td>245</td>
<td>260</td>
<td>260</td>
<td>985</td>
</tr>
<tr>
<td>C₃</td>
<td>310</td>
<td>210</td>
<td>200</td>
<td>195</td>
<td>915</td>
</tr>
<tr>
<td>C₄</td>
<td>255</td>
<td>305</td>
<td>200</td>
<td>155</td>
<td>915</td>
</tr>
<tr>
<td>Sub-total</td>
<td>1080</td>
<td>1020</td>
<td>930</td>
<td>860</td>
<td>3890</td>
</tr>
</tbody>
</table>

Table 6.4.6

<table>
<thead>
<tr>
<th></th>
<th>B₁</th>
<th>B₂</th>
<th>B₃</th>
<th>B₄</th>
<th>Sub-total</th>
</tr>
</thead>
<tbody>
<tr>
<td>D₁</td>
<td>300</td>
<td>280</td>
<td>235</td>
<td>265</td>
<td>1080</td>
</tr>
<tr>
<td>D₂</td>
<td>295</td>
<td>245</td>
<td>215</td>
<td>175</td>
<td>930</td>
</tr>
<tr>
<td>D₃</td>
<td>300</td>
<td>235</td>
<td>235</td>
<td>215</td>
<td>985</td>
</tr>
<tr>
<td>D₄</td>
<td>185</td>
<td>260</td>
<td>245</td>
<td>205</td>
<td>895</td>
</tr>
<tr>
<td>Sub-total</td>
<td>1080</td>
<td>1020</td>
<td>930</td>
<td>860</td>
<td>3890</td>
</tr>
</tbody>
</table>

Table 6.4.7

<table>
<thead>
<tr>
<th></th>
<th>C₁</th>
<th>C₂</th>
<th>C₃</th>
<th>C₄</th>
<th>Sub-total</th>
</tr>
</thead>
<tbody>
<tr>
<td>D₁</td>
<td>295</td>
<td>250</td>
<td>260</td>
<td>275</td>
<td>1080</td>
</tr>
<tr>
<td>D₂</td>
<td>215</td>
<td>255</td>
<td>245</td>
<td>215</td>
<td>930</td>
</tr>
<tr>
<td>D₃</td>
<td>240</td>
<td>275</td>
<td>195</td>
<td>275</td>
<td>985</td>
</tr>
<tr>
<td>D₄</td>
<td>325</td>
<td>205</td>
<td>215</td>
<td>150</td>
<td>895</td>
</tr>
<tr>
<td>Sub-total</td>
<td>1075</td>
<td>985</td>
<td>915</td>
<td>915</td>
<td>3890</td>
</tr>
</tbody>
</table>
The E_{ij} matrices are as follows:

$$E_{11} = \begin{bmatrix}
788.946 & -299.742 & -253.084 & -236.118 \\
-299.742 & 771.156 & -243.881 & -227.532 \\
-253.084 & -243.881 & 689.081 & -192.114 \\
-236.118 & -227.532 & -192.114 & 655.764
\end{bmatrix}$$

$$E_{22} = \begin{bmatrix}
780.154 & -283.187 & -258.200 & -238.766 \\
-283.187 & 752.545 & -243.856 & -225.501 \\
-258.200 & -243.856 & 707.660 & -205.604 \\
-238.766 & -225.501 & -205.604 & 669.871
\end{bmatrix}$$

$$E_{33} = \begin{bmatrix}
777.924 & -272.204 & -252.859 & -252.859 \\
-272.204 & 735.584 & -231.690 & -231.690 \\
-252.859 & -231.690 & 699.775 & -215.224 \\
-252.859 & -231.690 & -215.224 & 699.775
\end{bmatrix}$$

$$E_{44} = \begin{bmatrix}
780.154 & -258.200 & -273.470 & -248.483 \\
-258.200 & 707.660 & -235.488 & -213.973 \\
-273.470 & -235.488 & 735.584 & -226.625 \\
-248.483 & -213.973 & -226.625 & 689.081
\end{bmatrix}$$

$$E_{12} = \begin{bmatrix}
4.602 & 56.568 & -7.982 & -53.188 \\
-4.293 & -32.943 & 16.581 & 20.656 \\
21.516 & 5.321 & -23.972 & -2.866 \\
\end{bmatrix}$$

$$E_{13} = \begin{bmatrix}
-108.984 & 86.465 & 51.259 & -28.740 \\
77.069 & 41.594 & -24.332 & -94.332 \\
72.667 & -86.626 & -40.521 & 54.479 \\
-40.752 & -41.433 & 13.593 & 68.593
\end{bmatrix}$$
\[
\begin{bmatrix}
-3.458 & -53.470 & 55.964 & 0.964 \\
12.339 & 42.512 & -7.288 & -47.288 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
-10.398 & -72.982 & 51.465 & 31.915 \\
-24.293 & 51.581 & -63.406 & 36.118 \\
71.517 & 11.028 & -61.626 & -20.919 \\
-36.825 & 10.373 & 73.567 & -47.114 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
0.154 & 36.799 & 26.529 & -63.483 \\
-3.188 & 1.144 & -23.278 & 25.321 \\
-23.201 & -7.339 & -0.488 & 31.028 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
-3.458 & -42.005 & -32.204 & 77.667 \\
5.964 & 26.247 & -36.690 & 4.479 \\
20.964 & -3.753 & 43.309 & -60.521 \\
\end{bmatrix}
\]

The T conditional inverses are

\[
T_{1}^{(-1)} = \begin{bmatrix}
0.035602 & 0.0 & 0.0 & 0.0 \\
0.014819 & 0.039005 & 0.0 & 0.0 \\
0.024891 & 0.024891 & 0.048113 & 0.0 \\
-0.035802 & 0.0 & 0.0 & 0.0 \\
\end{bmatrix}
\]

\[
T_{2}^{(-1)} = \begin{bmatrix}
-0.035802 & 0.0 & 0.0 & 0.0 \\
0.014240 & 0.039231 & 0.0 & 0.0 \\
0.024579 & 0.024579 & 0.047308 & 0.0 \\
-0.035853 & 0.0 & 0.0 & 0.0 \\
\end{bmatrix}
\]

\[
T_{3}^{(-1)} = \begin{bmatrix}
0.035853 & 0.0 & 0.0 & 0.0 \\
0.013858 & 0.039518 & 0.0 & 0.0 \\
0.023376 & 0.023376 & 0.046752 & 0.0 \\
-0.035802 & 0.0 & 0.0 & 0.0 \\
\end{bmatrix}
\]
\[T_4^{(-1)} = \begin{bmatrix}
0.035802 & 0.0 & 0.0 & 0.0 \\
0.013268 & 0.040089 & 0.0 & 0.0 \\
0.024195 & 0.024195 & 0.046179 & 0.0 \\
\end{bmatrix} \]

Hence the super-matrix \(R \) consists of

\[
R_{11} = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix} = R_{22} = R_{33} = R_{44} \]

\[
R_{12} = \begin{bmatrix}
0.005865 & 0.081342 & 0.040084 \\
-0.003554 & -0.018937 & -0.011582 \\
0.037339 & 0.047965 & 0.001943 \\
\end{bmatrix} \]

\[
R_{13} = \begin{bmatrix}
-0.139114 & 0.067997 & 0.066579 \\
0.049874 & 0.133983 & 0.091539 \\
0.096872 & -0.001381 & -0.019569 \\
\end{bmatrix} \]

\[
R_{23} = \begin{bmatrix}
-0.004438 & -0.077363 & 0.046031 \\
-0.032536 & -0.063223 & -0.068813 \\
-0.000284 & -0.019118 & -0.022983 \\
\end{bmatrix} \]

\[
R_{14} = \begin{bmatrix}
-0.013254 & -0.109077 & 0.012789 \\
-0.039442 & 0.022682 & -0.083134 \\
0.092277 & 0.034114 & -0.088339 \\
\end{bmatrix} \]

\[
R_{24} = \begin{bmatrix}
0.000198 & 0.052892 & 0.075873 \\
-0.004399 & 0.021178 & -0.013933 \\
-0.041965 & 0.007917 & -0.011572 \\
\end{bmatrix} \]

\[
R_{34} = \begin{bmatrix}
-0.044383 & -0.062021 & -0.092759 \\
-0.034918 & -0.005315 & 0.007130 \\
-0.012554 & 0.023462 & -0.077876 \\
\end{bmatrix} \]
Through some initialization of the canonical weights and the Fletcher-Powell method, a set of normalized canonical weights is obtained:

\[a_1' = [0.920, 0.210, -0.329] \]
\[a_2' = [0.219, 0.854, 0.470] \]
\[a_3' = [-0.710, 0.492, 0.502] \]
\[a_4' = [0.215, 0.975, -0.044] \]

and \(P \) with elements \(a_i^T R_{ij} a_j \) equals

\[
\begin{bmatrix}
1.0000 & 0.06358 & 0.19486 & -0.11623 \\
0.06358 & 1.00000 & -0.04882 & 0.02758 \\
0.19486 & -0.04882 & 1.00000 & 0.04619 \\
-0.11623 & 0.02758 & 0.04619 & 1.00000 \\
\end{bmatrix}
\]

By taking all elements positive, we obtain the inverse of \(P \) as

\[
P^{-1} =
\begin{bmatrix}
1.05500 & -0.05434 & -0.19776 & -0.11199 \\
-0.05434 & 1.00583 & -0.03760 & -0.01969 \\
-0.19776 & -0.03760 & 1.04146 & -0.02409 \\
-0.11199 & -0.01969 & -0.02409 & 1.01467 \\
\end{bmatrix}
\]

and \(|P| = 0.939870 \)

as in the previous cases, we calculate the canonical-partial correlations.

For \(\rho_{12,34} \):

\[
R^* =
\begin{bmatrix}
0.957253 & -0.005416 & 0.021044 \\
-0.005416 & 0.964167 & -0.006669 \\
0.021044 & -0.006669 & 0.973430 \\
\end{bmatrix}
\]
\[F_{12} = \begin{bmatrix} 0.013196 & 0.088146 & 0.043467 \\ 0.007359 & -0.004897 & -0.013649 \\ 0.043187 & 0.047772 & 0.004041 \end{bmatrix} \]

\[R_{22} = \begin{bmatrix} 0.982784 & -0.001168 & 0.000141 \\ -0.001168 & 0.989249 & -0.003591 \\ 0.000141 & -0.003591 & 0.997012 \end{bmatrix} \]

\[T_{1}(-1) = \begin{bmatrix} 1.022080 & 0.0 & 0.0 \\ 0.005762 & 1.018420 & 0.0 \\ -0.022248 & 0.006889 & 1.013820 \end{bmatrix} \]

\[U_{12.34} = \begin{bmatrix} 0.010402 & 0.000331 & 0.004984 \\ 0.000331 & 0.000279 & 0.00173 \\ 0.004984 & 0.000173 & 0.004125 \end{bmatrix} \]

\[p_{12.34} = \sqrt{\text{Ch}_\text{max}(U_{12.34})} = \sqrt{0.013164} = 0.114734 \]

For \(p_{13.24} \):

\[R_{11} = \begin{bmatrix} 0.978976 & 0.004380 & 0.001544 \\ 0.004380 & 0.990508 & -0.003621 \\ 0.001544 & -0.003621 & 0.978542 \end{bmatrix} \]

\[R_{13} = \begin{bmatrix} -0.142043 & 0.073826 & 0.076331 \\ 0.042719 & 0.132311 & 0.082712 \\ 0.092468 & 0.008985 & -0.024865 \end{bmatrix} \]

\[R_{33} = \begin{bmatrix} 0.986434 & -0.001441 & -0.008145 \\ -0.001441 & 0.988213 & -0.000748 \\ -0.008145 & -0.000748 & 0.985059 \end{bmatrix} \]
\[
T_1^{(-1)} = \begin{bmatrix}
1.010680 & 0.0 & 0.0 \\
-0.004496 & 1.004790 & 0.0 \\
-0.001611 & 0.003702 & 1.010910 \\
0.032355 & 0.010070 & -0.014801 \\
0.010070 & 0.026772 & 0.003393 \\
-0.014801 & 0.003393 & 0.009617
\end{bmatrix}
\]

\[
U_{13.24} = \begin{bmatrix}
\end{bmatrix}
\]

\[
\rho_{13.24} = \sqrt{\text{Ch}_{\text{max}}(U_{13.24})} = \sqrt{0.044337} = 0.208264
\]

For \(\rho_{23,14} \):

\[
R_{22}^* = \begin{bmatrix}
0.989519 & -0.002900 & -0.000169 \\
-0.002900 & 0.989652 & -0.003969 \\
-0.000169 & -0.003969 & 0.996284
\end{bmatrix}
\]

\[
R_{23}^* = \begin{bmatrix}
0.003416 & -0.078666 & 0.050938 \\
-0.023632 & -0.066147 & -0.073388 \\
0.004099 & -0.024379 & -0.028086
\end{bmatrix}
\]

\[
R_{33}^* = \begin{bmatrix}
0.955708 & 0.003819 & 0.003177 \\
0.003819 & 0.976286 & -0.015679 \\
0.003177 & -0.015679 & 0.980485
\end{bmatrix}
\]

\[
T_2^{(-1)} = \begin{bmatrix}
1.005280 & 0.0 & 0.0 \\
0.002946 & 1.005210 & 0.0 \\
0.000183 & 0.004019 & 1.001870
\end{bmatrix}
\]

\[
U_{23,14} = \begin{bmatrix}
0.008963 & 0.001513 & 0.000549 \\
0.001513 & 0.010817 & 0.003782 \\
0.000549 & 0.003782 & 0.001491
\end{bmatrix}
\]

\[
\rho_{23,14} = \sqrt{\text{Ch}_{\text{max}}(U_{23,14})} = \sqrt{0.012828} = 0.113259
\]
For $\rho_{14.23}$:

\[
R_{11}^* = \begin{bmatrix}
0.962255 & -0.008770 & 0.010206 \\
-0.008770 & 0.970902 & -0.002864 \\
0.010206 & -0.002864 & 0.986228
\end{bmatrix}
\]

\[
R_{14}^* = \begin{bmatrix}
-0.008134 & -0.121429 & 0.006441 \\
-0.032708 & 0.024110 & -0.072400 \\
0.092943 & 0.037540 & -0.082849
\end{bmatrix}
\]

\[
R_{44}^* = \begin{bmatrix}
0.996695 & 0.000454 & -0.001722 \\
0.000454 & 0.992442 & -0.007429 \\
-0.001722 & -0.007429 & 0.978240
\end{bmatrix}
\]

\[
T_1^{(-1)} = \begin{bmatrix}
1.019420 & 0.0 & 0.0 \\
0.009250 & 1.014910 & 0.0 \\
-0.010654 & 0.002874 & 1.007010
\end{bmatrix}
\]

\[
U_{14.23} = \begin{bmatrix}
-0.003059 & 0.007154 & 0.004036 \\
-0.006137 & 0.004036 & 0.017416
\end{bmatrix}
\]

\[
\rho_{14.23} = \sqrt{\text{Ch}_{\text{max}}(U_{14.23})} = \sqrt{0.024187} = 0.155521
\]

For $\rho_{24.13}$:

\[
R_{22}^* = \begin{bmatrix}
0.990316 & -0.004398 & -0.000835 \\
-0.004398 & 0.980284 & -0.006593 \\
-0.000835 & -0.006593 & 0.996928
\end{bmatrix}
\]

\[
R_{24}^* = \begin{bmatrix}
-0.005357 & 0.050317 & 0.082929 \\
-0.011255 & 0.028891 & -0.018134 \\
-0.041961 & 0.013146 & -0.012144
\end{bmatrix}
\]
\[
R_{44}^* = \begin{bmatrix}
 0.988692 & -0.004633 & 0.003997 \\
 -0.004633 & 0.978641 & 0.001890 \\
 0.003997 & 0.001890 & 0.973226
\end{bmatrix}
\]

\[
T_{2}^{(-1)} = \begin{bmatrix}
 1.004870 & 0.0 & 0.0 \\
 0.004486 & 1.010010 & 0.0 \\
 0.000874 & 0.006740 & 1.001560
\end{bmatrix}
\]

\[
U_{24,13} = \begin{bmatrix}
 0.009762 & 0.000016 & -0.000121 \\
 0.000016 & 0.001354 & 0.001108 \\
 -0.000121 & 0.001108 & 0.002121
\end{bmatrix}
\]

\[
\rho_{24,13} = \sqrt{\text{Ch}_{\text{max}}(U_{24,13})} = \sqrt{0.0097635} = 0.098811
\]

For \(\rho_{34,12} \):

\[
R_{33}^* = \begin{bmatrix}
 0.968078 & 0.000799 & 0.005244 \\
 0.000799 & 0.966448 & -0.018627 \\
 0.005244 & -0.018627 & 0.978744
\end{bmatrix}
\]

\[
R_{34}^* = \begin{bmatrix}
 -0.013308 & -0.080535 & -0.077975 \\
 -0.030405 & 0.005383 & 0.022301 \\
 -0.007823 & 0.029282 & -0.077701
\end{bmatrix}
\]

\[
R_{44}^* = \begin{bmatrix}
 0.987970 & -0.002779 & 0.001747 \\
 -0.002779 & 0.982688 & 0.002651 \\
 0.001747 & 0.002651 & 0.978633
\end{bmatrix}
\]

\[
T_{3}^{(-1)} = \begin{bmatrix}
 1.016350 & 0.0 & 0.0 \\
 -0.000841 & 1.017210 & 0.0 \\
 -0.005492 & 0.019490 & 1.001100
\end{bmatrix}
\]
\[U_{34.12} = \begin{bmatrix}
0.013389 & -0.001878 & 0.003876 \\
-0.001878 & 0.001533 & -0.001387 \\
0.003876 & -0.001387 & 0.007170
\end{bmatrix} \]

\[\rho_{34.12} = \sqrt{\text{Ch}_{\text{max}}(U_{34.12})} = \sqrt{0.015622} = 0.124989 \]

Hence the canonical-partial correlation matrix is

\[\begin{bmatrix}
1.00000 & 0.11473 & 0.20826 & 0.15552 \\
0.11473 & 1.00000 & 0.11326 & 0.09881 \\
0.20826 & 0.11326 & 1.00000 & 0.12499 \\
0.15552 & 0.09881 & 0.12499 & 1.00000
\end{bmatrix} \]

We will find all of the canonical-multiple correlation of each set vs the others:

For \(\rho_{1,2,3} \),

\[V_{1,2,3} = R_{12}^{*} R_{22}^{*} R_{12}^{\text{t}} \]

\[= \begin{bmatrix}
0.0052699 & 0.005678 & -0.016017 \\
0.005678 & 0.036007 & -0.008416 \\
-0.016017 & -0.008416 & 0.009779
\end{bmatrix} \]

\[\rho_{1,2,3} = \sqrt{\text{Ch}_{\text{max}}(V_{1,2,3})} = \sqrt{0.06196} = 0.24758 \]

and the associated characteristic vector is

\[\begin{bmatrix}
0.889727 \\
0.078672 \\
-0.0049626
\end{bmatrix} \]

For \(\rho_{2,1,3} \),

\[V_{2,1,3} = R_{12}^{*} R_{11}^{*} R_{12}^{\text{t}} \]

\[= \begin{bmatrix}
0.019470 & 0.0043 & 0.004006 \\
0.0043 & 0.0216 & 0.007679 \\
0.004006 & 0.007679 & 0.035171
\end{bmatrix} \]
\[\rho_{2.134} = \sqrt{\text{Ch}_{\text{max}}(V_{2.134})} = \sqrt{0.026699} = 0.163401 \]

For \(\rho_{3.124} \):
\[V_{3.124} = R_{13}^* R_{11}^* R_{13}^* = 0.048884 -0.002606 -0.001956 \]
\[\quad \quad = -0.002606 0.035029 0.017244 \]
\[\quad \quad -0.001956 0.017244 0.028365 \]

\[\rho_{3.124} = \sqrt{\text{Ch}_{\text{max}}(V_{3.124})} = \sqrt{0.050651} = 0.225145 \]

and the associated characteristic vector is
\[[-0.444899 0.695402 0.564339] \]

For \(\rho_{4.123} \):
\[V_{4.123} = R_{14}^* R_{11}^* R_{14}^* = 0.013239 0.003462 -0.003724 \]
\[\quad \quad = 0.003462 0.024959 0.001623 \]
\[\quad \quad -0.003724 0.001623 0.034200 \]

\[\rho_{4.123} = \sqrt{\text{Ch}_{\text{max}}(V_{4.123})} = \sqrt{0.034951} = 0.186952 \]

and the associated characteristic vector is
\[[0.151437 0.170171 0.982639] \]

Therefore the inverse of \(P \) is
\[P^{-1} = \begin{bmatrix} 1.06529 & 0.12030 & 0.22062 & 0.16340 \\ 0.12003 & 1.02743 & 0.11783 & 0.10195 \\ 0.22062 & 0.11783 & 1.05339 & 0.13059 \\ 0.16340 & 0.10195 & 0.13059 & 1.03621 \end{bmatrix} \]

and
\[
(P^{-1})^{-1} = \begin{bmatrix}
1.00604 & -0.08365 & -0.18560 & -0.12702 \\
-0.08365 & 1.00022 & -0.08513 & -0.07449 \\
-0.18560 & -0.08513 & 1.00879 & -0.08949 \\
-0.12702 & -0.07449 & -0.08949 & 1.00368 \\
\end{bmatrix}
\]

and \(|P| = 0.93001 \)

compare with (6.4.1) and (6.4.2) again the approximation is quite close.

For the reduction to the categorical weights for the entire \(E \) matrix, from Fletcher-Powell method we obtain a set of normalized canonical weights:

\[
\begin{align*}
\mathbf{a}_1' &= [0.920 \ 0.210 \ -0.329] \\
\mathbf{a}_2' &= [0.219 \ 0.854 \ 0.470] \\
\mathbf{a}_3' &= [-0.710 \ 0.492 \ 0.502] \\
\mathbf{a}_4' &= [0.215 \ 0.975 \ -0.044]
\end{align*}
\]

and the marginal totals for each set are:

\[
\begin{align*}
\mathbf{n}_1' &= [1100 \ 1060 \ 895 \ 835] \\
\mathbf{n}_2' &= [1080 \ 1020 \ 930 \ 860] \\
\mathbf{n}_3' &= [1075 \ 985 \ 915 \ 915] \\
\mathbf{n}_4' &= [1080 \ 930 \ 985 \ 895]
\end{align*}
\]

the grand total \(n = 3890 \).

The sets of categorical weights for the entire \(E \) matrix are therefore

\[
\begin{align*}
\mathbf{w}_1' &= [1.465660 \ -0.259803 \ -1.250040 \ -0.261131] \\
\mathbf{w}_2' &= [0.353890 \ 1.196350 \ -0.228598 \ -1.616140] \\
\mathbf{w}_3' &= [-1.149300 \ 1.228670 \ 0.746598 \ -0.718985] \\
\mathbf{w}_4' &= [0.347959 \ 1.498080 \ -1.001130 \ -0.874771]
\end{align*}
\]
6.5 **A Validation Study**

Five hundred observations were generated, random normal numbers from a tri-variate normal distribution. Uncorrelated random normal numbers were multiplied by the triangular matrix

\[
\begin{bmatrix}
1.0 & 0.0 & 0.0 \\
0.8 & 0.6 & 0.0 \\
0.0 & 0.6 & 0.8
\end{bmatrix}
\]

thus, the sample is from a normal distribution with mean vector \(\mathbf{0} \) and variance-covariance matrix

\[
\Sigma = \begin{bmatrix}
1.00 & 0.80 & 0.00 \\
0.80 & 1.00 & 0.36 \\
0.00 & 0.36 & 1.00
\end{bmatrix}
\]

Each of the three variables was divided into four slices

\[Y_1: < -0.7, -0.7 \text{ to } +0.3, +0.3 \text{ to } +1, > +1.\]

The first category was given the value 3, the second was given the value 4, the third was given the value 1 and the last was given the value 2. Thus, the expected value under the slice "3" (\(< -0.7 \)) was \(\frac{-z_1}{f_1} \) where \(z_1 \) is the ordinate under a stand normal at \(x = -0.7 \) and \(f_1 \) is the cumulative distribution function of the standard normal at \(x = -0.7 \).

For the next slice "4", the expected value is \(\frac{z_1 - z_2}{f_2 - f_1} \) where \(z_2 \) and \(f_2 \) are ordinate and area for \(x = +0.3 \) (the second partition). Similar partitions were made for the other two random variables. The results are
Table 6.5.1

Categories and Expected Values

<table>
<thead>
<tr>
<th>Y_1(levels)</th>
<th>3</th>
<th>4</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slice</td>
<td><-0.7</td>
<td>-0.7 to 0.3</td>
<td>0.3 to 1</td>
<td>>1</td>
</tr>
<tr>
<td>Expected</td>
<td>-1.290</td>
<td>-0.184</td>
<td>0.624</td>
<td>1.525</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Y_2(levels)</th>
<th>1</th>
<th>4</th>
<th>3</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slice</td>
<td><-1.1</td>
<td>-1.1 to 0</td>
<td>0 to 0.5</td>
<td>>0.5</td>
</tr>
<tr>
<td>Expected</td>
<td>-1.606</td>
<td>-0.497</td>
<td>0.244</td>
<td>1.141</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Y_3(levels)</th>
<th>2</th>
<th>3</th>
<th>1</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slice</td>
<td><-1.2</td>
<td>-1.2 to 0.3</td>
<td>0.3 to 1.2</td>
<td>>1.2</td>
</tr>
<tr>
<td>Expected</td>
<td>-1.687</td>
<td>-0.372</td>
<td>0.701</td>
<td>1.687</td>
</tr>
</tbody>
</table>

Contingency tables were obtained and entered into the program for categorical scaling: A_1, A_2, A_3, A_4 corresponds to levels 1, 2, 3, 4 of Y_1; B corresponds to Y_2 and C corresponds to Y_3.

Table 6.5.2

<table>
<thead>
<tr>
<th></th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B_1</td>
<td>B_2</td>
<td>B_3</td>
<td>B_4</td>
</tr>
<tr>
<td>C_1</td>
<td>0 26</td>
<td>3 3</td>
<td>0 18</td>
<td>0 0</td>
</tr>
<tr>
<td>C_2</td>
<td>1 2</td>
<td>5 10</td>
<td>1 3</td>
<td>1 2</td>
</tr>
<tr>
<td>C_3</td>
<td>1 18</td>
<td>19 17</td>
<td>0 30</td>
<td>9 3</td>
</tr>
<tr>
<td>C_4</td>
<td>0 14</td>
<td>1 0</td>
<td>0 10</td>
<td>0 0</td>
</tr>
</tbody>
</table>
We have three two-way tables:

Table 6.5.3
A vs B

<table>
<thead>
<tr>
<th></th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>Sub-total</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_1</td>
<td>2</td>
<td>1</td>
<td>60</td>
<td>16</td>
<td>79</td>
</tr>
<tr>
<td>B_2</td>
<td>62</td>
<td>61</td>
<td>1</td>
<td>18</td>
<td>142</td>
</tr>
<tr>
<td>B_3</td>
<td>28</td>
<td>10</td>
<td>2</td>
<td>53</td>
<td>93</td>
</tr>
<tr>
<td>B_4</td>
<td>30</td>
<td>5</td>
<td>60</td>
<td>91</td>
<td>186</td>
</tr>
<tr>
<td>Sub-total</td>
<td>122</td>
<td>77</td>
<td>123</td>
<td>178</td>
<td>500</td>
</tr>
</tbody>
</table>

Table 6.5.4
A vs C

<table>
<thead>
<tr>
<th></th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>Sub-total</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td>34</td>
<td>18</td>
<td>30</td>
<td>33</td>
<td>115</td>
</tr>
<tr>
<td>C_2</td>
<td>18</td>
<td>7</td>
<td>15</td>
<td>24</td>
<td>64</td>
</tr>
<tr>
<td>C_3</td>
<td>55</td>
<td>42</td>
<td>66</td>
<td>98</td>
<td>261</td>
</tr>
<tr>
<td>C_4</td>
<td>15</td>
<td>10</td>
<td>12</td>
<td>23</td>
<td>60</td>
</tr>
<tr>
<td>Sub-total</td>
<td>122</td>
<td>77</td>
<td>123</td>
<td>178</td>
<td>500</td>
</tr>
</tbody>
</table>

Table 6.5.5
B vs C

<table>
<thead>
<tr>
<th></th>
<th>B_1</th>
<th>B_2</th>
<th>B_3</th>
<th>B_4</th>
<th>Sub-total</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td>9</td>
<td>43</td>
<td>17</td>
<td>32</td>
<td>115</td>
</tr>
<tr>
<td>C_2</td>
<td>20</td>
<td>5</td>
<td>7</td>
<td>22</td>
<td>64</td>
</tr>
<tr>
<td>C_3</td>
<td>47</td>
<td>50</td>
<td>58</td>
<td>105</td>
<td>261</td>
</tr>
<tr>
<td>C_4</td>
<td>3</td>
<td>34</td>
<td>11</td>
<td>17</td>
<td>60</td>
</tr>
<tr>
<td>Sub-total</td>
<td>79</td>
<td>132</td>
<td>99</td>
<td>188</td>
<td>500</td>
</tr>
</tbody>
</table>
The E matrices are as follows:

$$
E_{11} = \begin{bmatrix}
92.232 & -18.788 & -30.012 & -43.432 \\
-18.788 & 65.142 & -18.942 & -27.412 \\
-30.012 & -18.942 & 92.742 & -43.788 \\
-43.432 & -27.412 & -43.788 & 114.632 \\
\end{bmatrix}
$$

$$
E_{22} = \begin{bmatrix}
-22.436 & 101.672 & -26.412 & -52.824 \\
-14.694 & -26.412 & 75.702 & -34.596 \\
-29.388 & -52.824 & -34.596 & 116.808 \\
\end{bmatrix}
$$

$$
E_{33} = \begin{bmatrix}
88.550 & -14.720 & -60.030 & -13.800 \\
-14.720 & 55.808 & -33.408 & -7.680 \\
-60.030 & -33.408 & 124.758 & -31.320 \\
-13.800 & -7.680 & -31.320 & 52.800 \\
\end{bmatrix}
$$

$$
E_{12} = \begin{bmatrix}
-17.276 & 27.352 & 5.303 & -15.384 \\
-11.166 & 39.132 & -4.322 & -23.644 \\
40.566 & -33.932 & -20.878 & 14.244 \\
-12.124 & -32.552 & 19.892 & 24.784 \\
\end{bmatrix}
$$

$$
E_{13} = \begin{bmatrix}
5.940 & 2.384 & -8.684 & 0.360 \\
0.290 & -2.856 & 1.806 & 0.760 \\
1.710 & -0.744 & 1.794 & -2.760 \\
-7.940 & 1.216 & 5.034 & 1.640 \\
\end{bmatrix}
$$

$$
E_{23} = \begin{bmatrix}
-9.170 & 9.888 & 5.762 & -6.480 \\
-4.390 & -4.904 & 9.454 & -0.160 \\
-6.780 & 8.192 & 8.908 & -10.320 \\
\end{bmatrix}
$$
The T conditional inverses are:

\[T_1^{-1} = \begin{bmatrix} 0.104126 & 0.0 & 0.0 & 0.0 \\ 0.026015 & 0.127707 & 0.0 & 0.0 \\ 0.047914 & 0.047914 & 0.117252 & 0.0 \\ 0.122611 & 0.0 & 0.0 & 0.0 \end{bmatrix} \]

\[T_2^{-1} = \begin{bmatrix} 0.034768 & 0.103084 & 0.0 & 0.0 \\ 0.042333 & 0.127000 & 0.0 & 0.0 \\ 0.106268 & 0.0 & 0.0 & 0.0 \\ 0.022757 & 0.136895 & 0.0 & 0.0 \end{bmatrix} \]

\[T_3^{-1} = \begin{bmatrix} 0.116410 & 0.116410 & 0.143171 & 0.0 \\ 0.042768 & 0.231044 & 0.114308 & 0.0 \\ 0.229946 & 0.523304 & 0.109727 & 0.0 \\ 0.020357 & -0.037081 & -0.12262 & 0.0 \end{bmatrix} \]

Hence the super-matrix R consists of

\[R_{11} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = R_{22} = R_{33} \]

\[R_{12} = \begin{bmatrix} -0.420563 & 0.231044 & 0.114608 \\ -0.229946 & 0.523304 & 0.109727 \\ 0.416104 & 0.036240 & -0.194803 \end{bmatrix} \]

\[R_{13} = \begin{bmatrix} 0.020357 & -0.037081 & -0.12262 \\ 0.053028 & -0.003682 & 0.028235 \end{bmatrix} \]

\[R_{23} = \begin{bmatrix} -0.119482 & 0.140382 & 0.111396 \\ 0.08935 & -0.098413 & -0.238452 \\ -0.008997 & -0.106240 & -0.037952 \end{bmatrix} \]

In order to initialize the iterative minimum-determinant solution, we find the canonical-multiple correlations of each set vs the others combined.
For $\rho_{1.23}$:

$$V_{1.23} = R_{12}^* R_{12}^{*-1} R_{12}$$

$$= \begin{bmatrix}
0.132787 & 0.201982 & -0.111764 \\
0.201982 & 0.379307 & -0.118215 \\
-0.117641 & -0.118215 & 0.229624
\end{bmatrix}$$

$$\rho_{1.23} = \sqrt{\text{Ch}_{\text{max}}(V_{1.23})} = \sqrt{0.569450} = 0.754619$$

and the associated characteristic vector is

$$[0.471882, 0.769173, -0.430927]$$

For $\rho_{2.13}$:

$$V_{2.13} = R_{12}^* R_{11}^{*-1} R_{12}$$

$$= \begin{bmatrix}
0.318682 & -0.209537 & -0.148678 \\
-0.209537 & 0.414171 & 0.091512 \\
-0.148678 & 0.091512 & 0.075762
\end{bmatrix}$$

$$\rho_{2.13} = \sqrt{\text{Ch}_{\text{max}}(V_{2.13})} = \sqrt{0.630610} = 0.794109$$

and the associated characteristic vector is

$$[-0.624674, 0.726168, 0.287158]$$

For $\rho_{3.12}$:

$$V_{3.12} = R_{13}^* R_{11}^{*-1} R_{13}$$

$$= \begin{bmatrix}
0.085558 & -0.065363 & -0.092459 \\
-0.065363 & 0.081871 & 0.078239 \\
-0.092459 & 0.078239 & 0.115964
\end{bmatrix}$$

$$\rho_{3.12} = \sqrt{\text{Ch}_{\text{max}}(V_{3.12})} = \sqrt{0.254623} = 0.504601$$
and the associated characteristic vector is

\[
\begin{bmatrix}
0.556117 \\ -0.508234 \\ -0.657594
\end{bmatrix}
\]

After 14 iterations by the Fletcher-Powell method we obtained the Minimum-Determinant Solution:

\[
\begin{align*}
a_1^* &= \begin{bmatrix} 0.470 & 0.776 & -0.419 \end{bmatrix} \\
a_2^* &= \begin{bmatrix} -0.624 & 0.726 & 0.286 \end{bmatrix} \\
a_3^* &= \begin{bmatrix} 0.545 & -0.526 & -0.651 \end{bmatrix}
\end{align*}
\]

The marginal totals for each set are:

\[
\begin{align*}
n_1^* &= \begin{bmatrix} 122 & 77 & 123 & 178 \end{bmatrix} \\
n_2^* &= \begin{bmatrix} 79 & 142 & 93 & 186 \end{bmatrix} \\
n_3^* &= \begin{bmatrix} 115 & 64 & 261 & 60 \end{bmatrix}
\end{align*}
\]

and the grand total is \(n = 500 \).

Re-translating these into original weights we obtain

\[
\begin{align*}
\hat{w}_1^* &= \begin{bmatrix} 0.828 & 1.498 & -1.370 & -0.269 \end{bmatrix} \\
\text{(Expected value)} &= \begin{bmatrix} 0.624 & 1.525 & -1.290 & -0.184 \end{bmatrix} \\
\hat{w}_2^* &= \begin{bmatrix} -1.441 & 1.380 & 0.249 & -0.566 \end{bmatrix} \\
\text{(Expected value)} &= \begin{bmatrix} -1.606 & 1.141 & 0.249 & -0.497 \end{bmatrix} \\
\hat{w}_3^* &= \begin{bmatrix} 0.993 & -1.643 & -0.421 & 1.667 \end{bmatrix} \\
\text{(Expected value)} &= \begin{bmatrix} 0.701 & -1.687 & -0.371 & 1.687 \end{bmatrix}
\end{align*}
\]

It is thus seen that the theoretical values were quite adequately reproduced from the categorized data only, even though the latter were unordered.

The correlation matrix obtained from the scaled scores, and the contingency tables 6.4 = 6.07 and 6.5.5 is
The ρ_{13} and ρ_{23} values are quite adequate approximations to the true covariances.

\[
\begin{bmatrix}
1.000 & 0.712 & 0.038 \\
0.712 & 1.000 & 0.380 \\
0.038 & 0.380 & 1.000
\end{bmatrix}
\]

However, the 0.712 value is too low

\[
P \left| r > 0.380 \right| \rho = 0.36 = 0.695
\]

(from exact distribution of r^2)

If the vectors w_1 and w_2 are replaced by the vectors of expected values, the resulting correlation between the A-set and the B-set is 0.7036, even less than the 0.712 obtained from the minimum-determinant solution. Hence the significant reduction of the high correlation is due to replacement of the continuous variables by four points, and not due to the method of analysis.

6.6 Comparison of Initial Trials

1. For the case (3 x 3 x 3)
2. For the case \((2 \times 5 \times 2)\)

<table>
<thead>
<tr>
<th>4.2(2)</th>
<th>4.2(4)</th>
<th>4.2(5)</th>
<th>4.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.000</td>
</tr>
<tr>
<td>0.36902</td>
<td>0.44386</td>
<td>0.50172</td>
<td>0.501</td>
</tr>
<tr>
<td>0.62149</td>
<td>0.61376</td>
<td>0.59852</td>
<td>0.598</td>
</tr>
<tr>
<td>0.47613</td>
<td>0.49616</td>
<td>0.51773</td>
<td>0.517</td>
</tr>
<tr>
<td>0.47981</td>
<td>0.42439</td>
<td>0.34919</td>
<td>0.349</td>
</tr>
<tr>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.000</td>
</tr>
</tbody>
</table>

3. For the case \((4 \times 4 \times 3 \times 3)\)

<table>
<thead>
<tr>
<th>4.2(2)</th>
<th>4.2(4)</th>
<th>4.2(5)</th>
<th>4.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.51993</td>
<td>-0.53287</td>
<td>-0.53476</td>
<td>-0.531</td>
</tr>
<tr>
<td>0.62955</td>
<td>0.62204</td>
<td>0.62220</td>
<td>0.619</td>
</tr>
<tr>
<td>0.57807</td>
<td>0.57367</td>
<td>0.57166</td>
<td>0.577</td>
</tr>
<tr>
<td>0.56258</td>
<td>0.55387</td>
<td>0.54352</td>
<td>0.561</td>
</tr>
<tr>
<td>0.80269</td>
<td>0.80935</td>
<td>0.81664</td>
<td>0.804</td>
</tr>
<tr>
<td>0.19798</td>
<td>0.19539</td>
<td>0.19414</td>
<td>0.192</td>
</tr>
<tr>
<td>0.93833</td>
<td>0.93138</td>
<td>0.91879</td>
<td>0.946</td>
</tr>
<tr>
<td>-0.34573</td>
<td>-0.36404</td>
<td>-0.39474</td>
<td>-0.321</td>
</tr>
<tr>
<td>0.96108</td>
<td>0.94873</td>
<td>0.94599</td>
<td>0.958</td>
</tr>
<tr>
<td>0.27627</td>
<td>0.31609</td>
<td>0.32417</td>
<td>0.284</td>
</tr>
</tbody>
</table>

1) 4.2(2) - Average canonical scales.
4.2(4) - Multiple regression weights.
4.2(5) - Canonical-multiple correlations as weights.
4.3 - Minimum-determinant solution.
4. For the case \((4 \times 4 \times 4 \times 4)\)

<table>
<thead>
<tr>
<th>(k, 2(2))</th>
<th>(4, 2(4))</th>
<th>(4, 2(5))</th>
<th>(4, 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.68971</td>
<td>0.70033</td>
<td>0.88973</td>
<td>0.920</td>
</tr>
<tr>
<td>0.43353</td>
<td>0.60842</td>
<td>0.07887</td>
<td>0.207</td>
</tr>
<tr>
<td>0.57996</td>
<td>0.37332</td>
<td>-0.44963</td>
<td>-0.331</td>
</tr>
<tr>
<td>0.68238</td>
<td>0.65639</td>
<td>0.50835</td>
<td>0.222</td>
</tr>
<tr>
<td>0.70489</td>
<td>0.72649</td>
<td>0.80568</td>
<td>0.852</td>
</tr>
<tr>
<td>0.19469</td>
<td>0.20338</td>
<td>0.30408</td>
<td>0.472</td>
</tr>
<tr>
<td>0.24854</td>
<td>-0.02083</td>
<td>-0.44489</td>
<td>-0.711</td>
</tr>
<tr>
<td>0.49108</td>
<td>0.71414</td>
<td>0.69540</td>
<td>0.491</td>
</tr>
<tr>
<td>0.67870</td>
<td>0.69968</td>
<td>0.56434</td>
<td>0.501</td>
</tr>
<tr>
<td>-0.12662</td>
<td>-0.18807</td>
<td>-0.15144</td>
<td>0.211</td>
</tr>
<tr>
<td>0.11516</td>
<td>-0.02826</td>
<td>0.10717</td>
<td>0.976</td>
</tr>
<tr>
<td>0.98524</td>
<td>0.98175</td>
<td>0.98264</td>
<td>-0.046</td>
</tr>
</tbody>
</table>

5. For the case \((4 \times 4 \times 4)\)

<table>
<thead>
<tr>
<th>(4, 2(2))</th>
<th>(4, 2(4))</th>
<th>(4, 2(5))</th>
<th>(4, 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.85941</td>
<td>0.24705</td>
<td>0.47188</td>
<td>0.470</td>
</tr>
<tr>
<td>0.51110</td>
<td>0.78577</td>
<td>0.76917</td>
<td>0.776</td>
</tr>
<tr>
<td>0.01350</td>
<td>-0.56704</td>
<td>-0.43093</td>
<td>-0.419</td>
</tr>
<tr>
<td>-0.59666</td>
<td>-0.61489</td>
<td>-0.62467</td>
<td>-0.624</td>
</tr>
<tr>
<td>0.76332</td>
<td>0.74052</td>
<td>0.72616</td>
<td>0.726</td>
</tr>
<tr>
<td>0.24764</td>
<td>0.27117</td>
<td>0.28716</td>
<td>0.286</td>
</tr>
<tr>
<td>0.30079</td>
<td>-0.80374</td>
<td>0.55612</td>
<td>0.545</td>
</tr>
<tr>
<td>0.81332</td>
<td>0.16229</td>
<td>0.50823</td>
<td>-0.526</td>
</tr>
<tr>
<td>0.49802</td>
<td>0.57241</td>
<td>-0.65759</td>
<td>-0.651</td>
</tr>
</tbody>
</table>
For comparison between various forms of initial solutions with the best (canonical-multiple correlations) initial solutions, the \((4 \times 4 \times 4 \times 4)\) study has been chosen:

With permissible error: \(\text{EPS} = 10^{-3}\)

(1) Initial weights are all 0.5

20 iterations to obtain convergence and the normalized canonical weights are

\[
\begin{bmatrix}
0.920 & 0.212 & -0.328 \\
0.221 & 0.855 & 0.469 \\
-0.709 & 0.494 & 0.502 \\
0.216 & 0.975 & -0.040
\end{bmatrix}
\]

(2) Initial weights are all 1.0

100 iterations to obtain convergence and the normalized canonical weights are

\[
\begin{bmatrix}
0.917 & 0.222 & -0.329 \\
0.245 & 0.848 & 0.468 \\
-0.709 & 0.498 & 0.499 \\
0.196 & 0.980 & -0.024
\end{bmatrix}
\]

(3) Initial weights are all 2.0

133 iterations to obtain convergence and the normalized canonical weights are

\[
\begin{bmatrix}
0.896 & 0.417 & -0.150 \\
0.796 & 0.470 & 0.382 \\
-0.598 & 0.676 & 0.429 \\
0.060 & 0.927 & 0.363
\end{bmatrix}
\]
Note: If \(EPS = 10^{-4} \) and the initial weights are either all 1.0 or the multiple-regression weights, after 150 iterations, the limit set by the computer program, no convergence can be obtained.

It is noted that, in every instance, the canonical-multiple correlation weights (each set against the totality of the others) gives a very good approximation to the final minimum-determinant solution.

When the relations between the categorical variables are strong, the multiple regression approach, based upon pairwise canonical correlations is also quite useful (section 6.6). However, since it is easier to obtain canonical-multiple correlations there is really no reason for using this kind of initial solution.

The unweighted average of canonical correlations are useless as initial solution.

In conclusion it can be said that the canonical-multiple correlation weights appear to be so good that iterations to the minimum-determinant solution would be required only if unusually high accuracy is desired; this would be the exception in categorical data analysis.
CHAPTER VII
SUMMARY AND CONCLUSION

A generalization of the Fisher-Lancaster technique for scaling pairs of categorical variables has been studied in considerable detail. For the reason stated in CHAPTER III, R.G.D. Steel’s criterion of a minimum-determinant solution was adopted as an optimal criterion. The solutions satisfying this criterion have been compared with various approximations, including:

1. Averages and weighted averages of canonical vectors obtained by pairing each set with each other set;
2. Canonical vectors obtained by pairing each set with the totality of the other sets;
3. Canonical-partial and canonical-multiple correlations being used to construct the inverse of a correlation matrix of the derived scales.

Of the three methods, the second is the least time-consuming, and also consistently the best. It is so good, in fact, that for all practical purposes iteration to a minimum-determinant solution is unnecessary.

It is thus proposed that categorical scaling of k response variables be conducted as follows:

1. From the k-dimensional contingency table construct a super-matrix \(R \), as described in section 4.1.
(Computer program C-E-R in Appendix A2).

(2) Obtain conditional inverses of pseudo-triangular matrices \(T_i \) \((T_iT_i' = E_{11})\) as explained in section 4.1.

(3) Obtain a super-correlation matrix whose submatrices are \(R_{ij} = T_i(-1)E_{ij}T_j(-1)' \) and \(R_{ii} = I \). (Also performed in the computer program C-E-R).

(4) By pairing each set with the totality of the other sets, obtain "canonical-multiple" correlation and the characteristic vector associated with each. These are, for all practical purposes, the canonical weights from which the categorical scales can be obtained, as described in section 4.2.1.5 (For detailed description see illustration and the computer program CPCM in Appendix D).

(4b) If high precision is desired, use an iterative method such as the Fletcher-Powell method to obtain canonical weights that satisfy the minimum-determinant solution (see description in section 4.3 and the computer program FPM in Appendix C).

(5) By inverting the process in (3), and using the canonical weights (4) and (4b), obtain scales for each categorical variable. Standardization in such a way that, in the original set, the scaled responses would have mean zero and variance one is desirable.
(see section 4.4 and the computer program RTE in Appendix E).

It is not claimed that the foregoing studies set to rest, once for all, the problem of multi-dimensional categorized scaling. Other criteria generalizing canonical correlations will probably produce somewhat different results. However, the close proximity of an ad-hoc result (canonical weights of each set vs. the totality of others) and a maximum-likelihood result (minimum-determinant solutions) seems to indicate that, whatever future improvement will be found, it will produce only slight changes of the final scales.

On the other hand, simple averaging techniques, which have been repeatedly used in the literature, often produce quite different results. If some author can find some method for determining weights by easier means than characteristic roots and vectors of relatively small matrices (4 by 4 for 5 states), and if these weights approximate ours in many different situations, his method should surely replace the five steps recommended in this summary.
BIBLIOGRAPHY

[5] __________ : Matrices and Determinants. CRC Standard Mathematical Tables, 1966 or later,

APPENDIX A1

CONTROL CARDS FOR THE COMPUTER PROGRAM
The control cards for the computer program as follows:

1st card: in FORMAT(6I2)
Col. 1- 2 ND1- No. of levels of the 1st response variable.
Col. 3- 4 ND2- No. of levels of the 2nd response variable.
Col. 5- 6 ND3- No. of levels of the 3rd response variable.
Col. 7- 8 ND4- No. of levels of the 4th response variable.
Col. 9-10 ND5- No. of levels of the 5th response variable.
Col.11-12 NVAR- No. of sets (response variables).
Note: The omitted response variable is set to 1.

2nd card: in FORMAT(4I2, 5I4)
Col. 1- 2 IDX1- Level of the 1st factor (row number).
Col. 3- 4 IDX3- Level of the 3rd factor.
Col. 5- 6 IDX4- Level of the 4th factor.
Col. 7- 8 IDX5- Level of the 5th factor.
Col. 9-28 Cell frequencies for the levels of the 2nd factor.
 Col. 9-12 (IDX1, 1, IDX3, IDX4, IDX5)
 Col.13-16 (IDX1, 2, IDX3, IDX4, IDX5)
 Col.17-20 (IDX1, 3, IDX3, IDX4, IDX5)
 Col.21-24 (IDX1, 4, IDX3, IDX4, IDX5)
 Col.25-28 (IDX1, 5, IDX3, IDX4, IDX5)

***Note:** This layout is chosen since most user will think of a contingency table as a two-way table of rows (factor 1) and column (factor 2). The levels of the other factors (3, 4, 5), if any are kept constant.
OUTPUT:

Write the intermediate information on TAPE 10, the temporary data set needed for the following computer program.

a. Initial estimated and approximated weights.

b. Fletcher and Powell descent method.

c. Canonical-partial and canonical-multiple correlations.

d. Reduction weights for the original E-matrix.

The following records are stored in TAPE 10:

1st record: in FORMAT(2I5, 2E20.6)

N- Number of variables (N=ND1+ND2+ND3+ND4+ND5-5).

LIMIT- Maximum number of iterations.

EST- Estimated minimum value of the given function.

EPS- Permissible error.

2nd record: in FORMAT(6I2)

NSET- Number of sets.

(NRST(I),I=1,NSET) for N1, N2, N3, N4, N5.

(N1=ND1-1, N2=ND2-1, N3=ND3-1, N4=ND4-1, N5=ND5-1)

3rd record: in FORMAT(4E20.6)

(X(I),I=1,N) the canonical weights

a. In C-E-R, the assumed canonical weights values will be stored.

b. In ICW, the assumed canonical weights will be replaced by the estimated or approximated weights values.

c. In FPIE, the normalized canonical weights will replace the previous data.
OUTPUT:

Write the intermediate information on TAPE 10, the temporary data set needed for the following computer program.

a. Initial estimated and approximated weights.
b. Fletcher and Powell's descent method.
c. Canonical-partial and canonical-multiple correlations.
d. Reduction weights for the original E-matrix.

The following records are stored in TAPE 10:

1st record: in FORMAT(2I5, 2E20.6)
N- Number of variables. \((N=ND1+ND2+ND3+ND4+ND5-5)\).
LIMIT- Maximum number of iterations.
EST- Estimated minimum value of the given function.
EPS- Permissible error.

2nd record: in FORMAT(6I2)
NSET- Number of sets.
\((NRST(I), I=1, NSET)\) for \(N1, N2, N3, N4, N5\)
\((N1=ND1-1, N2=ND2-1, N3=ND3-1, N4=ND4-1, N5=ND5-1)\)

3rd record: in FORMAT(4E20.6)
\((X(I), I=1, N)\) the categorical weights
4th record: in FORMAT(5I8)

(NT(I,J), J=1, NRST(I)), I=1, NSET) the marginal totals
for each set.

5th record: in FORMAT(I8)

NTAL- The grand total of the contingency table.

6th record: in FORMAT(2I2, (5E20.6))

ND, MK, ((T(J,K), K=1, ND), J=1, NK) The conditional inverses
of T_i, i = 1, 2, 3, 4, 5.

7th record: in FORMAT(4E20.6) ... as many as needed.

All rank reduced submatrices of the super-matrix R,
stored in column-wise, i.e. R_11, R_12, R_22, R_13, R_23,
R_33, R_14, R_24, R_34, R_44, R_15, R_25, R_35, R_45, R_55.
APPENDIX A2

COMPUTER PROGRAM FOR CONTINGENCY TABLES

TO E TO R MATRIX

"C - E - R"
THE TEMPORARY STORAGE IN TAPE

TAPE 10- STORE THE FOLLOWING INFORMATION FOR THE FOLLOWING PROGRAMS:

1ST RECORD -
 STORED IN FORMAT(212,2E20.6)
 N - NO. OF CATEGORICAL WEIGHTS.
 LIMIT - MAXIMUM NO. OF ITERATIONS.
 EST - ESTIMATED MINIMUM OF A GIVEN FUNCTION.
 EPS - PERMISSIBLE ERROR.

2ND RECORD -
 STORED IN FORMAT(8I2)
 NSET - NO. OF SETS.
 (NRST(I), I=1,NSET) - FOR N1,N2,N3,N4,N5.

3RD RECORD -
 STORED IN FORMAT(4E20.6)
 (X(I), I=1,N) - THE CATEGORICAL WEIGHTS FROM THE 'FLETCHER INITIA' PROGRAM. AND WILL STORE THE RESULT FROM THIS PROG.

4TH RECORD
 STORED IN FORMAT(5I8)
 (NT(I,J), J=1,NREST(I), I=1,NSET)
 THE MARGINAL TOTAL OF THE CONTINGENCY TABLE.

5TH RECORD
 STORED IN FORMAT(10)
 NTAL - THE GRAND TOTAL OF THE CONTINGENCY TABLE.

6TH RECORD -
 STORED IN FORMAT(212,(5E20.6))
 NO, NK, (((TI,J,K),K=1,NO),J=1,NK),I=1,NSET)
 THE CONDITIONAL INVERSES.

7TH RECORD

STORED IN FORMAT(4E20.6)

ALL R MATRICES FROM THE 'CONTINGENCY TABLE TO E TO R' PROGRAM.

THIS IS THE MAIN PROGRAM FOR DIRECT CALCULATION OF R-MATRIX.

THIS IS MAIN CALLING PROGRAM TO CALL ALL SUBROUTINE AND FUNCTION
SUBPROGRAMS TO READ A CONTINGENCY TABLE UP TO 5 LEVELS INTO A SIN ARRAY.

THE INPUT-CARD FORMAT IS AS FOLLOWING.
 RESPONSE ON LEVEL 1 (ROW NO.) ON COLUMN 2.
 RESPONSE ON LEVEL 3 (NO. ON 3RD LEVEL) ON COLUMN 4.
RESPONSE ON LEVEL 4 (NO. ON 4TH LEVEL) ON COLUMN 6.
RESPONSE ON LEVEL 5 (NO. ON 5TH LEVEL) ON COLUMN 8.
SET 4TH AND 5TH LEVELS TO 1. IF ONLY 3 VARIABLES.
SET 5TH LEVEL TO 1. IF ONLY 4 VARIABLES.

THE FREQUENCIES WILL BE.
ACORDING TO ROW-WISE DATA FROM THE CONTINGENCY TABLE (UP TO 5 ELEMENTS), COL(1) ON COLUMN 12, COL(2) ON COLUMN 16, COL(3) ON COLU
COL(4) ON COLUMN 24, COL(5) ON COLUMN 28.
NO1 IS NUMBER OF DISTINCT RESPONSE FROM 1ST LEVEL.
NO2 IS NUMBER OF DISTINCT RESPONSE FROM 2ND LEVEL.
NO3 IS NUMBER OF DISTINCT RESPONSE FROM 3RD LEVEL.
NO4 IS NUMBER OF DISTINCT RESPONSE FROM 4TH LEVEL.
NO5 IS NUMBER OF DISTINCT RESPONSE FROM 5TH LEVEL.
THE OMITTED LEVEL IS ALWAYS SET TO 1.
NVAR IS THE NUMBER OF LEVELS.

INTEGER OUPUT
DIMENSION ISET(4), IFR(5)
DIMENSION AR(3125)
COMMON EE(15.5), NT(5.5)
COMMON NO1, NO2, NO3, NO4, NO5, NVAR, OUPUT, MK1, MK2, MK3, MK4, MK5, OZ, IE0.
IE(15.5, 5)
REWIND 10
INPUT = 5
OUPUT = 6
OZ = 0.00
READ(INPUT, 101) NO1, NO2, NO3, NO4, NO5, NVAR
101 FORMAT (612)
WRITE(OUPUT, 4210)
4210 FORMAT (15, 32HTHE CONTINGENCY TABLE INPUT DATA)
WRITE(OUTPUT, 4201) NVAR, NO1, NO2, NO3, NO4, NO5
4201 FORMAT (150, //T10.29HTHE NUMBER OF SETS (NSETS) = ,I6//T10.47HTHE NUMBER OF RESPONSES OF FIRST LEVEL (NO1) = ,I6//T10.40HTHE NUMBER OF RESPONSES OF SECOND LEVEL (NO2) = ,I5//T10.47HTHE NUMBER OF RESPONSES OF THIRD LEVEL (NO3) = ,I6//T10.40HTHE NUMBER OF RESPONSES OF FOURTH LEVEL (NO4) = ,I6//T10.47HTHE NUMBER OF RESPONSES OF FIFTH LEVEL (NO5) = ,I0)
WRITE(OUTPUT, 4202)
4202 FORMAT (150, //T10.17HTHE CONTINGENCY TABLE)
WRITE(OUTPUT, 4205) NO2
4205 FORMAT (150, //T10.17HTHE CONTINGENCY TABLE)
WRITE(OUTPUT, 4209) NO2
4209 FORMAT (150, //T10.5X, 5HLEVEL, 5X, 5HLEVEL, 5X, 5HLEVEL, 5X, 5HLEVEL, 7X, 5HLE...
1VEL /T10.6X, 3H(1), 5X, 3H(5), 5X, 3H(4), 5X, 3H(51), 9X, 3H(2), 1X, 5H(1...212, 1H))
WRITE(OUTPUT, 4214)
4214 FORMAT (150, //T10.100H

154
I~NRITE(01,00)
I$ETC1),Iml.4)e(IfR(1Bt3.luseoN02)

10 CONTINUE
WRITE(OUTPUT,100) AR(LX-L(SET(1),I-SET(2),I-SET(3),I-SET(4))
DO 10 J=1,NZ
AR(LX-L(L(SET(1),J,1))
CONTINUE
WRITE(OUTPUT,4200) I(SET(1),I-SET(2),I-SET(10))

THE PARTA SUBROUTINE IS TO PLACE THE SINGLE ARRAY DATA INTO THE MATRIX, AND MANIPULATE TO FIND THE VARIANCE-COVARIANCE MATRICES.

1000 CALL LINNA
1200 CALL EXIT

11000 CALL PARTACRR.E.IEN03

CTHE
SUBROUTINE FARTACAR(E, ILND)
C
THIS PROGRAM IS TO PLACE THE SINGLE ARRAY AR INTO E MATRIX WHICH I
THE FORM OF E(K,10,1C).
C
K=1, E11, K=2 E12, K=3, E13, K=4 E15, K=5
K=6 E95, K=7 E14, K=8 E24, K=9 E94, K=10
K=11 E15, K=12 E25, K=13 E95, K=14 E45, K=15
C
AND THEN THE VARIANCE-COVARIANCE MATRICES ARE CALCULATED.
C
INTEGER OUTPUT
DIMENSION N0D(5), IX(5), AR(3125), E(15,5,5), RSUM(5), CSUM(5)
COMMON EE(15,5), NT(5,5)
COMMON ND1, ND2, ND3, ND4, ND5, NVAR, OUTPUT, MK1, MK2, MK3, MK4, MK5, DZ
IEND=15
IF(NVAR-2) 10, 11, 10
10 IF(NVAR-3) 12, 13, 12
12 IF(NVAR-4) 14, 15, 14
11 IEND=3
GO TO 16
13 IEND=6
GO TO 16
15 IEND=10
18 CONTINUE
14 CONTINUE
N0D(1)=ND1
N0D(2)=ND2
N0D(3)=ND3
N0D(4)=ND4
N0D(5)=ND5
00 17 K=1, IEND
00 17 I=1, 5
00 17 J=1, 5
17 E(K,1,J)=DZ
K=0
00 20 JA=1, NVAR
00 20 JB=1, JAR
K=K+1
11=NOD(JA)
00 30 IA=1, 11
12=NOD(JB)
00 31 IB=1, 12
CALL MAT1(JA, JB, N0D, IX)
13=IX(1)
14=IX(2)
15=IX(3)
16=IX(4)
00 31 IC=1, 13
00 31 ID=1, 14
00 31 IE=1, 15
00 35 IO=1, 16
1IF(JA-JB) 36, 37, 38
37 00 TO (90.36.90.36.90.36.90.36.90.36.36.90.36.36.90.36.36.90).K
90 CALL MAT2(IA,IB,IC,10,IE,IO,E,AR,K)
35 CONTINUE
98 CONTINUE
99 GO TO 99
97 CONTINUE
CALL MAT3(IA,IB,IC,10,IE,IO,E,AR,K)
31 CONTINUE
IF(JA-JB) 30,38,30
30 CONTINUE
38 CONTINUE
00 TO (90.91.90.91.91.90.91.90.91.91.90.91.90.91.90.90.91.
90 CONTINUE
CALL MAT5(12,11,E,OZ,RSUM,K)
CALL MAT6(12,11,E,OZ,RSUM,CSUM,K)
00 TO 99
91 CALL MAT4(12,11,E,OZ,K,CSUM,RSUM)
CALL PLACE(12,11,CSUM,RSUM,NT,JA,JB)
99 CONTINUE
20 CONTINUE
CALL JDEX(NOD,NT,OUTPUT,NVAR)
WRITE(OUTPUT,104)
104 FORMAT(1H1)
CALL OUTPUT(E)
RETURN
END
C TO PLACE THE MARGINAL TOTAL IN AN ARRAY AND FIND THE GRAND TOTAL.

SUBROUTINE OIOEX (NDO,MT,IOUT,NVAR)

DIMENSION NDD(5),NT(5,5)

INPUT = 10
DO 10 JA=1,NVAR
IA=NDD(JA)
WRITE(OUT,102) JA

102 FORMAT(///T10.2S,THE MARGINAL TOTAL OF SET ,I3)
WRITE(OUT,101) (NT(JA,J),J=1,IA)

101 FORMAT(1HO,T10.5I10)
WRITE(OUT,103) (NT(JA,J),J=1,IA)

103 FORMAT(510)
CONTINUE

NTAL = 0
JB = NDD(1)
DO 12 I=1,JB

12 NTAL = NTAL + NT(1,I)
WRITE(OUT,105) NTAL

105 FORMAT(1HO,T10.17X,THE GRAND TOTAL = ,I10)
WRITE(OUT,103) NTAL
RETURN
END
SUBROUTINE PLACE(12,13,CSUM,RSUM,NT,JA,JB)
DIMENSION CSUM(5),RSUM(5),NT(5,5)
DO 11 KB=1,13
 11 NT(JA,KB) = CSUM(KB)
DO 14 ND=1,12
 14 NT(JB,ND) = RSUM(ND)
10 CONTINUE
RETURN
END

SUBROUTINE MAT1(JA,JB,NOD,IX)
DIMENSION NOD(5),IX(5)
IX=1
DO 41 IX=1,5
 IF(KX-JA) 42,41,42
 IF(KX-JB) 43,41,43
41 IX=IX+1
42 CONTINUE
RETURN
END

SUBROUTINE MAT2(IA,IB,IC,IO,IE,IK,A,K)
INTEGER OUPUT
DIMENSION AR(3125),E(15,5,5)
COMMON EE(15,5),NT(5,5)
COMMON N01,N02,N03,N04,N05,NVAR,OUTPUT,IK1,IK2,IK3,IK4,IK5,OE
DO 60 60 60
60 LX=LT(IC,IC,IO,IE,IO)
62 LX=LT(IC,IC,IO,IE,IO)
66 LX=LT(IC,IC,IO,IE,IO)
70 LX=LT(IC,IC,IO,IE,IO)
75 LX=LT(IC,IC,IO,IE,IO)
80 E(K,IB,IO)=E(K,IB,IO)*AR(LX)
90 RETURN
END
SUBROUTINE MAT3(IA, IB, IC, 10, IE, 10, E, AR, K)
INTEGER OUTPUT
DIMENSION AR(3125), E(15, 5, 5)
COMMON EE(15, 5, NT), NT(5, 5)
COMMON NO1, NO2, NO3, NO4, NO5, NVAR, OUTPUT, MK1, MK2, MK3, MK4, MK5, OZ
GO TO (99, 62, 64, 65, 67, 68, 69, 71, 72, 73, 74, 79, K)
62 LX = LT(1B, IA, IC, 10, IE)
 GO TO 76
64 LX = LT(1B, IC, IA, 10, IE)
 GO TO 76
65 LX = LT(1C, IB, IA, 10, IE)
 GO TO 76
67 LX = LT(1B, IC, 10, IA, IE)
 GO TO 76
68 LX = LT(1C, IB, 10, IA, IE)
 GO TO 76
69 LX = LT(1C, 10, IB, IA, IE)
 GO TO 76
71 LX = LT(1B, IC, 10, IE, IA)
 GO TO 76
72 LX = LT(1C, IB, 10, IE, IA)
 GO TO 76
73 LX = LT(1C, 10, IB, IE, IA)
 GO TO 76
74 LX = LT(1C, 10, IE, IB, IA)
76 E(K, IB, IA) = E(K, IB, IA) + AR(LX)
99 RETURN
END
SUBROUTINE MAT4(I2,I3,E,DZ,K,CSUM,RSUM)
INTEGER OUTPUT
DIMENSION E(15,5),CSUM(5),RSUM(5)
OUTPUT = 6
DO 51 MB=1,12
RSUM(MB)=DZ
DO 51 KB=1,13
51 RSUM(MB)=RSUM(MB)+E(K,MB,KB)
DO 52 KB=1,13
CSUM(KB)=DZ
DO 52 MB=1,12
52 CSUM(KB)=CSUM(KB)+E(K,MB,KB)
AN=DZ
DO 53 KB=1,13
53 AN=AN*CSUM(KB)
DO 50 MB=1,12
DO 50 KB=1,13
50 E(K,MB,KB)=E(K,MB,KB)-RSUM(MB)*CSUM(KB)/AN
RETURN
END

SUBROUTINE MAT5(I2,I3,E,DZ,RSUM,K)
DIMENSION E(15,5),RSUM(5)
DO 51 MB=1,12
RSUM(MB)=DZ
DO 51 KB=1,13
51 RSUM(MB)=RSUM(MB)+E(K,MB,KB)
RETURN
END
SUBROUTINE MAT6(I2.I3.OZ.E.RSUM.CSUM.K)
DIMENSION E(15.5).RSUM(5).CSUM(5)
COMMON EE(15.5)
DO 52 MB=1,12
 DO 52 KB=1,13
 52 E(K,MB,KB)=DZ
 AN=DZ
 DO 53 MB=1,12
 53 AN=AN+RSUM(MB)
 DO 54 I=1,12
 E(K,I,I)=RSUM(I)
 EE(K,I)=RSUM(I)
 54 CSUM(I)=RSUM(I)
 DO 50 MB=1,12
 DO 50 KB=1,13
 50 E(K,MB,KB)=E(K,MB,KB)-RSUM(MB)=RSUM(KB)/AN
 RETURN
 END
SUBROUTINE INKA16

* THE SUBROUTINE INKA IS TO FIND THE INVERSE FOR CALCULATE THE
 R MATRICES.

INTEGER OUTPUT, OUTFIT(5.5), RFX1(5.5), RFX2(5.5), RFX3(5.5), RFX4(5.5), RFX5(5.5), EA(5).
DIIJENSION I(5, 5), IIEZ(I), WINIT(2O)
COMMON EE(15.5), NT(5.5)
COMMON NO1, NO2, NO3, NO4, NO5, NVAR, OUTFIT, MK1, MK2, MK3, MK4, MK5, DZ, IEND.

INPUT = 10
REWIND 10
WRITE(OUTPUT, 1013)

FORMAT(1HI///T25.27HINFORMATION STORED IN TAPE)

WRITE(OUTPUT, 1013)
NMTS = NO1 + NO2 + NO3 + NO4 + NO5 - 5
NMTI = 150
WT2 = 0.E0
WT3 = 1.E-5
ITEZ(I) = NVAR
ITEZ(2) = NO1 - 1
ITEZ(3) = NO2 - 1
ITEZ(4) = NO3 - 1
ITEZ(5) = NO4 - 1
ITEZ(6) = NT5 - 1
DO 1331 I = 1, NMTS
1331 WINIT(I) = 0.5EO
DO 1304 JA = 1, NVAR
IA = I(EZ(JA) + 1) + 1
WRITE(OUTPUT, 1305) JA, (NT(JA, I), I = 1, IA)

FORMAT(1HO.TIO, 26H THE MARGINAL TOTAL FOR SET .IO/(TIO,518))
WRITE(OUTPUT, 1306) (NT(JA, I), I = 1, IA)

FORMAT(518)
1304 CONTINUE
NTAL = 0
IA = I(EZ(2) + 1
DO 1308 I = 1, IA
1308 NTAL = NTAL + NT(1. I)
WRITE(OUTPUT, 1309) NTAL

FORMAT(1HO//TIO, 17H THE GRAND TOTAL = .18)
WRITE(OUTPUT, 1309) NTAL
1K = 1
K = 0
DO 40 I = 1, NEND
40 K = K + 1
GO TO (41:40.41,40,40.41,40,40.41,40,40.40,40.41.40.41.40.40,40.41,40.41.40.41.40.41.40.41,40.41)
41 CONTINUE

CALL PART(E(ENO,K,E,ND)

CONTINUE
THE SUBROUTINE PARTC IS TO FIND THE FINAL OUTPUT OF THE R MATRICES.

RETURN
END
SUBROUTINE PARTC(E,RFX11,RFX12,RFX21,RFX22,RFX31,RFX32,RFX41,RFX42,
\[\text{INTEGER}\]
RFX11(5,5),RFX12(5,5),RFX21(5,5),RFX22(5,5),RFX31(5,5),RFX32(5,5),
\[\text{COMMON E(15,5),RFX11(5,5),RFX12(5,5),RFX21(5,5),RFX22(5,5),RFX31(5,5),RFX32(5,5),RFX41(5,5),RFX42(5,5),RFX51(5,5),RFX52(5,5)}\]
\[\text{COMMON N01,N02,N03,N04,N05,NVAR,OUTPUT,MK1,MK2,MK3,MK4,MK5,DX}\]
OZ = 0.00
WRITE(OUTPUT,101)
101 FORMAT(I1H1)
WRITE(OUTPUT,102)
102 FORMAT(I1H0,T1O,14HTHE R11 MATRIX)
K=1
CALL DUPT3(MK1,OUTPUT,OZ)
IF(IEND-1) 11,20,11
11 CONTINUE
WRITE(OUTPUT,103)
103 FORMAT(I1H0,T1O,14HTHE R12 MATRIX)
K=2
CALL DUPTZ(N01,N02,MK1,MK2,RFX11,RFX12,E.OZ,K,OUTPUT)
K=3
WRITE(OUTPUT,104)
104 FORMAT(I1H0,T1O,14HTHE R22 MATRIX)
CALL DUPTZ(MK2,OUTPUT,OZ)
IF(IEND-3) 12,20,12
12 CONTINUE
K=4
WRITE(OUTPUT,105)
105 FORMAT(I1H0,T1O,14HTHE R13 MATRIX)
CALL DUPT3(N01,N03,MK1,MK3,RFX11,RFX32,E.OZ,K,OUTPUT)
K=5
WRITE(OUTPUT,106)
106 FORMAT(I1H0,T1O,14HTHE R23 MATRIX)
CALL DUPTZ(N02,N03,MK2,MK3,RFX21,RFX32,E.OZ,K,OUTPUT)
K=6
WRITE(OUTPUT,107)
107 FORMAT(I1H0,T1O,14HTHE R33 MATRIX)
CALL DUPTZ(MK3,OUTPUT,OZ)
IF(IEND-6) 13,20,13
13 CONTINUE
K=7
WRITE(OUTPUT,108)
108 FORMAT(I1H0,T1O,14HTHE R14 MATRIX)
CALL DUPTZ(N01,N04,MK1,MK4,RFX11,RFX42,E.OZ,K,OUTPUT)
K=8
WRITE(OUTPUT,109)
109 FORMAT(I1H0,T1O,14HTHE R24 MATRIX)
CALL DUPTZ(N02,N04,MK2,MK4,RFX21,RFX42,E.OZ,K,OUTPUT)
K=9
WRITE(OUTPUT,110)
110 FORMAT(I1H0,T1O,14HTHE R34 MATRIX)
CALL DUPTZ(N03,N04,MK3,MK4,RFX31,RFX42,E.OZ,K,OUTPUT)
K=10
WRITE(OUTPUT,111)
111 FORMAT(1HO,T10.14HTHE R44 MATRIX)
 CALL OUPUT3(MK4,OUPUT,OZ)
 IF(IEND-10) 14,20,14
14 CONTINUE
 K=11
 WRITE(OUPUT,112)
112 FORMAT(1HO,T10.14HTHE R15 MATRIX)
 CALL OUPUT2(ND1,N05,MK1,MK2,RFX11,RFX52,E,OZ,K,OUPUT)
 K=12
 WRITE(OUPUT,113)
113 FORMAT(1HO,T10.14HTHE R25 MATRIX)
 CALL OUPUT2(ND2,N05,MK2,MK5,RFX21,RFX52,E,OZ,K,OUPUT)
 K=13
 WRITE(OUPUT,114)
114 FORMAT(1HO,T10.14HTHE R35 MATRIX)
 CALL OUPUT2(ND3,N05,MK3,MK5,RFX31,RFX52,E,OZ,K,OUPUT)
 K=14
 WRITE(OUPUT,115)
115 FORMAT(1HO,T10.14HTHE R45 MATRIX)
 CALL OUPUT2(ND4,N05,MK4,MK5,RFX41,RFX52,E,OZ,K,OUPUT)
 K=15
 WRITE(OUPUT,116)
116 FORMAT(1HO,T10.14HTHE R55 MATRIX)
 CALL OUPUT3(MK5,OUPUT,OZ)
20 CONTINUE
 REWIND 10
 RETURN
END
SUBROUTINE PARTE(IEND,K,EA,ND)

DIMENSION EA(5)

COMMON EE(15.5),NT(5.5)

COMMON ND1,ND2,ND3,ND4,ND5,NVAR,GUPUT,AK1,AK2,AK3,AK4,AK5,DE

ND=ND1

IF(K=1) 43.70.43

43 ND=ND2

IF(K=3) 44.70.44

44 ND=ND3

IF(K=6) 45.70.45

45 ND=ND4

IF(K=10) 46.70.46

46 ND=ND5

70 CONTINUE

DO 51 I=1,ND

51 EA(I)=EE(K,

RETURN

END
SUBROUTINE TPRM1(EA,NO,RF1,HK,OZ)
DIMENSION EA(5),RF1(5,5)
HK=NO-1
TOTAL=OZ
DO 10 I=1,NO
10 TOTAL=TOTAL+EA(I)
DO 11 I=1,5
11 RF1(I,1)=0
RF1(1,1)=SQRT(TOTAL/(EA(I)+TOTAL-EA(I)))
DO 12 I=2,HK
TN1=TOTAL
I1=1
I11=1-1
DO 19 I=1,III
19 TN1=TN1-EA(I1)
TN2=TN1-EA(I11)
DO 12 J=1,1
IF(I-J) 30,31,30
30 RF1(I,J)=SQRT(EA(I)/TN1
31 RF1(I,J)=SQRT(TN1/(EA(I)*TN2))
CONTINUE
RETURN
END
SUBROUTINE TPM2(RF1,RX1,RX2,MK,ND,ML,OUTPUT)
INTEGER OUTPUT
DIMENSION RF1(5,5),RX1(5,5),RX2(5,5)
INPUT = 10
MKL=MK
DO 10 I=1,MK
 DO 10 J=1,ND
 RX1(I,J)=RF1(I,J)
 10 RX2(J,I)=RF1(I,J)
 WRITE(OUTPUT,101) ((RX1(I,J),J=1,ND),I=1,MK)
101 FORMAT(1HO,T10.25HTHE T CONDITIONAL INVERSE //T10,5E20.6))
 WRITE(INPUT,102) ND,MK,((RX1(I,J),J=1,ND),I=1,MK)
102 FORMAT(2I2,(5E20.6))
RETURN
END
SUBROUTINE OWTZLN1(N1,N2,E1,R2,F,OZ,K,OPUT)
INTEGER OPUT
DIMENSION R1(5,5),R2(5,5),E(15,5,5),W(5,5),WORK(5,5)
INPUT = 10
DO 10 I=1,5
DO 10 J=1,5
W(I,J)=DZ
10 WORK(I,J)=DZ
DO 11 I=1,N1
DO 11 J=1,N2
DO 11 L=1,N1
11 WORK(I,J)=WORK(I,J)+R1(I,L)*E(K,L,J)
DO 12 I=1,N1
DO 12 J=1,N2
DO 12 L=1,N2
12 W(I,J)=W(I,J)+WORK(I,L)*R2(L,J)
WRITE(OUTPUT,101) ((W(I,J),J=1,N2),I=1,N1)
101 FORMAT(*10,5E20.6)
WRITE(INPUT,102) ((W(I,J),J=1,N2),I=1,N1)
102 FORMAT(*4E20.6)
RETURN
END
SUBROUTINE OUPT3(N1, OUTPUT)
INTEGER OUTPUT
DIMENSION R(5,5)

INPUT = 10
DO 55 I=1.5
DO 55 J=1.5
55 R(I,J)=0.E0
DO 10 I=1.5
10 R(I,I)=1.E0
WRITE(OUTPUT,101) ((R(I,J),J=1,N1),I=1,N1)
101 FORMAT(1HO,T'0.5E20.6)
WRITE(INPUT,102) ((R(I,J),J=1,N1),I=1,N1)
102 FORMAT(4E20.6)
RETURN
END
FUNCTION LT(I,J,K,L,H)

 THIS FUNCTION SUBPROGRAM IS TO FIND THE INDEX FOR THE SINGLE ARRAY
 FROM THE CONTINGENCY TABLE.

 INTEGER DUPUT
COMMON EE(15,5),NT(5,5)
COMMON NO1,NO2,NO3,NO4,NO5,NVAR,OUTPUT,NNK1,NNK2,NNK3,NNK4,NNK5,NN
LT=(((K-1)=NO4+(L-1))=NO3+(J-1))=NO2+(I-1))=NO1+I
RETURN
END
SUBROUTINE OUTPUT
INTERGER OUTPUT
DIMENSION NODS, E(15,5,5)
COMMON EE(15,5,NT(5,5))
COMMON ND1, ND2, ND3, ND4, NOS, NVAR, OUPUT, MK1, MK2, MK3, MK4, MK5, OZ
NODS(1)=ND1
NODS(2)=ND2
NODS(3)=ND3
NODS(4)=ND4
NODS(5)=NOS
K=0
DO 18 JA=1, NVAR
DO 18 JB=1, JA
K=K+1
WRITE(OUPUT,104) JB, JA
104 FORMAT(1HO,T10.5MTHE E.212.7H MATRIX)
I2=NODS(JB)
I3=NODS(JA)
DO 19 IB=1, I2
WRITE(OUPUT,105) (E(K, IB, IC), IC=1, I3)
105 FORMAT(//1X,T15.5E20.6))
18 CONTINUE
RETURN
END
APPENDIX B

COMPUTER PROGRAM FOR INITIAL WEIGHTS
ESTIMATION AND APPROXIMATION
"I C W"
DIMENSION RR(15,5,5),A(25),R(25),NRST(5),RHS(5,4),RGH(5,5)
DIMENSION RS12(5,5),RS13(5,5),RS23(5,5),RS24(5,5),RS34(5,5),RS45(5,5)
1 X(25)
COMMON ATOTL
COMMON N1,N2,N3,N4,N5,NSETS,INPUT,OUT,KSET
DATA U1,U2,U3,U4,U5,V1,V2,V3,V4,V5,N1,N2,N3,N4,N5,R1,R2,R3,R4,R5/1
100=0.0
DATA NRST/5=0/
REMAIN 10
INPUT = 10
IFOUT = 0
LIMIT = 0
DZ = 0.0
NTOTL = 0
READ(INPUT,100) NWT6,NWT1,NWT2,NWT3
100 FORMAT(2I5,2E20.8)
READ(INPUT,101) NSET6,(NRST(I),I=1,5)
101 FORMAT(6I2)
DO 7 I=1,5
7 NTOTL = NTOTL + NRST(I)
ATOTL = NTOTL
KSET = 3
IF(NSETS - 2) 2,1,2
2 KSET = 6
IF(NSETS - 3) 3,1,3
3 KSET = 10
IF(NSETS - 4) 4,1,4
4 KSET = 15
1 CONTINUE
READ(INPUT,105) (A(I),I=1,NWT6)
105 FORMAT(4E20.8)
N1 = NRST(1)
N2 = NRST(2)
N3 = NRST(3)
N4 = NRST(4)
N5 = NRST(5)
DO 3311 JA=1,NSETS
Ji = NRST(JA)
3311 READ(INPUT,2012) (NT(JA,I),I=1,1A)
2012 FORMAT(5I8)
READ(INPUT,2012) NTAL
DO 3312 JA=1,NSETS
3312 READ(INPUT,2013) NO,MK,((RS12(I,J),J=1,NO),I=1,MK)
2013 FORMAT(212,(5E20.8))
CALL REAIN(RR,NSET6,INPUT,NRST,KSET)
5 CONTINUE
2000 LIMIT = LIMIT + 1
ISTEP = 1
GO TO (3101,3102).LIMIT
3101 CONTINUE
 CALL RIOUT(RR,NSETS,IOUT,NSRT,KSET)
 GO TO 3109
3102 CONTINUE
 CALL ROUT(RR,NSETS,IOUT,NSRT,KSET)
3103 CONTINUE
 CALL EMPTY(RS12,RS13,RS14,RS15,RS23,RS24,RS25,RS34,RS35,RS45.OZ)
 GO TO (3201,3202).LIMIT
3201 CALL RS1(RS12,RS13,RS14,RS15,RS23,RS24,RS25,RS34,RS35,RS45,RR,N1,N
 12,N3,N4,N5,IOUT,NSET6)
 GO TO 3203
3202 CALL RS2(RS12,RS13,RS14,RS15,RS23,RS24,RS25,RS34,RS35,RS45,RR,N1,N
 12,N3,N4,N5,IOUT,NSET6)
3203 CONTINUE
 GO TO (3301,3302).LIMIT
3301 N = N1
 GO TO 3309
3302 N = N2
3303 CONTINUE
 DO 19 I=1,N
 DO 19 J=1,N
19 RGN(I,J) = RS12(I,J)
 LM = 0
9000 DO 17 I=1,N
 DO 17 J=1,N
17 IJ = (J*J - J)/2 + I
 A(IJ) = RSN(I,J)
 NNN = (N - 1)*N/2 + N
 WRITE(IOUT,202) (A(IJ),I=1,NNN)
202 FORMAT(1HO,T10.17HTHE PACKED MATRIX //T10.5E20.8)
 CALL EIGEN(A,R,N,0)
 WRITE(IOUT,203) A(1)
203 FORMAT(1HO,T10.25HTHE LARGEST EIGEN-VALUE //T10.5E20.8)
 WRITE(IOUT,204) (R(I),I=1,N)
204 FORMAT(1HO,T10.18HTHE EIGEN-VECTOR //T10.5E20.8)
 IF(LIMIT - 1) 1000,1001,1000
1000 CALL SECOOD(U1,V1,W1,N1,K1,W2,R3.R4,R5,ISTEP,N,RH6,SORT(A(1)))
 GO TO 568
1000 CALL SECOOD(U2,V3,W4,U4,V4,R5,U5,W5,ISTEP,N,RH6,SORT(A(1)))
568 IF(INSETS - 2) 25.25.26
26 CONTINUE
 CALL RLOAD(RS12,RS13,RS14,RS15,RS23,RS24,RS25,RS34,RS35,RS45,R6N,N
 1,N1,N2,N3,N4,N5,LIMIT,ISTEP,LH,NSET6,100)
 GOTO (9001,9000).100
9001 CONTINUE
25 CONTINUE
 GO TO (2000,2004).LIMIT
2004 CONTINUE
 NS = NSETS - 1
 IKX = 1
 KN = 0
 CALL FINAL(VAV,U1,V1,W1,R1,N6,N1,IOUT,RH6,IKX)
 CALL DORMF(VAV,N1,IOUT,KN,X)
```fortran
IMX = 2
KN = KN + N1
CALL FINAL(VAV,U2,V2,N2,N6,N2,10UT,RHS,IKX)
CALL DORMF(VAV,N2,10UT,KN,X)
IF(NSETS - 2) 98,99,99
98 CONTINUE
IKX = 3
KN = KN + N2
CALL FINAL(VAV,U3,V3,N3,N6,N3,10UT,RHS,IKX)
CALL DORMF(VAV,N3,10UT,KN,X)
IF(NSETS - 3) 97,99,97
97 CONTINUE
IKX = 4
KN = KN + N3
CALL FINAL(VAV,U4,V4,N4,N6,N4,10UT,RHS,IKX)
CALL DORMF(VAV,N4,10UT,KN,X)
IF(NSETS - 4) 96,99,98
96 CONTINUE
IKX = 5
KN = KN + N4
CALL FINAL(VAV,U5,V5,N5,N6,N5,10UT,RHS,IKX)
CALL DORMF(VAV,N5,10UT,KN,X)
99 CONTINUE
CALL FILUP(X,NTOI,INPUT)
REWIND 10
STOP
END
SUBROUTINE REAIN(R,NSETS,INPUT,NRST,KSET)
DIMENSION R(15,5),NRST(5)
K = 1
DO 10 J=1,NSETS
NR = NRST(J)
DO 10 I=1,NB
READ(INPUT,102) (R(K,IX,JX),IX=1,NA),IX=1,NS.
102 FORMAT(4E20.0)
K = K + 1
IF(K - KSET), 10,10,11
10 CONTINUE
11 CONTINUE
RETURN
END
C
SUBROUTINE RIOUT(R,NSETS,IOUT,NRST,KSET)
DIMENSION R(15,5),NRST(5)
WRITE(IOUT,100)
100 FORMAT(1X,125,48,INITIAL ESTIMATED WEIGHTS FOR FLETCHER AND PONEL )
WRITE(IOUT,600) NSETS,(NRST(I),I=1,5)
600 FORMAT(1HO,T10,29,HTHE NUMBER OF SETS (NSET8) = .16//T10,37,HTHE NUMBER OF ROWS OF (1,1) SET N1 = .16//T10,37,HTHE NUMBER OF ROWS OF (2,2) SET N2 = .16//T10,37,HTHE NUMBER OF ROWS OF (3,3) SET N3 = .
316//T10,37,HTHE NUMBER OF ROWS OF (4,4) SET N4 = .16//T10,37,HTHE NUMBER OF ROWS OF (5,5) SET N5 = .16)
WRITE(IOUT,140)
140 FORMAT(1HO,T35,14,HTHE INPUT DATA )
K = 1
DO 10 J=1,NSETS
IA = NRST(J)
DO 10 I=1,IA
IB = NRST(I)
WRITE(IOUT,130) (((RIK,IX,JX),JX=1,IA),IX=1,IB)
130 FORMAT(1HO,,T10.5E20.6))
K = K + 1
IF(K = KSET) 10,10,11
10 CONTINUE
11 CONTINUE
RETURN
END
SUBROUTINE ROUT(R,NST6,OUT,NRI,T,KSET)
DIMENSION R(15,5,5),NRST(5)
WRITE(OUT,140)
140 FORMAT(1H1,35,ZD35,'THE TRANPOSED INPUT DATA')
K = 1
DO 10 J=1,NSET6
 NA = NRST(J)
 DO 10 I=1,NA
 MB = NRST(I)
 WRITE(OUT,130)([R(K,IX,JX),JX=1,NA],IX=1,MB)
130 FORMAT(1HO//(1,5E20.6))
K = K + 1
 IF(K == KSET) 10,10,11
10 CONTINUE
11 CONTINUE
605 RETURN
END
SUBROUTINE EMPTY(RS12,RS13,RS14,RS15,RS23,RS24,RS25,RS34,RS35,RS45)
DIMENSION RS12(5,5),RS13(5,5),RS14(5,5),RS15(5,5),RS23(5,5),RS24(5
1,5),RS25(5,5),RS34(5,5),RS35(5,5),RS45(5,5)
 DO 1002 I=1,5
 DO 1002 J=1,5
 RS12(I,J) = 0Z
 RS13(I,J) = 0Z
 RS14(I,J) = 0Z
 RS15(I,J) = 0Z
 RS23(I,J) = 0Z
 RS24(I,J) = 0Z
 RS25(I,J) = 0Z
 RS34(I,J) = 0Z
 RS35(I,J) = 0Z
 RS45(I,J) = 0Z
1002 CONTINUE
RETURN
END
C

1.RSN,N,N1,N2,N3,N4,N5,LIMIT,ISTEP,LM,NSET6,100)
DIMENSION RS12(5,5),RS13(5,5),RS14(5,5),RS15(5,5),RS23(5,5),RS24(5
1,5),RS25(5,5),RS34(5,5),RS35(5,5),RS45(5,5),RSN(5,5)

100 = 2

26 LM = LM + 1
   IF(LM - 1) 20,27,28

27 CONTINUE
   GO TO (2501,2502).LIMIT

2501 N = N1
   GO TO 2601

2502 N = N3

2601 DO 29 J=1,N
   DO 29 J=1,N

29 RSN(I,J) = RS13(I,J)
   ISTEP = ISTEP + 1
   GO TO 9000

28 IF(LM = 2) 30,31,30

31 CONTINUE
   GO TO (2701,2702).LIMIT

2701 N = N2
   GO TO 2801

2702 N = N3

2801 DO 32 J=1,N
   DO 32 J=1,N

32 RSN(I,J) = RS23(I,J)
   ISTEP = ISTEP + 1
   GO TO 9000

30 IF(NSETS = 3) 25,25,434
34 IF(LM = 3) 34,35,34
35 CONTINUE
   GO TO (2703,2704).LIMIT

2703 N = N1
   GO TO 2802

2704 N = N4

2802 DO 36 J=1,N
   DO 36 J=1,N

36 RSN(I,J) = RS14(I,J)
   ISTEP = ISTEP + 1
   GO TO 9000

34 IF(LM = 4) 37,38,37
38 CONTINUE
   GO TO (2705,2706).LIMIT

2705 N = N2
   GO TO 2803

2706 N = N4

2803 DO 39 J=1,N
   DO 39 J=1,N

39 RSN(I,J) = RS24(I,J)
   ISTEP = ISTEP + 1
   GO TO 9000

37 IF(LM = 5) 51,40,51
40 GO TO (2711,2712).LIMIT
2711 N = N3
   GO TO 2604
2712 N = N4
2604 DO 41 I=1,N
   DO 41 J=1,N
41 RSN(I,J) = RS34(I,J)
   ISTEP = ISTEP + 1
   GO TO 9000
51 IF(NSETS - 4) 25.25.52
52 IF(LM - 6) 53.54.53
54 CONTINUE
   GO TO (2713.2714).LIMIT
2713 N = N1
   GO TO 2805
2714 N = N5
2805 DO 61 I=1,N
   DO 61 J=1,N
61 RSN(I,J) = RS15(I,J)
   ISTEP = ISTEP + 1
   GO TO 9000
53 IF(LM - 7) 56.55.56
55 CONTINUE
   GO TO (2715.2716).LIMIT
2715 N = N2
   GO TO 2806
2716 N = N5
2806 DO 62 I=1,N
   DO 62 J=1,N
62 RSN(I,J) = RS25(I,J)
   ISTEP = ISTEP + 1
   GO TO 9000
56 IF(LM - 8) 57.58.57
58 GO TO (2717.2718).LIMIT
2717 N = N3
   GO TO 2807
2718 N = N5
2807 DO 63 I=1,N
   DO 63 J=1,N
63 RSN(I,J) = RS35(I,J)
   ISTEP = ISTEP + 1
   GO TO 9000
57 IF(LM - 9) 25.59.25
59 GO TO (2719.2720).LIMIT
2719 N = N4
   GO TO 2808
2720 N = N5
2808 DO 64 I=1,N
   DO 64 J=1,N
64 RSN(I,J) = RS45(I,J)
   ISTEP = ISTEP + 1
9000 CONTINUE
   RETURN
25 CONTINUE
100 = 1
SUBROUTINE SECOD(V1,V2,V3,V4,V5,V6,V7,V8,V9,V10,R,ISTEP,N,RHS,A)
GO TO (1,2,3,4,5,6,7,8,9,10,11,11,ISTEP)
1 00 901 I=1,N
901 V1(I) = R(I)
RHS(1,1) = A
RHS(2,1) = A
GO TO 11
2 00 902 I=1,N
902 V2(I) = R(I)
RHS(1,2) = A
RHS(2,2) = A
GO TO 11
3 00 903 I=1,N
903 V3(I) = R(I)
RHS(1,3) = A
RHS(2,3) = A
GO TO 11
4 00 904 I=1,N
904 V4(I) = R(I)
RHS(1,4) = A
RHS(2,4) = A
GO TO 11
5 00 905 I=1,N
905 V5(I) = R(I)
RHS(1,5) = A
RHS(2,5) = A
GO TO 11
6 00 906 I=1,N
906 V6(I) = R(I)
RHS(1,6) = A
RHS(2,6) = A
GO TO 11
7 00 907 I=1,N
907 V7(I) = R(I)
RHS(1,7) = A
RHS(2,7) = A
GO TO 11
8 00 908 I=1,N
908 V8(I) = R(I)
RHS(1,8) = A
RHS(2,8) = A
GO TO 11
9 00 909 I=1,N
909 V9(I) = R(I)
RHS(1,9) = A
RHS(2,9) = A
GO TO 11
10 00 910 I=1,N
910 V10(I) = R(I)
RHS(1,10) = A
RHS(2,10) = A
SUBROUTINE RS2(RS12,R13,R14,R15,R23,R24,R25,R34,R35,R45,RS16)
DIMENSION RS12(5,5),RS13(5,5),RS14(5,5),RS15(5,5),RS23(5,5),RS24(5,5),RS25(5,5),RS34(5,5),RS35(5,5),RS45(5,5)
WRITE(*,100)
100 FORMAT(1HO, '10.25H THE TRANPOSED R-STAR SET')
  KB = 2
  DO 10 I=1, N2
    DO 10 J=1, N2
      DO 10 K=1, N1
10 RS12(I,J) = RS12(I,J) + R(KX,K,J)*R(KX,K,I)
  WRITE(10,101) ((RS12(I,J), J=1, N2), I=1, N2)
  END
101 FORMAT(1HO, '10.5E20.6')
  IF(NSETS - 2) 501, 5, 501
501 CONTINUE
  KB = 4
  DO 11 I=1, N3
    DO 11 J=1, N3
      DO 11 K=1, N1
11 RS13(I,J) = RS13(I,J) + R(KX,K,J)*R(KX,K,I)
  WRITE(10,101) ((RS13(I,J), J=1, N3), I=1, N3)
  END
101 FORMAT(1HO, '10.5E20.6')
  IF(NSETS - 3) 1, 5, 1
1 CONTINUE
  KB = 7
  DO 13 I=1, N4
    DO 13 J=1, N4
      DO 13 K=1, N1
  WRITE(10,101) ((RS14(I,J), J=1, N4), I=1, N4)
  END
101 FORMAT(1HO, '10.5E20.6')
  IF(NSETS - 4) 14, 5, 1
14 CONTINUE
  KB = 9
  DO 15 I=1, N4
    DO 15 J=1, N4
      DO 15 K=1, N2
15 RS24(I,J) = RS24(I,J) + R(KX,K,J)*R(KX,K,I)
  WRITE(10,101) ((RS24(I,J), J=1, N4), I=1, N4)
  END
101 FORMAT(1HO, '10.5E20.6')
  IF(NSETS - 5) 16, 5, 1
16 CONTINUE
  KB = 11
  DO 16 I=1, N5
    DO 16 J=1, N5
      DO 16 K=1, N1
  WRITE(10,101) ((RS15(I,J), J=1, N5), I=1, N5)
  END
101 FORMAT(1HO, '10.5E20.6')
  IF(NSETS - 6) 16, 5, 1

DO 17 K=1,N2
    KX = 13
    DO 18 I=1,N5
    DO 18 J=1,N5
    DO 18 K=1,N3
18 RS35(I,J) = RS35(I,J) + R(KX,K,J)*R(KX,K,I)
    KX = 14
    DO 19 I=1,N5
    DO 19 J=1,N5
    DO 19 K=1,N4
19 RS45(I,J) = RS45(I,J) + R(KX,K,J)*R(KX,K,I)
    WRITE(10UT,101) ((RS15(I,J),J=1,N5),I=1,N5)
    WRITE(10UT,101) ((RS25(I,J),J=1,N5),I=1,N5)
    WRITE(10UT,101) ((RS35(I,J),J=1,N5),I=1,N5)
    WRITE(10UT,101) ((RS45(I,J),J=1,N5),I=1,N5)
5 CONTINUE
RETURN
END
SUBROUTINE RS1(FS22, RS13, RS14, RS15, RS23, RS24, RS25, RS34, RS35, RS45, I, N1, N2, N3, N4, N5, IOUT, NSET6)
DIMENSION RS12(5,5), RS13(5,5), RS14(5,5), RS15(5,5), RS23(5,5), RS24(5,5), RS25(5,5), RS34(5,5), RS35(5,5), RS45(5,5)
DIMENSION R(15,5,5)
WRITE(IOUT,100)
100 FORMAT(1HO,T10,10HR-STAR SET )
KX = 2
DO 10 I=1,N1
  DO 10 J=1,N1
  DO 10 K=1,N2
10  RS12(I,J) = RS12(I,J) + R(KX,I,K)*R(KX,J,K)
  WRITE(IOUT,101) ((RS12(I,J),J=1,N1),I=1,N1)
101 FORMAT(1HO/(T10,5E20.6))
  IF(NSETS - 2) 501,5,501
501 CONTINUE
KX = 4
DO 11 I=1,N1
  DO 11 J=1,N1
  DO 11 K=1,N3
11  RS13(I,J) = RS13(I,J) + R(KX,I,K)*R(KX,J,K)
KX = 5
DO 12 I=1,N2
  DO 12 J=1,N2
  DO 12 K=1,N3
12  RS23(I,J) = RS23(I,J) + R(KX,I,K)*R(KX,J,K)
  WRITE(IOUT,101) ((RS13(I,J),J=1,N1),I=1,N1)
  WRITE(IOUT,101) ((RS23(I,J),J=1,N2),I=1,N2)
  IF(NSETS - 3) 1.5,1
1 CONTINUE
KX = 7
DO 13 I=1,N1
  DO 13 J=1,N1
  DO 13 K=1,N4
13  RS14(I,J) = RS14(I,J) + R(KX,I,K)*R(KX,J,K)
KX = 8
DO 14 I=1,N2
  DO 14 J=1,N2
  DO 14 K=1,N4
14  RS24(I,J) = RS24(I,J) + R(KX,I,K)*R(KX,J,K)
KX = 9
DO 15 I=1,N3
  DO 15 J=1,N3
  DO 15 K=1,N4
15  RS34(I,J) = RS34(I,J) + R(KX,I,K)*R(KX,J,K)
  WRITE(IOUT,101) ((RS14(I,J),J=1,N1),I=1,N1)
  WRITE(IOUT,101) ((RS24(I,J),J=1,N2),I=1,N2)
  WRITE(IOUT,101) ((RS34(I,J),J=1,N3),I=1,N3)
  IF(NSETS - 4) 2.5,2
2 CONTINUE
KX = 11
DO 16 I=1,N1
  DO 16 J=1,N1
16  CONTINUE
DO 16 K = 1, NK

   KX = 12
   DO 17 I = 1, N2
   DO 17 J = 1, N2
   DO 17 K = 1, NK

17 RS25(I, J) = RS25(I, J) * R(KX, I, K) + R(KX, J, K)
   KX = 13
   DO 18 I = 1, N3
   DO 18 J = 1, N3
   DO 18 K = 1, NK

18 RS35(I, J) = RS35(I, J) * R(KX, I, K) + R(KX, J, K)
   KX = 14
   DO 19 I = 1, N4
   DO 19 J = 1, N4
   DO 19 K = 1, NK

19 RS45(I, J) = RS45(I, J) * R(KX, I, J) + R(KX, J, K)
   WRITE(OUT, 101) (RS15(I, J), J = 1, N1), I = 1, N1
   WRITE(OUT, 101) (RS25(I, J), J = 1, N2), I = 1, N2
   WRITE(OUT, 101) (RS35(I, J), J = 1, N3), I = 1, N3
   WRITE(OUT, 101) (RS45(I, J), J = 1, N4), I = 1, N4

CONTINUE
RETURN
END

C
SUBROUTINE DORMF(VAV,N,IOUT,KN,X)
DIMENSION VAV(5),X(25)
SUM = 0.E0
DO 1 I=1,N
1 SUM = SUM + VAV(I)**2
QSUM = SQRT(SUM)
DO 2 I=1,N
2 VAV(I) = VAV(I)/QSUM
WRITE(IOUT,101) (VAV(I),I=1,N)
101 FORMAT(1HO,T30.30HTHE NORMALIZED INITIAL WEIGHTS ///(T10.5E20.6))
DO 3 I=1,N
3 X(I,JKX) = VAV(I)
RETURN
END

SUBROUTINE FINAL(VAV,S1,S2,S3,S4,N,IOUT,RHS,IHX)
DIMENSION S1(5),S2(5),S3(5),S4(5)
DIMENSION VAV(5)
DIMENSION RHS(5,4)
COMMON ATOTL
JKX = IHX
DO 10 I=1,N
10 VAV(I) = (S1(I) + S2(I) + S3(I) + S4(I))/ATOTL
WRITE(IOUT,140) (VAV(I),I=1,N)
140 FORMAT(1HO,T30.4HTHE OUTPUT WEIGHTS FOR FLETCHER AND POWELL ///(T10.5E20.6))
RETURN
END
SUBROUTINE EIGEN

PURPOSE
COMPUTE EIGENVALUES AND EIGENVECTORS OF A REAL SYMMETRIC MATRIX

USAGE
CALL EIGEN(A.R.N,MV)

DESCRIPTION OF PARAMETERS
A - ORIGINAL MATRIX (SYMMETRIC). DESTROYED IN COMPUTATION. RESULTANT EIGENVALUES ARE DEVELOPED IN DIAGONAL OF MATRIX A IN DESCENDING ORDER.
R - RESULTANT MATRIX OF EIGENVECTORS (STORED COLUMNWISE, IN SAME SEQUENCE AS EIGENVALUES)
N - ORDER OF MATRICES A AND R
MV - INPUT CODE
0 COMPUTE EIGENVALUES AND EIGENVECTORS
1 COMPUTE EIGENVALUES ONLY (R NEED NOT BE DIMENSIONED BUT MUST STILL APPEAR IN CALLING SEQUENCE)

REMARKS
ORIGINAL MATRIX A MUST BE REAL SYMMETRIC (STORAGE MODE=1)
MATRIX A CANNOT BE IN THE SAME LOCATION AS MATRIX R

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
NONE

METHOD
DIAGONALIZATION METHOD ORIGINATED BY JACOBI AND ADAPTED BY VAN NEUMANN FOR LARGE COMPUTERS AS FOUND IN 'MATHEMATICAL METHODS FOR DIGITAL COMPUTERS', EDITED BY A. RALSTON AND H.S. WILF, JOHN WILEY AND SONS, NEW YORK, 1962, CHAPTER 7

SUBROUTINE EIGEN(A.R.N,MV)
DIMENSION A(1),R(1)

IF A DOUBLE PRECISION VERSION OF THIS ROUTINE IS DESIRED, THE C IN COLUMN 1 SHOULD BE REMOVED FROM THE DOUBLE PRECISION STATEMENT WHICH FOLLOWS.

DOUBLE PRECISION A.R,ANORM,ANRMX,THR.X,Y,SINX,SINX2,COSX,
C
COSX2,SINCS,RANGE

THE C MUST ALSO BE REMOVED FROM DOUBLE PRECISION STATEMENTS APPEARING IN OTHER ROUTINES USED IN CONJUNCTION WITH THIS
ROUTINE.

THE DOUBLE PRECISION VERSION OF THIS SUBROUTINE MUST ALSO
CONTAIN DOUBLE PRECISION FORTRAN FUNCTIONS. SQRT IN STATEMENTS
40, 68, 75, AND 78 MUST BE CHANGED TO DSQRT. ABS IN STATEMENT
62 MUST BE CHANGED TO DABS. THE CONSTANT IN STATEMENT 5 SHOULD
BE CHANGED TO 1.00E-12.

---------------------------------------------

GENERATE IDENTITY MATRIX

5 RANGE=1.0E-6
   IF(M-1) 10,25,10
10 IQ=-N
   DO 20 J=1,N
   IQ=IQ+N
   DO 20 I=1,N
   IQ=IQ+I
   R(IJ)=0.0
   IF(I-J) 20,15.20
15 R(IJ)=1.0
20 CONTINUE

COMPUTE INITIAL AND FINAL NORMS (ANORM AND ANORMX)

25 ANORM=0.0
   DO 35 I=1,N
   DO 35 J=1,N
   IF(I-J) 30,35,30
30 IA=I+(J-J+J)/2
   ANORM=ANORM+A(A:@A)
35 CONTINUE
   IF(ANORM) 165,165,40
40 ANORM=1.414*SQRT(ANORM)
   ANORMX=ANORM*RANGE/FLOAT(N)

INITIALIZE INDICATORS AND COMPUTE THRESHOLD, THR

IND=0
   THR=ANORM
45 THR=THR/FLOAT(N)
50 L=1
55 M=L+1

COMPUTE SIN AND COS

60 MQ=(M*M-M)/2
   LQ=(L*L-L)/2
   LM=L+MQ
62 IF( ABS(A(LM))-THR) 130,65,65
65 IND=1
   LL=L+LQ
   MM=M+MQ
\[
X = 0.5 \cdot (A(LL) - Y(MM))
\]

68 \[Y = -A(LH) / \sqrt{A(LM) + A(LM) \cdot X \cdot X}\]

IF(X) 70, 75, 75

70 \[Y = -Y\]

75 \[\sin X = Y / \sqrt{2.0 \cdot (1.0 - \sin Y)}\]

\[\sin X^2 = \sin X \cdot \sin X\]

78 \[\cos X = \sqrt{1.0 - \sin X^2}\]

\[\cos X^2 = \cos X \cdot \cos X\]

\[\sin C = \sin X \cdot \cos X\]

C C

\[\text{ROTATE L AND M COLUMNS}\]

C

ILQ = N \cdot (L - 1)

IMQ = N \cdot (M - 1)

DO 125 I = 1, N

IQ = (I \cdot I - 1) / 2

IF(I - L) 80, 115, 60

80 IF(I - M) 85, 115, 90

85 IM = I + IQ

GO TO 95

90 IM = M + IQ

95 IF(I - L) 100, 105, 105

100 IL = I + IQ

GO TO 110

105 IL = L + IQ

110 X = A(IL) \cdot \cos X - A(IM) \cdot \sin X

A(IM) = A(IL) \cdot \sin X + A(IM) \cdot \cos X

A(IL) = X

115 IF(MV - 1) 120, 125, 120

120 ILR = ILQ + IQ

IMR = IMQ + IQ

X = R(I, R) \cdot \cos X - R(IMR) \cdot \sin X

R(IMR) = R(ILR) \cdot \sin X + R(IMR) \cdot \cos X

R(ILR) = X

125 CONTINUE

X = 2.0 \cdot A(LM) \cdot \sin X

Y = A(LL) \cdot \cos X + A(MM) \cdot \sin X - X

X = A(LL) \cdot \sin X + A(LM) \cdot \cos X + X

A(LM) = (A(LL) - A(MH)) \cdot \sin X + A(LM) \cdot (\cos X - \sin X)

A(LL) = Y

A(MM) = X

C C

TESTS FOR COMPLETION

C

TEST FOR M = LAST COLUMN

130 IF(M - N) 135, 140, 135

135 M = M + 1

GO TO 60

C C

TEST FOR L = SECOND FROM LAST COLUMN

140 IF(L - (N - 1)) 145, 150, 145

145 L = L + 1
GO TO 55
150 IF(N0-1) 160,155,160
155 IND=0
GO TO 50
C
COMPARE THRESHOLD WITH FINAL NORM
C
160 IF(THR-ANRMX) 165,165,45
C
SORT EIGENVALUES AND EIGENVECTORS
C
165 IQ=-N
DO 185 I=1,N
IQ=IQ+N
LL=I+(I-1)/2
JQ=IQ+(I-2)
DO 185 J=1,N
JQ=JQ+N
MM=J+(J-1)/2
IF(AILL)-A(MM) 170,185,185
170 X=AILL
AILL=A(MM)
A(MM)=X
IF(NV-1) 175,185,175
175 C 180 K=1,N
ILR=IQ+K
IMR=JQ+K
X=RIILR)
RIILR=R(IMR)
180 R(IMR)=X
185 CONTINUE
RETURN
END
C
SUBROUTINE FILUP(X,N,INPUT)
DIMENSION X(25),L(6)
REWIND 10
READ(INPUT,101) NMTS,MT1,MT2,MT3
101 FORMAT(2I5,2E20.6)
READ(INPUT,102) (L(I),I=1,6)
102 FORMAT(6I2)
WRITE(INPUT,103) (X(I),I=1,N)
103 FORMAT(4E20.6)
REWIND 10
RETURN
END
SUBROUTINE FINAL(XO0BL,S1,S2,S3,S4,N6,N,IOUT,RHS,IX)
DIMENSION A(5,5),B(5,5),RHS(5,4),RHD(5,1),EIGN(4,5),XSTAR(5).
1    XO0BL(5),S1(5),S2(5),S3(5),S4(5)
DO 55 I=1,5
55    XO0BL(I) = 0.0E0
NSETS = N6 + 1
DO 10 JI=1,N6
   J = JI + 1
10   A(1,J) = RHS(1,JI)
   DO 11 I=1,NSETS
11   A(I,J) = 1.E0
   DO 12 J=1,NSETS
12   A(J,I) = A(I,J)
   DO 13 I=1,NSETS
13   JY = J
   IF(IX - J) 14,13,18
14   JY = JY - 1
15   IF(IX - I) 15,16,20
16   CONTINUE
13   CONTINUE
   DO 21 J=1,NS
21   B(J,I) = B(I,J)
   DO 22 I=1,NS
22   RHD(I,1) = RHS(IX,I)
   WRITE(IOUT,113)
113   FORMAT(1HO,T10,16HTHE COEFFICIENTS )
   DO 24 I=1,NS
24   WRITE(IOUT,103) (B(I,J),J=1,N6)
103   FORMAT(1HO,T10,4E20.6)
24   CONTINUE
   WRITE(IOUT,114)
114   FORMAT(1HO,T10,19HTHE RIGHT HAND SIDE )
   WRITE(IOUT,104) (RHD(I,1),I=1,NS)
104   FORMAT(1HO,T10,4E20.6)
C
C CALL MATIL(8,NS,1,DETRM,ID,IOUT,RHD)
C
C WRITE(IOUT,105) IX,(RHD(I,1),I=1,NS)
105  FORMAT(1HO,T10,4HTHE 12,14H SET SOLUTIONS //T10,4E20.6)
   DO 30 I=1,N
30   EIGN(1,I) = S1(I)
   EIGN(2,I) = S2(I)
   EIGN(3,I) = S3(I)
   EIGN(4,I) = S4(I)
WRITE(IOUT,200)
200 FORMAT(1HO,T10.23HTHE PACKED EIGENVECTOR )
   DO 40 I=1,N6
40 WRITE(IOUT,201) (EIGN(I,J),J=1,N)
201 FORMAT(1HO,T10.5E20.8)
   DO 31 J=1.N6
31 XSTAR(J) = RHD(J,1)*RH6(I,X,J)
   WRITE(IOUT,106) (XSTAR(J),I=1,N6)
   XOOBL(J) = XOOBL(J) + XSTAR(K)*EIGN(K,J)
   WRITE(IOUT,108) (XOOBL(I),I=1,N)
106 FORMAT(1HO,T10.15HTHE SOLUTION Xw = (T10.4E20.8))
   DO 32 J=1.N
32 XOOBL(J) = XOOBL(J) + XSTAR(K)*EIGN(K,J)
   WRITE(IOUT,108) (XOOBL(I),I=1,N)
108 FORMAT(1HO,T10.17HTHE SOLUTIONS Xw = (T10.4E20.8))
RETURN
END
SUBROUTINE MATIL(A,M1,M1,DETM,IO,IOUT,B)
DIMENSION A(S,S),B(S,1),INDEX(S,?)
EQUIVALENCE (IROW,JROW),(ICOLM,ICOLM),(AMAX,T,SWAPP)
DE = 1.E0
DZ=0.E0
M=M1
N=M1
DETRM=DE
DO 20 J=1,N
20 INDEX(J,3)=DZ
DO 550 I=1,N
AMAX=DZ
DO 105 J=1,N
IF(INDEX(J,3)-1) 60,105,60
60 DO 100 K=1,N
IF(INDEX(K,3)-1) 60,100,715
80 IF(AMAX-ABS(A(J,K))) 85,100,100
85 IROW=J
ICOLM=K
R"9X=ABS(A(J,K))
100 CUCNTINUE
105 CONTINUE
INDEX(ICOLM,3)=INDEX(ICOLM,3)+1
INDEX(I,1)=IROW
INDEX(I,2)=ICOLM
IF(IROW-ICOLM) 140,310,140
140 DETRM=DETRM
DO 200 L=1,N
:"PP=A(IROW,L)
H(IROW,L)=A(ICOLM,L)
200 A(ICOLM,L)=SWAPP
IF(M) 310,310,210
210 DO 250 L=1,M
SWAPP=B(IROW,L)
B(IROW,L)=B(ICOLM,L)
250 B(ICOLM,L)=SWAPP
310 PIVOT=A(ICOLM,ICOLM)
DETRM=DETRM*PIVOT
A(ICOLM,ICOLM)=DE
DO 350 L=1,N
350 A(ICOLM,L)=A(ICOLM,L)/PIVOT
IF(M) 380,380,360
360 DO 370 L=1,M
370 B(ICOLM,L)=B(ICOLM,L)/PIVOT
380 DO 550 L=1,N
IF(L-ICOLM) 400,550,400
400 T=A(L,ICOLM)
AL(L,ICOLM)=DZ
DO 450 L=1,M
450 AL(L,L)=AL(L,L)-A(L,L)*T
IF(M) 550,550,460
460 DO 500 L=1,M
500 B(L,L)=B(L,L)-B(ICOLM,L)*T
550 CONTINUE
   DO 710 I=1,N
   L=N+1-I
   IF(INDEX(L,1)-INDEX(L,2))=0 710 630
630  CONTINUE
630  K=1,N
   JROW=INDEX(L,1)
   JCOLM=INDEX(L,2)
   DO 705 K=1,N
   SWAPP=A(K,JROW)
   A(K,JROW)=A(K,JCOLM)
   A(K,JCOLM)=SWAPP
705 CONTINUE
710 CONTINUE
   DO 730 K=1,N
   IF(INDEX(K,3)-1)=0 715 720
715  IO=2
   GO TO 740
720 CONTINUE
730 CONTINUE
   IO=1
740 CONTINUE
   WRITE(IOUT,101)
101  FORMAT(IHO,T10,14HTHE INVERSE IS /)
   DO 10 I=1,N
10  WRITE(IOUT,102)A(I,J),J=1,N
102  FORMAT(IHO,T10,5E20.6)
   WRITE(IOUT,111)DETRM
111  FORMAT(IHO,T10,17HTHE DETERMINANT = . E20.6)
RETURN
END
APPENDIX C

COMPUTER PROGRAM FOR FLETCHER AND POWELL METHOD
FOR MINIMIZATION OF A GIVEN FUNCTION
"F P M"
EXTERNAL FUNCT
DIMENSION H(400),X(25),G(25)
COMMON IFLAG,RR(5.5,25),NRST(5),NSET
COMMON S(5)
DATA NRST,N1,N2,N3,N4,N5/10=0/
DATA INPUT,IOUT/10,6/
REWIND 10
C
CALL IO(I,LIMIT,EST,EPS,X,INPUT,IOUT);
C
CALL FMFP(FUNCT,N,X,F,G,EST,EPS,LIMIT,IER,H,KOUNT)
C
WRITE(IOUT,113) (X(I),I=1,N)
113 FORMAT(1HO,T10,3H,FLETCHER POWELL RESULTED VECTOR VALUE ///(T10,
15,20,6))
WRITE(IOUT,114) (I(I),I=1,N)
114 FORMAT(1HO,T10,12H,THE GRADIENT ///(T10,SE20,6))
WRITE(IOUT,115) F
115 FORMAT(1HO,T10,18H,THE FUNCTION VALUE .E20,6)
F1 = EXP(F)
WRITE(IOUT,205) F1
205 FORMAT(1HO,T20,18H,THE EXP(LOG(DET)) = .E20,6)
IER = IER + 2
GO TO (1,2,3,4),IER
1 IER = IER - 2
WRITE(IOUT,116) IER
116 FORMAT(1HO,T10, SHIER = ,15,31H, ERROR IN GRADIENT CALCULATION )
GO TO 99
2 IER = IER - 2
WRITE(IOUT,117) IER
117 FORMAT(1HO,T10, SHIER = ,15,28H, CONVERGENCE WAS OBTAINED. )
GO TO 99
3 IER = IER - 2
WRITE(IOUT,118) IER
118 FORMAT(1HO,T10, SHIER = ,15,37H, NO CONVERGENCE IN LIMIT ITERATION )
GO TO 99
4 IER = IER - 2
WRITE(IOUT,119) IER
119 FORMAT(1HO,T10, SHIER = ,15,26H, NO MINIMUM VALUE EXIST. )
99 CONTINUE
NR = 0
NPJ = 1
DO 132 I=1,NSET
NR = NR + NRST(I)
DO 133 J=NPJ,NR
133 X(J) = X(J)/S(I)
NPJ = NR + 1
132 CONTINUE
NA = N
WRITE(IOUT,123) (X(I),I=1,NA)
123 FORMAT(1HO,T10,34H,THE NORMALIZED WHOLE WEIGHT-VECTOR ///(T10,SE20,16))
WRITE(IOUT,201) KOUNT
201 FORMAT(10D/110.4) THE TOTAL NUMBER OF ITERATIONS REQUIRED = .10
REWIND 10
WRITE(INPUT,101) N.LIMIT,EST,EPS
101 FORMAT(25S.2E20.6)
WRITE(INPUT,106) NSET, NRST(I), I=1,5
106 FORMAT(612)
WRITE(INPUT,804) (X(I), I=1,N)
804 FORMAT(4E20.6)
REWIND 10
STOP
END
SUBROUTINE IO(N,LIMIT,EST,EPS,X,INPUT,IOUT)
DIMENSION X(25), DR(5,5), IETZ(6), R(15,5,5)
COMMON IFLAG, RR(5,5,25), NRST(N), NSET
READ(INPUT,101) N.LIMIT,EST,EPS
101 FORMAT(25S.2E20.6)
READ(INPUT,103) NSET, (NRST(I), I=1,5)
103 FORMAT(612)
KSET = 3
IF(NSET - 2) 2,1,2
2 KSET = 6
IF(NSET - 3) 3,1,3
3 KSET = 10
IF(NSET - 4) 4,1,4
4 KSET = 15
1 CONTINUE
IETZ(1) = NGET
DO 6 I=2,6
J = I - 1
6 IETZ(J) = NRST(I)
READ(INPUT,102) (X(I), I=1,N)
102 FORMAT(4E20.6)
DO 3311 I=1,NSET
3311 READ(INPUT,801) (NT(I,J), J=1,JA)
801 FORMAT(15B)
READ(INPUT,801) NTAL
DO 3312 JA=1,NSET
3312 READ(INPUT,802) NO.MK,(DR(I,J), J=1,NO), I=1, MK)
802 FORMAT(212,(5E20.6))
WRITE(IOUT,110)
110 FORMAT(1H1,T25.57HFLETCHER AND POWELL METHOD OF MINIMIZATION OF A
1FUNCTION. 1)
WRITE(IOUT,111) N.LIMIT
111 FORMAT(///,1.2HNUMBER OF VARIABLES: N = .12,35H MAXIMUM OF
1ITERATION: LIMIT = .14)
WRITE(IOUT,112) EPS,EST
112 FORMAT(///,1.2HPERMISSIBLE ERROR: EPS = .E20.6,///1.4HSTIMATED MINIMUM VALUE OF THE FUNCTION: EST = .E20.6)
WRITE(IOUT,137)
137 FORMAT(1H10,T20.29HTHE ESTIMATED INITIAL WEIGHTS   )
DO 136 I=1,N
136 WRITE(IOUT,135) I.X(I)
135  FORMAT(1HO,T25.2HX(12.4H) =.E20.6)
WRITE(OUT,224)
224  FORMAT(1HO,T35.16HTHE INPUT MATRIX )
WRITE(OUT,250)
250  FORMAT(1HO//T10.3HITH.2X.3HJTH.2X.3HRW/T10.3MSET.2X.3MSET.2X.3MNO
     1..7X,AHELEMENT6 )
     K = 1
     DO 10 J=1,NSET
        JSET = NRST(J)
     DO 10 I=1,J
        IGET = NRST(I)
        READ(INPUT,145) (R(K,IX,JX),(IX=1,JSET),IX=1,IGET)
     145  FORMAT(4(E20.6)
     DO 16 IXX=1,IGET
        DO 16 JXX=1,JGET
16      OR(IXX,JXX) = R(K,IXX,JXX)
      CALL CONEC(K,IGET,OUT)
      K = K + 1
      IF(K - KSET) 10,10,11
10    CONTINUE
11    CONTINUE
RETURN
END
SUBROUTINE CONECK(IETZ.OR.IOUT)
DIMENSION IETZ(6),OR(5,5)
COMMON IFLAG,RR(5,5,25)
L = K
NCOL = 1
NV = IETZ(1)
DO 1 J=2,NV
IF(L - 1) 3, 3
33 CONTINUE
L = L - J
NCOL = NCOL + 1
1 CONTINUE
3 NRO = K - (NCOL*(NCOL - 1))/2
NCOS = IETZ(NRO + 1)
DO 5 KZ=1,NCOS
NENT = IETZ(NCOL + 1)
DO 128 JZ=1,NENT
IKJ = (JZ - 1)*NCOS + KZ
RR(NRO,NCOL,IKJ) = OR(KZ,JZ)
JKI = (KZ - 1)*NENT + JZ
128 RR(NCOL,NRO,JKI) = OR(KZ,JZ)
WRITE(IOUT,250) NRO,NCOL,KZ,(OR(KZ,JK),JK=1,NENT)
250 FORMAT(I10,T10,12,3X,12,3X,12,3X,4E20.6)
5 CONTINUE
RETURN
END

FUNCTION AMAX1(X,Y,Z)
AMAX1 = X
IF(AMAX1 - Y) 11,12
11 AMAX1 = Y
12 IF(AMAX1 - Z) 13,14
13 AMAX1 = Z
14 RETURN
END
SUBROUTINE MINV

PURPOSE
INVERT A MATRIX

USAGE
CALL MINV(A,N,D,L,H)

DESCRIPTION OF PARAMETERS
A - INPUT MATRIX, DESTROYED IN COMPUTATION AND REPLACED BY
RESULTANT INVERSE.
N - ORDER OF MATRIX A
D - RESULTANT DETERMINANT
L - WORK VECTOR OF LENGTH N
H - WORK VECTOR OF LENGTH N

REMARKS
MATRIX A MUST BE A GENERAL MATRIX

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
NONE

METHOD
THE STANDARD GAUSS-JORDAN METHOD IS USED. THE DETERMINANT
IS ALSO CALCULATED. A DETERMINANT OF ZERO INDICATES THAT
THE MATRIX IS SINGULAR.

SUBROUTINE MINV(A,N,D,L,H)
DIMENSION A(N,N),D(L),H(L)

IF A DOUBLE PRECISION VERSION OF THIS ROUTINE IS DESIRED, THE
C IN COLUMN 1 SHOULD BE REMOVED FROM THE DOUBLE PRECISION
STATEMENT WHICH FOLLOWS.

DOUBLE PRECISION A,N,D,L,H

THE C MUST ALSO BE REMOVED FROM DOUBLE PRECISION STATEMENTS
APPEARING IN OTHER ROUTINES USED IN CONJUNCTION WITH THIS
ROUTINE.

THE DOUBLE PRECISION VERSION OF THIS SUBROUTINE MUST ALSO
CONTAIN DOUBLE PRECISION FORTRAN FUNCTIONS. ABS IN STATEMENT
10 MUST BE CHANGED TO DABS.

SEARCH FOR LARGEST ELEMENT
C
D=1.0
NK=N
DO 80 K=1,N
NK=NK+N
L(K)=K
M(K)=K
KK=NK+K
BIGA=A(KK)
DO 20 J=K,N
IZ=NM(J-1)
DO 20 I=K,N
IJ=IZ+I
10 IF(ABS(BIGA)-ABS(A(IJ))) 15,20,20
15 BIGA=A(IJ)
L(K)=I
M(K)=J
20 CONTINUE
C
INTERCHANGE ROWS
C
J=L(K)
IF(J-K) 35,35,25
25 KI=K-N
DO 30 I=1,N
KI=KI+N
HOLD=-A(KI)
JI=KI-K+J
A(KI)=A(JI)
30 A(JI)=HOLD
C
INTERCHANGE COLUMNS
C
35 I=M(K)
IF(I-K) 45,45,38
38 JP=NW(I-1)
DO 40 J=1,N
JK=NK+J
JI=JP+J
HOLD=-A(JK)
40 A(JK)=A(JI)
40 A(JI)=HOLD
C
DIVIDE COLUMN BY MINUS PIVOT (VALUE OF PIVOT ELEMENT IS
CONTAINED IN BIGA)
C
45 IF(BIGA) 49,46,48
46 D=0.0
RETURN
48 DO 55 I=1,N
IF(I-K) 50,55,50
50 IM=NK+I
H(I)=A(KI)/(-BIGA)
50 CONTINUE
C REDUCE MATRIX
C
DO 65 I=1,N
IK=IK+1
HOLD=A(IK)
IJ=I-N
DO 65 J=1,N
IJ=IJ+N
IF(I-K) 60,65,60
60 IF(J-K) 62,65,62
62 KJ=IJ-I+K
A(IJ)=HOLD=A(KJ)+A(IJ)
65 CONTINUE
C DIVIDE ROW BY PIVOT
C
KJ=K-N
DO 75 J=1,N
KJ=KJ+N
IF(J-K) 70,75,70
70 A(KJ)=A(KJ)/BIOA
75 CONTINUE
C PRODUCT OF PIVOTS
C
D=D*BIOA
C REPLACE PIVOT BY RECIPROCAL
C
A(KK)=1.0/BIOA
80 CONTINUE
C FINAL ROW AND COLUMN INTERCHANGE
C
K-N
100 K=1:-1
105 I=L(K)
108 JQ=N=(K-1)
100 JR=N=(I-1)
DO 110 J=1,N
JK=JQ+J
HOLD=A(JK)
JI=JR+J
A(JK)=-A(JI)
110 A(JI) =HOLD
120 J=M(K)
125 KI=K-N
DO 130 I=1,N
KI=KI+N
HOLD=A(KI)
JI=KI-K+J
A(KI)=-A(JI)
130 A(JI) =HOLD
GO TO 100
150 RETURN
END
THE SUBROUTINE FMFP
SUBROUTINE FMFP(FUNCT,N,X,F,G,EST,ESP,LIMIT,IER,H,KOUNT)
DIMENSION H(1),X(1),G(1)
COMMON IFLAG

FUNCT-USER WRITTEN SUBROUTINE CONCERNING THE FUNCTION TO BE
MINIMIZING IT MUST BE OF THE FORM
SUBROUTINE FUNCT(N,ARG,VAL,GRAD)
AND MUST SERVE THE FOLLOWING PURPOSE,
FOR EACH N-DIMENSIONAL ARGUMENT VECTOR.
FUNCTION VALUE AND GRADIENT VECTOR MUST BE COMPUTED AND ON
RETURN, STORE IN VAL AND GRAD RESPECTIVELY.
N - NUMBER OF VARIABLES.
X - VECTOR OF DIMENSION N CONTAINING THE INITIAL ARGUMENT,
WHERE THE ITERATION STARTS. ON RETURN X HOLDS THE ARGUMENT
CORRESPONDING TO THE COMPUTED MINIMUM FUNCTION VALUE.
G - VECTOR OF DIMENSION N CONTAINING THE GRADIENT VECTOR
CORRESPONDING TO THE MINIMUM ON RETURN I.E. G = G(X).
EST - IS AN ESTIMATE OF THE MINIMUM FUNCTION VALUE.
ESP - TEST VALUE REPRESENTING THE EXPECTED ABSOLUTE ERROR. A
REASONABLE CHOICE IS 10**(-6). I.E. SOMEWHAT GREATER THAN
10**(-9) WHERE D IS THE NUMBER OF SIGNIFICANT DIGITS IN
FLOATING POINT REPRESENTATION.
LIMIT - MAXIMUM NUMBER OF ITERATION.
IER - ERROR PARAMETERS.
IER = 0, CONVERGENCE WAS OBTAINED.
IER = 1, NO CONVERGENCE IN LIMIT ITERATION.
IER = -1, ERROR IN GRADIENT CALCULATION.
IER = 2, LINEAR SEARCH TECHNIQUE INDICATE IT IS A LIKELY THAT
THERE EXISTS NO MINIMUM.
H - WORKING STORAGE OF DIMENSION N*(N + 7)/2.

REMARKS:
1. THE SUBROUTINE NAME REPLACING THE DUMMY FUNCTION FUNCT MUST BE
DECLARED AS EXTERNAL IN THE CALLING PROGRAM.
2. IER IS SET TO 2 IF STEPPING IN ONE OF THE COMPUTED DIRECTIONS,
THE FUNCTION WILL NEVER INCREASE WITHIN A TOLERABLE RANGE OF
ARGUMENTS.
IER=2, MAY OCCUR ALSO IF THE INTERVAL WHERE F INCREASES IS SMALL
AND THE INITIAL ARGUMENT WAS RELATIVELY FAR AWAY FROM THE MINIM
SUCH THAT THE MINIMUM WAS OVERLEAPED. THIS IS DUE TO THE
SEARCH TECHNIQUE WHICH DOUBLE THE STEPSIZE UNTIL A POINT IS FOUND
WHERE THE FUNCTION INCREASES.

METHOD: THE METHOD IS DISCRIBED IN THE FOLLOWING ARTICLE.
R.FLINTCHER AND M.J.D.POWELL "A REDUCTION METHOD FOR
MINIMIZATION.
COMPUTER JOURNAL VOLUME 6, ISSUE 11, 1963, PP. 163-168

IFLAG = 1
CALL FUNCT(N,X,F,G)
IFLAG = 0
IER = 0
KOUNT = 0
N2 = N + N
N3 = N2 + N
N31 = N3 + 1
1   K = N31
   DO 4 J=1,N
   H(K) = 1.
   NJ = N - J
   IF(NJ) 5,5,2
2   DO 3 L=1,NJ
   KL = K + L
3   H(KL) = 0.
4   K = KL + 1
5   KOUNT = KOUNT + 1
   OLOF = F
   DO 9 J=1,N
   K = N + J
   H(K) = 0(J)
   K = K + N
   H(K) = X(J)
   K = J + N3
   T = 0.
   DO 8 L =1,N
   T = T - O(L)*H(K)
   IF(L-J) 6,7,7
6   K = K + N - L
   GO TO 8
7   K = K + 1
8   CONTINUE
9   H(J) = T
   DY = 0.
   HNPM = 0.
   GNRM = 0.
   DO 10 J=1,N
   HNRM = HNRM + ABS(H(J))
   CNRM = CNRM + ABS(G(J))
10  OY = DY + H(J)*G(J)
   IF(OY) 11,51,51
11  IF(HNRM/CNRM - EPS) 51,51,12
12  FY = F
   ALFA = 2.0*EGR - F)/DY
   AMBOA = 1.
   IF(ALFA) 15,15,19
13  IF(ALFA - AMBOA) 14,15,15
14  AMBOA = ALFA
15  ALFA = 0.
16  FX = FY
   DX = DY
   DO 17 I=1,N
17  X(I) = X(I) + AMBOA*H(I)
   CALL FUNCT(N,X,F,G)
   FY = F
   DY = 0.
   DO 18 I=1,N
18  DY = DY + G(I)*H(I)
IF(DY) 19.36.22
19  IF(FY - FX) 20.22.22
20  AMBDA = AMBDA + ALFA
21  ALFA = AMBDA
22  IF(HNRM == AMBDA - 1.E10) 16.16.21
23  IER = 2
24  RETURN
25  T = 0.
26  IF(AMBDA) 24.36.24
27  Z = 3.00*(FX - FY)/AMBDA + DX + DY
28  ALFA = AMAX1( ABS(Z), ABS(DX), ABS(DY) )
29  DALFA = Z/ALFA
30  DALFA = DALFA*DALFA - DX/ALFA*DY/ALFA
31  IF(DALFA) 51.27.25
32  W = ALFA* SQRT(DALFA)
33  ALFA = DY - DX + W + W
34  IF(ALFA) 250.251.250
35  ALFA = (DY - Z + W)/ALFA
36  GO TO 252
37  ALFA = (Z + DX - W)/(Z + DX + Z + DY)
38  ALFA = ALFA-AMBDA
39  DO 26 I=1,N
40  X(I) = X(I) + (T - ALFA)*H(I)
41  IFLAG = 1
42  CALL FUNCT(N,X,F,G)
43  IFLAG = 0
44  IF(F - FX) 27.27.27
45  IF(F - FY) 36.36.26
46  DALFA = 0.
47  DO 29 I=1,N
48  DALFA = DALFA + G(I)*H(I)
49  IF(DALFA) 30.33.33
50  IF(F - FX) 32.31.33
51  IF(DX - DALFA) 32.36.32
52  FX = ?
53  DX = DALFA
54  T = ALFA
55  AMBDA = ALFA
56  GO TO 23
57  IF(FY - F) 35.34.35
58  IF(DY - DALFA) 35.36.35
59  FY = F
60  DY = DALFA
61  AMBDA = AMBDA - ALFA
62  GO TO 22
63  DO 37 J=1,N
64  K = N + J
65  H(K) = 0(J) - H(K)
66  K = H + K
67  H(K) = X(J) - H(K)
68  IF(OLDF + F + EPS) 51.38.38
69  IER = 0
70  IF(KOUNT - N) 42.39.39
71  T = 0.
Z = 0.
DO 40 J=1,N
K = N + J
W = H(K)
K = K + N
T = T + ABS(H(K))
40 Z = Z + W*H(K)
IF(HNRM - EPS) 41,41,42
41 IF(T - EPS) 56,56,42
42 IF(KOUNT - LIMIT) 43,50,50
43 ALFA = 0.
DO 47 J=1,N
K = J + N3
W = 0.
DO 46 L=1,N
KL = N + L
W = W + H(KL)*H(K)
IF(L - J) 44,45,45
44 K = K + N - L
GO TO 46
45 K = K + 1
46 CONTINUE
K = N + J
ALFA = ALFA + W*H(K)
47 H(J) = W
IF(Z=ALFA) 48,1,48
48 K = N31
DO 49 L=1,N
KL = N2 + L
DO 49 J=L,N
NJ = N2 + J
H(K) = H(K) + H(KL)*H(NJ)/Z - H(L)*H(J)/ALFA
49 K = K + 1
GO TO 5
50 IER = 1
RETURN
51 DO 52 J=1,N
K = N2 + J
52 X(J) = H(K)
IFLAG = 1
CALL FUNCT(N,X,F,G)
IFLAG = 0
IF(GNRM - EPS) 55,55,55
53 IF(IER) 56,56,54
54 IER = -1
GO TO 1
55 IER = 0
56 RETURN
END
SUBROUTINE FUNCT(N,X,Y,G)
SUBROUTINE FUNCT(N,X,Y,G)
DIMENSION XX(1),G(1),RHO(5,5),A(25),LLX(5),MMX(5),X(5)
COMMON /FLAG,RH(5,5),NRST(5),NSET
COMMON /FLAG,RH(5,5),NRST(5),NSET
    IF(FLAG.EQ.1)
        WRITE(6,81) (XX(JE),JE=1,NR)
        WRITE(6,81) (G(JE),JE=1,NSET)
    FORMAT(I10,T10, 4HXX = ,5E20.6)
    IM = 0
    DO 11 I = 1,NSET
        JM = IM
        NA = NRST(I)
        DO 12 J = I,NSET
            NB = NRST(J)
            RH(I,J) = 0.0D0
            DO 13 K = 1,NA
                KA = K + IM
                DO 13 L = 1, NB
                    KB = L + JM
                    KLX = (L-1)MNA + K
13       RH(I,J) = RH(I,J) - XX(KA)WXR'1,J,KLX)WXY:KB)6(I)/S(J)
        IF (FLAG.EQ.1)
            WRITE(6,02) I,J,RH(I,J)
    FORMAT(I10,T10, 4HRHO( ,12,2M, ,1?,3H)= ,E15.6)
    IM = IM + NA
    DO 21 I = 1,NSET
        DO 21 J = I,NSET
21       RH(J,I) = RH(I,J)
    DO 22 I = 1,NSET
        DO 22 J = I,NSET
            IJX = (J-1)WNNST + I
22       R(IJX) = RHO(I,J)
        NW = NSETWNNST
        IF (FLAG.EQ.1)
            WRITE(6,03) (R(KX),KK=1,NN)
    FORMAT(I10,T10,10HA PACKED =,5E15.6/(T20,4E15.6))
    CALL MINV(A,NSET,DET,LLX,MMX)
    IF (FLAG.EQ.1)
IWRITE(6,83) (A(KX),KX=1,NN)
Y = ALOG(DET)
IF (IFLAG.EQ.1)
IWRITE(6,88) Y

88 FORMAT(1HO,T10.24H THE EVALUATED FUNCTION = .E20.6)
    !1 = EXP(Y)
    IF(IFLAG.EQ.1)
    IWRITE(6,89) Y1

89 FORMAT(1HO,T10,19HTHE EXP(LOG(DET)) = .E20.6)
IM = 0
IL = 0
DO 30 I = 1,NSET
NA = NRST(I)
KU = NA + IM
NAM = NA
DO 31 K = 1,NAM
KQ = K + IL
G(KQ) = 0.E0
KR = K + IM
JM = 0
DO 32 J = 1,NSET
NB = NRST(J)

30 IXJ = (J-1)*NSET + I
X(J) = 0.00
DO 34 KK = 1,NB
KMM = KK + JM
KXXK = (KK-1)*NA + K
X(J) = X(J) + A(IXJ)*RR(I,J,KXXK)*XX(KKM)/S(J)
34 CONTINUE
G(KQ) = G(KQ) + X(J)
32 JH = JM + NB
G(KQ) = G(KQ) - XX(KQ)/S(I)
G(KQ) = 2.00+G(KQ)/S(I)
31 CONTINUE
IM = IM + NA
30 IL = IL + NA
IF(IFLAG.EQ.1) WRITE(6,118) (O(I),I=1,N)

118 FORMAT(1HO,19X,15HTHE GRADIENT IS /(15X,E20.6))
RETURN
END
APPENDIX  D

COMPUTER PROGRAM FOR CANONICAL-PARTIAL
AND CANONICAL-MULTIPLE CORRELATION MATRIX
"CPCM"
THIS IS THE MAIN CALLING PROGRAM.

```plaintext
DIMENSION RST1(10,10), RST2(20,20), RST3(20,20), RST4(20,20), RST5(20,20)
DIMENSION X(10,10), Y(10,10), R(30), EIGM(30), ATINV(20,20)
1. NT(5,5), NRST(5)
COMMON N1,N2,N3,N4,N5,DI,DE, IOUT,ML,NSETS
COMMON X(25)
COMMON R11(5,5), R12(5,5), R13(5,5), R14(5,5), R15(5,5), R21(5,5), R22(5,5), R23(5,5), R24(5,5), R25(5,5), R31(5,5), R32(5,5), R33(5,5), R34(5,5), R35(5,5)
2. R36(5,5)
COMMON R41(5,5), R42(5,5), R43(5,5), R44(5,5), R45(5,5), R51(5,5), R52(5,5), R53(5,5), R54(5,5), R55(5,5), PRH0(5,5)

REND 10
INPUT = 10
IOUT = 6
DI = 0.0
DE = 1.0
READ(INPUT,301) ML, LIMIT, EST, EPS
301 FORMAT(215.2E20.6)
READ(INPUT,100) NSETS, (NRST(I), I=1,5)
100 FORMAT(2I5)
FCRKAT(612)
N1 = NRST(1)
N2 = NRST(2)
N3 = NRST(3)
N4 = NRST(4)
N5 = NRST(5)
READ(INPUT,101) (X(I), I=1,ML)
DO 811 J=1,NSETS
 NA = NRST(J)
 READ(INPUT,802) (NT(I,J), I=1,NA)
802 FORMAT(5I8)
811 CONTINUE
READ(INPUT,802) NTAL
DO 812 JA=1,NSETS
812 READ(INPUT,813) ND,MK,((ATINV(I,J), J=1,ND), I=1, MK)
813 FORMAT(212,(5E20.6))
IF(NSETS-1) 2999,2999,2998
2999 IF(NSETS-6) 2999,2999,2998
2998 WRITE(IOUT,2996)
2996 FORMAT(1H1,T10.81H THE NUMBER OF SETS OF VARIABLES IS WRONG. CHECK
1IT. AND REENTER THE WHOLE PROGRAM)
PAUSE 1110
GO TO 89
2997 CONTINUE
WRITE(IOUT,105)
105 FORMAT(11H1,T25.46H THE CANONICAL-PARTIAL AND MULTIPLE CORRELATION /
1/T35.14H THE INPUT DATA/)
609 FORMAT(1HO,T10.28HTHE NUMBER OF SETS (NSETS) = .16//T10.37HTHE NUM-
MBER OF ROWS OF (1.1) SET N1 = .16//T10.37HTHE NUMBER OF ROWS OF (2.
2.2) SET N2 = .16//T10.37HTHE NUMBER OF ROWS OF (3.3) SET N3 = .3
6T10.37HTHE NUMBER OF ROWS OF (4.4) SET N4 = .16//T10.37HTHE N
UMBER OF ROWS OF (5.5) SET N5 = .16
WRITE(IOUT.4202) ML
4202 FORMAT(1HO/T10.24HTHE NUMBER OF WEIGHTS = .16//T10.14HTHE R - MAT
RIX)
READ(INPUT.101) ((R11(I,J),J=1,N1),I=1,N1)
READ(INPUT.101) ((R12(I,J),J=1,N2),I=1,N1)
READ(INPUT.101) ((R22(I,J),J=1,N2),I=1,N2)
WRITE(IOUT.106) ((R11(I,J),J=1,N1),I=1,N1)
WRITE(IOUT.106) ((R12(I,J),J=1,N2),I=1,N1)
WRITE(IOUT.106) ((R22(I,J),J=1,N2),I=1,N2)
IF(NSETS-2) 3001.3001.3002
3002 CONTINUE
READ(INPUT.101) ((R13(I,J),J=1,N3),I=1,N1)
READ(INPUT.101) ((R23(I,J),J=1,N3),I=1,N2)
READ(INPUT.101) ((R33(I,J),J=1,N3),I=1,N3)
WRITE(IOUT.106) ((R13(I,J),J=1,N3),I=1,N1)
WRITE(IOUT.106) ((R23(I,J),J=1,N3),I=1,N2)
WRITE(IOUT.106) ((R33(I,J),J=1,N3),I=1,N3)
IF(NSETS-3) 3003.3001.3003
3003 CONTINUE
READ(INPUT.101) ((R14(I,J),J=1,N4),I=1,N1)
READ(INPUT.101) ((R24(I,J),J=1,N4),I=1,N2)
READ(INPUT.101) ((R34(I,J),J=1,N4),I=1,N3)
READ(INPUT.101) ((R44(I,J),J=1,N4),I=1,N4)
WRITE(IOUT.106) ((R14(I,J),J=1,N4),I=1,N1)
WRITE(IOUT.106) ((R24(I,J),J=1,N4),I=1,N2)
WRITE(IOUT.106) ((R34(I,J),J=1,N4),I=1,N3)
WRITE(IOUT.106) ((R44(I,J),J=1,N4),I=1,N4)
IF(NSETS-4) 3004.3001.3004
3004 CONTINUE
READ(INPUT.101) ((R15(I,J),J=1,N5),I=1,N1)
READ(INPUT.101) ((R25(I,J),J=1,N5),I=1,N2)
READ(INPUT.101) ((R35(I,J),J=1,N5),I=1,N3)
READ(INPUT.101) ((R45(I,J),J=1,N5),I=1,N4)
READ(INPUT.101) ((R55(I,J),J=1,N5),I=1,N5)
WRITE(IOUT.106) ((R15(I,J),J=1,N5),I=1,N1)
WRITE(IOUT.106) ((R25(I,J),J=1,N5),I=1,N2)
WRITE(IOUT.106) ((R35(I,J),J=1,N5),I=1,N3)
WRITE(IOUT.106) ((R45(I,J),J=1,N5),I=1,N4)
WRITE(IOUT.106) ((R55(I,J),J=1,N5),I=1,N5)
J001 CONTINUE
101 FORMAT(4E20.6)
106 FORMAT(1HO./(T10.5E20.-6))
WRITE(IOUT.134)
134 FORMAT(1HO.T10.56HTHE WEIGHTS FROM FLETCHER AND POWELL MINIMIZING
1 PROGRAM)
DO 136 I=1,NL
136 WRITE(IOUT.135) I,X(I)
135 FORMAT(1HO.T15.2FX(-12,4H) = .E20.6)
call SHAPI(R12,R13,R14,R15,R21,R23,R24,R25,R31,R32,R34,R35,R41,R42
1. R43, R45, R51, R52, R53, R54

KL = 1
IM = 1
IN = 2
N = N1
M = N2
L = N3
KN = N4
KM = N5
CALL RSTAR(R11, R12, R13, R14, R15, R22, R23, R24, R25, R33, R34, R35, R44, R45
1. R55, RST11, RST12, RST22, N, M, L, KN, KM, NSETS, IOUT)

10 CONTINUE
CALL MATT(RST22, M, 0, DETR10, IOUT)
NN = 1
CALL TRILW(RST11, N, TX, TY, MK, NN, DZ, ATINV, IOUT)
CALL MULT2(TX, RST22, RST12, N, MK, M, RESUT, DZ, IOUT, KL)
DO 60 I = 1, MK
DO 60 J = 1, MK
IJ = (J + (J - 1) / 2 + 1
60 EIGN(IJ) = RESUT(I, J)
CALL EIGEN(EIGN(I), R, MK, 0)
WRITE(IOUT, 102) KL, EIGN(I)
102 FORMAT(HMO, 10, T10.3HTHE, 13, 12H EIGEN-VALUE /(T10.5E20.6))
WRITE(IOUT, 120) I(R(I), I = 1, MK)
120 FORMAT(HMO, T10.3HTHE ASSOCIATED EIGEN-VECTOR /(T10.5E20.6))
RHO = SQRT(ABS(EIGN(I))
WRITE(IOUT, 111) IM, IN
111 FORMAT(HMO, T10.3HTHE CANONICAL-PARTIAL CORRELATION, SET.I2.7H VS
ISET.I2.10H GIVEN THE OTHERS)
PRHO(IO, IM, IN) = RHO
WRITE(IOUT, 103) PRHO(IO, IM, IN)
103 FORMAT(HMO, T20, E20.6)
IF(NSETS = 2) 4000.11.4000
4000 CONTINUE
GO TO (1.2, 3.4, 5.6, 7.8, 9.11, KL
1 CONTINUE
KL = KL + 1
IM = 1
IN = 3
N = N1
M = N3
L = N2
KN = N4
KM = N5
CALL RSTAR(R11, R13, R12, R14, R15, R33, R32, R34, R35, R22, R24, R25, R44, R45
1. R55, RST11, RST12, RST22, N, M, L, KN, KM, NSETS, IOUT)
GO TO 10
2 CONTINUE
IM = 2
IN = 3
N = N2
M = N3
L = N1
KN = N4
KM = N5
CALL RSTAR(R22,R23,R21,R24,R25,R33,R31,R34,R35,R11,R14,R15,R44,R45
1,R55,RST11,RST12,RST22,N,M,L,KM,KM,NSETS,OUT)
GO TO 10
3 CONTINUE
IF(NSETS-3) 4004.11.4004
4004 CONTINUE
KL = KL + 1
IM = 1
IN = 4
N = N1
M = N4
L = N2
KN = N3
KM = N5
CALL RSTAR(R11,R14,R12,R13,R15,R44,R42,R43,R45,R22,R23,R25,R33,R35
1,R55,RST11,RST12,RST22,N,M,L,KM,KM,NSETS,OUT)
GO TO 10
4 CONTINUE
KL = KL + 1
IM = 2
IN = 4
N = N2
M = N4
L = N1
KN = N3
KM = N5
CALL RSTAR(R22,R24,R21,R23,R25,R44,R41,R43,R45,R11,R13,R15,R33,R35
1,R55,RST11,RST12,RST22,N,M,L,KM,KM,NSETS,OUT)
GO TO 10
5 CONTINUE
KL = KL + 1
IM = 3
IN = 4
N = N3
M = N4
L = N1
KN = N2
KM = N5
CALL RSTAR(R33,R34,R31,R32,R35,R44,R42,R45,R11,R12,R15,R22,R25
1,R55,RST11,RST12,RST22,N,M,L,KM,KM,NSETS,OUT)
GO TO 10
6 CONTINUE
IF(NSETS-4) 4006.11.4008
4008 CONTINUE
KL = KL + 1
IM = 1
IN = 5
N = N1
M = N5
L = N2
KN = N3
KM = N4
CALL RSTAR(R11,R15,R12,R13,R14,R55,R52,R53,R54,R22,R23,R24,R33,R34
7 CONTINUE
 KL = KL + 1
 IM = 2
 IN = 5
 N = N2
 M = N5
 L = N1
 KN = N3
 KM = N4
 CALL RSTAR(R22,R25,R21,R23,R24,R55,R53,R54,R11,R13,R14,R33,R34
 1,R44,RST11,RST12,RST22,N,L,KN,KM,NSETS,IOUT)

GO TO 10

8 CONTINUE
 KL = KL + 1
 IM = 3
 IN = 5
 N = N3
 M = N5
 L = N1
 KN = N2
 KM = N4
 CALL RSTAR(R33,R35,R31,R32,R34,R55,R51,R52,R54,R11,R13,R14,R22,R24
 1,R44,RST11,RST12,RST22,N,L,KN,KM,NSETS,IOUT)

GO TO 10

9 CONTINUE
 KL = KL + 1
 IM = 4
 IN = 5
 N = N4
 M = N5
 L = N1
 KN = N2
 KM = N3
 CALL RSTAR(R44,R45,R41,R42,R43,R55,R51,R52,R53,R11,R13,R14,R22,R23
 1,R33,RST11,RST12,RST22,N,L,KN,KM,NSETS,IOUT)

GO TO 10

11 CONTINUE
 KL = KL + 1
 CALL PARHO(PRH0,IN,IOUT)
 WRITE(IOUT,1111)
 1111 FORMAT(1H1)
 1191 CALL MULCR
 99 STOP
 END
SUBROUTINE SWAP1(RT12,RT13,RT14,RT15,RT21,RT23,RT24,RT25,RT31,RT32
,RT34,RT35,RT41,RT42,RT43,RT45,RT51,RT52,RT53,RT54)
DIMENSION RT12(5,5),RT13(5,5),RT14(5,5),RT15(5,5),RT21(5,5),RT23(5
,5),RT24(5,5),RT25(5,5),RT31(5,5),RT32(5,5),RT34(5,5),RT35(5,5),RT
41(5,5),RT42(5,5),RT43(5,5),RT45(5,5),RT51(5,5),RT52(5,5),RT53(5,5)
,RT54(5,5)
COMMON N1,N2,N3,N4,N5,OZ,DE,IOUT,ML,NSETS
DO 10 I=1,N,
 10 J=1,N2
 10 RT21(J,I)=RT12(I,J)
 IF(NSETS-2) 200,99,200
200 CONTINUE
 00 I=1,N1
 00 J=1,N3
 11 RT31(J,I)=RT13(I,J)
 00 I=1,N2
 00 J=1,N3
 12 RT32(J,I)=RT23(I,J)
 IF(NSETS-3) 210,99,210
210 CONTINUE
 00 I=1,N1
 00 J=1,N4
 13 RT41(J,I)=RT14(I,J)
 00 I=1,N2
 00 J=1,N4
 14 RT42(J,I)=RT24(I,J)
 00 I=1,N3
 0 J=1,N4
 15 RT43(J,I)=RT34(I,J)
 IF(NSETS-4) 211,99,211
211 CONTINUE
 00 I=1,N1
 00 J=1,N5
 16 RT51(J,I)=RT15(I,J)
 00 I=1,N2
 00 J=1,N5
 17 RT52(J,I)=RT25(I,J)
 00 I=1,N3
 00 J=1,N5
 18 RT53(J,I)=RT35(I,J)
 00 I=1,N4
 00 J=1,N5
 19 RT54(J,I)=RT45(I,J)
 99 RETURN
END
SUBROUTINE RSTAR(RS11,RS12,RS13,RS14,RS15,RS22,RS23,RS24,RS25,RS33
 1,RS34,RS35,RS44,RS45,RS55,RST11,RST12,RST22,NN,NM,NL,NKN,NKH,NGET6
 2,1OUT)

DIMENSION RS11(5,5),RS12(5,5),RS13(5,5),RS14(5,5),RS15(5,5),RS22(5
 1,5),RS23(5,5),RS24(5,5),RS25(5,5),RS33(5,5),RS34(5,5),RS35(5,5),RS
 24(5,5),RS45(5,5),RS55(5,5)
DIMENSION WORK1(5,5),WORK2(5,5),WORK3(5,5)
DIMENSION WORK4(15,15),WORK5(15,15),WORK6(15,15)
DIMENSION RST11(10,10),RST12(10,20),RST22(20,20)
DIMENSION PAK33(0,20)
DIMENSION PAK13(15,15),PAK23(5,15)
DATA WORK1,WORK2,WORK3,PAK13,PAK23/225.0,E0/
DATA WORK4,WORK5,WORK6/6?5.0,0,E0/
DATA PAK33/400.0,E0/
IF(NSETS-2) 300,96,300

300 CONTINUE
DO 30 I=1,NN
DO 30 J=1,NL
PAK13(I,J)=RS13(I,J)
30 CONTINUE
DO 31 I=1,NN
DO 31 J=1,NL
PAK23(I,J)=RS23(I,J)
31 CONTINUE
DO 32 I=1,NL
DO 32 J=1,NL
PAK33(I,J)=RS33(I,J)
32 CONTINUE
IF(NSETS-3) 301,98,301
301 CONTINUE
DO 33 I=1,NN
DO 33 J=1,NKN
INKN = NL + J
PAK13(J,INKN)=RS14(I,J)
33 CONTINUE
DO 34 I=1,NN
DO 34 J=1,NKN
INKN = NL + J
PAK33(INKN,J)=RS24(I,J)
34 CONTINUE
DO 35 I=1,NL
DO 35 J=1,NKN
INKN = NL + J
PAK33(I,INKN)=RS34(I,J)
35 CONTINUE
PAK33(INKN,INKN)=PAK33(I,INKN)
DO 36 I=1,NKN
INKN = NL + I
DO 36 J=1,NKN
INKN = NL + J
36 CONTINUE
PAK33(INKN,INKN)=RS44(I,J)
IF(NSETS-4) 302,98,302
302 CONTINUE
INKN = NL + NKN
DO 37 I=1,NN

DO 37 J=1,NKN
INKM = INNKM + J
PAK13(I,INKM)=RS15(I,J)
37 CONTINUE
DO 38 I=1,IN
DO 38 J=1,NKN
INKM = INNKM + J
PAK23(I,INKM)=RS25(I,J)
38 CONTINUE
DO 39 I=1,NL
DO 39 J=1,NKM
INKM= INNKM + J
PAK33(I,INKM)=RS35(I,J)
39 PAK33(INKM,I)=PAK33(I,INKM)
DO 40 I=1,IN
INKN = NL + I
DO 40 J=1,NKM
INKM = INNKM + J
PAK33(INKN,INKM)=RS45(I,J)
40 PAK33(INKN,INKM)=PAK33(INKN,INKM)
DO 41 I=1,IN
INKN = INNKM + I
DO 41 J=1,NKN
INKM = INNKM + J
41 PAK33(INKN,INKM)=RS55(I,J)
96 CONTINUE
N345 = NL + NKN + NKM
CALL MATIV(PAK33,N345,0,DETRM,ID,IOUT)
DO 42 I=1,NN
DO 42 J=1,N345
DO 42 K=1,N245
42 WORK4(I,J)=WORK4(I,J) + PK13(I,K)*PAK33(K,J)
DO 43 I=1,NN
DO 43 J=1,NN
DO 43 K=1,N345
43 WORK1(I,J) = WORK1(I,J) + WORK4(I,K)*PK13(J,K)
DO 44 I=1,NN
DO 44 J=1,NN
44 RST11(I,J) = RS11(I,J) - WORK1(I,J)
DO 45 I=1,NN
DO 45 J=1,N345
DO 45 K=1,N345
45 WORK5(I,J) = WORK5(I,J) + PK23(I,K)*PAK33(K,J)
DO 46 I=1,NN
DO 46 J=1,NN
DO 46 K=1,N345
46 WORK2(I,J) = WORK2(I,J) + WORK5(I,K)*PAK23(K,J)
DO 47 I=1,NN
DO 47 J=1,NN
47 RST22(I,J) = RS22(I,J) - WORK2(I,J)
DO 48 I=1,NN
DO 48 J=1,N345
DO 48 K=1,N345
48 WORK6(I,J) = WORK6(I,J) + PK13(I,K)*PAK33(K,J)
DO 49 I=1,NN
DO 49 J=1,NM
DO 49 K=1,N345
49 WORK3(I,J) = WORK3(I,J) + WORK6(I,K)*PAK23(J,K)
DO 50 I=1,NN
DO 50 J=1,NM
RST12(I,J) = R612(I,J) - WORK3(I,J)
50 CONTINUE
WRITE(IOUT,101)
101 FORMAT(1HO,T10,I8,THE R - STAR SET)
WRITE(IOUT,102) ((RST11(I,J),J=1,NN),I=1,NN)
WRITE(IOUT,102) ((RST12(I,J),J=1,NM),I=1,NN)
WRITE(IOUT,102) ((RST22(I,J),J=1,NM),I=1,NM)
102 FORMAT(1HO,T10,5E20.6)
RETURN
END
SUBROUTINE MATIU(A,N1,M1,DETRM,IO,IOUT)
DIMENSION A(5,5),B(5,1),INDEX(5,3)
EQUIVALENCE (IROW,JROW),(ICOLM,JCOLM),(AMAX,T,SWAPP)
IOUT = 3
DE=1.00
DO=0.00
M=M1
N=N1
DETRM=DE
DO 20 J=1,N
20 INDEX(J,3)=DO
DO 550 I=1,N
AMAX=DO
DO 105 J=1,N
IF(INDEX(J,3)-1) 6C,105,60
60 DO 100 K=1,N
IF(INDEX(K,3)-1) 80,100,715
80 IF(AMAX-ABS(A(J,K))) 85,100,100
85 IRW=J
ICOLM=K
AMAX=ABS(A(J,K))
100 CONTINUE
105 CONTINUE
INDEX(ICOLM,3)=INDEX(ICOLM,3)+1
INDEX(I,1)=IROW
INDEX(I,2)=ICOLM
IF(IRW=ICOLM) 14C,310,140
140 DETRM=-DETRM
DO 200 L=1,N
SWAPP=A(IRW,L)
A(IRW,L)=A(ICOLM,L)
200 A(ICOLM,L)=SWAPP
IF(M) 310,310,210
210 DO 250 L=1,N
SWAPP=B(IRW,L)
B(IRW,L)=B(ICOLM,L)
250 B(ICOLM,L)=SWAPP
310 PIVOT=A(ICOLM,ICOLM)
DETRM=DETRM*PIVOT
A(ICOLM,ICOLM)=DE
DO 350 L=1,N
350 A(ICOLM,L)=A(ICOLM,L)/PIVOT
IF(M) 380,380,360
360 DO 370 L=1,N
370 B(ICOLM,L)=B(ICOLM,L)/PIVOT
380 DO 550 L=1,N
IF(LICOLM) 40J,550,400
400 T=A(L1,ICOLM)
A(L1,ICOLM)=DO
C0 450 L=1,N
450 A(L1,L)=A(L1,L)-A(ICOLM,L)*T
IF(M) 550,550,460
460 DO 500 L=1,N
500 B(L1,L)=B(L1,L)-B(ICOLM,L)*T
550 CONTINUE
 DO 710 I=1,N
 L=N+I-1
 IF(INDEX(L,1)-INDEX(L,2)) 630 710 630
630 JR0W=INDEX(L,1)
 JCOLM=INDEX(L,2)
 DO 705 K=1,N
 SWAPP=A(K,JROW)
 A(K,JROW)=A(K,JCOLM)
 A(K,JCOLM)=SWAPP
705 CONTINUE
710 CONTINUE
 DO 730 K=1,N
 IF(INDEX(K,3)-1) 715 720 715
715 ID=2
 GO TO 740
720 CONTINUE
730 CONTINUE
 ID=1
740 CONTINUE
 WRITE(IOUT,1055)
1055 FORMAT(1HO///T10.14HTHE INVERSE I6)
 DO 833 I=1,N
833 WRITE(IOUT,101) (A(I,J),J=1,N)
101 FORMAT(1HO,T10.5E20.6)
 WRITE(IOUT,111) DETRM
111 FORMAT(1HO,T10.17HTHE DETERMINANT = .E20.6)
 RETURN
END
SUBROUTINE MATIV(A,N1,M1,DETRM,IO,IOUT)
DIMENSION A(20,20),B(20,1),INDEX(20,3)
EQUIVALENCE (JROW,JCOLM),(ICOLM,ICOLM),(IAMAX,SWAPP)
DE=1.0D0
DZ=0.0D0
M=N1
N=N1
DETRM=DE
20 INDEX(J,3)=DZ
00 550 L=1,N
AMAX=DZ
00 105 J=1,N
IF(INDEX(J,3)-1) 60,105,60
60 00 100 K=1,N
IF(INDEX(K,3)-1) 80,100,105
80 IF(AMAX-ABS(A(J,K))) 85,100,100
85 IRW=J
ICOLM=K
AMAX-ABS(A(J,K))
100 CONTINUE
105 CONTINUE
INDEX(ICOLM,3)=INDEX(ICOLM,3)+1
INDEX(I,1)=IRW
INDEX(I,2)=ICOLM
IF(IRW-ICOLM) 140,310,140
140 DETRM=DETRM
00 200 L=1,N
SWAPP=A(IRW,L)
A(IRW,L)=A(ICOLM,L)
200 A(ICOLM,L)=SWAPP
IF(M) 310,310,210
210 00 250 L=1,M
SWAPP=B(IRW,L)
B(IRW,L)=B(ICOLM,L)
250 B(ICOLM,L)=SWAPP
310 PIVOT=A(ICOLM,ICOLM)
DETRM=DETRM*PIVOT
A(ICOLM,ICOLM)=DE
00 350 L=1,N
350 A(ICOLM,L)=A(ICOLM,L)/PIVOT
IF(M) 380,380,360
360 00 370 L=1,M
370 B(ICOLM,L)=B(ICOLM,L)/PIVOT
360 00 550 L=1,N
IF(L1-ICOLM) 400,550,400
400 T=A(L1,ICOLM)
A(L1,ICOLM)=DZ
00 450 L=1,N
450 A(L1,L)=A(L1,L)-A(ICOLM,L)*T
IF(M) 550,550,460
460 00 500 L=1,M
500 B(L1,L)=B(L1,L)-B(ICOLM,L)*T
550 CONTINUE
DO 710 I=1,N
 L=N+1-I
 IF(INDEX(L,1)-INDEX(L,2)) 630 710 630
630 JROW=INDEX(L,1)
 JCOLM=INDEX(L,2)
 DO 705 K=1,N
 SWAPP=A(K,JROW)
 A(K,JROW)=A(K,JCOLM)
 A(K,JCOLM)=SWAPP
 705 CONTINUE
710 CONTINUE
DO 730 K=1,N
 IF(INDEX(K,3)-1) 715 720 715
715 ID=2
 GO TO 740
720 CONTINUE
730 CONTINUE
 ID=1
740 CONTINUE
WRITE(IOUT,1055)
1055 FORMAT(1MO,//T10,14HTHE INVERSE IS)
DO 833 I=1,N
833 WRITE(IOUT,101) (A(I,J),J=1,N)
101 FORMAT(1MO,T10,SE20.6)
WRITE(IOUT,111) DETRM
111 FORMAT(1MO,T10,17HTHE DETERMINANT = .E20.6)
RETURN
END
SUBROUTINE TRILH(A,N,TX,TY,NN,NN,OZ,ATINV,IOUT)
DIMENSION A(10,10),B(10,10),P(10,10),Q(10,10),U(10,10),V(10,10),TX
1(10,10),TY(10,10),ATINV(10,10)
DON = 1.E-3
DO 9 I=1,N
DO 9 J=1,N
ATINV(I,J)=OZ
9 B(I,J)=OZ
965 B(I,I)=1.E0
DO 10 I=1,N
U(I,I)=A(I,I)
V(I,I)=B(I,I)
P(I,I)=U(I,I)/U(I,1)
10 Q(I,I)=V(I,I)/U(I,1)
I=1
DO 11 K=2,N
13 CONTINUE
IF(I) 15,16,15
15 DO 12 J=1,N
A(K,J)=A(K,J)-P(I,K)*U(I,J)
B(K,J)=B(K,J)-P(I,K)*V(I,J)
U(K,J)=A(K,J)
V(K,J)=B(K,J)
12 CONTINUE
I=I-1
GO TO 13
16 I=I+K
DO 19 LJ=1,N
IF(ABS(U(K,K))<DON) 26,26,25
25 P(K,LJ)=U(K,LJ)/U(K,K)
Q(K,LJ)=V(K,LJ)/U(K,K)
GO TO 19
26 U(LJ)=OZ
V(LJ)=OZ
P(LJ)=OZ
Q(LJ)=OZ
19 CONTINUE
11 CONTINUE
DO 18 I=1,N
USQRT=SQRT(ABS(U(I,I)))
IF(USQRT<DON) 10,10,1
1 DO 18 J=1,N
U(I,J)=U(I,J)/USQRT
V(I,J)=V(I,J)/USQRT
18 CONTINUE
GO TO (91,92,91),NN
91 CONTINUE
WRITE(IOUT,100)
100 FORMAT(1HO,T20.9HTHE TRIANGULAR MATRIX IS AS FOLLOWING
DO 96 I=1,N
IF(ABS(U(I,I))<DON) 96,96,95
95 WRITE(IOUT,101) (V(I,J),J=1,N)
98 CONTINUE
DO TO 97
92 CONTINUE
DO 991 I=1,N
DO 991 J=1,N
IF(ABS(U(I,J))-DON) 992,992,991
992 U(I,J)=DZ
991 CONTINUE
WRITE(IOUT,225)
225 FORMAT(1HO,T10,16HTHE T' MATRIX IS)
DO 20 I=1,N
IF(ABS(U(I,I))-DON) 20,20,21
21 WRITE(IOUT,101) (U(I,J),J=1,N)
101 FORMAT(1HO,T10,5E20.6)
20 CONTINUE
97 MK=N
 I=1
 IF(ABS(U(I,I))-DON) 32.32.31
31 LK=1
41 CONTINUE
GO TO (222,221,222).NN
221 DO 33 J=1,N
33 TX(LK,J)=U(I,J)
GO TO 4G
222 CONTINUE
DO 223 J=1,N
223 TX(LK,J)=V(I,J)
GO TO 40
32 I=I+1
 MK=MK-1
 IF(I=N) 53.53.37
53 CONTINUE
 IF(ABS(U(I,I))-DON) 32.32.31
40 I=I+1
 LK=LK+1
 IF(I=N) 36,36,37
36 IF(ABS(U(I,I))-DON) 42,42,41
42 I=I+1
 MK=MK-1
 IF(I=N) 50,50,37
50 CONTINUE
 IF(ABS(U(I,I))-DON) 42,42,41
37 CONTINUE
 IF(MK) 60,61,60
C0 CONTINUE
DO 55 I=1,MK
DO 55 J=1,N
55 TY(J,I)=TX(I,J)
 IF(NN-3) 99,99,99
99 CONTINUE
DO 234 I=1,N
DO 234 J=1,N
234 ATINV(I,J)=DZ
 DO 35 I=1,MK
 DO 35 J=1,N
35 A(J,I)=DZ
35 CONTINUE
DO 35 I=1,MK
DO 35 J=1,N
35 A(J,I)=DZ
35 CONTINUE
DO 55 I=1,MK
DO 55 J=1,N
55 TX(I,J)=A(J,I)
55 CONTINUE
DO 225 I=1,N
DO 225 J=1,N
225 WRITE(IOUT,225)
DO 235 J=1,MK
DO 235 K=1,N
235 ATINV(I,J)=ATINV(I,J) +TX(I,K)*TY(K,J)
GO TO 99
61 WRITE(OUT,103)
103 FORMAT(100,T30,48)THE MAIN DIAGONAL ELEMENTS OF THE MATRIX ARE ALL 1 //T31.47H ZE(a1S. TERMINATE THE EXECUTION OF THE PROGRAM)
PAUSE 1111
99 RETURN
END
SUBROUTINE DEPOY(A,N,DETRM)
DIMENSION A(5,5)
K=2
L=1
1 DO 10 I=K,N
 RATIO=A(I,L)/A(L,L)
 DO 10 J=K,N
 A(I,J)=A(I,J)-A(L,J)*RATIO
10 CONTINUE
 IF(K-N) 15,20,20
15 L=K
 K=K+1
 GOTO 1
20 DETRM=1.
 DO 21 I=1,N
 DETRM=DETRM*A(I,I)
21 CONTINUE
RETURN
END
SUBROUTINE MULCR

THIS SUBROUTINE MULCR IS TO CALCULATE THE CANONICAL-MULTIPLE CORRELATION.

SUBROUTINES PACKA, MATIV, MULTIEIGEN, AND MANUP ARE CALLED TO THIS PURPOSE.

SUBROUTINE MULCR
DIMENSION RHOT(5,5), RST11(5,5), RST12(5,20), RST22(20,20), RESUT(20, 120), AMNRO(5), A(25), RSTY(25)
COMMON N1, N2, N3, N4, N5, DZ, DE, IOUT, ML, NGET6
COMMON X(25)
COMMON R11(5,5), R12(5,5), R13(5,5), R14(5,5), R15(5,5), R21(5,5), R22(5 1,5), R23(5,5), R24(5,5), R25(5,5), R31(5,5), R32(5,5), R33(5,5), R34(5,5) 2, R35(5,5)
COMMON R41(5,5), R42(5,5), R43(5,5), R44(5,5), R45(5,5), R51(5,5), R52(5 1,5), R53(5,5), R54(5,5), R55(5,5), PRH0(5,5)

KL = 1
10 CONTINUE
GO TO (1, 2, 9, 4, 5), KL
1 CONTINUE
CALL PACKA(R11, R12, R13, R14, R15, R21, R22, R23, R24, R25, R31, R32, R33, R34, R35, R44, R45 R1, R55, RST11, RST12, N1, N2, N3, N4, N5, NSET6, IOUT)

THE SUBROUTINE PACKA IS TO PACK THE ORIGINAL R-MATRIX INTO A NEW MATRIX FOR CALCULATING THE CANONICAL-MULTIPLE CORRELATION WITH THE R11, R12, R13, R21, R22 AS THE INPUT MATRICES.

NM = N2 + N3 + N4 + N5
CALL MATIV(RST22, NM, 0, DETRM, IOUT)

THE SUBROUTINE MATIV IS CALLED TO FIND THE INVERSES OF R11 AND R2

N = N1
CALL MULTI(RST11, RST22, RST12, N, NM, RESUT, DZ, IOUT, KL)
GO TO 50
2 CONTINUE
CALL PACKA(R22, R21, R23, R24, R25, R11, R13, R14, R15, R33, R34, R35, R44, R45 R1, R55, RST11, RST22, RST12, N2, N1, N3, N4, N5, NGET6, IOUT)
NM = N1 + N3 + N4 + N5

1,2,9,4,5
CALL MATIV(RST22,NM0.0,DETRM.ID,OUT)
N=N2
CALL MULTI(RST11,RST22,RST12,N,NM,RESULT,OZ.OUT. KL)
GO TO 50
3 CONTINUE
NM=N1+N2+N4+N5
CALL MATIV(RST22,NM0.0,DETRM.ID. OUT)
N=N3
CALL MULTI(RST11,RST22,RST12,N,NM,RESULT,OZ.OUT. KL)
GO TO 50
4 CONTINUE
NM=N1+N2+N3+N5
CALL MATIV(RST22,NM0.0,DETRM.ID,OUT)
N=N4
CALL MULTI(RST11,RST22,RST12,N,NM,RESULT,OZ.OUT. KL)
GO TO 50
5 CONTINUE
NM=N1+N2+N3+N4
CALL MATIV(RST22,NM0.0,DETRM.ID,OUT)
N=N5
CALL MULTI(RST11,RST22,RST12,N,NM,RESULT.OZ.OUT. KL)
50 CONTINUE
00 80 I=1,N
00 80 J=1,N
II=(J*(J-1))/2 + I
80 A(IJ)=RESULT(I,J)
CALL EIGEN(A,RSTY,N,0)

THE SubROUTINE EIGEN IS FROM SSP WHICH WILL BE USED TO FIND THE EIGENVALUE AND THE EIGEN-VECTOR FOR THE SYMMETRIC MATRIX.

RHO= SQRT(ABS(A(1)))
WRITE(IOU1.101) KL,A(1)
101 FORMAT(13H0,T10.3fTHE,E13.12H EIGEN-VALUE //T10,E20.6)
WRITE(IOU1.120) (RSTY(I),I=1,N)
120 FORMAT(13H0,T10.16fTHE EIGEN-VECTOR ////T10,SE20.6))
WRITE(IOU1,112)
112 FORMAT(13H0,T10.34fTHE CANONICAL-MULTIPLE CORRELATION ////)
WRITE(IOU1.102) RHO
102 FORMAT(13H0,T10.5fRHO =E20.6)
AMUR0(KL)=RHO
KL=KL+1
IF(KL-NSETS) 10,10.99
99 CONTINUE
KLL=KL-1
WRITE(OUT,222) (AMURO(I),I=1,KLL)
222 FORMAT(1HO,T10,41HTHE CANONICAL-MULTIPLE CORRELATION MATRIX //T10
 1.5E20.6)
C
C**
C THE SUBROUTINE MANUP IS TO FIND THE NORMALIZED CORRELATIONS BY
C MULTIPLY EACH OF THE CANONICAL-PARTIAL BY ITS APPROPRIATE CANONICAL
C MULTIPLE CORRELATIONS. I.E. -RH0(I,J)/SQRT((1-AMURO(I)**2)*(1-AMURO
C**
C
CALL MANUP(PRHO,AMURO,KLL,OUT)
DO 1119 I=1,KLL
DO 1119 J=1,KLL
PRHOT(I,J)=PRHO(I,J)
1119 CONTINUE
CALL MATIU(PRHO,KLL,0,DETRM,OUT)
CALL PROJS(PRHO,KLL,OUT)
1132 CALL RMCT
1133 RETURN
END
SUBROUTINE PACKA(RT11,RT12,RT13,RT14,RT15,RT22,RT23,RT24,RT25,RT33
1,RT34,RT35,RT44,RT45,RT55,RTST1,RTST2,RTST12,RTST22,RTST23,RTST24,RTST25
1,RTST3,RTST4,RTST5,RTST6,RTST7,RTST8,RTST9,RTST10)
DIMENSION RT11(5,5),RT12(5,5),RT13(5,5),RT14(5,5),RT15(5,5),RT22(5
1,5),RT23(5,5),RT24(5,5),RT25(5,5),RT33(5,5),RT34(5,5),RT35(5,5),RT
144(5,5),RT45(5,5),RT55(5,5)
DIMENSION RTST1(5,5),RTST2(5,20),RTST22(20,20)

DO 10 I=1,N
DO 10 J=1,N
10 RST11(I,J)=RT11(I,J)
DO 11 I=1,N
DO 11 J=1,M
RST12(I,J)=RT12(I,J)
11 CONTINUE

DO 12 I=1,M
DO 12 J=1,N
JJ = K + J
RST12(I,JJ) = RT13(I,J)
12 CONTINUE

DO 13 I=1,M
DO 13 J=1,L
JJ = M + J
RST22(I,JJ)=RT23(I,J)
13 CONTINUE

DO 14 I=1,L
II = M + I
DO 14 J=1,L
JJ = M + J
RST22(II,JJ)=RT33(I,J)
14 CONTINUE

MM = M + L
IF(NSETS-3) 301,96,301
301 CONTINUE

DO 16 I=1,N
DO 16 J=1,KN
JKN = MM + J
RST12(I,JKN)=RT14(I,J)
16 CONTINUE

DO 17 I=1,KN
DO 17 J=1,M
JKN = MM + J
RST12(JKN,I)=RT12(I,JKN)
17 CONTINUE

DO 18 I=1,L
II = M + I
DO 18 J=1,KN
JJ = MM + J
RST22(I,JJ)=RT34(I,J)
18 CONTINUE

DO 19 I=1,M
II = M + I
DO 19 J=1,KN
JJ = MM + J
RST22(JJ,II)=RT22(I,JJ)
MM = M + L + KN
IF(NSETS-4) 302,96.302
302 CONTINUE
DO 110 I=1,N
DO 110 J=1,KM
JKM = MM + J
RST12(I,JKM)=RT15(I,J)
110 CONTINUE
DO 19 I=1,M
DO 19 J=1,KM
JKM = MM + J
RST22(I,JKM)=RT25(I,J)
19 RST22(JKM,I)=RST22(I,JKM)
DO 20 I=1,L
II = M + I
DO 20 J=1,KM
JJKM = MM + J
RST22(II,JJKM)=RT35(I,J)
20 RST22(JJKM,II)=RST22(II,JJKM)
DO 21 I=1,KN
II = M + L + I
DO 21 J=1,KM
JJKM = MM + J
RST22(II,JJKM)=RT45(I,J)
21 RST22(JJKM,II)=RST22(II,JJKM)
DO 22 I=1,KM
II = MM + I
DO 22 J=1,KM
JJ = MM + J
22 RST22(II,JJ)=RT55(I,J)
96 CONTINUE
WRITE(IOUT,102)
102 FORMAT(1HO,T10.4I1THE CANONICAL-MULTIPLE CORRELATION MATRIX)
MM = M + L
IF(NSETS-3) 303,97.303
303 MM = M + L + KN
IF(NSETS-4) 304,97.304
304 MM = M + L + KN + KM
97 CONTINUE
WRITE(IOUT,101) ((RST11(I,J),J=1,N),I=1,N)
WRITE(IOUT,101) ((RST12(I,J),J=1,MM),I=1,N)
WRITE(IOUT,101) ((RST22(I,J),J=1,MM),I=1,MM)
101 FORMAT(1HO,T10.5E20.6)
RETURN
END
SUBROUTINE MANUP(PRHO,AMURO,KLL,IOUT)
DIMENSION PRHO(5,5),AMURO(5)
DE=1.E0
DO 10 I=1,KLL
PRHO(I,1)=PRHO(I,1)/(DE-AMURO(I)**2)
DO 10 J=1,KLL
IF(I-J) 11,10,11
11 PRHO(I,J)=-PRHO(I,J)/SQRT((DE-AMURO(I)**2)*(DE-AMURO(J)**2))
10 CONTINUE
WRITE(IOUT,100)
100 FORMAT(1HO,T10,28THE NORMALIZED CORRELATION)
DO 12 I=1,KLL
WRITE(IOUT,101) (PRHO(I,J),J=1,KLL)
101 FORMAT(1HO,T10,5E20.6)
12 CONTINUE
RETURN
END

SUBROUTINE PARHO(PRHO,IN,IOUT)
DIMENSION PRHO(5,5)
DO 10 I=1,IN
10 PRHO(I,1)=1.E0
IN=IN-1
DO 61 I=1,IN
I=I+1
DO 62 J=I,IN
61 PRHO(J,I)=PRHO(I,J)
WRITE(IOUT,108)
108 FORMAT(1HO,T10,28THE CANONICAL-PARTIAL MATRIX)
DO 62 I=1,IN
WRITE(IOUT,109) (PRHO(I,J),J=1,IN)
109 FORMAT(1HO,T10,5E20.6)
62 CONTINUE
RETURN
END
SUBROUTINE MULT(TX,RST22,RST12,N,MK,M,RESULT,OZ,IOUT,ML)
DIMENSION TX(10,10),RST22(20,20),RST12(10,20),RESULT(20,20)
DIMENSION WORK1(10,20),WORK2(20,20)
DATA WORK1,WORK2/500*0.E0/
DO 1111 I=1,10
DO 1111 J=1,10
1111 RESULT(I,J)=0.E0
DO 11 I=1,MK
DO 11 J=1,M
DO 11 K=1,N
11 WORK1(I,J)=WORK1(I,J)*TX(I,K)*RST12(K,J)
DO 12 I=1,MK
DO 12 J=1,M
DO 12 K=1,N
12 WORK2(I,J)=WORK2(I,J)+WORK1(I,K)*RST22(K,J)
DO 14 I=1,MK
DO 14 J=1,M
DO 14 K=1,N
14 RESULT(I,J)=RESULT(I,J)+WORK2(I,K)*WORK1(K,J)
WRITE(IOUT,101) KL
101 FORMAT(1HO,T10.5,HTE,13.42M MATRIX FOR CANONICAL-PARTIAL CORRELATION)
DO 15 I=1,MK
WRITE(IOUT,102) (RESULT(I,J),J=1,MK)
102 FORMAT(1HO,T10,5E20.6)
CONTINUE
RETURN
END
SUBROUTINE MULT1(RST11,RST22,RST12,N,M,RESULT,DZ,IOUT,KL)
DIMENSION RST11(5,5),RST22(20,20),RST12(5,20),RESULT(20,20)
DIMENSION WORK1(5,20),WORK2(20,20)
DATA WORK1,WORK2/500.0,0.0/
DO 10 I=1,N
DO 10 J=1,20
10 RESULT(I,J)=DZ
DO 11 I=1,N
DO 11 J=1,M
DO 11 K=1,N
11 WORK1(I,J)=WORK1(I,J)*RST11(I,K)*RST12(K,J)
DO 12 I=1,N
DO 12 J=1,M
DO 12 K=1,M
12 WORK2(I,J)=WORK2(I,J)*WORK1(I,K)*RST22(K,J)
DO 14 I=1,N
DO 14 J=1,N
DO 14 K=1,M
14 RESULT(I,J) = RESULT(I,J) + WORK2(I,K)*RST12(J,K)
WRITE(IOUT,101) KL
101 FORMAT(100,T10.3,THE,13.42H MATRIX FOR CANONICAL-MULTIPLE CORRELATION)
DO 30 I=1,N
30 WRITE(IOUT,102) (RESULT(I,J),J=1,N)
102 FORMAT(100,T10.5E20.8)
RETURN
END
C
SUBROUTINE RHOCL(RHO,X,XX,R12,R13,R14,R15,R23,R24,R25,R34,R35,R45,
 MK1,MK2,MK3,MK4,MK5,IEND)
DIMENSION X(25),XX(25),R12(5,5),R13(5,5),R14(5,5),R23(5,5),
 R24(5,5),R25(5,5),R34(5,5),R35(5,5),R45(5,5),RHO(5,5)
M2=MK1+MK2
M3 = M2 + MK3
M4 = M3 + MK4
DO 30 K=1,MK2
 M11=MK1+K
 DO 30 KK=1,MK1
 RHO0(1,2)=RHO0(1,2)+X(KK)*R12(KK,K)*X(M11)/(XX(1)*XX(2))
50 CONTINUE
IF(IEND-2) 89,91,90
89 CONTINUE
DO 31 KI=1,MK3
 M12=MK2+KI
 DO 29 KK=1,MK1
 RHO0(1,3)=RHO0(1,3)+X(KK)*R13(KK,KI)*X(M12)/(XX(1)*XX(3))
29 CONTINUE
DO 28 K=1,MK2
 M11=MK1+K
 RHO0(2,3)=RHO0(2,3)+X(M11)*R23(K,KI)*X(M12)/(XX(2)*XX(3))
20 CONTINUE
91 CONTINUE
IF(IEND-3) 90,91,90
90 DO 41 K=1,MK4
 M13 = M3 + K
 DO 42 KK=1,MK1
 RHO0(1,4) = RHO0(1,4) + X(KK)*R14(KK,K)*X(M13)/(XX(1)*XX(4))
42 CONTINUE
DO 43 K=1,MK2
 M11 = MK1 + KK
 RHO0(2,4) = RHO0(2,4) + X(M11)*R24(KK,K)*X(M13)/(XX(2)*XX(4))
43 CONTINUE
DO 44 KK=1,MK3
 M12 = MK2 + KK
 RHO0(3,4) = RHO0(3,4) + X(M12)*R34(KK,K)*X(M13)/(XX(3)*XX(4))
41 CONTINUE
IF(IEND-4) 92,91,92
92 DO 51 K=1,MK5
 M14 = M4 + K
 DO 52 KK=1,MK1
 RHO0(1,5) = RHO0(1,5) + X(KK)*R15(KK,K)*X(M14)/(XX(1)*XX(5))
52 CONTINUE
DO 53 K=1,MK2
 M11 = MK1 + KK
 RHO0(2,5) = RHO0(2,5) + X(M11)*R25(KK,K)*X(M14)/(XX(2)*XX(5))
53 CONTINUE
DO 54 KK=1,MK3
 M12 = MK2 + KK
 RHO0(3,5) = RHO0(3,5) + X(M12)*R35(KK,K)*X(M14)/(XX(3)*XX(5))
54 CONTINUE
DO 55 KK=1,MK4
 M13 = M3 + KK
 RHO0(4,5) = RHO0(4,5) + X(M13)*R45(KK,K)*X(M14)/(XX(4)*XX(5))
51 CONTINUE
91 CONTINUE
DO 32 I=1,IEND
DO 32 J=1,IEND
IF(I-J) 34,32,34
34 RHO(J,J)=RHO(I,J)
32 CONTINUE
RETURN
END
SUBROUTINE RHOCT
DIMENSION XX(25), RHO(5,5)
COMMON N1,N2,N3,N4,N5,OZ,DE,IOUT,ML,IEND
COMMON X(25)
COMMON R1(5,5), R2(5,5), R3(5,5), R4(5,5), R5(5,5), R6(5,5), R7(5,5), R8(5,5), R9(5,5), R10(5,5), R11(5,5), R12(5,5), R13(5,5), R14(5,5), R15(5,5), R16(5,5), R17(5,5), R18(5,5), R19(5,5), R20(5,5), R21(5,5), R22(5,5), R23(5,5), R24(5,5), R25(5,5)
COMMON NI,N2,N3,N4,N5
COMMON X(25)
COMMRFON N1,N2,N3,N4,N5,OZ,DE,IOUT,ML,IEND
COMMON X(25)
COMMRFON X(25)
)
C.flflON
COMMRFON
PROKLI(IOUT.1113)
117 FORMAT(1H1)
WRITE(IOUT,101)
101 FORMAT(1HO,T10.42HTHE INPUT WEIGHTS FROM FLETCHER AND POWELL)
WRITE(IOUT,100) (X(I),I=1,ML)
100 FORMAT(1HO,T1,5E20.6)
DO 920 I=1,ML
DO 920 J=1,ML
920 RH0(I,J)=OZ
DO 99 I=1,ML
99 RH0(I,I)=DE
DO 10 I=1,ML
10 XX(I)=OZ
DO 11 I=1,N1
11 XX(I)=XX(I)+X(I)*2
DO 12 I=1,N2
12 XX(I)=XX(I)*2
DO 13 I=1,N3
13 XX(I)=XX(I)+N1+N2+I
15 XX(I)=XX(I)+X(I)*2
DO 16 I=1,N5
16 XX(I)=XX(I)+N1+N2+N3+N4+I
16 XX(I)=XX(I)+X(I)*2
DO 14 I=1,ML
14 XX(I)=SQRT ClaXX(I))
CALL RHOCL(RH0,X,XX,R12,R13,R14,R15,R21,R25,R34,R43,R45,R1,N2)
WRITE(IOUT,112)
112 FORMAT(1HO,T10.4HTHE INPUT DATA)
WRITE(IOUT,113)((R11(I,J),J=1,N1),I=1,N1)
WRITE(IOUT,113)((R12(I,J),J=1,N2),I=1,N1)
WRITE(IOUT,113)((R22(I,J),J=1,N2),I=1,N2)
IF(IEND - 2) 888,30,900
888 CONTINUE
WRITE(IOUT,113)((R13(I,J),J=1,N3),I=1,N1)
WRITE(IOUT,113)((R23(I,J),J=1,N3),I=1,N2)
WRITE(IOUT,113)((R33(I,J),J=1,N3),I=1,N3)
113 FORMAT(1HO,T10.5E20.6)
IF(IEND - 3) 91,30,91
91 WRITE(IOUT,113) ((R14(I,J),J=1,N4),I=1,N1)
WRITE(IOUT,113) ((R4(I,J),J=1,N4),I=1,ML)
WRITE(IOUT,113) ((R34(I,J),J=1,N4),I=1,N3)
WRITE(IOUT,113) ((R44(I,J),J=1,N4),I=1,N4)
IF(IEND - 4) 92,90,93
92 WRITE(IOUT,113) ((R15(I,J),J=1,N5),I=1,N1)
WRITE(IOUT,113) ((R25(I,J),J=1,N5),I=1,N2)
WRITE(IOUT,113) ((R35(I,J),J=1,N5),I=1,N3)
WRITE(IOUT,113) ((R45(I,J),J=1,N5),I=1,N4)
WRITE(IOUT,113) ((R55(I,J),J=1,N5),I=1,N5)
90 CONTINUE
WRITE(IOUT,110)
110 FORMAT(1HO,T10,35HTHE CANONICAL-WEIGHTED CORRELATION)
 DO 3030 I=1,N13
3030 WRITE(IOUT,111) (RHO(I,J),J=1,IEND)
111 FORMAT(1HO,/(T10,SE20.6))
 CALL PADJ6(RHO,IEND,IOUT)
 CALL MATIU(RHO,IEND,D,DETRM,1D,IOUT)
 WRITE(IOUT,115) DETRM
115 FORMAT(1HO,T10,25HTHE DETERMINANT OF RHO IS .E20.6)
RETURN
END
SUBROUTINE PROJS(PRH0,KLL,IOUT)
DIMENSION PRH0(5,5),PRH0T(5,5),PRHOW(5,5)
K = 1
DO 40 I=1,KLL
 DO 40 J=1,KLL
 PRHOW(I,J) = PRH0(I,J)
 PRH0T(I,J) = PRH0(I,J)
 CONTINUE
WRITE(OUT,101)
101 FORMAT(IOU,T10.2B1HE INPUT CORRELATION MATRIX I
DO 444 I=1,KLL
 WRITE(OUT,108) (PRH0T(I,J),J=1,KLL)
108 FORMAT(IOU,T10.5E20.6)
CONTINUE
CALL DEPOV(PRHOW,KLL,DETM)
WRITE(OUT,102) DETM
102 FORMAT(IOU,T10.2B1HE DETERMINANT OF MATRIX = ,E20.6)
CALL MATIS(PRH0T,KLL,DETM,IOUT)
DETM = 1./DETM
WRITE(OUT,555) DETM
555 FORMAT(IOU,T10.3B1HE INVERSE OF THE DETERMINANT IS ,E20.6)
DO 70 (77.1,2,3,4,5,6,7,8,9,SS.1,K
77 CONTINUE
DO 55 I=1,KLL
 DO 55 J=1,KLL
 PRH0T(I,J) = ABS(PRH0(I,J))
 IF(I-J)56,55,56
56 PRH0T(I,J) = -PRH0T(I,J)
CONTINUE
DO 57 I=1,KLL
 DO 57 J=1,KLL
 PRHOW(I,J) = PRH0T(I,J)
 K = K + 1
 GO TO 39
1 DO 41 I=1,KLL
 DO 41 J=1,KLL
 PRH0T(I,J) = ABS(PRH0(I,J))
41 PRH0T(I,J) = ABS(PRH0(I,J))
 K = K + 1
 GO TO 39
2 DO 42 I=1,KLL
 DO 42 J=1,KLL
 PRHOW(I,J) = ABS(PRH0(I,J))
42 PRH0T(I,J) = ABS(PRH0(I,J))
 PRH0T(I,2) = -PRH0T(I,2)
 PRH0T(2,1) = -PRH0T(2,1)
 PRHOW(I,2) = PRH0T(I,2)
 PRHOW(2,1) = PRH0T(2,1)
 K = K + 1
 GO TO 39
3 DO 43 I=1,KLL
 DO 43 J=1,KLL
 PRH0T(I,J) = ABS(PRH0(I,J))
43 PRHOW(I,J) = PRH0T(I,J)
```
PRHOT(1,3) = -PRHOT(1,3)
PRHOT(3,1) = -PRHOT(3,1)
PRHOT(3,3) = PRHOT(1,3)
PRHOT(3,1) = PRHOT(3,1)
K = K + 1
GO TO 39
4 DO 44 I=1,KLL
DO 44 J=1,KLL
PRHOT(I,J) = ABS(PRHO(I,J))
PRHOT(I,J) = ABS(PRHO(I,J))
PRHOT(2,3) = -PRHOT(2,3)
PRHOT(3,2) = -PRHOT(3,2)
PRHOT(2,3) = PRHOT(2,3)
PRHOT(3,2) = PRHOT(3,2)
K = K + 1
GO TO 39
5 DO 45 I=1,KLL
DO 45 J=1,KLL
PRHOT(I,J) = ABS(PRHO(I,J))
PRHOTO(I,J) = ABS(PRHO(I,J))
PRHOT(1,4) = -PRHOT(1,4)
PRHOT(4,1) = -PRHOT(4,1)
PRHOT(1,4) = PRHOT(1,4)
PRHOT(4,1) = PRHOT(4,1)
K = K + 1
GO TO 39
6 DO 46 I=1,KLL
DO 46 J=1,KLL
PRHOT(I,J) = ABS(PRHO(I,J))
PRHOT(I,J) = ABS(PRHO(I,J))
PRHOT(2,4) = -PRHOT(2,4)
PRHOT(4,2) = -PRHOT(4,2)
PRHOT(2,4) = PRHOT(2,4)
PRHOT(4,2) = PRHOT(4,2)
K = K + 1
GO TO 39
7 DO 47 I=1,KLL
DO 47 J=1,KLL
PRHOT(I,J) = ABS(PRHO(I,J))
PRHOT(I,J) = ABS(PRHO(I,J))
PRHOT(3,4) = -PRHOT(3,4)
PRHOT(4,3) = -PRHOT(4,3)
PRHOT(3,4) = PRHOT(3,4)
PRHOT(4,3) = PRHOT(4,3)
K = K + 1
GO TO 39
8 DO 48 I=1,KLL
DO 48 J=1,KLL
PRHOT(I,J) = ABS(PRHO(I,J))
PRHOT(I,J) = ABS(PRHO(I,J))
PRHOT(1,2) = -PRHOT(1,2)
PRHOT(2,1) = -PRHOT(2,1)
PRHOT(2,4) = -PRHOT(2,4)
PRHOT(4,2) = -PRHOT(4,2)
```

PRHOT(1.2) = PRHOT(1.2)
PRHOT(2.1) = PRHOT(2.1)
PRHOT(2.4) = PRHOT(2.4)
PRHOT(4.2) = PRHOT(4.2)
K = K + 1
GO TO 39
9 DO 49 I=1,KLL
 DO 49 J=1,KLL
 PRHOT(I,J) = ABS(PRHO(I,J))
49 PRHOT(I,J) = ABS(PRHO(I,J))
 PRHOT(1.2) = -PRHOT(1.2)
 PRHOT(2.1) = -PRHOT(2.1)
 PRHOT(3.4) = -PRHOT(3.4)
 PRHOT(4.3) = -PRHOT(4.9)
 PRHOT(1.2) = PRHOT(1.2)
 PRHOT(2.1) = PRHOT(2.1)
 PRHOT(3.4) = PRHOT(3.4)
 PRHOT(4.3) = PRHOT(4.3)
 K = K + 1
 GO TO 39
99 RETURN
END
APPENDIX E

COMPUTER PROGRAM FOR THE REDUCTION SCALES
FOR E MATRIX

"R T E"
C THE PROGRAM FOR FINDING NEW WEIGHTS FOR MT

DIMENSION NRST(5), X(20), NT(5,5), T(5,5), XDE(5,5), IROW(5)
1 * PK(5), PL(5), H(5,5), WSTR1(5,5), WSTR2(5,5)

DATA W, WSTR1, WSTR2, PL, PK, 05 = 0.00/

C REWIND 10
IOUT = 6
INPUT = 10
READ (INPUT, 101) NWT, NWT1, WT2, WT3
101 FORMAT (215, 2E20, 6)
READ (INPUT, 102) NSETS, (NRST(I), I=1,5)
102 FORMAT (6I2)
READ (INPUT, 103) (X(I), I=1, NWT)
103 FORMAT (4E20, 6)
DO 10 JA = 1, NSETS
IA = NRST(JA) + 1
READ (INPUT, 104) (NT(JA, I), I=1, IA)
104 FORMAT (5I8)
10 CONTINUE
READ (INPUT, 104) NTAL
DO 11 J = 1, NSETS
READ (INPUT, 105) NO, MK, ((T(J, IA, JA), JA=1, NO), IA=1, MK)
105 FORMAT (212, 4E19, 6)
C105 FORMAT (212, 4E20, 6)
IROW(J) = MK
11 CONTINUE
IA = 0
DO 12 I = 1, NSET6
JA = NRST(I)
DO 12 JB = 1, JA
IA = IA + 1
XDEX(I, JB) = X(IA)
12 CONTINUE
DO 20 ISET = 1, NSETS
MK = IROW(ISET)
NO = MK + 1
DO 21 IX = 1, NO
DO 21 JX = 1, NO
H(ISET, JX) = H(ISET, JX) + XDEX(ISET, IX) * T(ISET, IX, JX)
21 CONTINUE
20 CONTINUE
DO 23 ISET = 1, NSETS
MNT = NRST(ISET) + 1
DO 24 J = 1, MNT
24 PK(ISET) = PK(ISET) + FLOAT(NT(ISET, J)) * H(ISET, J) / FLOAT(NTAL)
DO 28 J = 1, MNT
28 WSTR1(ISET, J) = W(ISET, J) - PK(ISET)
23 CONTINUE
DO 25 ISET = 1, NSETS
MNT = NRST(ISET) + 1
DO 26 J = 1, MNT
26 PL(ISET) = PL(ISET) + FLOAT(NT(ISET, J)) * WSTR1(ISET, J) * WSTR1(ISET, J)
25 PL(ISET) = SORT(PL(ISET))
DO 29 ISET=1,NSETS
MENT = NRST(ISET) + 1
DO 30 J=1,MENT
30 WSTR2(ISET,J) = WSTR(ISET,J)/PL(ISET)
29 CONTINUE
WRITE(IOUT,151)
151 FORMAT(1H11///T35.9HTHE PROGRAM FOR FINDING THE CATEGORICAL 6CALIES FOR E-MATRIX)
WRITE(IOUT,152) NSETS-(NRST(I),I=1,5)
152 FORMAT(1H0,T10.34HNUMBER OF SETS (NSETS)
151//
1 T10.34HNUMBER OF ROWS IN (1,1) SET (N1) =.15/
1 T10.34HNUMBER OF ROWS IN (2,2) SET (N2) =.15/
1 T10.34HNUMBER OF ROWS IN (3,3) SET (N3) =.15/
1 T10.34HNUMBER OF ROWS IN (4,4) SET (N4) =.15/
1 T10.34HNUMBER OF ROWS IN (5,5) SET (N5) =.15/)
WRITE(IOUT,153)
153 FORMAT(1H0,T10.44HTHE WEIGHTS FROM FLEISCHER-AND POWELL PROGAM)
DO 171 I=1,NRTS
WRITE(IOUT,154) I,X(I)
154 FORMAT(1H0,T20.2HX(.13.4L...) =.E20.6)
171 CONTINUE
WRITE(IOUT,155) NTAL
155 FORMAT(1H0,T10.31HTHE MARGINAL TOTAL FOR SET .13//T10.510))
173 CONTINUE
WRITE(IOUT,156) NTAL
156 FORMAT(1H0,T10.17HTHE GRAND TOTAL =.10)
WRITE(IOUT,160)
160 FORMAT(1H0,T10.26HTHE T CONDITIONAL INVERSES)
DO 175 J=1,NSETS
MK = IRW(J)
NO = MK + 1
WRITE(IOUT,160) J
180 FORMAT(1H0,T10.0HFOR SET .13)
DO 181 I=1,MK
181 WRITE(IOUT,102) (T(J,I,J),JA=1,NO)
182 FORMAT(1H0,T10.5E20.6)
175 CONTINUE
WRITE(IOUT,185)
185 FORMAT(1H0///T10.40HTHE CATEGORICAL WEIGHTS FOR THE E MATRIX)
DO 195 ISET=1,NSETS
WRITE(IOUT,161) ISET
161 FORMAT(1H0///T10.31HTHE CATEGORICAL WEIGHTS FOR SET .13)
MENT = NRST(ISET) + 1
WRITE(IOUT,189) (WSTR2(ISET,J),J=1,MENT)
189 FORMAT(1H0,T10.5E20.6)
186 CONTINUE
CALL EXIT
END