LASER ATMOSPHERIC PROPAGATION KINETICS

C. A. Brau, et al

Avco Everett Research Laboratory, Incorporated

Prepared for:
Office of Naval Research
Advanced Research Projects Agency

June 1974

DISTRIBUTED BY:
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151
A model has been developed to describe the kinetics of absorption of DF and CO radiation by the atmosphere. The model has been exercised for pulsed lasers to determine the atmospheric temperature change resulting from this absorption. Calculations were performed both at sea level and at an altitude of 12 km for two limiting concentrations of water and for laser energies varying over several orders of magnitude. The results for DF indicate that N$_2$O will bleach at intensities of 106 to 108 W/cm2, depending on the pressure and humidity. Absorption of CO laser radiation by H$_2$O and
FOREWORD

ARPA Order No. 1806

Program Code No. 3F90

Name of Contractor: Avco Everett Research Laboratory, Inc.

Effective Date of Contract: May 1, 1973

Contract Expiration Date: December 31, 1973

Amount of Contract: $63,028

Contract No: N00014-73-C-031

Principal Investigator and Phone No: C. A. Brau - (617)389-3000, Ext. 532

Scientific Officer: Director, Physics Program, Physical Sciences Division
Office of Naval Research Department of the Navy,
Arlington, Virginia 22217

Short Title of Work: Propagation Kinetics

The AERL personnel who authored this report are Dr. Charles A. Brau,
Dr. Ellen R. Bressel and Mr. Sheldon L. Glickler.

The authors gratefully acknowledge the contributions of Drs. Lee A. Young,
Bennet Kivel and C. Bradley Moore to this program.
SUMMARY

PURPOSE

The purpose of this program was to develop an analytical model describing the atmospheric absorption of laser energy and the subsequent kinetic processes of energy exchange. The final result of this effort is the quantitative determination of the atmospheric temperature change resulting from this absorption.

The major effort has been concentrated on the DF laser system. Eight representative strong laser transitions were selected. The atmospheric absorbers, energy levels and absorption cross sections have been specified. The analytical kinetic model has been developed and rate constants have been selected for use in the calculation. With a simple square wave pulse shape, the model has been used to give an assessment of the kinetic effects of the absorbers in heating the atmosphere both at sea level and at an altitude of 12 kilometers. Two limiting concentrations of water have been used and the laser energy has been varied over several orders of magnitude. The results are summarized below and detailed in subsequent sections. The sea level atmospheric temperature change resulting from absorption of CO laser energy by atmospheric water is also given.

CONCLUSIONS

A model has been developed to describe the kinetics of absorption of DF and CO laser radiation by the atmosphere.

DF laser radiation is absorbed by N₂ (collision induced continuum band), CO₂ (ν₃), N₂O (2ν₁ and ν₁ + 2ν₂), CH₄ (2ν₄ and ν₂ + ν₄), HDO (ν₁) and H₂O (ν₂ and 2ν₂) and the H₂O continuum. Most of the absorption bands from the ground vibrational level are well documented in the literature, but considerable discrepancies exist concerning absorption by H₂O and HDO. No information is available regarding absorption from the upper vibrational levels, and these have been ignored. Under conditions when the absorbing transition is bleached, this may become a severe limitation for the model. CO laser radiation is absorbed by CO₂ and H₂O. Of these two, H₂O (ν₂) is overwhelmingly the most important band, and this band is well documented in the literature.

The kinetics model describes the vibrational relaxation of these absorbing species in considerable detail. Rotational relaxation is shown to be unimportant for intensities below 10¹⁰ W/cm². Considerable information exists regarding the relaxation of N₂, CO₂ (ν₃), CH₄ (ν₂ and ν₄) and H₂O (ν₂). However, very little useful information exists regarding
the relaxation of $N_2O (\nu_1 \text{ and } \nu_2)$ and HDO (ν_1). Since the relaxation of HDO is presumed (by analogy to H_2O) to be very fast, these rates are not too critical. However, N_2O is an important absorber and the effects of vibrational relaxation in N_2O are significant. Thus, the order-of-magnitude uncertainties which exist in some of the important N_2O relaxation processes represent a serious limitation in the model.

Preliminary results have been obtained for the absorption of CO and DF radiation under a variety of conditions. The results indicate that N_2O will bleach at intensities of 10^6 to 10^8 W/cm2, depending on the pressure and humidity. Under conditions of very low humidity, absorption by CH_4 will cause cooling of the atmosphere for short times. Absorption of CO laser radiation by $H_2O (\nu_2)$ and subsequent heating of the atmosphere is much stronger than any of the processes affecting DF. Under conditions of low humidity, however, $V-V$ transfer from $H_2O (\nu_2)$ to O_2 will slow the rate of heating of the atmosphere.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>ii</td>
</tr>
<tr>
<td>Summary</td>
<td>iii</td>
</tr>
<tr>
<td>List of Illustrations</td>
<td>vii</td>
</tr>
<tr>
<td>I. SPECTROSCOPY</td>
<td></td>
</tr>
<tr>
<td>A. Selection of DF Laser Transitions</td>
<td>1</td>
</tr>
<tr>
<td>B. Selection of Atmospheric Absorbers and Absorption Coefficients for DF Laser Lines</td>
<td>2</td>
</tr>
<tr>
<td>C. Selection of CO Laser Lines</td>
<td>5</td>
</tr>
<tr>
<td>D. Selection of CO Atmospheric Absorbers and Absorption Coefficients</td>
<td>5</td>
</tr>
<tr>
<td>II. KINETICS OF ABSORPTION OF DF AND CO LASER RADIATION</td>
<td></td>
</tr>
<tr>
<td>A. Rotational Relaxation</td>
<td>9</td>
</tr>
<tr>
<td>B. Vibrational Relaxation</td>
<td>13</td>
</tr>
<tr>
<td>C. Relaxation Equations</td>
<td>26</td>
</tr>
<tr>
<td>III. RESULTS</td>
<td></td>
</tr>
<tr>
<td>A. Absorption of DF Laser Radiation</td>
<td>31</td>
</tr>
<tr>
<td>B. Absorption of CO Laser Radiation</td>
<td>32</td>
</tr>
<tr>
<td>References</td>
<td>43</td>
</tr>
<tr>
<td>Appendices</td>
<td></td>
</tr>
<tr>
<td>A. Detailed Balance for Optical Transitions</td>
<td>49</td>
</tr>
<tr>
<td>B. Partition Functions</td>
<td>51</td>
</tr>
<tr>
<td>C. Summary of Vibrational Relaxation Processes and Rates</td>
<td>55</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vibrational Energy Level Diagram for DF and CO Laser Atmospheric Absorption Kinetics</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>Kinetics of Absorption of DF Laser Radiation by N₂</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>Kinetics of Absorption of DF Laser Radiation by CO₂</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>Kinetics of Absorption of CO and DF Laser Radiation by H₂O</td>
<td>19</td>
</tr>
<tr>
<td>5</td>
<td>Kinetics of Absorption of DF Laser Radiation by N₂O</td>
<td>21</td>
</tr>
<tr>
<td>6</td>
<td>Kinetics of Absorption of DF Laser Radiation by CH₄</td>
<td>25</td>
</tr>
<tr>
<td>7</td>
<td>Kinetics of Absorption of DF Laser Radiation by HDO</td>
<td>27</td>
</tr>
<tr>
<td>8</td>
<td>Translational Temperature Rise for Atmospheric Absorption at DF Laser Wavelengths at Sea Level</td>
<td>33</td>
</tr>
<tr>
<td>9</td>
<td>Translational Temperature Rise for Atmospheric Absorption at DF Laser Wavelengths at Sea Level</td>
<td>34</td>
</tr>
<tr>
<td>10</td>
<td>Translational Temperature Rise for Atmospheric Absorption at DF Laser Wavelengths at Sea Level</td>
<td>36</td>
</tr>
<tr>
<td>11</td>
<td>Translational Temperature Rise for N₂O Absorption at DF Laser Wavelengths as a Function of Incident Power at Sea Level</td>
<td>37</td>
</tr>
<tr>
<td>12</td>
<td>Power Distribution for Absorption by N₂O of P₂ (10) of Laser Line as a Function of Incident Power</td>
<td>38</td>
</tr>
<tr>
<td>13</td>
<td>Translational Temperature Rise Due to Absorption by CH₄ at DF Laser Wavelengths</td>
<td>40</td>
</tr>
<tr>
<td>14</td>
<td>Translational Temperature Rise for Atmospheric Absorption at DF Laser Wavelengths at 12 km Altitude. (Note CH₄ temperature change is negative.)</td>
<td>41</td>
</tr>
<tr>
<td>15</td>
<td>Translational Temperature Rise for N₂O Absorption at DF Laser Wavelengths as a Function of Incident Power at 12 km Altitude</td>
<td>42</td>
</tr>
<tr>
<td>16</td>
<td>Translational Temperature Rise for H₂O Absorption at CO Laser Wavelengths at Sea Level</td>
<td>44</td>
</tr>
</tbody>
</table>

Preceding page blank
I. SPECTROSCOPY

A. SELECTION OF DF LASER TRANSITIONS

In a DF chemical laser the DF molecules are formed by chemical reaction in high vibrational and rotational states. As they lase and relax by collisional processes they cascade down to lower, thermally populated levels. Thus, in pulsed DF lasers the various transitions do not all lase simultaneously. Rather, the higher vibrational levels tend to lase first with lower levels appearing later in the pulse. Even in continuous wave (CW) lasers the relative strength of the various lines is a complex function of the chemical and relaxation processes occurring in the laser. The various DF lines are absorbed by different species with widely varying absorption cross sections. Therefore, it may be found desirable to suppress certain transitions, even though they may be strong laser lines, if they are strongly absorbed and adversely affect the propagation of other lines. However, this may be difficult to accomplish in DF lasers due to their intrinsic high gain and the complex nature of the processes controlling the relative strength of the various lines.

The eight DF laser transitions shown in Table I were chosen from the experimental work on pulsed DF lasers of Deutsch (1) and Basov, et al. (2) Reference 1, which contains the most accurate experimental measurements of line position (± 0.08 cm\(^{-1}\)), was used to determine the transition frequency, and the relative energy data of Ref. 2 were used to select lines of strong output in pulsed lasers. Care was employed to ensure that all known atmospheric absorbers were included for these lines.

<table>
<thead>
<tr>
<th>Laser Line Identification</th>
<th>Laser Frequency (cm(^{-1}))</th>
<th>Relative Energy*</th>
</tr>
</thead>
<tbody>
<tr>
<td>2P (8)</td>
<td>2631.09</td>
<td>2.37</td>
</tr>
<tr>
<td>2P (9)</td>
<td>2605.87</td>
<td>2.68</td>
</tr>
<tr>
<td>2P (10)</td>
<td>2580.16</td>
<td>4.24</td>
</tr>
<tr>
<td>2P (11)</td>
<td>2553.97</td>
<td>3.46</td>
</tr>
<tr>
<td>3P (8)</td>
<td>2546.37</td>
<td>2.74</td>
</tr>
<tr>
<td>3P (9)</td>
<td>2521.81</td>
<td>5.38</td>
</tr>
<tr>
<td>3P (10)</td>
<td>2496.61</td>
<td>3.35</td>
</tr>
<tr>
<td>3P (11)</td>
<td>2471.34</td>
<td>2.26</td>
</tr>
</tbody>
</table>

*Energy of 1P (10) transition is taken as 1.
B. SELECTION OF ATMOSPHERIC ABSORBERS AND ABSORPTION COEFFICIENTS FOR DF LASER LINES

The atmospheric absorbers of importance at DF laser wavelengths are N$_2$O, CH$_4$, H$_2$O, HDO and CO$_2$. This is confirmed by both absorption cell experiments and theoretical calculations based on experimental data. Reference 4 is an Air Force Cambridge Research Laboratory (AFCRL) compilation of the molecular spectroscopic parameters for a number of infrared-active molecules (including those listed above) which occur naturally in the terrestrial atmosphere. Parameters included in the compilation for each absorption line are: frequency, intensity, half-width, energy of the lower state of the transition, vibration and rotational identifications of the upper and lower energy states, an isotopic identification, and a molecule identification. We have written a code which sorts the AFCRL data according to absorbing molecules and vibrational transition over a given frequency interval and calculates the absorption cross section for the absorbing molecule at the laser frequency of interest.

The sea level absorption cross sections used for the atmospheric absorbers at DF laser frequencies are given in Table II. The absorption by N$_2$ on the collision induced vibrational continuum band centered around 4.3μm is not included here, but is a well documented phenomenon. Calculations indicate that the N$_2$ continuum is a strong absorber at the longest wavelengths at sea level. Following McClatchy the effect of absorption due to the water continuum was not included. This effect will be investigated in a later phase of this effort. At higher altitudes the cross sections are reduced according to the appropriate pressure dependence. The temperature dependence is not included at this time. (See Section III, RESULTS.)

The N$_2$O cross sections computed are in excellent agreement with the absorption cell measurements of Ref. 3 for all the laser transitions considered. For CH$_4$ the agreement between these cross sections and the absorption cell measurements of Ref. 3 are not as good. In all cases we have used the cross sections computed from the AFCRL data, which average about a factor of 3 to 4 lower than the absorption cell measurements. The effects of any errors thus introduced on the calculated atmospheric temperature rise are small, because in no case is CH$_4$ the major absorber. For CO$_2$, where the absorption is due to lines of the 4.3μm band (hundreds of wave numbers removed from the laser frequency) we have used the experimental results of Ref. 3. These fall between the values calculated form the AFCRL data using a Lorentz line shape (higher than Ref. 3) and the best experimental line shape fit to CO$_2$ absorption data (lower than Ref. 3).

The absorption cross section is calculated from the integrated absorption coefficient assuming a Lorentz line shape using the relation:

$$\sigma = \frac{S}{\pi} \frac{\Delta \nu}{(\nu - \nu_0)^2 + \Delta \nu^2}$$

(1)
TABLE II

SEA LEVEL ABSORPTION CROSS SECTIONS AT
DF LASER WAVELENGTHS
(cm²/molecule)

<table>
<thead>
<tr>
<th>DF Laser Line</th>
<th>N₂O</th>
<th>HDO</th>
<th>H₂O</th>
<th>CH₄</th>
<th>CO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>2P (11)</td>
<td>1.0⁻²⁰</td>
<td>3.7 x 10⁻²³</td>
<td>8.0 x 10⁻²⁹</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2P (10)</td>
<td>2.9⁻²⁰</td>
<td>1.77⁻²²</td>
<td>1.4 x 10⁻²⁸</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2P (9)</td>
<td>3.57⁻²²</td>
<td>1.53⁻²¹</td>
<td>1.0 x 10⁻²⁷</td>
<td>1.5⁻²³</td>
<td>-</td>
</tr>
<tr>
<td>2P (8)</td>
<td>-</td>
<td>5.0⁻²²</td>
<td>6.8⁻²⁶</td>
<td>2.0⁻²²</td>
<td>-</td>
</tr>
<tr>
<td>3P (11)</td>
<td>4.2⁻²¹</td>
<td>6.7 x 10⁻²³</td>
<td>1.1⁻²⁵</td>
<td>-</td>
<td>1.4⁻²³</td>
</tr>
<tr>
<td>3P (10)</td>
<td>2.39⁻²²</td>
<td>3 x 10⁻²⁴</td>
<td>9.3⁻²⁶</td>
<td>-</td>
<td>6.5⁻²⁴</td>
</tr>
<tr>
<td>3P (9)</td>
<td>4.7⁻²²</td>
<td>1.2 x 10⁻²³</td>
<td>8.0 x 10⁻²⁸</td>
<td>-</td>
<td>3.15⁻²⁴</td>
</tr>
<tr>
<td>3P (8)</td>
<td>2.9⁻²⁰</td>
<td>5.7 x 10⁻²³</td>
<td>7.4 x 10⁻²⁸</td>
<td>2.5⁻²²</td>
<td>-</td>
</tr>
</tbody>
</table>
where \(\sigma \) is the cross section in \(\text{cm}^2/\text{particle} \), \(S \) (the integrated absorption cross section \(\text{cm}^{-1}/\text{particle}\cdot\text{cm}^{-2} \)) = \(\int \sigma(v) \, dv \), \(\Delta \nu \) is the half-width in \(\text{cm}^{-1} \) and \((v - v_0) \) is the difference in wave number between the laser line frequency and the center of the absorbing line. This procedure gives too high a value for CO\(_2\), since CO\(_2\) is known to be sub-Lorentzian far from line center. Reference 6 reports measurements of CO\(_2\) absorption both in pure CO\(_2\) and in mixtures of CO\(_2\) with N\(_2\) and O\(_2\). The absorption due to the wings of the strong lines in the \(v_3 \) band centered at 2349 cm\(^{-1}\) is much less than that calculated with the Lorentz shape. The data in N\(_2\) and O\(_2\) are fit(6) with the following equation, which retains the Lorentz pressure dependence but requires a nearly exponential modification of the frequency dependence.

\[
\sigma = \frac{S \Delta \nu}{(v - v_0)^2 + \Delta \nu^2} e^{-0.46 \left(|v - v_0| - 5 \right)^{0.46}} \quad (2)
\]

Use of this relation gives values for CO\(_2\) absorption cross sections at the DF laser frequencies of interest which are lower than those of Ref. 3. The cross sections for CO\(_2\) given in Table II are consistent with the measurements in Ref. 3. It should be noted that any errors introduced by uncertainties in the value of the CO\(_2\) cross sections would be significant only at high altitudes where CO\(_2\) becomes a significant absorber (see Fig. 14). At sea level CO\(_2\) is only a very minor contributor to the atmospheric temperature rise.

For atmospheric water vapor the situation is complicated by the fact that both H\(_2\)O and HDO are absorbers, with HDO such a strong absorber that it is significant even in its natural isotopic abundance of 300 ppm of H\(_2\)O. The calculated cross sections for H\(_2\)O and HDO obtained from the AFCRL data and the experimental results of Ref. 3 are in sharp disagreement for individual laser lines. Because the experimental absorption cross sections were obtained by subtracting the very large absorption due to D\(_2\)O from the measured absorption, we have rather arbitrarily assumed the error to be in the experiment and have chosen to use the values calculated from the AFCRL data which for H\(_2\)O are in agreement with data of Bates. (7) It turns out that, when the laser power is evenly distributed over all the laser lines with equal powers, either set of cross section values gives the same temperature rise. This is because the sum over all lines of the absorption cross sections for HDO-H\(_2\)O happens to be the same for both the AFCRL and Ref. 3 cases. It should be noted, however, that for individual laser lines the values are very different and that any calculations of the temperature rise due to H\(_2\)O-HDO, which use less than all of the eight laser lines of Table I or employ different power levels on the lines, may be sensitive to which set of cross section values is chosen.
C. SELECTION OF CO LASER LINES

In contrast to DF chemical lasers, the CO molecules in electric CO lasers are first excited to relatively low vibrational levels by the discharge. They are then pumped to rather high vibrational levels by intermolecular V-V transfer processes. Due to anharmonic effects the vibrational distribution function is generally strongly distorted from a Boltzmann distribution in a manner which favors the higher vibrational levels. As a result, the highest gain is usually observed in relatively high levels (typically $7 \lesssim v \lesssim 15$). Recently, lasing has been observed on the lower levels (down to the 1-0 transition) in high gain-low loss systems.

As we shall see, the higher vibrational levels which emit at longer wavelengths, are more strongly absorbed by the $\text{H}_2\text{O} (\nu_2)$ 6.3-μm band. In addition, the kinetics of the lower levels take place more rapidly, offering the possibility of greater specific power. For these reasons it may be desirable to suppress lasing on the high vibrational levels (with a grating or passive H_2O absorber, for example) and force lasing on the low vibrational levels. Experiments to demonstrate the feasibility of this are currently underway at AERL.

To assess the relative advantages of low and high vibrational levels it is necessary to consider a wide range of transitions. The positions of the CO laser lines used in calculating the results presented here are given in Table III together with absorption coefficients and cross sections for absorption by H_2O, the only important absorber. The wavenumber positions for CO, listed in Table III, were calculated from spectroscopic constants given by Mantz. (8a, b) These should be good to ±0.01 cm$^{-1}$. The wavenumbers agree well with those used by Long(9) and McClatchy.(10)

D. SELECTION OF CO ATMOSPHERIC ABSORBERS AND ABSORPTION COEFFICIENTS

Survey calculations were made of absorption of CO laser lines by H_2O, CO_2, O_3, N_2O and CH_4. Compared with H_2O, the absorption of O_3, N_2O and CH_4 was negligible. The absorption of the 6P (9) CO line at 1977.28 cm$^{-1}$ by CO_2 was also negligible. For the 2P (9) CO line at 2081.26 cm$^{-1}$, the CO_2 absorption was down from that due to H_2O by a factor of 6. (The sub-Lorentz CO_2 line contour of Winters, et al., (6) was used.) In the remainder of this work we concern ourselves only with absorption by H_2O.

Extensive calculations of absorption of CO laser radiation by atmospheric H_2O have been made by McClatchey, (10, 11) However, this work has two limitations. First, the Lorentz contour, Eq. (1) was used for the H_2O spectral absorption coefficient. The experiments of Long, et al., (9) show that the absorption of CO laser lines in the wings of H_2O lines is typically 40% greater than given by Eq. (1). To fit their data they
Table III

Positions of CO Laser Lines and Absorption Coefficients and Cross Sections for H₂O Absorption

<table>
<thead>
<tr>
<th>Laser Line</th>
<th>(\nu) (cm(^{-1}))</th>
<th>(k) for (p_{\text{H}_2\text{O}} = 5.8) torr (km(^{-1})) *</th>
<th>(10^{-24} \sigma) cm(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2\text{P}(8))</td>
<td>2085.343</td>
<td>0.090</td>
<td>0.065</td>
</tr>
<tr>
<td>(2\text{P}(9))</td>
<td>2081.285</td>
<td>0.080</td>
<td>0.052</td>
</tr>
<tr>
<td>(2\text{P}(15))</td>
<td>2056.047</td>
<td>0.096</td>
<td>0.038</td>
</tr>
<tr>
<td>(3\text{P}(10))</td>
<td>2051.975</td>
<td>0.171</td>
<td>0.108</td>
</tr>
<tr>
<td>(3\text{P}(15))</td>
<td>2030.158</td>
<td>0.132</td>
<td>0.063</td>
</tr>
<tr>
<td>(3\text{P}(16))</td>
<td>2025.875</td>
<td>0.46</td>
<td>0.030</td>
</tr>
<tr>
<td>(4\text{P}(8))</td>
<td>2033.143</td>
<td>0.133</td>
<td>0.038</td>
</tr>
<tr>
<td>(4\text{P}(9))</td>
<td>2029.287</td>
<td>0.137</td>
<td>0.049</td>
</tr>
<tr>
<td>(4\text{P}(15))</td>
<td>2004.337</td>
<td>0.21</td>
<td>0.072</td>
</tr>
<tr>
<td>(5\text{P}(9))</td>
<td>2003.167</td>
<td>0.24</td>
<td>0.088</td>
</tr>
<tr>
<td>(6\text{P}(9))</td>
<td>1977.277</td>
<td>0.29</td>
<td>0.130</td>
</tr>
<tr>
<td>(6\text{P}(10))</td>
<td>1973.299</td>
<td>0.32</td>
<td>0.117</td>
</tr>
</tbody>
</table>

* \(k = \sigma N \times 10^5 \) where \(\sigma \) is cross section/particle in cm\(^2\) and \(N \) is number density in particles/cc.
assumed that the absorption coefficient follows the Lorentz contour for $|\nu - \nu_0| \leq \nu_m$, but that outside this range it is given by

$$
\sigma(\nu) = \frac{S}{\pi} \frac{(\nu_m)^2 \Delta \nu}{[\nu_m^2 + (\Delta \nu)^2] |\nu - \nu_0|^m} \quad |\nu - \nu_0| \geq \nu_m
$$

Equations (1) and (3) agree at $|\nu - \nu_0| = \nu_m$. The best fit was obtained using $\nu_m = 3 \Delta \nu$ and $m = 1.77$.

McClandtchey and Long considered absorption by H$_2$O lines whose centers lie within 20 or 25 cm$^{-1}$, respectively, of the CO laser line. This amounts to a cut-off: $\sigma(\nu) = 0$, $\nu > \nu_{\text{max}}$ or $\nu < \nu_{\text{min}}$. However, we find by allowing $\nu_{\text{min}} = \nu_0 - 350$ cm$^{-1}$, that in some cases half the absorption is due to lines 150 cm$^{-1}$ distant. The true contour in the far wings of H$_2$O lines cannot be determined from the available data. Unfortunately, H$_2$O does not form sharp band heads as does CO$_2$, whose far wing line profile may be determined more reliably. We consider extrapolation of Eq. (3) less arbitrary than cutting it off. Using the extended line profile we find that Long's data may be fitted using $\nu = 3 \Delta \nu$ and $m = 1.88$. Values of m for various individual lines ranged from 1.85 to 1.91.

In mixtures of water vapor and air the H$_2$O half-width is given by

$$
\Delta \nu = a_o \rho_t [1 + (B-1) \chi]
$$

where a_o is the half-width per atmosphere of air, ρ_t is the total pressure in atmospheres, χ is the mole fraction of H$_2$O in the mixture and B is the self-broadening coefficient. Long, et al., find $B = 8$ to 27. We used the value $B = 5$ from Ref. 12. The difference is insignificant because $\chi < 0.01$ in cases of interest.

Our results are presented in Table III. Equation (3) was used with $\nu_m = 3 \Delta \nu$ and $m = 1.88$. The cut-offs were $\nu_{\text{min}} = \nu_0 - 350$ cm$^{-1}$ and $\nu_{\text{max}} = \nu_0 + 50$ cm$^{-1}$. (Absorption at larger wavenumbers, farther away from the center of the 6.3-μ H$_2$O band is negligible.) The absorption coefficients are larger than those scaled from McClatchey's calculations(10) for $p_{\text{H}_2\text{O}} = 3.3$ torr (mid-latitude winter case), due to the use of the "super-Lorentz" profile and its extension farther into the wings of the H$_2$O lines. There are no Ohio State experimental or theoretical results for many of these lines. Their work has generally been on lines at smaller wavenumbers (higher CO vibrational levels) located nearer the center of the 6.3-μ band of H$_2$O, for which the attenuation coefficients are typically larger.

Table III shows the cross sections we have used for water based on the above discussion. For comparison we have shown the differences between our results and those of McClatchey(10) in terms of absorption coefficients. (Note added in proof: A recent work(13) reports absorption coefficients in good agreement with the present ones.)
II. KINETICS OF ABSORPTION OF
DF AND CO LASER RADIATION

The absorption of DF laser radiation is complicated by the number of atmospheric species which absorb this radiation and by the fact that the upper level of the absorbing transition is frequently a high-lying vibrational level, as in N\textsubscript{2}O and CH\textsubscript{4}. Thus, to describe the absorption kinetics it is necessary to include a large number of levels. A complete diagram of all the important vibrational levels of the atmospheric species important for DF and CO absorption kinetics is shown in Fig. 1. It is important to keep in mind that each vibrational level shown actually consists of a manifold of vibration-rotation states.

A. Rotational Relaxation

Because of the large number of levels, it is necessary to make approximations in which groups of levels are lumped together and treated as a single level. To begin with, it will be assumed that all the rotational levels belonging to a given vibrational level remain in equilibrium with one another at the translational temperature T. This assumption will be valid if the rotational relaxation time \(\tau_{R} \) is short compared with the time for a radiatively induced transition, that is, if

\[
\Phi_{v} \sigma_{v} \tau_{R} \ll 1, \quad (5)
\]

where \(\Phi_{v} \) is the flux of laser photons, and \(\sigma_{v} \) is the absorption cross section. Both the rotational relaxation time and the absorption cross section depend upon the pressure through the molecular collision frequency \(\nu_{c} \). Thus, the adequacy of assumption (5) will depend on the pressure. For a purely Lorentz broadened line, the cross section at the frequency \(v \) is given by Eq. (1). The line half-width \(\Delta \nu \) is proportional to the pressure and may be represented by the relation

\[
\Delta \nu = \alpha p,
\]

where \(p \) is the pressure.

The rotational relaxation time is more difficult to quantify precisely. Since rotational relaxation involves a great many levels, it is inevitably a complex process. For example, an extremely short laser pulse (shorter than the time between molecular collisions) will affect only molecules in specific quantum states. The population of the perturbed states will then
Fig. 1 Vibrational Energy Level Diagram for DF and CO Laser Atmospheric Absorption Kinetics
relax by reorientation of the remaining molecules having the same total angular momentum and by transitions from nearby rotational energy levels. The appropriate relaxation time for this case corresponds to the gain relaxation time measured following a Q-switched laser pulse. Longer laser pulses will perturb the populations of all the rotational levels around the level from which the transition originates; in this case the time for the system to relax to equilibrium will be considerably longer. Moreover, experimental evidence indicates that the thermally averaged relaxation time (measured acoustically) may correspond to as small as a few collisions or as large as 30 collisions or more (for rotationally light molecules, such as HCl, at elevated temperatures). Moreover, it has been found both theoretically and experimentally that for molecules in high rotational levels the rotational relaxation time increases exponentially with rotational energy.

To examine the importance of rotational relaxation it is convenient to express the relaxation time in the form

$$p R = \beta,$$

where \(\beta \) is independent of pressure. Equation (4) may then be expressed

$$\Phi \sigma T R = \Phi \frac{a \beta}{\pi} \frac{S}{(v - v_o)^2 + (ap)^2} \ll 1. \quad (7)$$

When the laser line lies in the wing of the absorber (\(|v - v_o| / ap \gg 1 \)) we obtain the inequality

$$\Phi < \frac{\pi (v - v_o)^2}{a \beta S}. \quad (8)$$

The right-hand side is a function only of the laser frequency and the absorbing level, and is independent of the pressure. The limiting fluxes for the most important DF laser lines, calculated using this expression, are summarized in Table IV. At sufficiently high pressures (\(ap / |v - v_o| \gg 1 \)) the laser line will lie within the Lorentz width of the absorber. The limiting flux \(\Phi_v \) will then increase as \(p^2 \). At sufficiently low pressures, of course, the line will become Doppler broadened and the cross section \(\sigma_v \) will be independent of pressure. The limiting flux \(\Phi_v \) at which rotational relaxation becomes important will then be proportional to the pressure; at a sufficiently low pressure rotational relaxation will always become important. However, as shown in Table IV, this occurs only at very low pressures (< 0.01 atm).

When rotational relaxation becomes important the atmosphere will begin to "bleach," that is, molecules will be removed from the absorbing level and deposited in the upper level faster than they can be relaxed by collisions and the atmosphere will become transparent. Thus, by ignoring
TABLE IV
DF LASER INTENSITY AT WHICH ROTATIONAL RELAXATION BECOMES IMPORTANT

<table>
<thead>
<tr>
<th>DF Laser Transition</th>
<th>Absorbing Species</th>
<th>Relaxation Time (collisions)</th>
<th>Laser Intensity (W/cm²)</th>
<th>Pressure Range (atm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2P (8)</td>
<td>CH₄</td>
<td>10</td>
<td>8 x 10⁹</td>
<td>0.01 < p < 0.2</td>
</tr>
<tr>
<td>2P (10)</td>
<td>N₂O</td>
<td>2</td>
<td>4 x 10⁹</td>
<td>0 < p < 1</td>
</tr>
<tr>
<td>2P (11)</td>
<td>N₂O</td>
<td>2</td>
<td>1 x 10¹⁰</td>
<td>0 < p < 3</td>
</tr>
<tr>
<td>3P (8)</td>
<td>N₂O</td>
<td>2</td>
<td>1 x 10⁹</td>
<td>0.02 < p < 0.04</td>
</tr>
</tbody>
</table>

Notes:

At lower pressures the absorbing lines become Doppler broadened, and the intensity at which rotational relaxation becomes important decreases linearly with the pressure. At higher pressures the laser line falls within the Lorentz width of the absorbing line and the intensity at which rotational relaxation becomes important increases as the square of the pressure.

Laser transitions and absorbing species not indicated in Table IV show no rotational relaxation effects at laser intensities below 10¹⁰ W/cm².
rotational relaxation we place an upper bound on the extent of absorption. The results shown in Table IV indicate that rotational bleaching should not be important for DF laser intensity levels below 10^{10} W/cm2. Although a few isolated lines may be bleached at this power level, their contribution to the total absorption on the vibrational bands to which they belong will not be significant. It should be emphasized, however, that this result cannot be simply extrapolated to all IR lasers. All the important absorbers for DF radiation have rather small absorption cross sections because either the absorbing bands correspond to vibrational overtones, (as in the case of N$_2$O and CH$_4$), or the laser line lies in the far wings of the absorbing line (as in CO$_2$), or the rotational structure of the band reduces the contribution of individual lines (as in HDO and H$_2$O). For laser lines overlapped by strong absorbing lines, rotational relaxation may become important.

B. VIBRATIONAL RELAXATION

Even if rotational equilibrium is assumed, there remain a great many vibrational levels of importance for the absorption kinetics, as indicated in Fig. 1. Although it is not difficult to handle this number of levels on the computer, it is appropriate to make some further simplifications since there do not exist enough kinetic rate data to enable one to describe the system in complete detail. The kinetics of the important atmospheric absorbers are discussed in the following sections.

1. Kinetics of Absorption of DF Laser Radiation by N$_2$

DF laser radiation is absorbed by N$_2$ on the collision induced vibrational continuum band centered around 4.3 μm:

$$ N_2 (v = 0) + h\nu + M \rightarrow N_2 (v = 1) + M + \Delta E. \quad (9) $$

The excess energy $\Delta E = h\nu - E_{vib} \sim 250$ cm$^{-1}$ appears immediately as translational and rotational heating of the N$_2$ and M molecules.

The relaxation of N$_2$ (v = 1) by the dominant atmospheric species (N$_2$, O$_2$, H$_2$O) has been extensively studied as a result of interest in the CO$_2$ - N$_2$ laser. (17) T-V deactivation of N$_2$ (v = 1) by N$_2$ and O$_2$ and V-V transfer to O$_2$ are extremely slow. The most important relaxation path is provided by H$_2$O. It has not been established directly whether the quenching of N$_2$ by H$_2$O proceeds by a T-V (or vibration to rotation) process, or by V-V transfer to the v_2 mode of H$_2$O,

$$ N_2 (v = 1) + H_2O (000) \rightarrow N_2 (v = 0) + H_2O (010) + 735 \text{ cm}^{-1}. \quad (10) $$

However, the subsequent relaxation of H$_2$O (010) is so fast that for practical purposes it does not matter.
These processes are summarized in Fig. 2. The time scales for the various processes in this and the following sections are based on an atmosphere composed of

\[
N_2 \ (2 \times 10^{19} \text{ molecules/cm}^3), \\
O_2 \ (5 \times 10^{18} \text{ molecules/cm}^3), \\
H_2O \ (3 \times 10^{17} \text{ molecules/cm}^3),
\]

at a temperature of 300°K. The amount of energy which appears as thermal (translational + rotational) energy at each step is also indicated. We see that under the above conditions, absorption on the N\textsubscript{2} continuum band results in a small amount of essentially instantaneous heating followed by slow heating on the N\textsubscript{2} relaxation time scale, which is on the order of \(8 \times 10^{-4}\) s.

2. Kinetics of Absorption of DF Laser Radiation by CO\textsubscript{2}

DF laser radiation is absorbed by CO\textsubscript{2} on the \(v_3\) fundamental band centered at 4.3 \(\mu\).

\[
\text{CO}_2 \ (000) + h\nu \rightarrow \text{CO}_2 \ (001) + \Delta E.
\] \(\text{(11)}\)

The absorption takes place principally in the far wings of the lines corresponding to low, thermally populated, rotational levels. Thus most of the excess energy \(\Delta E \sim 250 \text{ cm}^{-1}\) appears instantaneously as translational energy of the CO\textsubscript{2} and collisional broadening molecules.

The relaxation of CO\textsubscript{2} (001) by the dominant atmospheric species (N\textsubscript{2}, O\textsubscript{2}, H\textsubscript{2}O) has been extensively studied as a result of interest in the CO\textsubscript{2} - N\textsubscript{2} laser. Relaxation takes place principally via intermolecular V-V transfer to N\textsubscript{2}.

\[
\text{CO}_2 \ (001) + N_2 \ (v = 0) \rightarrow \text{CO}_2 \ (000) + N_2 \ (v = 1) - 18 \text{ cm}^{-1}
\] \(\text{(12)}\)

The subsequent relaxation of N\textsubscript{2} (\(v = 1\)) is described above.

These processes are summarized in Fig. 3, where the relaxation times correspond to the same atmospheric conditions as in Fig. 2. Aside from the small amount of heat released by the absorption process, the overwhelming effect of absorption by CO\textsubscript{2} is to heat the gas on a slow time scale (\(\sim 10^{-3}\) s) corresponding to the relaxation of the N\textsubscript{2} (\(v = 1\)) level.
Fig. 2 Kinetics of Absorption of DF Laser Radiation by N_2

$\Delta E \sim 250 \text{ cm}^{-1}$ (TYPICAL)

$\Delta E = 2331 \text{ cm}^{-1}$

$\tau_{TV} \sim 8 \times 10^{-4} \text{s}$

$(M = H_2O)$
Fig. 3 Kinetics of Absorption of DF Laser Radiation by CO₂
3. Kinetics of Absorption of CO and DF Laser Radiation by H₂O

CO laser radiation is absorbed by H₂O on the v₂ fundamental transition,

\[H₂O (000) + hv \rightarrow H₂O (010) + ΔE. \] (13)

The excess energy (ΔE ~ 400 cm⁻¹) appears as translational and rotational energy of the H₂O molecule, and is assumed to be thermalized instantly.

The absorption of DF radiation by H₂O, while somewhat controversial, as mentioned above, is alleged to occur on the same vibrational transition. The relatively large excess energy (ΔE ~ 900 cm⁻¹ for DF lasers) appears as translational and rotational energy of the H₂O molecule, and is presumed to be thermalized instantaneously.

The relaxation of the H₂O (v₂) mode has been studied experimentally for a long time, and while considerable uncertainty remains for some of the important rates, a broad understanding is possible. The most important processes for the relaxation of H₂O (v₂) are near resonant V-V transfer to O₂,

\[H₂O (010) + O₂ (v = 0) \rightarrow H₂O (000) + O₂ (v = 1) + 38 \text{ cm}⁻¹, \] (14)

and T-V quenching,

\[H₂O (010) + M \rightarrow H₂O (000) + M + 1595 \text{ cm}⁻¹, \] (15)

where M = N₂, O₂, and (most importantly) H₂O itself. There is considerable scatter in the data on the T-V quenching of H₂O (v₂) by H₂O, but the rate is apparently quite fast, on the order of (2 × 10⁻¹²) - (5 × 10⁻¹¹) cm³/s, (about 10 to 100 collisions). The most recent data favor the fastest rate. The data on V-V transfer to O₂ (reaction (14)) are somewhat confused due to apparent errors in most of the papers. The correct rate seems to be about 1.5 × 10⁻¹² cm³/s. The energy which is transferred to O₂ relaxes relatively slowly by T-V quenching of O₂ by H₂O,

\[O₂ (v = 1) + H₂O (000) \rightarrow O₂ (v = 0) + H₂O (000) + 1556 \text{ cm}⁻¹, \] (16)

and by transfer back to H₂O followed by quenching of the H₂O.
These processes are summarized in Fig. 4, where the times indicated correspond to the atmospheric conditions of Figs. 2 and 3. The absorption of a laser photon leads to some immediate heating (for a time on the order of the rotational relaxation time) as indicated. T-V quenching of the H$_2$O leads to further very rapid heating (with a time scale on the order of 10^{-7} to 10^{-6}s. The energy that is transferred to O$_2$ produces heating on a somewhat larger time scale, on the order of 10^{-5}s. The extent of heating occurring on the fast and slow time scales depends on the relative rates of T-V quenching and V-V transfer to O$_2$. If the faster H$_2$O/O$_2$ V-V transfer rate and/or slower H$_2$O/H$_2$O T-V quenching rate is correct, or if the humidity is low (as it will surely be at higher altitudes) then the bulk of the H$_2$O vibrational energy will be transferred to O$_2$. This will shift the heating to significantly longer times. These uncertainties become even more important for the absorption of CO laser radiation, since H$_2$O(v_2) is the dominant absorber.

4. Kinetics of Absorption of DF Laser Radiation by N$_2$O

DF laser radiation is absorbed by N$_2$O principally on the v_2 overtone transition,

$$N_2O(00^00) + hv \rightarrow N_2O(20^00) + \Delta E \quad (17)$$

and the combination band transition

$$N_2O(00^00) + hv \rightarrow N_2O(12^00) + \Delta E \quad (18)$$

A small amount of absorption takes place on the corresponding transitions from the N$_2$O (01100) level, but this may be ignored.

Most of the available data on N$_2$O vibrational relaxation$^{(18-21)}$ were obtained in pure N$_2$O and N$_2$O/N$_2$ mixtures, and do not shed much light on the most important processes in the atmosphere. To identify the most important processes we note that N$_2$O is very similar to CO$_2$. Both are linear triatomic molecules with comparable masses. It is important to note, however, that mode v_1 is IR active (that is, it possesses a dipole moment) in N$_2$O, whereas it is not IR active in CO$_2$. This is because CO$_2$ is a symmetric molecule whereas N$_2$O is not, having the configuration N-N-O. It is also important to remember that the levels 1000 and 0200 are strongly coupled by Fermi resonance in CO$_2$ but not in N$_2$O. Available data indicate that modes v_1 and v_2 of CO$_2$ are rapidly coupled by collisions and may be assumed to relax together, but that mode v_3 is only weakly coupled to the other two and relaxes by itself. All the data concern mixtures rich in CO$_2$, so that modes v_1 and v_2 may be coupled by intermolecular V-V transfer processes of the type
Fig. 4 Kinetics of Absorption of CO and DF Laser Radiation by H₂O
\[
\text{CO}_2 (10^0 0) + \text{CO}_2 (00^0 0) \rightarrow 2 \text{CO}_2 (01^1 0)
\]

(19)

or \(\rightarrow \text{CO}_2 (00^0 0) + \text{CO}_2 (02^0 0) \).

It has also been suggested(22-23) that in dilute mixtures coupling via intramolecular processes,

\[
\text{CO}_2 (10^0 0) + M \rightarrow \text{CO}_2 (02^0 0) + M
\]

(20)

where \(M = \text{CO}_2 \), is rapid due to the Fermi resonance which mixes the levels \((10^0 0) \) and \((02^0 0) \).

There is no corresponding evidence of rapid coupling of modes \(v_1 \) and \(v_2 \) of \(\text{N}_2\text{O} \) in the atmosphere. Intermolecular \(V-V \) processes similar to (19) are unimportant due to the high dilution, and modes \(v_1 \) and \(v_2 \) are not mixed by Fermi resonance. The acoustical data have been interpreted in terms of the simultaneous relaxation of modes \(v_1 \) and \(v_2 \), but the data are not compelling. For lack of evidence we shall make the same approximation.

The evidence does show, however, that mode \(v_3 \) is only weakly coupled to modes \(v_1 \) and \(v_2 \). Results obtained in \(\text{N}_2\text{O}/\text{N}_2 \) mixtures indicate that quenching of mode \(v_3 \) by \(\text{N}_2 \) requires about \(10^5 \) collisions, which is only about a factor of two faster than the corresponding process in \(\text{CO}_2 \). It is not known to which level the \(\text{CO}_2 (00^0 1) \) level is quenched, although the data of Cannemijer(24) indicate that it is the \(\text{CO}_2 (03^1 0) \) level in \(\text{CO}_2-\text{CO}_2 \) collisions and the \(\text{CO}_2 (02^1 0) \) level in \(\text{CO}_2 \)-rare gas collisions. However, even if it is the near-resonant \(04^1 0 \) or other nearby levels in \(\text{N}_2\text{O} \), detailed balance indicates that the reverse rate, coupling modes \(v_1 \) and \(v_2 \) to mode \(v_3 \) in collisions with \(\text{N}_2 \), will be slow. This is supported by the experiments of Yardley, (21) who excites \(\text{N}_2\text{O} \) mode \(v_3 \) in mixtures with \(\text{N}_2 \). He observes that \(\text{N}_2\text{O} \) mode \(v_3 \) rapidly couples to \(\text{N}_2 \) by \(V-V \) transfer in about \(1000 \) collisions. However, at the end of this (short) time the extent of residual excitation in mode \(v_3 \) indicates that modes \(v_1 \) and \(v_2 \) have not been excited by either direct intramolecular \(V-V \) processes or intermolecular \(V-V \) transfer back from \(\text{N}_2 \). (25) Quenching of \(\text{CO}_2 (v_3) \) to modes \(v_1 \) and \(v_2 \) by \(\text{H}_2\text{O} \) is much faster than by \(\text{N}_2 \), requiring on the order of \(10^3 \) collisions. This probably because \(\text{H}_2\text{O} \) rotation can absorb much of the nonresonance between \(\text{CO}_2 (00^0 1) \) and \(\text{CO}_2 (mn^0 0) \). However, even this rate of coupling is likely to be much slower than direct quenching of modes \(v_1 \) and \(v_2 \) by \(\text{H}_2\text{O} \) (see below).

We are therefore led to neglect the coupling of modes \(v_1 \) and \(v_2 \) to mode \(v_3 \) and to assume that modes \(v_1 \) and \(v_2 \) are rapidly coupled. This leads to the model shown in Fig. 5. According to this model, modes \(v_1 \) and \(v_2 \) are reduced to four lumped levels, each consisting of several near-resonant levels as indicated by the dotted lines.
Fig. 5 Kinetics of Absorption of DF Laser Radiation by N₂O
Few of the rates of relaxation of these levels have been measured experimentally. The relaxation of the $\text{N}_2\text{O}(v_2)$ model has been determined by acoustical and spectrophonic techniques (18) and found to be 1.8×10^{-14} cm3/s. This is approximately a factor of five faster than the corresponding relaxation rate for $\text{CO}_2(v_2)$, as might be expected from the slightly lower vibrational frequency of $\text{N}_2\text{O}(v_2)$. To scale the rate to different temperatures we assume that the temperature dependence for $\text{N}_2\text{O}(v_2) + \text{N}_2$ is the same as that for $\text{CO}_2(v_2) + \text{N}_2$. To scale the rate to higher levels we assume the harmonic oscillator rule, which says that for level (0 m00) the quenching rate is proportional to m.

Continuing the analogy to CO_2, we anticipate that the quenching of $\text{N}_2\text{O}(v_2)$ by H$_2$O should be a very rapid process since the quenching of $\text{CO}_2(v_2)$ requires only about 20 collisions. (17) Two theories have been advanced to explain the rapid quenching of CO_2. Widom and Bauer (26) suggest that CO_2 and H$_2$O interact chemically, since H_2CO_3 is known to exist in solution. Semiquantitative calculations based on this mechanism give the right order of magnitude for the quenching rate. Sharma (27) suggests that the multipolar interaction between CO_2 and H$_2$O is responsible. Detailed computations based on this mechanism are also in reasonable agreement with the experimental data. If the latter explanation is correct, a similar mechanism should operate in N_2O-H$_2$O collisions. On this basis we assume that the rate of quenching of $\text{N}_2\text{O}(01^{1}0)$ by H$_2$O is the same as the measured rate of quenching of $\text{CO}_2 (01^{1}0)$ by H$_2$O at all temperatures. To scale to higher levels, the harmonic oscillator rule is used.

The quenching of $\text{N}_2\text{O}(v_1)$ is likely to be much slower because of the larger vibrational level spacing, compared with mode v_2. Provided that modes v_1 and v_2 are closely coupled the direct quenching of mode v_1 can be ignored. However, if they are not so coupled it is necessary to consider what might be the most important processes relaxing mode v_1. A strong candidate for the dominant role is near-resonant V-V transfer to H$_2$O.

$$\text{N}_2\text{O} (10^00) + \text{H}_2\text{O} (000) \rightarrow \text{N}_2\text{O} (00^00) + \text{H}_2\text{O} (010) - 310 \text{ cm}^{-1} \quad (21)$$

Although this reaction might seem far from resonant, H$_2$O has shown itself capable of a variety of not-so-resonant processes, apparently because a large amount of nonresonance can be made up by the H$_2$O rotational frequency. Similar reactions to which (21) may be compared include the reactions

$$\text{CS} (v = 1) + \text{H}_2\text{O} (000) \rightarrow \text{CS} (v = 0) + \text{H}_2\text{O} (010) - 323 \text{ cm}^{-1}, \quad (22)$$

$$\text{NO} (v = 1) + \text{H}_2\text{O} (000) \rightarrow \text{NO} (v = 0) + \text{H}_2\text{O} (010) + 281 \text{ cm}^{-1}, \quad (23)$$

$$\text{N}_2\text{O} (00^01) + \text{HBr} (v = 0) \rightarrow \text{N}_2\text{O} (00^00) + \text{HBr} (v = 1) - 335 \text{ cm}^{-1} \quad (24)$$
These reactions have room temperature rates (in the exothermic direction) equal to 1×10^{-11}, 2×10^{-12}, and 2×10^{-12} cm3/s, respectively. \(^{(17)}\) A rate equal to 10^{-12} cm3/sec seems reasonable for reaction (21) in the exothermic direction. This is much slower than the quenching of mode v_2 by H$_2$O and will be negligible if the modes are coupled. However, if modes v_1 and v_2 are not coupled, their rates of relaxation are likely to be quite different.

These processes were summarized in Fig. 5, where the times indicated correspond to the atmospheric conditions of Figs. 2, 3, and 4. Only a small amount of heating accompanies the absorption of a laser photon. The bulk of the heating occurs on a time scale of the order of 2×10^{-7}s, corresponding to the quenching of N$_2$O (v_2) by H$_2$O.

5. Kinetics of Absorption of DF Laser Radiation by CH$_4$

DF laser radiation is absorbed by CH$_4$ on the v_4 overtone band

$$\text{CH}_4 (0000) + h\nu \rightarrow \text{CH}_4 (0002) + \Delta E,$$

and the combination band

$$\text{CH}_4 (0000) + h\nu \rightarrow \text{CH}_4 (0101) + \Delta E.$$ \(25\)

In the experiments which have been done on CH$_4$ to date \((18, 28-34)\) all the vibrational modes have been coupled very rapidly by CH$_4$-CH$_4$ collisions (on the order of 70 collisions to couple modes v_3 and v_4, \((28)\) and less than 100 collisions to couple modes v_2 and v_4). \((32)\) Since this coupling presumably takes place via intermolecular V-V transfer in high concentrations of CH$_4$, the modes are likely to be much more slowly coupled in dilute mixtures of CH$_4$. On the basis of his experimental data Yardley concludes \((32)\) that the rate of coupling by rare gases is probably at least a factor of ten slower. Although atmospheric species such as N$_2$ and O$_2$ probably behave more like rare gases than like CH$_4$, we shall nevertheless, assume that all the modes are strongly coupled, since there is not enough data on vibrational relaxation in CH$_4$ to justify a more detailed description. Furthermore, the symmetric and asymmetric bending modes, v_2 and v_4, have comparable vibrational frequencies and are likely to behave similarly, whether coupled or not. The stretching modes, v_1 and v_3, have much larger vibrational frequencies and probably relax much more slowly than the bending modes. They will therefore have little effect on the relaxation of CH$_4$ except to increase the effective degeneracy of the bending levels to which they are coupled. On the basis of these considerations we adopt the model shown in Fig. 5.
The relaxation of CH$_4$ in the atmosphere is dominated by V-V transfer to O$_2$ and H$_2$O. The rate of transfer from CH$_4$ to O$_2$ is well documented, (31) although it is not known whether it takes place from near-resonant (0100) level or the infrared active (0001) level. Under the assumption that these levels are in equilibrium with each other we assign this process a room temperature rate equal to 6×10^{-13} cm3/s in the exothermic direction (O$_2$ transfer to CH$_4$). The reverse rate is obtained by detailed balance, using the partition function of the combined CH$_4$ (0001) and CH$_4$ (0101) levels. To scale this rate to higher levels we use the harmonic oscillator rule, as before. To scale this rate to different temperatures we assume that the reaction is sufficiently near resonance for the probability per collision to vary as T$^{-1}$. The rate coefficient in this case varies as T$^{-1/2}$.

The rate of V-V transfer to H$_2$O(v$_2$) is not so well documented, and there is some controversy regarding the extraction of rate coefficients from the limited data on CH$_4$/H$_2$O mixtures. (17, 30) If we accept Bauer's interpretation of the data, the rate of transfer from H$_2$O (010) to CH$_4$(v$_2$ + v$_4$) is 6×10^{-11} cm3/s at room temperature. To scale this rate to higher levels the harmonic oscillator rule is used, as before. To scale the rate to other temperatures we assume that the reaction is sufficiently near resonance that the rate varies as T$^{-1/2}$, as was assumed for transfer to O$_2$. The subsequent relaxation of H$_2$O(v$_2$) and O$_2$ was discussed in Section II-B.3.

These processes are summarized in Fig. 6, where the relaxation times indicated correspond to the same atmospheric conditions as in Figs. 2 to 5. Only a very small amount of heating or cooling occurs at the absorption of a laser photon by CH$_4$. At sufficiently low H$_2$O concentrations ($< 0.2\%$) some cooling will occur on the fast time scale ($\sim 4 \times 10^{-6}$s in Fig. 6) corresponding to transfer to O$_2$. Such small concentrations of H$_2$O can occur at high altitudes, since H$_2$O is not uniformly distributed throughout the atmosphere. Although V-V transfer from CH$_4$ (v$_2$ and v$_4$) to H$_2$O (v$_2$) is endothermic, this process will not lead to cooling because the H$_2$O (v$_2$) vibration is quenched on the same time scale with a large release of heat. Thus, under conditions of sufficiently high humidity ($> 0.2\%$ H$_2$O), which ordinarily prevail at low altitudes, the laser energy absorbed by CH$_4$ will lead to heating on a fast time scale ($\sim 7 \times 10^{-7}$s) corresponding to transfer to H$_2$O (v$_2$) and quenching of the H$_2$O (v$_2$) (principally by H$_2$O itself). The energy transferred to O$_2$ will appear as heat on a longer time scale ($\sim 10^{-4}$s) corresponding to the relaxation of O$_2$ via H$_2$O (v$_2$).

HDO absorbs DF laser radiation on the v$_1$ fundamental transition

$$\text{HDO (000) + h\nu \rightarrow HDO (100) + \Delta E.}$$ (27)
Fig. 6 Kinetics of Absorption of DF Laser Radiation by CH$_4$
No data exist regarding the relaxation of HDO \((v_1)\) (or \(v_2\) or \(v_3\), for that matter). However, preliminary data have been obtained at AERL regarding the relaxation of \(H_2O (v_1)\) in collisions with \(H_2O\).\(^{35}\) These data indicate that modes \(v_1\) and \(v_2\) (and \(v_3\) as well) are coupled at every \(H_2O - H_2O\) collision, despite the fact that the levels are separated by about 500 cm\(^{-1}\). Because of the similarity of HDO and \(H_2O\), we assume that HDO \((v_1)\) and \((v_2)\) are coupled to each other and to \(H_2O (v_2)\) at every collision by the reactions

\[
HDO (100) + H_2O \rightarrow HDO (020) + H_2O \tag{28}
\]
\[
H_2O (010) + HDO (000) \rightarrow H_2O (000) + HDO (010). \tag{29}
\]

These reactions are assumed to have rate constants equal to \(5 \times 10^{-11}\) cm\(^3\)/sec. To scale to higher levels, the harmonic oscillator rules are used. The T-V relaxation of HDO \((v_2)\) by \(H_2O\), \(N_2\) and \(O_2\) is assumed to be the same as for \(H_2O (v_2)\).

In addition to these rapid \(H_2O - HDO\) processes, near resonant V-V transfer to \(N_2\) and \(O_2\) may be important, especially under conditions of low humidity:

\[
O_2 (v = 1) + HDO (000) \rightarrow O_2 (v = 0) + HDO (010) + 153 \text{ cm}^{-1}. \tag{30}
\]
\[
HDO (100) + N_2 (v = 0) \rightarrow HDO (000) + N_2 (v = 1) + 393 \text{ cm}^{-1}. \tag{31}
\]

The rate of reaction (30) is estimated to be about \(1.0 \times 10^{-12} \text{ cm}^3/\text{s}\). This is slightly slower (30%) than the corresponding rate of transfer between \(H_2O (010)\) and \(O_2\), which is more nearly resonant. It is more difficult to estimate the rate of reaction (31). Due to the larger nonresonance, compared with reaction (30), the rate of reaction (31) has somewhat arbitrarily been assumed to be \(2 \times 10^{-13} \text{ cm}^3/\text{s}\), which is a factor of five slower than reaction (30).

These processes are summarized in Fig. 7, where the times indicated correspond to the same atmospheric conditions as in Figs. 2 to 6. The dominant effect of absorption by HDO \((v_1)\) is seen to be rapid heating on a time scale of the order of \(4 \times 10^{-8}\) s, corresponding to the quenching of HDO \((v_2)\) and \(H_2O (v_2)\) by \(H_2O\).

C. RELAXATION EQUATIONS

With these approximations it is a simple matter to write down the kinetic equations describing the relaxation of the system. For this purpose we shall refer to a group of closely coupled vibrational and rotational states as "level \(i\)" and define the partition function \(Q_i\) and mean energy \(\bar{e}_i\) for level \(i\) by the expressions
Fig. 7 Kinetics of Absorption of DF Laser Radiation by HDO
where \(R_m \) is the degeneracy of state \(m \), \(E_m \) is the energy of state \(m \), \(k \) is Boltzmann's constant and \(T \) is the temperature.

The density \(n_i \) of molecules in level \(i \) satisfies the inviscid equation

\[
\frac{Dn_i}{Dt} + n_i \nabla \cdot \vec{v} = -\sum_{j, k, \ell} k_{i-j}^{k-\ell} \left(n_i n_j - \frac{Q_i Q_k}{Q_j Q_\ell} n_j n_\ell \right)
\]

\[
-\sum_{j, v} \sigma_{i-j}^{(v)} \Phi_v \left(n_i - \frac{Q_i}{Q_j} \exp \left(-\frac{h \nu}{kT} \right) n_j \right),
\]

where \(D/Dt \) is the usual convective derivative, and \(\vec{v} \) is the local velocity. Thus, each level of each molecular species is treated as a chemical species capable of undergoing the reactions represented by the right-hand side of the equation. The first term on the right-hand side represents the effect of vibrational relaxation processes of the type

\[
A_i + B_k \rightarrow A_j + B_\ell,
\]

in which molecule \(A \) in level \(i \) reacts with molecule \(B \) in level \(k \) to form molecule \(A \) in level \(j \) and molecule \(B \) in level \(\ell \), with rate coefficient \(k_{i-j}^{k-\ell} \). To express this term in the form shown, the usual detailed balance relation

\[
k_{i-j}^{k-\ell} Q_j Q_\ell = k_{j-i}^{\ell-k} Q_i Q_k
\]

has been used. The second term on the right-hand side represents the effect of absorption processes of the type

\[
A_i + h\nu \rightarrow A_j
\]
and stimulated emission processes of the type

$$A_j + hv \rightarrow A_i + 2hv.$$ \hspace{1cm} (38)

In Eq. (34) $\sigma_i^{(v)}$ is the cross section at the frequency v and Φ_v is the flux of photons at this frequency. To express this term in the form shown, the detailed balance relation

$$\sigma_i^{(v)} Q_j = \sigma_j^{(v)} Q_i \exp \left(-\frac{hv}{kT} \right)$$ \hspace{1cm} (39)

has been used. This relation is derived in Appendix A.

To solve completely the problem of laser beam propagation it is necessary to solve the vibrational relaxation equations together with the hydrodynamical momentum and energy equations describing the motion of the gas and Maxwell's equations (or an eiconal approximation) describing the propagation of the beam. However, to simplify the study of absorption kinetics, the effects of beam propagation are ignored, and the laser flux Φ_v is specified as a function of time. To further streamline the problem, the hydrodynamic effects are approximated by assuming either constant pressure p or constant total density n, where

$$n = \sum_i n_i,$$

$$p = nkT.$$ \hspace{1cm} (40, 41)

The constant pressure approximation is appropriate when the laser pulse is so long that a pressure pulse generated by the heating of the gas can propagate beyond the width of the beam. Thus, if W is a characteristic width of the laser beam and Δt is the pulse duration (as seen by a "particle" of gas, in the case of a moving beam) then the constant pressure approximation is valid when

$$a\Delta t/W \gg 1,$$ \hspace{1cm} (42)

where a is the speed of sound. For a sound speed $a = 3 \times 10^4 \text{ cm/s}$, and a beam width $W \approx 10\text{ cm}$, we see that the constant pressure approximation is appropriate for pulse lengths $\Delta t > 1\text{ ms}$. The constant density approximation is appropriate when the laser pulse is so short that a pressure pulse has no time to propagate a significant distance, so that the gas cannot relax hydrodynamically. This limit is valid when
\[a \Delta t/W \ll 1. \] \hspace{1cm} (43)

Under the above assumptions, this corresponds to pulse lengths \(\Delta t < 100 \mu s \).

In the constant pressure limit the energy equation may be expressed

\[n \frac{D}{Dt} \left(\frac{5}{2} kT + \bar{\epsilon} \right) = \sum_{\nu, i} \hbar \nu \Phi_\nu n_i \sigma_i (\nu). \] \hspace{1cm} (44)

where

\[n \bar{\epsilon} = \sum_i n_i \epsilon_i \] \hspace{1cm} (45)

is the total internal (rotational + vibrational) energy. This equation must be solved simultaneously with the relaxation equations. In the constant density limit the energy equation may be expressed

\[n \frac{D}{Dt} \left(\frac{3}{2} kT + \bar{\epsilon} \right) = \sum_{\nu, i} \hbar \nu I_\nu n_i \sigma_i (\nu). \] \hspace{1cm} (46)

In the remainder of this report, only constant pressure solutions will be discussed. However, the temperature change \(\Delta T \) is invariably small \((\Delta T/T \ll 1) \), so that the relaxation equations are essentially decoupled from the energy equation. Under these conditions the constant density temperature change \(\Delta T_n \) is simply related to the constant pressure temperature change \(\Delta T_p \) by the formula

\[\Delta T_n = \frac{5}{3} \Delta T_p. \] \hspace{1cm} (47)
III. RESULTS

To completely assess the importance of kinetics for the propagation of DF and CO laser radiation through the atmosphere, it is necessary to survey a wide range of laser parameters (especially intensity and pulse length) and atmospheric conditions (especially altitude and humidity). Although this task has not been completed, preliminary results have been obtained and these are discussed below.

Figures 8 through 15 (interspersed in the text as discussed) give results illustrating the use of our analytical model for atmospheric absorption of DF. Results at CO laser wavelengths are given in Fig. 16. For all cases shown here we have, for simplicity, used a square wave, 30-μs pulse, and assumed the same power level on each laser line with all lasing occurring at the same time. It should be noted that the model is in no way restricted to these conditions.

The concentration of atmospheric absorbers is given in Table V. With the exception of water vapor, which has a variable concentration, the concentrations are determined by the natural atmospheric abundance. For water vapor, we have used two limiting concentrations at sea level which were chosen to represent very dry (2 torr H₂O) and very wet (20 torr H₂O) atmospheres and one representative concentration at 12 km altitude, 5.6 x 10⁻³ torr H₂O. (All calculations were performed for the sea level temperature of 300ºK. The error thus introduced at the higher altitude is probably small. As stated above, absorption by both the N₂ and H₂O continua are neglected.)

Calculations were performed at two altitudes, sea level and 12 km, with 12 km chosen as a reasonable maximum altitude of interest.

TABLE V
CONCENTRATION OF ABSORBING MOLECULES

<table>
<thead>
<tr>
<th>Absorbing Molecule</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>N₂O</td>
<td>0.28 ppm</td>
</tr>
<tr>
<td>CH₄</td>
<td>1.6 ppm</td>
</tr>
<tr>
<td>CO₂</td>
<td>330 ppm</td>
</tr>
<tr>
<td>H₂O - sea level</td>
<td>20 torr</td>
</tr>
<tr>
<td></td>
<td>2 torr</td>
</tr>
<tr>
<td>12 km</td>
<td>5.6 x 10⁻³ torr</td>
</tr>
<tr>
<td>HDO</td>
<td>3 x 10⁻⁴ of H₂O concentration</td>
</tr>
</tbody>
</table>
A. ABSORPTION OF DF LASER RADIATION

1. Calculations at Sea Level

Figure 8 presents the translational temperature rise as a function of time during the pulse for each of the atmospheric absorbers separately and for their sum. (It should be noted that for all the cases we have run, the temperature rise due to a simultaneous absorption by all absorbers is equal to the sum of the individual temperature rises.) The results of this figure represent a reasonable upper bound in that the incident power was taken as 10^7 W/cm² on each of the eight laser lines and the water concentration was high (20 torr). (The effect of water concentration on the temperature rise is discussed below and may be obtained by comparing the results of Fig. 8 with those of Fig. 9.) Thermal effects after the power is shut off are not shown in Fig. 8. After the power is shut off, the temperature continues to rise at a reduced rate due to the continuing collisional deactivation of stored vibrational energy. The major absorber under the conditions of Fig. 8 is HDO-H₂O and the effects of CO₂ and CH₄ on the temperature rise are insignificant. Although it is not obvious in the figure, N₂O is slightly bleached under these conditions; i.e., the temperature rise due to N₂O absorption is less than linearly related to the incident power. For the other absorbers, which are not bleached, linear extrapolation to results at lower power levels may be performed.

Figure 9 presents the same information as that shown in Fig. 8 for conditions in which the H₂O concentration is 2 torr, a reasonable lower limit approximating very dry conditions. An obvious difference between Figs. 8 and 9 is that at the lower H₂O concentration in Fig. 9 the total temperature rise is approximately one order of magnitude less than the temperature rise under the 20 torr H₂O conditions of Fig. 8. The effect of the H₂O concentration on the temperature rise is twofold, since H₂O is both a direct absorber of laser energy and a major participant in the kinetics of T-V deactivation.

Because H₂O deactivates both excited N₂O and H₂O-HDO by T-V processes, a higher H₂O concentration results in more absorbed energy appearing as translational energy during the pulse, both for H₂O-HDO and N₂O. Comparing Figs. 8 and 9, it is seen that N₂O has become the major absorber under the conditions of 2 torr H₂O. This is true even though N₂O is more bleached under these conditions than at higher humidity. If collisions with water were the only deactivation path available to excited N₂O, then the temperature rise of Fig. 9 due to N₂O would be 0.1 that of Fig. 8. The presence of other deactivation paths makes the difference between the N₂O temperature rise of Figs. 8 and 9 less than a factor of 10. Comparison of the temperature rise due to H₂O-HDO shows the low humidity results to be between 10 and 10⁶ times lower than the high humidity results. Thus N₂O becomes the principal absorber under conditions of low humidity. Here again the effect is due to both lowering the absorber concentration (from 20 to 2 torr) and lowering the deactivator concentration. If collision with water were the only deactivation path
Fig. 8 Translational Temperature Rise for Atmospheric Absorption at DF Laser Wavelengths at Sea Level
Fig. 9 Translational Temperature Rise for Atmospheric Absorption at DF Laser Wavelengths at Sea Level
available to excited H₂O–HDO, then the H₂O–HDO temperature rise of Fig. 9 would be 0.01 that of Fig. 8. If there were no deactivation path via water, then the temperature rise for H₂O–HDO of Fig. 9 would be 0.1 that of Fig. 8. The fact that there are other deactivation paths available, makes the difference between the H₂O–HDO temperature rise of Figs. 8 and 9 less than a factor of 100 and greater than 10. The differences between the effect of changing the H₂O concentration on absorption by CH₄ and CO₂ are due to the differences between the T–V deactivation effects of H₂O on these two absorbers. These differences are not detailed here because neither is an important absorber.

Figure 10 presents the translational temperature rise as a function of time during the pulse for each of the atmospheric absorbers separately and their sum for an incident power of 10⁶ W/cm² on each line and a water concentration of 20 torr. (These conditions are the same as those of Fig. 8 except for a factor of 10 lower incident power.) Because N₂O is only very marginally bleached under these conditions, the temperature rise due to N₂O is closer to the total temperature rise than in Fig. 8. Also, the N₂O produced temperature rise may be extrapolated linearly from the results of Fig. 10 to lower power levels. The temperature rise due to all other absorbers is a factor of 10 less than that of Fig. 8.

Figure 11 presents the translational temperature rise at 20 μs due to absorption by N₂O only, as a function of incident power for each of the seven laser lines which are absorbed by N₂O. (Since 3P (8) and 2P (10) have the same cross section for absorption by N₂O, they are presented as one line only resulting in six apparent lines in the figure.) As is expected, the magnitude of the temperature rise is proportional to the N₂O absorption cross section with the largest ΔT for the laser line(s) with the largest N₂O absorption cross section. (These results at 10⁷ W/cm² are slightly different from those of Fig. 8 because here each line was considered separately. For the case in which all lines are considered together (Fig. 8), the total ΔT is somewhat less than the sum of all lines taken separately since absorption on all lines depletes a common lower state.)

Figure 12 shows, for the laser line of largest N₂O absorption cross section, the power at 20 μs into temperature, transmission, absorption, and stimulated emission, all as a function of incident power for 20-torr H₂O concentration. At all power levels the largest fraction of incident power is transmitted with the absorption in a 1-km path ~ 2% of the transmitted power. When the change in net power absorbed becomes less than linear with increase in incident power, the gas is beginning to become bleached, i.e., the lower state is beginning to become depleted. In Fig. 12 this effect becomes noticeable at an incident power level of ~ 10⁶ W/cm² on the individual laser line. When the change in net power absorbed (power absorbed minus stimulated emission) with increase in incident power approaches zero, the gas is fully bleached and any further increase in incident power results in no further increase in temperature. Complete bleaching would occur in Fig. 12 at an incident power level significantly higher than those shown here.
Fig. 10 Translational Temperature Rise for Atmospheric Absorption at DF Laser Wavelengths at Sea Level
Fig. 11 Translational Temperature Rise for N$_2$O Absorption at DF Laser Wavelengths as a Function of Incident Power at Sea Level
Fig. 12 Power Distribution for Absorption by N$_2$O of P$_2$ (10) of Laser Line as a Function of Incident Power
Figure 13 presents the translational temperature rise due to absorption by CH$_4$ at 220 ppm and 2 ppm under the same conditions as Fig. 8. (The natural concentration of methane in the atmosphere is ~ 2 ppm.) The temperature rise due to DF laser absorption by CH$_4$, which occurs on only 3 of the 8 laser lines chosen for this study, is linear with CH$_4$ concentration as expected. If one arbitrarily assumes that the temperature rise due to absorption by some man-made or natural pollutant of interest can be approximated by methane, then the results shown in Fig. 13 indicate that somewhere around a concentration of 100 ppm the pollutant will become the principal absorber of DF laser radiation under the conditions of Fig. 8. Of course, there is no sufficient reason other than convenience to assume absorption and kinetic characteristics for the pollutant similar to those of CH$_4$, and these results should be treated as of heuristic value only. For any real case of interest, knowledge of the absorption cross section and kinetic scheme would permit the correct calculation to be performed.

2. Calculations at 12 Kilometer Altitude

Figures 14 and 15 present the results of calculations performed at an altitude of 12 km as contrasted to Figs. 8 through 13 which show results for sea level conditions. An altitude of 12 km was chosen to represent a reasonable highest altitude of interest. The water concentration was chosen to be 5.6 x 10$^{-3}$ torr, which is representative of conditions at 12 km. For calculations at 12 km, the cross sections for absorption were approximately scaled by the decrease in pressure from 1 atm. This is a reasonable procedure because for all the lines of interest, the laser line is far enough away from the absorption line center so that the cross sections scale as the half-width which is linear with pressure for a Lorentz shape line.

Figure 14 presents the 12-km translational temperature rise as a function of time during the pulse for each of the atmospheric absorbers separately and their sum. The incident power was taken as 5 x 106 W/cm2 on each of the eight lines. Even though N$_2$O is more bleached than at an incident power level of 107 W/cm2 on each line at sea level (compare slope of ΔT for N$_2$O here with that of Fig. 8 and also compare Fig. 15 with Fig. 11), N$_2$O is the principal absorber. Because the H$_2$O concentration is so low, HDO-H$_2$O become insignificant contributors to the translational temperature rise. The CO$_2$ induced temperature rise is almost comparable in magnitude to that of N$_2$O. The effect of CH$_4$ absorption under these conditions is to cool the atmosphere causing a temperature decrease. In all cases, the initial slope of ΔT for CH$_4$ is negative because V-V transfer to O$_2$ and H$_2$O is endothermic resulting in net cooling. Under sea level conditions where collisional processes cause rapid equilibration this is a short-lived effect compared to pulse length and net translational heating is rapidly achieved. The reduction in the number of collisions at 12 km results in the cooling effect persisting throughout the time scale of the pulse. As is always true, the eventual result of the absorption of a laser photon is heating, but at 12 km, the time to reach equilibrium is longer than the pulse time for CH$_4$.

-39-
Fig. 13 Translational Temperature Rise Due to Absorption by CH$_4$ at DF Laser Wavelengths
Fig. 14 Translational Temperature Rise for Atmospheric Absorption at DF Laser Wavelengths at 12 km Altitude. (Note CH₄ temperature change is negative)
Fig. 15 Translational Temperature Rise for N\textsubscript{2}O Absorption at DF Laser Wavelengths as a Function of Incident Power at 12 km Altitude
Figure 15 is the 12-km analog of Fig. 11. It presents the translational temperature rise at 20 µsec due to absorption by N₂O only as a function of incident power. The increased magnitude of bleaching effects at 12 km compared with the sea level conditions of Fig. 11 is easily seen in the steep decrease in slope of ΔT as higher power levels are achieved.

B. ABSORPTION OF CO LASER RADIATION

Figure 16 presents the sea level translational temperature rise as a function of time during the pulse for absorption by H₂O. The results shown here are an upper bound in that the incident power is taken as 10⁷ W/cm² on each of the 12 CO laser lines given in Table III and the H₂O concentration is 20 torr. Results are presented both for the AERL best estimates of H₂O absorption cross sections and those of McClatchey. The AERL results, as expected from Table III, are almost a factor of three higher. Since there are no bleaching effects, these results can be linearly extrapolated to lower power levels. The important point to be noted here is that the temperature rise due to absorption at CO laser wavelengths is orders of magnitude greater than at DF laser wavelengths for similar conditions.
Fig. 16 Translational Temperature Rise for H₂O Absorption at CO Laser Wavelengths at Sea Level
REFERENCES

25. The authors are indebted to Moore, C. B., for pointing out this interpretation of Yardley's data.

35. Kung, R. T., (private communication).
APPENDIX A

DETAILED BALANCE FOR OPTICAL TRANSITIONS

We consider a molecule N whose manifold of internal levels may be grouped into two sets of levels, with one set loosely referred to as the ground state, N^0, and the other loosely referred to as the excited state N^*. The total populations of these states are

\[N^0 = \sum_i N_i, \quad (A-1a) \]
\[N^* = \sum_j N_j, \quad (A-1b) \]

where N_i and N_j are the populations of the individual levels i and j, respectively. We shall assume that rapid collisional processes keep the relative populations of the levels within each state in equilibrium with each other at the temperature T. That is,

\[N_i = \frac{g_i \exp(-E_i/kT)}{Q^0} N^0, \quad (A-2a) \]
\[N_j = \frac{g_j \exp(-E_j/kT)}{Q^*} N^*, \quad (A-2b) \]

where g_i and g_j are the degeneracies of levels i and j, respectively and E_i and E_j are the energies (referred to the same zero) of levels i and j, respectively, and k is Boltzmann's constant. The partition functions are defined by the expressions

\[Q^0(T) = \sum_i g_i \exp(-E_i/kT), \quad (A-3a) \]
\[Q^*(T) = \sum_j g_j \exp(-E_j/kT). \quad (A-3b) \]

We now suppose that the molecules are subjected to radiation of intensity I_ν and frequency ν, where

\[h\nu = E_j - E_i, \quad (A-4) \]

Preceding page blank
and \(h \) is Planck's constant. The rate of induced transitions is then

\[
\dot{N} = -\dot{N}_0 = N_i B_{ij} I_j - N_j B_{ji} I_i,
\]

where \(B_{ij} \) and \(B_{ji} \) are Einstein's coefficients for the transitions \(i \rightarrow j \) and \(j \rightarrow i \), respectively. These coefficients satisfy the relation

\[
g_i B_{ij} = g_j B_{ji}.
\]

Substituting Eqs. (A-2), (A-4) and (A-6) into Eq. (A-5) we obtain the result

\[
\dot{N} = -N_0 = \sigma_{\nu} \Phi \nu \left[N_0 - \frac{Q}{Q^*} e^{-\hbar \nu / kT} \right],
\]

where the flux of photons is

\[
\Phi_{\nu} = \frac{I_{\nu}}{\hbar \nu},
\]

and the absorption cross section for a ground state molecule is defined by the expression

\[
\sigma_{\nu i}(T) = \frac{g_i \exp(-E_i/kT)}{Q^*} \hbar \nu B_{ji}.
\]

It should be noted that if several transitions are absorbing at the frequency \(\nu \), Eq. (A-7) may be used simply by replacing \(\sigma_{\nu i} \) by \(\sigma_{\nu} \), where

\[
\sigma_{\nu} = \sum_i \sigma_{\nu i}.
\]

If several frequencies \(\nu \) are being absorbed, separate equations must be written for each frequency.
APPENDIX B

PARTITION FUNCTIONS

1. N₂O "States"

Referred to the elemental chemical species, the partition function (Q) for a molecule in vibrational level \((v_1v_2v_3)\) is given by the expression

\[
Q_{v_1v_2v_3}^\ell = \exp\left(-\frac{\Delta H_F^0}{kT}\right)Q(T)Q_{(VR)}^{(VR)} \ell,
\]

where \(\Delta H_F^0\) is the heat of formation of \(0^\circ\text{K}\), \(k\) is Boltzmann's constant and \(T\) is the temperature. The transitional partition function \([Q(T)]\) is given by the expression

\[
Q(T) = \left(2\pi mkT/h^2\right)^{3/2},
\]

where \(m\) is the molecular mass and \(h\) is Planck's constant. According to the classical rigid rotor approximation, the vibration-rotation partition function \([Q(VR)]\) may be expressed

\[
Q_{v_1v_2v_3}^{(VR)} \ell = g_\ell \frac{kT}{B_{v_1v_2v_3}} \exp \left[\left(\frac{B_{v_1v_2v_3} \ell^2 - G_{v_1v_2v_3}}{kT}\right)/kT\right],
\]

where \(B_{v_1v_2v_3}\) is the rotational constant and \(G_{v_1v_2v_3}\) is the vibrational energy. The vibrational degeneracy is given by the formula

\[
g_\ell = 1 \text{ for } \ell = 0,
\]

\[
= 2 \text{ otherwise.}
\]
When the vibrational levels are grouped into closely coupled "states", we obtain the following partition functions:

\[
Q_0 = Q_{0000} \\
Q_1 = Q_{0100} \\
Q_2 = Q_{0200} + Q_{0220} + Q_{100} \\
Q_3 = Q_{0300} + Q_{0320} + Q_{110} \\
Q_4 = Q_{0400} + Q_{0420} + Q_{0440} + Q_{1200} + Q_{1220} + Q_{2000} \\
\]

\[(B-5a)\]
\[(B-5b)\]
\[(B-5c)\]
\[(B-5d)\]
\[(B-5e)\]

2. CH₄ "States"

Referred to the elemental chemical species, the partition function for a molecule in vibrational level \((v_1, v_2, v_3, v_4)\) is given by the expression

\[
Q_{v_1 v_2 v_3 v_4} = \exp\left(-\frac{\Delta H_F^o}{kT}\right) Q^{(T)} Q^{(VR)}_{v_1 v_2 v_3 v_4} \\
\]

\[(B-6)\]

where \(\Delta H_F^o\) is the heat of formation of \(0\,\text{K}\), \(k\) is Boltzmann's constant and \(T\) is the temperature. The translational partition function is given by the expression

\[
Q^{(T)} = \left(\frac{2\pi mkT}{\hbar^2}\right)^{3/2} \\
\]

\[(B-7)\]

where \(m\) is the molecular mass and \(\hbar\) is Planck's constant. To calculate the vibration-rotation partition function we ignore the fine multiplet splitting of the intercombination levels, and neglect vibration-rotation interaction. The vibration-rotation partition function may then be expressed

\[
Q^{(VR)}_{v_1 v_2 v_3 v_4} = \frac{g_v}{12} \left(\frac{kT}{B}\right)^{3/2} \exp\left(\frac{G_{v_1 v_2 v_3 v_4}}{kT}\right), \\
\]

\[(B-8)\]
where \(B = 5.24059 \text{ cm}^{-1} \) is the rotational constant and \(G_{v_1 v_2 v_3 v_4} \) is the vibrational energy. The vibrational degeneracy is given by the formula

\[
g_v = \frac{1}{4} (v_2+1) (v_4+1) (v_4+2) (v_3+1) (v_3+2), \quad (B-9)
\]

and the factor 12 accounts for the rotational symmetry.

When the vibrational levels are grouped into closely coupled "states", we obtain the following partition functions:

\[
Q_0 = Q_{0000} \quad (B-10a)
\]

\[
Q_1 = Q_{0001} + Q_{0100} \quad (B-10b)
\]

\[
Q_2 = Q_{0002} + Q_{0101} + Q_{0200} + Q_{1000} + Q_{0010} \quad (B-10c)
\]
APPENDIX C
SUMMARY OF VIBRATIONAL RELAXATION PROCESSES AND RATES

<table>
<thead>
<tr>
<th>Process</th>
<th>Rate k (cm3/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) $N_2(v=1) + H_2O \rightarrow N_2(v=0) + H_2O$</td>
<td>3.6×10^{-15}</td>
</tr>
<tr>
<td>(2) $N_2(v=1) + N_2 \rightarrow N_2(v=0) + N_2$</td>
<td>2.5×10^{-24}</td>
</tr>
<tr>
<td>(3) $N_2(v=1) + O_2 \rightarrow N_2(v=0) + O_2$</td>
<td>2.5×10^{-24}</td>
</tr>
<tr>
<td>(4) $N_2(v=1) + O_2(v=0) \rightarrow N_2(v=0) + O_2(v=1)$</td>
<td>1.6×10^{-18}</td>
</tr>
<tr>
<td>(5) $CO_2(001) + N_2(v=0) \rightarrow CO_2(000) + N_2(v=1)$</td>
<td>5.4×10^{-13}</td>
</tr>
<tr>
<td>(6) $CO_2(001) + H_2O \rightarrow CO_2(030) + H_2O$</td>
<td>4.3×10^{-13}</td>
</tr>
<tr>
<td>(7) $CO_2(001) + N_2 \rightarrow CO_2(030) + N_2$</td>
<td>1.9×10^{-15}</td>
</tr>
<tr>
<td>(8) $CO_2(001) + O_2 \rightarrow CO_2(030) + O_2$</td>
<td>1.9×10^{-15}</td>
</tr>
<tr>
<td>(9) $CO_2(001) + CO_2 \rightarrow CO_2(030) + CO_2$</td>
<td>4.2×10^{-15}</td>
</tr>
<tr>
<td>(10) $CO_2(001) + H_2O \rightarrow CO_2(000) + H_2O$</td>
<td>4.2×10^{-15}</td>
</tr>
<tr>
<td>(11) $CO_2(030) + CO_2(000) \rightarrow CO_2(020) + CO_2(010)$</td>
<td>1.0×10^{-11}</td>
</tr>
<tr>
<td>(12) $CO_2(020) + CO_2(000) \rightarrow CO_2(010) + CO_2(010)$</td>
<td>6.9×10^{-12}</td>
</tr>
<tr>
<td>(13) $CO_2(100) + anything \rightarrow CO_2(020) + anything$</td>
<td>1.0×10^{-10}</td>
</tr>
<tr>
<td>(14) $CO_2(010) + H_2O \rightarrow CO_2(000) + H_2O$</td>
<td>1.8×10^{-11}</td>
</tr>
<tr>
<td>(15) $CO_2(020) + H_2O \rightarrow CO_2(010) + H_2O$</td>
<td>3.6×10^{-11}</td>
</tr>
<tr>
<td>(16) $CO_2(030) + H_2O \rightarrow CO_2(020) + H_2O$</td>
<td>3.4×10^{-11}</td>
</tr>
<tr>
<td>(17) $CO_2(010) + N_2 \rightarrow CO_2(000) + N_2$</td>
<td>3.3×10^{-15}</td>
</tr>
<tr>
<td>(18) $CO_2(020) + N_2 \rightarrow CO_2(010) + N_2$</td>
<td>7.6×10^{-15}</td>
</tr>
<tr>
<td>(19) $CO_2(030) + N_2 \rightarrow CO_2(020) + N_2$</td>
<td>1.1×10^{-14}</td>
</tr>
<tr>
<td>(20) $CO_2(010) + O_2 \rightarrow CO_2(000) + O_2$</td>
<td>3.8×10^{-15}</td>
</tr>
<tr>
<td>Process</td>
<td>Rate k (cm3/sec)</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>(21) $\text{CO}_2(020) + \text{O}_2 \rightarrow \text{CO}_2(010) + \text{O}_2$</td>
<td>7.6×10^{-15}</td>
</tr>
<tr>
<td>(22) $\text{CO}_2(030) + \text{O}_2 \rightarrow \text{CO}_2(030) + \text{O}_2$</td>
<td>1.1×10^{-14}</td>
</tr>
<tr>
<td>(23) $\text{CO}_2(010) + \text{CO}_2 \rightarrow \text{CO}_2(000) + \text{CO}_2$</td>
<td>7.2×10^{-15}</td>
</tr>
<tr>
<td>(24) $\text{CO}_2(020) + \text{CO}_2 \rightarrow \text{CO}_2(010) + \text{CO}_2$</td>
<td>1.4×10^{-14}</td>
</tr>
<tr>
<td>(25) $\text{CO}_2(030) + \text{CO}_2 \rightarrow \text{CO}_2(020) + \text{CO}_2$</td>
<td>2.2×10^{-14}</td>
</tr>
<tr>
<td>(26) $\text{H}_2\text{O}(010) + \text{H}_2\text{O} \rightarrow \text{H}_2\text{O}(000) + \text{H}_2\text{O}$</td>
<td>4.2×10^{-11}</td>
</tr>
<tr>
<td>(27) $\text{H}_2\text{O}(020) + \text{H}_2\text{O} \rightarrow \text{H}_2\text{O}(010) + \text{H}_2\text{O}$</td>
<td>8.3×10^{-11}</td>
</tr>
<tr>
<td>(28) $\text{H}_2\text{O}(010) + \text{N}_2 \rightarrow \text{H}_2\text{O}(000) + \text{N}_2$</td>
<td>6.0×10^{-14}</td>
</tr>
<tr>
<td>(29) $\text{H}_2\text{O}(020) + \text{N}_2 \rightarrow \text{H}_2\text{O}(010) + \text{N}_2$</td>
<td>1.2×10^{-13}</td>
</tr>
<tr>
<td>(30) $\text{H}_2\text{O}(010) + \text{O}_2 \rightarrow \text{H}_2\text{O}(000) + \text{O}_2$</td>
<td>2.7×10^{-15}</td>
</tr>
<tr>
<td>(31) $\text{H}_2\text{O}(020) + \text{O}_2 \rightarrow \text{H}_2\text{O}(010) + \text{O}_2$</td>
<td>5.4×10^{-15}</td>
</tr>
<tr>
<td>(32) $\text{H}_2\text{O}(010) + \text{O}_2(v=0) \rightarrow \text{H}_2\text{O}(000) + \text{O}_2(v=1)$</td>
<td>1.5×10^{-12}</td>
</tr>
<tr>
<td>(33) $\text{H}_2\text{O}(020) + \text{O}_2(v=0) \rightarrow \text{H}_2\text{O}(010) + \text{O}_2(v=1)$</td>
<td>3.0×10^{-12}</td>
</tr>
<tr>
<td>(34) $\text{O}_2(v=1) + \text{H}_2\text{O} \rightarrow \text{O}_2(v=0) + \text{H}_2\text{O}$</td>
<td>4.3×10^{-14}</td>
</tr>
<tr>
<td>(35) $\text{O}_2(v=1) + \text{N}_2 \rightarrow \text{O}_2(v=0) + \text{N}_2$</td>
<td>3.6×10^{-19}</td>
</tr>
<tr>
<td>(36) $\text{O}_2(v=1) + \text{O}_2 \rightarrow \text{O}_2(v=0) + \text{O}_2$</td>
<td>3.6×10^{-19}</td>
</tr>
<tr>
<td>(37) $\text{O}_2(v=1) + \text{CO}_2(000) \rightarrow \text{O}_2(v=0) + \text{CO}_2(010)$</td>
<td>6.6×10^{-15}</td>
</tr>
<tr>
<td>(38) $\text{N}_2\text{O}(010) + \text{H}_2\text{O} \rightarrow \text{N}_2\text{O}(000) + \text{H}_2\text{O}$</td>
<td>2.0×10^{-11}</td>
</tr>
<tr>
<td>(39) $\text{N}_2\text{O}(020) + \text{H}_2\text{O} \rightarrow \text{N}_2\text{O}(010) + \text{H}_2\text{O}$</td>
<td>4.0×10^{-11}</td>
</tr>
<tr>
<td>(40) $\text{N}_2\text{O}(030) + \text{H}_2\text{O} \rightarrow \text{N}_2\text{O}(020) + \text{H}_2\text{O}$</td>
<td>6.0×10^{-11}</td>
</tr>
<tr>
<td>(41) $\text{N}_2\text{O}(040) + \text{H}_2\text{O} \rightarrow \text{N}_2\text{O}(030) + \text{H}_2\text{O}$</td>
<td>8.0×10^{-11}</td>
</tr>
<tr>
<td>(42) $\text{N}_2\text{O}(010) + \text{N}_2 \rightarrow \text{N}_2\text{O}(000) + \text{N}_2$</td>
<td>1.8×10^{-14}</td>
</tr>
<tr>
<td>(43) $\text{N}_2\text{O}(020) + \text{N}_2 \rightarrow \text{N}_2\text{O}(010) + \text{N}_2$</td>
<td>3.6×10^{-14}</td>
</tr>
<tr>
<td>(44) $\text{N}_2\text{O}(030) + \text{N}_2 \rightarrow \text{N}_2\text{O}(020) + \text{N}_2$</td>
<td>5.3×10^{-14}</td>
</tr>
<tr>
<td>Process</td>
<td>Rate k (cm³/sec)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
</tr>
<tr>
<td>(45) (\text{N}_2\text{O}(040) + \text{N}_2 \rightarrow \text{N}_2\text{O}(030) + \text{N}_2)</td>
<td>(7.1 \times 10^{-14})</td>
</tr>
<tr>
<td>(46) (\text{N}_2\text{O}(010) + \text{O}_2 \rightarrow \text{N}_2\text{O}(000) + \text{O}_2)</td>
<td>(1.8 \times 10^{-14})</td>
</tr>
<tr>
<td>(47) (\text{N}_2\text{O}(020) + \text{O}_2 \rightarrow \text{N}_2\text{O}(010) + \text{O}_2)</td>
<td>(3.6 \times 10^{-14})</td>
</tr>
<tr>
<td>(48) (\text{N}_2\text{O}(030) + \text{O}_2 \rightarrow \text{N}_2\text{O}(020) + \text{O}_2)</td>
<td>(5.3 \times 10^{-14})</td>
</tr>
<tr>
<td>(49) (\text{N}_2\text{O}(040) + \text{O}_2 \rightarrow \text{N}_2\text{O}(030) + \text{O}_2)</td>
<td>(7.1 \times 10^{-14})</td>
</tr>
<tr>
<td>(50) (\text{H}_2\text{O}(010) + \text{N}_2\text{O}(000) \rightarrow \text{H}_2\text{O}(000) + \text{N}_2\text{O}(020))</td>
<td>(1.0 \times 10^{-12})</td>
</tr>
<tr>
<td>(51) (\text{H}_2\text{O}(010) + \text{N}_2\text{O}(010) \rightarrow \text{H}_2\text{O}(000) + \text{N}_2\text{O}(030))</td>
<td>(1.0 \times 10^{-12})</td>
</tr>
<tr>
<td>(52) (\text{H}_2\text{O}(010) + \text{N}_2\text{O}(020) \rightarrow \text{H}_2\text{O}(000) + \text{N}_2\text{O}(040))</td>
<td>(2.0 \times 10^{-12})</td>
</tr>
<tr>
<td>(53) (\text{O}_2(\text{v}=1) + \text{CH}_4(0000) \rightarrow \text{O}_2(\text{v}=0) + \text{CH}_4(0001))</td>
<td>(6.0 \times 10^{-13})</td>
</tr>
<tr>
<td>(54) (\text{O}_2(\text{v}=1) + \text{CH}_4(0001) \rightarrow \text{O}_2(\text{v}=0) + \text{CH}_4(0002))</td>
<td>(1.2 \times 10^{-12})</td>
</tr>
<tr>
<td>(55) (\text{H}_2\text{O}(010) + \text{CH}_4(0000) \rightarrow \text{H}_2\text{O}(000) + \text{CH}_4(0001))</td>
<td>(6.4 \times 10^{-11})</td>
</tr>
<tr>
<td>(56) (\text{H}_2\text{O}(010) + \text{CH}_4(0001) \rightarrow \text{H}_2\text{O}(000) + \text{CH}_4(0002))</td>
<td>(1.3 \times 10^{-10})</td>
</tr>
<tr>
<td>(57) (\text{HDO}(100) + \text{H}_2\text{O} \rightarrow \text{HDO}(020) + \text{H}_2\text{O})</td>
<td>(2.0 \times 10^{-10})</td>
</tr>
<tr>
<td>(58) (\text{HDO}(000) + \text{H}_2\text{O}(010) \rightarrow \text{HDO}(010) + \text{H}_2\text{O}(000))</td>
<td>(2.0 \times 10^{-10})</td>
</tr>
<tr>
<td>(59) (\text{HDO}(010) + \text{H}_2\text{O}(010) \rightarrow \text{HDO}(020) + \text{H}_2\text{O}(000))</td>
<td>(4.0 \times 10^{-10})</td>
</tr>
<tr>
<td>(60) (\text{HDO}(000) + \text{H}_2\text{O}(020) \rightarrow \text{HDO}(010) + \text{H}_2\text{O}(010))</td>
<td>(4.0 \times 10^{-10})</td>
</tr>
<tr>
<td>(61) (\text{HDO}(010) + \text{H}_2\text{O} \rightarrow \text{HDO}(000) + \text{H}_2\text{O})</td>
<td>(4.2 \times 10^{-11})</td>
</tr>
<tr>
<td>(62) (\text{HDO}(020) + \text{H}_2\text{O} \rightarrow \text{HDO}(010) + \text{H}_2\text{O})</td>
<td>(8.3 \times 10^{-11})</td>
</tr>
<tr>
<td>(63) (\text{HDO}(010) + \text{N}_2 \rightarrow \text{HDO}(000) + \text{N}_2)</td>
<td>(6.0 \times 10^{-14})</td>
</tr>
<tr>
<td>(64) (\text{HDO}(020) + \text{N}_2 \rightarrow \text{HDO}(010) + \text{N}_2)</td>
<td>(1.2 \times 10^{-13})</td>
</tr>
<tr>
<td>(65) (\text{HDO}(010) + \text{O}_2 \rightarrow \text{HDO}(000) + \text{O}_2)</td>
<td>(2.7 \times 10^{-15})</td>
</tr>
<tr>
<td>(66) (\text{HDO}(020) + \text{O}_2 \rightarrow \text{HDO}(010) + \text{O}_2)</td>
<td>(5.4 \times 10^{-15})</td>
</tr>
<tr>
<td>(67) (\text{HDO}(100) + \text{N}_2(\text{v}=0) \rightarrow \text{HDO}(000) + \text{N}_2(\text{v}=1))</td>
<td>(2.0 \times 10^{-13})</td>
</tr>
<tr>
<td>(68) (\text{O}_2(\text{v}=1) + \text{HDO}(000) \rightarrow \text{O}_2(\text{v}=0) + \text{HDO}(010))</td>
<td>(1.0 \times 10^{-12})</td>
</tr>
<tr>
<td>(69) (\text{O}_2(\text{v}=1) + \text{HDO}(010) \rightarrow \text{O}_2(\text{v}=0) + \text{HDO}(020))</td>
<td>(2.0 \times 10^{-12})</td>
</tr>
</tbody>
</table>