SEMI-MARKOV MODELS FOR EVALUATING NAVAL TACTICAL DECEPTION CONCEPTS

James M. Moore
Stanford Research Institute

Prepared for:
Office of Naval Research

April 1973
A semi-Markov model representation of a submarine searching for a high value target in a field of decoys is extended beyond previous work. The model has been used to assess the potentials of tactical deception concepts in modern antisubmarine warfare. The assessment results, including model sensitivity analyses, are published in a separate, classified, final project report. This technical note describes the details of the model's structure. The advantages of the earlier model are developed, and methods for numerical solution of the newer, larger model are examined. Model comparisons and sensitivity are explored. Suggestions for future extensions and modifications are provided.
<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ROLE</td>
<td>WT</td>
<td>ROLE</td>
</tr>
<tr>
<td>Search</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FORMAC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Markov</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semi-Markov</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decoy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Submarines</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antisubmarine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tactical Deception</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SEMI-MARKOV MODELS FOR EVALUATING NAVAL TACTICAL DECEPTION CONCEPTS

By: JAMES M. MOORE

Prepared for:

NAVAL ANALYSIS PROGRAMS (CODE 431)
OFFICE OF NAVAL RESEARCH
ARLINGTON, VIRGINIA 22217

CONTRACT N00014-71-C-0419
Task NR274-008-40

SRI Project 1318-5

Approved by:

LAWRENCE J. LOW, Director
Naval Warfare Research Center

Approved for public release; distribution unlimited.
ABSTRACT

A semi-Markov model representation of a submarine searching for a high value target in a field of decoys is extended beyond previous work. The model has been used to assess the potentials of tactical deception concepts in modern antisubmarine warfare. The assessment results, including model sensitivity analyses, are published in a separate, classified, final project report. This technical note describes the details of the model's structure. The advantages of the earlier model are developed, and methods for numerical solution of the newer, larger model are examined. Model comparisons and sensitivity are explored. Suggestions for future extensions and modifications are provided.
The research reported on in this technical note was conducted as a subtask within a larger project directed toward the assessment of tactical deception techniques in surface force defense against cruise-missile armed submarines. The project was sponsored by Naval Analysis Programs, Mr. R. J. Miller, Director, in the Office of Naval Research. Mr. J. G. Smith was the ONR Project Scientific Officer.

The research effort was performed within the Undersea Warfare Program (Mr. A. Bien, Manager) of the Naval Warfare Research Center (Mr. L. J. Low, Director) of Stanford Research Institute. Mr. J. M. Moore succeeded Mr. M. W. Zumwalt as project leader.

The author wishes to acknowledge the assistance of Mr. A. Korsak in resolving some computational difficulties, and of Messrs S. Uralli and F. Rickey in implementing the FORMAC computer language.
SUMMARY

Introduction

Evaluation of tactical deception concepts in modern naval warfare is a fundamental concern of naval planners. This technical note presents the current status of an evolving family of analytical models designed to assist in these evaluations. This work supports a larger methodology assessment and concept evaluation presented in Reference 1. The reader should consult this classified reference for results using the models. At the present stage the models deal primarily with the search stage of encounter. However, their structure naturally leads to an expansion of the engagement aspects.

Problem Definition

The scenario for analysis involves a high value ship (HVS) operating within a certain specified area. Typically, the HVS is an aircraft carrier (CV) operating alone or with a carrier task group (CTG). Operating within the same area are a number of low value devices called decoys which have characteristics similar to the HVS or task group. A submarine enters the area at time zero and begins looking for the HVS in order to engage it. In the search process the searcher encounters the decoys. Because the destruction of a target will involve the expenditure of a limited resource, as well as the possible compromise of concealment, the submarine does not wish to destroy decoys; he must therefore spend time to classify a target as high value or decoy. The submarine wants to minimize search time, while the HVS wishes to maximize it. The targets are not able to observe the searcher.
The following questions about this situation are of concern:

(1) What risk of being found does the HVS incur over a given period of time?

(2) What are the relative effects on risk of decoy characteristics, such as number, detectability, mobility, and fidelity?

These notions involve dynamic probabilistic systems and they are discussed in terms of semi-Markov random processes.

**Approach**

The problem of search in the presence of decoys naturally lends itself to representation by a semi-Markov process because the state of the searcher and the transitions between states can be well defined. Placing the problem in the format of a more general semi-Markov process provides a framework which can accept hypothetical or experimental data that might not be well adapted to the more specialized Markov chain. A feature of the approach developed for this study is that the solutions to the various models considered are in closed form, amenable to straightforward calculation. The approach also provides a framework in which efficient event-step simulation models can be developed. The assumptions governing the structure of the models are presented in the following pages.
There is a single submarine opposing several HVSs and decoys; typically, there is one HVS, which is a CV operating alone or in a CTG.

All activity takes place in a circular operating area of known fixed size.

The submarine is initially in the operating area with no contacts at time zero.

At any fixed instant in time, positions of HVSs and decoys are distributed over the operating area according to a uniform probability distribution.

Over short intervals of time, everything moves in straight lines with uniformly random headings.

Stochastic independence of motion is assumed among decoys as a group, among HVSs as a group, and between the two groups, except in the case of reduced overlap when HVSs avoid decoys on a probabilistic basis.

Submarine detection of an HVS, CTG, CTG element or decoy is represented by a definite range law.

The centers of all detection circles lie inside the operating area (i.e., the searcher as well as the HVS knows what the operating area is).

When presented with an array of targets (both decoys and HVSs) from which one is to be selected for classification, the targets are all equally likely to be chosen (i.e., the decoys are identical and are indistinguishable from the identical HVSs until a classification is made).

There are no acoustic masking effects.
* Misclassification—a final declaration of the target to be other than it really is—occurs with a probability that may depend on true target type

* Once a target is classified as a decoy, that target is removed from the target field as long as information on it is retained

* Information on a classified target is retained until the end of a random length of time or until another target is detected, whichever occurs first

* Once a target is selected, the submarine stays with that one target until classification is made

* The classification process is represented by a random length of time immediately preceding a final decision on target type

* The final decision on target type is dichotomous—HVS or decoy

---

**ASSUMPTIONS:**

**Target Classification**

---

**ASSUMPTIONS:**

**Engagement**

* If the engagement phase is considered, it is assumed the submarine allows itself only one attack in which all its weapons are launched; hence, an attack on a misclassified decoy removes the submarine as a threat to the HVS

* The game ends when a target (HVS or decoy) is classified as HVS (and the submarine launches its weapons) or time runs out
Exponential holding times in search states are assumed throughout. Holding times in classification states may have more general distribution. In computer implementation there are actually two models—one has misclassification capability, the other has the more general capture time distribution capability. However, it is often convenient to consider the two as one, with the above two capabilities mutually exclusive.

Simulation studies, conducted as an adjunct to both the original three-state model formulation and the current study, have demonstrated that the assumed exponential search time distribution and the adopted model for determining mean time to target detection are in fact valid with respect to the assumption made concerning the search process (primarily the definite range detection law and random motion).

Two computational approaches are considered. One is based on partial fraction expansion of exponential transforms of probability functions. This approach involved an experimental effort to use the IBM computer language FORMAC (p.59) to execute the algebraic manipulations involved. Partial fraction expansion allows consideration of non-exponential holding times. When all holding times are assumed exponential, a more efficient approach based on a Padé approximation for a matrix exponential is utilized. There are two major reasons to consider the partial fraction expansion: (1) to study sensitivity to distributional form, especially variance, and (2) to study characteristic other than probability of state as a function, such as mean time in state and transition counting.
Sample Results

An example result addressing the questions posed in the problem definition is shown in the figure below. The situation represented is a 15 knot CTG in an acoustic convergence zone; the decoys are non-moving and capture the submarine for an average of 10 hours per decoy/submarine encounter. Probability of a submarine/HVS engagement over a seven day period is displayed as a function of the number of decoys for two different decoy detection ranges. With no decoys deployed the HVS has probability one of an encounter with the submarine. If five decoys are deployed, this probability falls to 0.88 if it is a small device and 0.51 if it is a large device.
Conclusions and Recommendations

The models discussed in this document are implemented as operational computer programs and have been used in concept evaluation studies reported in Reference 1. A comprehensive sensitivity analysis of the models is presented in that reference. Experience in the development and use of these models allows some general conclusions to be drawn about the methodology.

Two conclusions about the significance of problem components are easy to draw: (1) potential for target misclassification is a highly significant part of the problem, and (2) retention of information on the last target classified is insignificant. Also very significant is what has been discovered about the importance of geometry. Geometry representation can have an appreciable effect, but the effect is due primarily to the representation of the dissipation of swept area. The following simplified approach is suggested for future work:

1. Ignore boundary conditions
2. Adopt simple modification of unbounded area detection rates via approximations based on Figure 3.10 or an extension of this figure.

A conclusion about method of analysis is that the FORMAC computer language is an interesting and powerful tool for analyzing continuous time semi-Markov process, but it can become cumbersome and time consuming in itself. Its use is best restricted to a small number of states (certainly no more than six), or to cases of very sparse transition matrices, where it can be very useful in deriving compact closed form solutions. However, for a larger number of states it appears a discrete time approximation is the better approach where consideration of non-Markovian processes is desirable. In the work described here it seems a 2-hour discrete time step would be the minimum necessary and perhaps longer, say 5 hours, would be acceptable.
## CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DD Form 1473</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>PREFACE</td>
<td>v</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>S-1</td>
</tr>
<tr>
<td>LIST OF ILLUSTRATIONS</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2. MODEL STRUCTURE</td>
<td>7</td>
</tr>
<tr>
<td>2.1 The Continuous Time Semi-Markov Process</td>
<td>7</td>
</tr>
<tr>
<td>2.2 The Six-State Model</td>
<td>11</td>
</tr>
<tr>
<td>2.3 The Ten-State Model</td>
<td>18</td>
</tr>
<tr>
<td>3. GEOMETRICAL ANALYSIS</td>
<td>25</td>
</tr>
<tr>
<td>3.1 Transition Probabilities $p_{21}$ and $p_{61}$</td>
<td>25</td>
</tr>
<tr>
<td>3.2 Probabilities $p'<em>{31}$ and $p'</em>{51}$</td>
<td>43</td>
</tr>
<tr>
<td>3.3 Detection Rates</td>
<td>45</td>
</tr>
<tr>
<td>4. MODEL SOLUTION AND COMPUTATION</td>
<td>55</td>
</tr>
<tr>
<td>4.1 The Six-State Model</td>
<td>55</td>
</tr>
<tr>
<td>4.2 The Ten-State Model</td>
<td>61</td>
</tr>
<tr>
<td>5. LOGICAL FLOW</td>
<td>65</td>
</tr>
<tr>
<td>6. MODEL COMPARISON AND SENSITIVITY</td>
<td>69</td>
</tr>
<tr>
<td>6.1 Old and New Model Geometry</td>
<td>69</td>
</tr>
<tr>
<td>6.2 Probability of Misclassification and Information Retention Time</td>
<td>74</td>
</tr>
</tbody>
</table>

Pages vi, vii and viii Blank ix
7. CONCLUSIONS AND RECOMMENDATIONS ........................................ 77

APPENDICES

A DISTRIBUTION OF TIME IN THE ENTRY STATE .................... 79
B THE ERLANG DISTRIBUTION ........................................... 87
C DISTRIBUTION OF RANGE FROM CENTER OF OPERATING AREA ............. 93
D FORMAC PROGRAM LISTING ........................................... 99
E POLYNOMIAL COEFFICIENTS ........................................ 109

REFERENCES .............................................................. 127

DISTRIBUTION LIST ..................................................... 129
ILLUSTRATIONS

S.1  Probability of Engagement as a Function of Number of Decoys .................. S-6
2.1  A Typical Realization of a SMP ........................................ 8
2.2  Transition Diagram ...................................................... 9
2.3  Process Flow Graph ..................................................... 10
2.4  Transition Diagram for Six State Model .............................. 12
2.5  Geometry at Time of Detection ....................................... 15
2.6  Geometry at Time of Classification ................................ 16
2.7  Transition Diagram for Ten State Model ............................ 19
3.1  Geometry at End of Decoy Classification ............................. 29
3.2  Range Density and Approximation .................................... 30
3.3  Overlap Area $A_F$ .................................................... 33
3.4  Calculation of Remaining Swept Area ................................. 34
3.5  Probability $P_{D2}$ Versus Decoy Detection Range ($R_D$) ....... 35
3.6  Illustration of Areas $A_H$ and $A_S$ ................................ 37
3.7  Areas in Queue Model of Influence Overlap .......................... 41
3.8  Sample Geometry for Determining Detection Rate .................. 48
3.9  Determination of Conditional Detection Rate ....................... 49
3.10 Detection Rate Versus Detection Range ............................... 53
4.1  Modified Process Flow Graph for Six State Model ................. 57
5.1  Summary Logical Flow of Six-State Model ........................... 66
5.2  Summary Logical Flow of Ten-State Model ........................... 67
6.1  Model Geometry Comparison as a Function of Decoy Detection Range (Cases 1 and 2) .................. 72
6.2  Model Geometry Comparison as a Function of Number of Decoys (Case 2) .......................... 73
6.3 Model Geometry Comparison as a Function of Decoy Detection Range (Case 3) .................................................. 75
6.4 Effect of Misclassification Probability ........................................ 76
A.1 Entry Geometry for HVS at Time t ......................................... 82
A.2 Entry Time Distribution and Approximation .......................... 85
B.1 Distribution Comparison ..................................................... 91
C.1 The Four Quadrants of $A_0$ .............................................. 96
C.2 The Mapping of $A_1$ Onto $B_1$ ............................................ 97
TABLES

3.1 Comparison of Detection Rate Formulations ............... 52
6.1 Boundary Representation Comparison (One Day) ............ 70
6.2 Boundary Representation Comparison (Seven Days) ........ 70
E.1 Coefficients for \( n = 2 \) ..................................... 112
E.2 Coefficients for \( n = 3 \) ..................................... 115
E.3 Coefficients for \( n = 10 \) .................................... 119
1. INTRODUCTION

Evaluation of tactical deception concepts in modern naval warfare is a fundamental concern of naval planners. This technical note presents the current status of an evolving family of analytical models designed to assist in these evaluations. At the present stage the models deal primarily with the search stage of encounter. However, their structure naturally leads to an expansion of the engagement aspects.

The scenario for analysis involves a high value ship (HVS) operating within a certain specified area. Typically, the HVS is an aircraft carrier (CV) operating alone or with a carrier task group (CTG). Operating within the same area are a number of low value devices called decoys which have characteristics similar to the HVS or task group. A submarine enters the area at time zero and begins looking for the HVS in order to engage it. In the search process the searcher encounters the decoys. Because the destruction of a target will involve the expenditure of a limited resource, as well as the possible compromise of concealment, the submarine does not wish to destroy decoys; he must therefore spend time to classify a target as high value or decoy. The submarine wants to minimize search time, while the HVS wishes to maximize it. The targets are not able to observe the searcher. The following questions about this situation are of concern:

(1) What risk of being found does the HVS incur over a given period of time?

(2) What are the relative effects on risk of decoy characteristics, such as number, detectability, mobility, and fidelity?
These notions involve dynamic probabilistic systems. They will be discussed in terms of semi-Markov random processes.

The models presented here have been developed as a subtask on a larger project that is directed toward evaluating deception concepts in surface force defense against cruise-missile armed submarines. The principal document of the larger project is the final report (Ref. 1), entitled:

"Naval Tactical Deception Concepts: Methodology Assessment and Concept Evaluation (U)."

Reference 2, entitled:

"Simulation Model for Evaluation of Naval Tactical Deception Concepts (U),"

and this technical note are supporting documents for the final report. The work reported in this document is a continuation of earlier work reported in Ref. 3, entitled:

"Semi-Markov Models of Search in the Presence of Decoys."

Reference 3 concluded that the semi-Markov process is an effective framework in which to study questions regarding the capabilities of decoys to delay a searcher looking for a particular type of target.

The problem of search in the presence of decoys naturally lends itself to representation by a semi-Markov process because the state of the searcher and the transitions between states can be well defined. Placing the problem in the format of a more general semi-Markov process provides a framework which can accept hypothetical or experimental data that might not be well adapted to the more specialized Markov chain.

*References are listed at the end of this report.
A feature of the semi-Markov approach developed for this study is that the solutions to the various models considered are in closed form, amenable to straightforward calculation. The approach also provides a framework in which efficient event-step simulation models can be developed. A discussion of general Markov and semi-Markov processes is available in Ref. 4.

The previous work evolved a three-state model and developed an analysis of the value of acoustic countermeasures in surface force defense (Ref. 5). This three-state model is able to provide some insight into the problem, but it has some shortcomings, specifically:

- Detection radii are assumed to be small in comparison to the size of the operating area.
- There is a requirement that either HVS speed or decoy capture time, or both, be large enough to dissipate the area swept by the submarine prior to encountering a decoy.
- A classified decoy immediately returns to the target field after classification, i.e., the submarine does not retain any information from a classification.
- Perfectly reliable classification is assumed.
- The implemented model assumed exponentially distributed classification times, even though the methodology of semi-Markov processes provides the mechanism for more generality.

The modeling effort reported on here has concentrated on deriving and implementing solutions to these problem areas. The following assumptions govern the structure of the new model:

* Time spent by the submarine in classifying a decoy.
There is a single submarine opposing several HVSs and decoys; typically, there is one HVS, which is a CV operating alone or in a CTG.

All activity takes place in a circular operating area of known fixed size.

The submarine is initially in the operating area with no contacts at time zero.

At any fixed instant in time, positions of HVSs and decoys are distributed over the operating area according to a uniform probability distribution.

Over short intervals of time, everything moves in straight lines with uniformly random headings.

Stochastic independence of motion is assumed among decoys as a group, among HVSs as a group, and between the two groups, except in the case of reduced overlap when HVSs avoid decoys on a probabilistic basis.

Submarine detection of an HVS, CTG, CTG element or decoy is represented by a definite range law.

The centers of all detection circles lie inside the operating area (i.e., the searcher as well as the HVS knows what the operating area is).

When presented with an array of targets (both decoys and HVSs) from which one is to be selected for classification, the targets are all equally likely to be chosen (i.e., the decoys are identical and are indistinguishable from the identical HVSs until a classification is made).

There are no acoustic masking effects.

Once a target is selected, the submarine stays with that one target until a classification is made.

The classification process is represented by a random length of time immediately preceding a final decision on target type.

The final decision on target type is dichotomous—HVS or decoy.

If the engagement phase is considered, it is assumed the submarine allows itself only one attack in which all its weapons are launched; hence, an attack on a misclassified decoy removes the submarine as a threat to the HVS.
- Misclassification—a final declaration of the target to be other than it really is—occurs with a probability that may depend on true target type
- Once a target is classified as a decoy, that target is removed from the target field as long as information on it is retained
- Information on a classified target is retained until the end of a random length of time or until another target is detected, whichever occurs first
- The game ends when a target (HVS or decoy) is classified as HVS (and the submarine launches its weapons) or time runs out.

Exponential holding times in search states are assumed throughout. Holding times in classification states may have more general distribution. In computer implementation there are actually two models—one has misclassification capability, the other has the more general capture time distribution capability. However, it is often convenient to consider the two as one, with the above two capabilities mutually exclusive.

Simulation studies, conducted as an adjunct to both the original three-state model formulation and the current study, have demonstrated that the assumed exponential search time distribution and the adopted model for determining mean time to target detection are in fact valid with respect to the assumptions made concerning the search process (primarily the definite range detection law and random motion).
2. MODEL STRUCTURE

The search problem is considered in terms of a dynamic system described by its state variable. The system is the submarine, and the state variable of interest is the occupation of its sensor/information-processing apparatus. Two mutually exclusive occupations are basic to the analysis: search and classification. The further partitioning of these states, and the transitions between states is the subject of the following paragraphs. First, the general semi-Markov process is reviewed, and then the models are developed.

2.1 The Continuous Time Semi-Markov Process

The semi-Markov process (SMP) is a stochastic process in which time is the independent variable, and the dependent variable can assume only a denumerable number of discrete values. A given value of the dependent variable is a state of the system, and the collection of all possible values is the state space. Change from a present state to a future state depends only on the present state and is governed by the transition probabilities of a Markov chain, while the time required for such a transition may, in general, depend on both the present state and the future state. Consider a space of functions \( S = \{ S_w (t); t \geq 0, w \in \Omega \} \). This space is the sample space and consists of functions of time, with the generic functional form parameterized by \( w \in \Omega \). Thus, a sample "point" consists of the set of points \( \{ S_w (t); t \geq 0 \} \); such a sample point is called a "realization" of the process and is denoted simply \( S_w (\cdot) \). We will consider only a finite number of states, with a state denoted by one of the numbers 1, 2, ..., \( N \). Thus, for a fixed value of \( t \), \( S_w (t) \) is in the set \( \{ 1, 2, ..., N \} \) and specifies the state of the system at
that time. Hence, it is characteristic of the process that each realiza-
tion $S_w(t)$ is a staircase function; we will assume each realization
continuous from the right. A typical realization is plotted in Figure 2.1
for a four-state SMP. The dots in the figure represent "events," that is,
points where a transition into a state occurs. Transitions from a state
into the same state may occur. If a transition from state $i$ to state
$j$ ($i \neq j$) occurs at time $\tau$, then $S_w(t)$ will be continuous from the right
but discontinuous from the left at $t = \tau$. Formally, we say the process
is in state $j$ at time $t$ if the last event to occur was of type $j$, where
$j \in \{1, ..., N\}$.

A SMP may be described in terms of the transition probability matrix
$P = [p_{ij}]$ of its embedded Markov chain and a matrix of conditional holding
time probability density functions $H(t) = [h_{ij}(t)]$. Whenever the
process enters state $i$, the next state, $j$, to which it will move is
determined according to state $i$'s transition probabilities $p_{1i}, ..., p_{Ni}$. After $j$ has been determined, the process holds for a time $\tau_{ij}$ in state $i$. 

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{smp_diagram.png}
\caption{A Typical Realization of a SMP}
\end{figure}
The holding times $\tau_{ij}$ are positive valued random variables, each governed by a probability density function (pdf) $h_{ij}(\cdot)$.

It is convenient to use graphical concepts in constructing and analyzing models of semi-Markov processes. Two of these concepts are of particular interest here. One is the transition diagram, which is composed of a set of nodes numbered 1 to $N$ representing the states and a set of directional arcs linking node $i$ with node $j$ for each positive $p_{ij}$. An example is shown in Figure 2.2 for a three-state process with a trapping state (a state from which there are no transitions other than to itself). Transition diagrams are useful in developing and describing the structure of a model. The other graphical concept of interest is the flow graph. The flow graph is composed of the same nodes and arcs as the transition possibility graph, but in addition each arc is labeled. The arc from node $i$ to node $j$ is labeled with $p_{ij}h_{ij}^e(s)$, where $h_{ij}^e(s)$ is the exponential transform of $h_{ij}(t)$, i.e.,

$$h_{ij}^e(s) = \int_0^\infty dt \, e^{-st} h_{ij}(t) .$$

An example flow graph is shown in Figure 2.3. Flow graph concepts are useful in analysis of a structured model.

![Transition Diagram](image-url)
Given the components $P$ and $H(t)$, or the process flow graph, we can define the interval transition probabilities $\varphi_{ij}(t)$. This quantity $\varphi_{ij}(t)$ is the conditional probability that the process will occupy state $j$ at time $t$, given that it entered state $i$ at time zero. Howard (Ref. 4) shows that

$$\varphi_{ij}(t) = \delta_{ij} > w_i(t) + \sum_{k=1}^{N} p_{ik} \int_{0}^{t} \int_{0}^{t} h_{ik}(\tau) h_{kj}(t-\tau) \varphi_{kj}(t-\tau)$$

for $i, j = 1, \ldots, N$ ; $t \geq 0$ .

where

$$\delta_{ij} = \begin{cases} 
1 & \text{if } i = j \\
0 & \text{if } i \neq j 
\end{cases}$$

$$> w_i(t) = 1 - \sum_{j=1}^{N} p_{ij} \int_{0}^{t} h_{ij}(\tau) d\tau$$

10
Other ways of obtaining $\varphi_{ij}(t)$ utilizing transforms, flow graph transmissions, and special assumptions on $h_{ij}(t)$ will be discussed in a later section.

In the modeling discussed in this document, only the class of transient semi-Markov processes are of interest. A transient process contains one or more trapping states. If state $N$ is a trapping state, then the interval transition probability $\varphi_{1N}(t)$ is also the probability the process becomes trapped in state $N$ at or before time $t$, given that it started in state $i$ at time zero. In this interpretation as a trapping probability, $\varphi_{ij}(t)$ will be our measure of effectiveness.

2.2 The Six-State Model

The basic structure of the six-state model is shown in the transition diagram of Figure 2.4. The states are:

State 1. Entry: represents the initial search by the searcher prior to first encounter

State 2. Classify decoy (transient): represents capture of the submarine by a decoy subsequent to a search

State 3. Classify HVS: self-explanatory

State 4. Search (reduced field): represents search subsequent to classification of a decoy before information retained by the submarine on that decoy has dissipated

State 5. Search (full field): represents search with no information on decoys

State 6. Classify decoy (steady state): represents capture by a decoy immediately subsequent to capture by another decoy.

The entry state (State 1) provides a framework for analysis of searcher entry into the operating area. However, this particular aspect of the analysis has not been carried beyond the initial exploratory phase,
where it was found the approach being developed would be very expensive computationally and have relatively small effect. The approach examined is discussed briefly in Appendix A. The result is that the searcher is assumed simply to be in the area initially without a target. The entry state is thus equivalent* to the search-full-field state (State 5). The derivation of the holding time densities and transition probabilities for these two states proceeds as follows. Define the random variables

*The size of the state space could easily be reduced from 6 to 5 by eliminating the redundancy of having two equivalent states. The reduction is not made here because this technical note is documentation for computer programs which retain the two equivalent states as a matter of convenience.

12
where it was found the approach being developed would be very expensive computationally and have relatively small effect. The approach examined is discussed briefly in Appendix A. The result is that the searcher is assumed simply to be in the area initially without a target. The entry state is thus equivalent* to the search-full-field state (State 5). The derivation of the holding time densities and transition probabilities for these two states proceeds as follows. Define the random variables

*The size of the state space could easily be reduced from 6 to 5 by eliminating the redundancy of having two equivalent states. The reduction is not made here because this technical note is documentation for computer programs which retain the two equivalent states as a matter of convenience.
$T_D = \text{time to detect a decoy}$

$T_H = \text{time to detect a HVS}$,

where the pdf of $T_H$ is $f_H(t)$ and the pdf of $T_D$ is $f_D(t)$. We are now in the context of what Howard (Ref. 4) calls the competing process model. The pdf's $f_H(t)$ and $f_D(t)$ are the pdf's of the competing random variables. Using Howard's result and assuming

\[ f_H(t) = \beta_H e^{-\beta_H t}, \quad t \geq 0, \]
\[ f_D(t) = \beta_D e^{-\beta_D t}, \quad t \geq 0, \]

it is easy to show that

\[ p_{12} = \frac{\beta_D}{\beta_D + \beta_H} \quad \text{and} \quad p_{13} = \frac{\beta_H}{\beta_D + \beta_H} \]

and that

\[ h_{12}(t) = h_{13}(t) = (\beta_D + \beta_H) e^{-(\beta_D + \beta_H) t}, \quad t \geq 0. \]

The interpretation of $\beta_H$ and $\beta_D$ is that they are rates at which the HVS and decoys, respectively, are encountered. The derivation of $\beta_H$ and $\beta_D$ will be discussed subsequently in Section 3.3. Suffice it to say here that $\beta_D = n_D \lambda_D$, where $\lambda_D$ is the rate when there is one decoy, and $n_D$ is the number of decoys; and $\beta_H = n_H \lambda_H$, where $\lambda_H$ is the rate when there is one HVS and $n_H$ is the number of HVSs

\[ p_{12} = \frac{n_D \lambda_D}{n_D \lambda_D + n_H \lambda_H} \quad \text{and} \quad p_{13} = \frac{n_H \lambda_H}{n_D \lambda_D + n_H \lambda_H} \]

and

13
Since State 5 is considered equivalent to State 1 we have

\[ p_{52} = p_{12} \quad \text{and} \quad p_{53} = p_{13} \]

and also

\[ h_{52}(\cdot) = h_{53}(\cdot) = h_{12}(\cdot) = h_{13}(\cdot) \]

The search-reduced-field state (State 4) is similar to the search-full-field state (State 5) except the number of decoys is reduced by one and an information retention time \( T_R \) with pdf \( f_R(\cdot) \) is included. Assuming

\[ f_R(t) = \lambda_R e^{-\lambda_R t}, \quad t \geq 0 \]

we can again apply the competing process concept. Here \( \lambda_R \) is an input and interpreted in the form of \( \lambda_R^{-1} \) as the mean information retention time. We obtain

\[ p_{42} = \frac{(n_D - 1) \lambda_D}{(n_D - 1) \lambda_D + n_H \lambda_H + \lambda_R} \]

\[ p_{43} = \frac{n_H \lambda_H}{(n_D - 1) \lambda_D + n_H \lambda_H + \lambda_R} \]

\[ p_{45} = \frac{\lambda_R}{(n_D - 1) \lambda_D + n_H \lambda_H + \lambda_R} \]

and

\[ h_{41}(t) = \left[ (n_D - 1) \lambda_D + n_H \lambda_H + \lambda_R \right]^{-[n_D - 1] \lambda_D + n_H \lambda_H + \lambda_R} t, \quad t \geq 0 \]
for \( n_D \geq 1 \) and \( i = 2, 3, 5 \). With \( n_D = 0 \) State 4 cannot be reached, so transition probabilities and holding times are not relevant.

The "classify decoy" states (2 and 6) are complicated in terms of transition probabilities. The two states differ in the geometrical considerations involved in specifying their transition probabilities.

State 6 is designated as "steady state" because it assumes the dissipation of the area swept by the submarine (hence clear of decoys and HVS) prior to encountering a sequence of decoys. Figures 2.5 and 2.6 illustrate the situation. Assume for convenience of discussion that decoy and HVS have the same speed and detection range. In Figure 2.5 the submarine has encountered a decoy after a period of searching with no contacts. At the moment of encounter there is a "swept" circle (shaded), centered at the position of the submarine, which is free of targets except for the one just encountered on the boundary. That is, the probability of a target in the shaded circle is zero. Actually, the circle is an approximation of the true swept area, which trails behind the
submarine like a giant teardrop. The submarine does not know the position of targets outside this circle. Suppose the classification takes time $t_0$. Consider a hypothetical target just on the boundary of the shaded circle (see Figure 2.6). Moving at speed $v_H$ toward the center for a time $t_0$, the hypothetical target reduces the radius of the shaded area by a distance $v_H t_0$.

Hence, if $v_H t_0$ is small enough, when the submarine is through classifying the decoy there will be an area (the reduced shaded circle) where there is zero probability of targets existing. This is important for the following reason. We need the instantaneous probabilities $P_D$ and $P_H$ where

$$P_D = \Pr \{\text{any given decoy is present}\}$$

$$P_H = \Pr \{\text{any given HVS is present}\},$$
where "present" means within detection range of the submarine. The basic idea of the probabilities as obtained for State 2 is

\[
\begin{align*}
P_D & \sim \frac{A_D}{A_o - A_1} \\
P_H & \sim \frac{A_H}{A_o - A_2}
\end{align*}
\]

where

\begin{align*}
A_o & = \text{operating area} \\
A_D & = \text{area enclosed by the intersection of } A_o \text{ and the decoy detection circle} \\
A_H & = \text{area enclosed by the intersection of } A_o \text{ and the HVS detection circle} \\
A_1 & = \text{area of reduced shaded circle for decoy} \\
A_2 & = \text{area of reduced shaded circle for HVS.}
\end{align*}

In State 4 it is assumed that the swept (shaded) areas are dissipated completely, and hence \( A_1 = A_2 = 0 \). The inclusion of this swept area in State 2 and its dissipation in State 6 has found to be of high significance in some important cases. The actual definitions of \( P_D \) and \( P_H \) are more complicated than those given here and are discussed in detail in Section 3.1, along with the detailed derivations of the transition probabilities \( p_{2i} \) and \( p_{6i} \). These details are postponed so that overall model structure can be seen more clearly.

The holding time pdf's for States 2 and 4 are arbitrarily assumed to be of the form

\[
h_{2i}(t) = h_{6i}(t) = \frac{(\mu_D n)^n}{(n-1)!} t^{n-1} e^{-n\mu_D t}, \quad t \geq 0 \quad (i = 3, 4, 6)
\]
where $\mu_D \geq 0$ and $n$, a positive integer, are parameters of the distribution. This form is known as the Erlang distribution and its characteristics are discussed in Appendix B. Another way of stating this assumption is to say the capture time (call it $T_{CD}$) of a decoy has the specified form. Capture time of a target is the time spent by the submarine in classifying that target as a decoy or HVS. The assumption about $T_{CD}$ is made for two reasons: (1) at the time of model construction no satisfactory model of the classification process was available, and (2) this form is particularly amenable to analysis and obtains a variety of shapes via proper parameter selection. Figure B.1 in Appendix B illustrates the range of shapes that can be achieved by changing $n$ for a fixed value of $\mu_D$. The mean of the distribution is $\mu_D^{-1}$ irrespective of the value of $n$. Hence, $\mu_D^{-1}$ is the mean capture time for a decoy.

State 3, "classify HVS," is the final state to be explained. This is the trapping state in the six-state model. The only nonzero transition probability is $p_{33} = 1$. Because the analytic measure we are using is basically time of first arrival in this state, it turns out that the form of the holding time pdf $h_{33}(\cdot)$ is irrelevant.

2.3 The Ten-State Model

The basic structure of the ten-state model is shown in the transition diagram of Figure 2.7. The basic difference between this and the six-state model is the inclusion here of the possibility of the submarine's misclassifying a target. This possibility generates a requirement for more states. The states are:

State 1. Entry: represents the initial search by the searcher prior to first encounter

State 2. Classify decoy (transient): represents capture of the submarine by decoy subsequent to search
FIGURE 2.7 TRANSITION DIAGRAM FOR TEN STATE MODEL
State 3. Classify HVS: represents classification of an HVS subsequent to search

State 4. Classify decoy (steady state): represents capture of the submarine by a decoy immediately subsequent to correct classification of another decoy or misclassification of an HVS

State 5. Classify HVS (steady state): represents classification activity against an HVS immediately subsequent to the correct classification of a decoy or misclassification of another HVS

State 6. Search (decoy reduced field): represents search subsequent to (correct) classification of a decoy before information retained by the submarine on that decoy has dissipated (the decoy field is reduced by one)

State 7. Search (HVS reduced field): represents search subsequent to misclassification of an HVS before information retained by the submarine on that HVS has dissipated

State 8. Search (full field): represents search with no information on decoys

State 9. Terminate (misclassification): the game ends with a decoy incorrectly classified as an HVS

State 10. Terminate (correct classification): the game ends with an HVS correctly classified.

Note that the sequence of events modeled ends when the submarine classifies something as an HVS. This situation leaves something to be desired from the point of view of interpretation since subsequent action may be relevant. Two approaches are available. It can be considered that the framework is available on which to build models of action subsequent to classification. Or it can be assumed the submarine launches all of its missiles upon classification of a target as an HVS. In the latter case either the HVS is attacked or the submarine ceases to be a threat.

Most of the comments made on the six-state model apply directly here also. State 1 (entry) and its relations to State 2 and 3 are identical to the other model. Specifically,
\[ p_{12}^* = \frac{n_D \lambda_D}{n_D \lambda_D + n_H \lambda_H} \quad \text{and} \quad p_{13}^* = \frac{n_H \lambda_H}{n_D \lambda_D + n_H \lambda_H} \]

and

\[ h_{12}^*(t) = h_{13}^*(t) = (n_D \lambda_D + n_H \lambda_H) e^{-t(n_D \lambda_D + n_H \lambda_H)} , \quad t \geq 0 , \]

where the superscript star (*) is used to distinguish ten-state entities from their six-state counterparts. The quantities \( \lambda_D \) and \( \lambda_H \) are as discussed for the six-state model. State 2, "classify decoy (transient)," and State 4, "classify decoy (steady state)," are very similar to States 2 and 6 of the six-state model. In particular, the holding time pdf's are

\[ h_{21}^*(t) = h_{41}^*(t) = \mu_D e^{-\mu_D t} , \quad t \geq 0 \quad (i = 4, 5, 6, 9) \]

which is the form of \( h_{21}(\cdot) \) and \( h_{61}(\cdot) \) with \( n = 1 \). The geometry in the ten-state model is identical to that of the six-state model, so the transition probabilities \( p_{21}^* \) and \( p_{41}^* \) are adapted from \( p_{21} \) and \( p_{41} \), with the required modification to allow for misclassification. Let \( p_{MD} \) be the probability the submarine misclassifies a decoy it investigates. Then

\[ p_{21}^* = p_{21}(1 - p_{MD}) \quad \text{and} \quad p_{41}^* = p_{41}(1 - p_{MD}) \quad (i = 4, 5, 6) , \]

and

\[ p_{29}^* = p_{49}^* = p_{MD} \quad . \]

State 3, "classify HVS (transient)," and State 5, "classify HVS (steady state)," are conceptually equivalent to States 2 and 4, respectively. A different mean classification time \( T_{CH} = \frac{1}{\lambda_H} \) is allowed for HVSs so that
\[ h^*_i(t) = \frac{\mu^*_H t}{\beta_{51}(t)} = \mu^*_He^{-\mu^*_H t}, \quad t \geq 0 \quad (i = 4, 5, 7, 10) \]

Letting \( p_{MH} \) be the probability of misclassifying a HVS, we obtain \( p^*_{31} \) and \( p^*_{51} \) in a way that is strictly analogous to obtaining \( p^*_{21} \) and \( p^*_{41} \). Quantities \( p'_3 \) and \( p'_5 \) are computed in a manner similar to that for \( p_{21} \) and \( p_{61} \), with exceptions noted in Section 3.2. Then

\[
\begin{align*}
\quad p^*_{31} &= p'_3(1 - p_{MH}) \quad \text{and} \quad p^*_{51} = p'_5(1 - p_{MH}) \quad (i = 4, 5, 7)
\end{align*}
\]

and

\[ p^*_{310} = p^*_{110} = p_{MH}. \]

States 6, 7, and 8 are search states. State 8, "search (full field)," is equivalent to State 1 (entry) for the same reasons States 1 and 5 in the six-state model are equivalent, and the comments there apply here also. Specifically,

\[ h^*_8(t) = (n^*_D + n^*_H)e^{-(n^*_D + n^*_H)t}, \quad t \geq 0 \]

and

\[
\begin{align*}
\quad p^*_{82} &= \frac{n^*_D}{n^*_D + n^*_H} \quad \text{and} \quad p^*_{83} = \frac{n^*_H}{n^*_D + n^*_H}.
\end{align*}
\]

As before, \( n_D \) is the number of decoys, \( \lambda_D \) the single decoy encounter rate, \( \lambda_H \) the single HVS encounter rate, and \( n_H \) the number of HVSs. States 6 and 7 are reduced field search states. State 6, "search (decoy reduced field)," is the same as State 4 in the six-state model. Hence,

\[ ^{\dagger}\text{Discussed in Section 3.3.}\]
\[ h_{61}^*(t) = \left[ (n_D-1)\lambda_D + n_H\lambda_H + \lambda_R \right] e^{-[(n_D-1)\lambda_D + n_H\lambda_H + \lambda_R]t}, \quad t \geq 0 \]

for \( n_D \geq 1 \) and \( i = 2, 3, 8 \). Recall \( \lambda_R \) is the mean information retention time. Similarly,

\[
\begin{align*}
\Gamma_{62}^* &= \frac{(n_D-1)\lambda_D}{(n_D-1)\lambda_D + n_H\lambda_H + \lambda_R} \\
\Gamma_{63}^* &= \frac{n_H\lambda_H}{(n_D-1)\lambda_D + n_H\lambda_H + \lambda_R} \\
\Gamma_{68}^* &= \frac{\lambda_R}{(n_D-1)\lambda_D + n_H\lambda_H + \lambda_R}
\end{align*}
\]

State 7, "search (NVS reduced field)," is analogous to State 6. Instead of \( n_D \), \( n_H \) is reduced by one, so that

\[ h_{71}^*(t) = \left[ n_D\lambda_D + (n_H-1)\lambda_H + \lambda_R \right] e^{-[(n_D\lambda_D + (n_H-1)\lambda_H + \lambda_R]t}, \quad t \geq 0 \]

for \( n_H \geq 1 \) and \( i = 2, 2, 8 \) and

\[
\begin{align*}
\Gamma_{72}^* &= \frac{n_D\lambda_D}{n_D\lambda_D + (n_H-1)\lambda_H + \lambda_R} \\
\Gamma_{73}^* &= \frac{(n_H-1)\lambda_H}{n_D\lambda_D + (n_H-1)\lambda_H + \lambda_R} \\
\Gamma_{78}^* &= \frac{\lambda_R}{n_D\lambda_D + (n_H-1)\lambda_H + \lambda_R}
\end{align*}
\]
Finally, States 9 and 10 are dummy termination states. They are trapping states, so \( p^*_9 = 1 \) and \( p^*_{1010} = 1 \), and the forms of \( h^*_9 (\cdot) \) and \( h^*_{1010} (\cdot) \) are not relevant.
3. GEOMETRICAL ANALYSIS

This section presents the detailed derivation of certain quantities alluded to in the previous section on model structure. These derivations were delayed to this point so that the details would not obscure the basic model.

3.1 Transition Probabilities $p_{21}$ and $p_{61}$

The first step here is to describe the transition probabilities in terms of events. To simplify the notation we will denote

$$P(\text{next event is } A|\text{last event was } B)$$

simply by

$$P(A|B) \quad .$$

Then we have

$$p_{23} = P(\text{classify an HVSlJust classified 1st decoy})$$
$$p_{24} = P(\text{resume search|just classified 1st decoy})$$
$$p_{26} = P(\text{classify another decoy|just classified 1st decoy})$$

and

$$p_{63} = P(\text{classify an HVSljust classified 2nd or later decoy})$$
$$p_{64} = P(\text{resume search|just classified 2nd or later decoy})$$
$$p_{66} = P(\text{classify another decoy|just classified 2nd or later decoy}).$$
Here the phrase "just classified 1st decoy" refers to the first decoy encountered after a search period with no contacts and not necessarily to the first decoy encountered during the game. Several "1st decoys" may occur during any given time period. Similarly, "2nd or later decoy" refers to any decoy in a string initiated by a 1st decoy, where a "string" means the submarine goes immediately from one contact to another without an interval of "no contact."

In computing these transition probabilities we use somewhat the same approach as used in Ref. 3 to compute the \( \gamma_{21} 's \). However, one of the crucial independence assumptions used there is shown here to be unnecessary.

Consider an area of \( A \) square nautical miles containing \( n_D \) decoys, \( n_H \) HVSs, and one searcher. Assume that at any given instant the decoys and HVSs are uniformly distributed at random over the area. The completion of classification of a decoy anticipates an event. The next event to occur can be either start of search, start of classification of (another) decoy, or start of classification of an HVS. In order for the next event to be start of classification of an HVS, at least one HVS must be present and, if one or more decoys are also present, an HVS must be chosen from the array of targets. In particular

\[
p_{23} = P(\text{classify an HVS}| \text{just classified 1st decoy})
\]

\[
= P(\text{at least one HVS present and pick HVS from field of available targets}| \text{just classified 1st decoy})
\]

*"Present" means within detection range of submarine.
\[ P_{23} = \sum_{k=0}^{n_D-1} \sum_{\ell=1}^{n_H} P(\text{k new decoys present, } \ell \text{ HVSs present, pick HVS|just classified 1st decoy}) \]

\[ = \sum_{k=0}^{n_D-1} \sum_{\ell=1}^{n_H} P(\text{k new decoys, } \ell \text{ HVSs, just classified 1st decoy}) \]

\[ P(\ell \text{ HVS|k new decoys, just finished 1st decoy}) \]

\[ P(\text{k new decoys|just finished 1st decoy}) \]

As in Ref. 3 we assume

\[ P(\text{pick HVS|k new decoys, } \ell \text{ HVSs, just classified 1st decoy}) \]

\[ = \frac{\ell}{\ell + k} \]

and also that

\[ P(\text{k new decoys|just classified 1st decoy}) \]

\[ = P(\text{k new decoys within radius } R_D \text{ of submarine|just classified 1st decoy}) \]

\[ = \left(\frac{n_D-1}{k}\right) P_{D2}^k (1 - P_{D2})^{n_D-1-k} \]

where \( P_{D2} = P(\text{any one decoy is within radius } R_D \text{ of submarine|just classified 1st decoy}) \). The binomial form assumes stochastic independence of the decoys. In previous work \( P_D = \pi R_D^2 / A \) was used. A better approach is developed as follows.

\( P_{D2} \) is given in definitional form by

\[ P_{D2} = \sum_{i=1}^{n_r} \sum_{j=1}^{n_\varphi} \frac{w(r_i)}{\varphi_i} \frac{B_D(r_i) - B_1(r_i, \varphi_i)}{A_0} \]
where

\[ i = \text{range index} \]
\[ j = \text{angle index} \]
\[ r_i = \text{a range from center of operating area} \]
\[ \varphi_j = \text{an orientation angle} \]
\[ n_r = \text{number of range increments} \]
\[ n_{\varphi_i} = \text{number of angle increments at range } r_i. \]

This formulation is derived in the paragraphs below. Let

\[ E = \text{the event: any one decoy is within radius } R_D \text{ of submarine} \]
\[ C_1 = \text{the event: submarine just classified 1st decoy} \]
\[ r_i = \text{the event: submarine is located distance } r_i \text{ from center of operating area} \]
\[ \varphi_j = \text{the event: submarine position at start of classification is located at angle } \varphi_j \text{ from submarine position at end of classification (see Figure 3.1; measured counterclockwise from radius).} \]

Then

\[ P(E|C_1) = \sum_i \sum_j P(E, r_i, \varphi_j | C_1) \]

from the law of total probability. Further,

\[ P(E, r_i, \varphi_j | C_1) = P(E| r_i, \varphi_j, C_1) \cdot P(\varphi_j | r_i, C_1) \cdot P(r_i | C_1). \]

To obtain \( P(r_i | C_1) \) we assume the submarine position is uniformly distributed throughout \( A_0 \), given that \( C_1 \) occurs. It is shown in Appendix C that the distance \( r \) from the center of \( A_0 \) has density function
FIGURE 3.1 GEOMETRY AT END OF DECOY CLASSIFICATION

\[ r_{DO} = \max \left( \frac{Q}{P_{0} - v_{0} - P_{D}} \right) \]

\[ r_{2D} = \omega_{D} \]
We consider a discrete approximation in 20-nmi increments starting with distance 10 nmi, so that

\[ w(r_i) = \frac{100\pi}{A_0} \]

\[ w(r_i) = \left[ 400 + 800(i-1) \right] \pi / A_0 \quad i = 2, \ldots, N_R \]

where \( N_R = \text{integer part of} \)

\[ R_o / 20 + 0.5 \]

and \( \{r_1, r_2, r_3, \ldots\} = \{10, 30, 50, \ldots\} \).

The density and discrete approximation are illustrated below in Figure 3.2 for an operating area of radius 200 nmi. Then, \( P(r_1 | C_1) = w(r_1) \).

The angle \( \varphi \) is assumed uniformly distributed within the operating area and a discrete approximation taken. Symmetry is taken into account to reduce calculations. The number of elements in the discrete

![Figure 3.2 Range Density and Approximation](image-url)
approximation depends on the range \( r_i \) from the center and is denoted 
\( n_\varphi (r_i) \). The angle increment is \( 30^\circ \), with the first angle at \( 15^\circ \), giving possible angles \([15^\circ, 45^\circ, 75^\circ, 105^\circ, 135^\circ, 165^\circ]\). Symmetry accounts for angles between \( 180^\circ \) and \( 360^\circ \). Only angles such that the distance 
\( r_{2D} = \mu_D^{-1} \) is entirely inside \( A_o \) are included in \( n_\varphi (r_i) \). Recall \( \mu_D^{-1} \)
is mean decoy capture (or classification) time and \( u \) is submarine speed. Hence, the distance \( r_{2D} \) is a measure of travel by the submarine while captured by the decoy. So

\[
P(\varphi_j | r_i, C_1) = \frac{1}{n_\varphi (r_i)}.\]

It remains to calculate \( P(E | r_i, \varphi_j, C_1) \). This probability is taken to be

\[
P(E | r_i, \varphi_j, C_1) = \frac{B_A(r_i) - B_{\varphi_j}(r_i)}{A_o},
\]

where

\( A_o \) = size of operating area in sq nmi (this symbol alternately refers to the geometrical figure as well as the number of sq nmi)

\( B_A(r_i) \) = the intersection of \( A_o \) and a circle of radius \( R_D \) centered on a radial at distance \( r_i \) from the center of \( A_o \) (the submarine is at \( r_i \))

\( B_{\varphi_j}(r_i) \) = the intersection of \( B_A(r_i) \) and a circle of radius \( r_{1D} \) centered at a distance \( r_{2D} \) and angle \( \varphi_j \) from the center of \( B_A(r_i) \),

with

\[
r_{1D} = \max[0, R_D - \nu_D \mu_D^{-1}].\]

*Inside \( A_o \) if \( r_i^2 + r_{2D}^2 + 2 r_i r_{1D} \cos \varphi_j \leq R_o^2 \).
Here $r_{1D}$ is the radius of the (perhaps only) partially dissipated swept area present at the initiation of 1st decoy classification. The quantity $\mu_D$ is decoy speed. The computation of $B_D(r_i)$ and $B_1(r_1, \varphi_j)$ involves $r_{1D}$, $r_{2D}$, $R_0$ and $R_D$, as well as $r_i$ and $\varphi_j$; these areas, distances, and angles are shown in Figure 3.1.

It is useful here to introduce the function $A_F(r, R_1, R_2)$, which gives the overlap area of two circles of radii $R_1$ and $R_2$ whose centers are a distance $r$ apart. See Figure 3.3. First define

$$\theta_1 = \pi - \arccos \left[ \frac{r^2 + R_2^2 - R_1^2}{2rr_2} \right]$$

$$\theta_2 = \arccos \left[ \frac{r^2 + R_2^2 - R_1^2}{2rr_1} \right]$$.

Then

$$A_F(r, R_1, R_2) = \begin{cases} 
0 & \text{if } r > R_1 + R_2 \\
\pi \left[ \min(R_1, R_2) \right]^2 & \text{if } r \leq |R_1 - R_2| \\
\pi R_2^2 - \frac{R_2^2}{2} \left[ 2\theta_1 - \sin 2\theta_1 \right] & \text{if } r > |R_1 - R_2| \\
\pi R_1^2 - \frac{R_1^2}{2} \left[ 2\theta_2 - \sin 2\theta_2 \right] & \text{if } r > |R_1 - R_2| .
\end{cases}$$

Thus, $B_D(r_i) = A_F(r_i, R_0, R_D)$. However, $B_1(r_i, \varphi_j)$ is more involved, including some numerical integration. The computation is given in flow chart form in Figure 3.4. This flow chart is in generic form, i.e., it
describes a quantity useful for either decoy or HVS. When entered with $R_D$, $r_{1D}$ and $r_{2D}$, the output is $B_1(r_i, \omega_j)$.

A comparison between this more involved form of $P_{D2}$ with the previous approximation of $nR_O^2/A$ is shown in Figure 3.5. In this figure $P_{D2}$ is shown as a function of $R_D$ and $\mu_D^{-1}$, assuming $A_o$ is 200 nmi in radius. It is seen here that the previous approximation for an $R_D$ of 200 nmi differs by a factor of about 20 from the new form with mean capture time of 1 hour and by a factor of 2 with a mean capture time of 10 hours. On the other hand, for larger capture times and $R_D \leq 50$ nmi, the previous approximation is good. Numerical experiments have shown that $P_{D2} \rightarrow \infty$ for large values of $R_D$ (greater than the radius of $A_o$). This happens because of the inherent assumption of a previous condition of no contact. Algebraically what happens as $R_D \rightarrow \infty$ is $r_{2D} \ll r_{1D} \approx R_D$ which implies $B_D - B_1 \approx 0$. Operationally this implies a predominance of swept area hanging over from the initial assumption of start without contacts which is unreasonable for very large $R_D$ (relative to $A_o$).
FIGURE 3.4  CALCULATION OF REMAINING SWEPT AREA
Having established $P_{D2}$, we are finished with the probability

$$P(k \text{ new decoys } | \text{ just classified 1st decoy})$$

In order to complete the derivation of $p_{23}$, the remaining conditional probability

$$\Pr(\lambda \text{ HVSs} | k \text{ new decoys, just finished 1st decoy})$$

is now developed. We will show this probability is actually independent of $k$. First consider $k = 1$, i.e.,

$$P(1 \text{ HVS} | 1 \text{ new decoy, just finished 1st decoy})$$

It is convenient to drop the "1" from "1 HVS" and just consider the situation of a single HVS in $A_0$; this is consistent with our later treatment of several independent HVSs. Assume
\[ P(\text{HVS}|1 \text{ new decoy, just classified 1st decoy}) = P(\text{HVS}|2 \text{ decoys}) \]

This assumption can be interpreted as saying HVS movement or position is independent of the submarine's state with respect to the decoys. We can write \( P(\text{HVS}|2 \text{ decoys}) \) the same way we wrote \( P_{D2} \), i.e.,

\[ P(\text{HVS}|2 \text{ decoys}) = P(H|F_2) = \sum_i \sum_j P(H|r_1, \varphi_j, F_2) \cdot P(\varphi_j|r_1, F_2) \cdot P(r_1|F_2) \]

where

- \( H \) = the event: HVS is within radius \( R_H \) of submarine
- \( F_2 \) = the event: 2 decoys within \( R_D \) of submarine, one just classified, one new

and \( r_1 \) and \( \varphi_j \) are defined as before. \( F_2 \) plays the role here that \( C_1 \) played for \( P_{D2} \), so we have

\[ P(\varphi_j|r_1, F_2) = \frac{1}{n(r_1)} \]

and

\[ P(r_1|F_2) = w(r_1) \]

\( P(H|r_1, \varphi_j, F_2) \) is treated similarly to \( P(E|r_1, \varphi_j, C_1) \), except we wish to show "H" is independent of "F_2," i.e., independent of the number of decoys present.

Examine Figure 3.6. In this figure \( A_H(r_1) \) is: the intersection of \( A_0 \) and a circle of radius \( R_H \) (HVS detection range) centered at the
submarine (located \( r_1 \) from center of \( A_o \)) at the time of completion of a 1st decoy classification. \( A_H \) is the HVS analogue of the decoy quantity \( B_D \), i.e., \( A_H(r_1) = A_F(r_1, R_o, R_H) \). \( A_s \) is the intersection of \( A_o \) and a circle of radius \( R_s = \rho_D + R_H \) centered at the decoy shown in the figure.
where \( \rho_D \) is decoy classification range. Each decoy has an \( A_s \) area associated with it. However, to keep notation simple we avoid as far as possible indexing \( A_s \) with respect to decoys. Note \( A_H \subset A_s \) each \( A_s \). Not shown explicitly in Figure 3.6 but part of the analysis is area \( A_1 \), which is the intersection of \( A_H(r_i) \) and a circle of radius \( r_1 \) centered at a distance \( r_2 \) and angle \( \phi_j \) from the center of \( A_H(r_i) \), where

\[
r_{1H} = \max[0, R_H - \nu^{-1}_H]
\]

and

\[
r_{2H} = \nu^{-1}_H.
\]

\( A_1 \) as the HVS analogue of the decoy \( B_1 \) and its calculation is shown in Figure 3.6.

Now we are interested in computing \( P(\| r_i, \phi_j, F_2 \) ). For convenience we temporarily drop \( r_i \) and \( \phi_j \) and rewrite "\( F_2 \)" as "2 decoys \( eB_D \)," so

\[
P(\| F_2 ) \equiv P(\| 2 \text{ decoys } eB_D )
\]

In order to derive this quantity we have considered some geometrical concepts. We need also the concepts related to overlap of influence between HVS and decoys. In Ref. 3 a queuing model of these phenomena was introduced. Let

\[
\lambda_c = \text{ rate at which HVS encounters decoys (discussed in Section 3.3)}
\]

\[
\lambda_a = \text{ maximum acceptable rate of HVS course change for purpose of decoy avoidance.}
\]

*This range plays a minor role in the model; much more important in the model context is decoy classification time.
For example, an HVS may be subject to constraints such that it would be
willing to change course to avoid a decoy on the average of only once in
every 3 hours, in which case \( \lambda_o = 0.2 \text{ hr}^{-1} \). We can now model the situa-
tion of a single HVS as a single server queue with customer balking,
that is, when the customer arrives if the server is busy the arriving
customer leaves. In this case the HVS is the server and the customer
is a decoy. The customer arrival rate is \( \lambda_c \), and the service rate is
\( \lambda_o \). Customer arrival corresponds to HVS contact of a decoy. Customer
service corresponds to the length of time after a decoy avoidance maneuver
before the HVS is willing to make another such maneuver. Such a queuing
system can be represented by a two-state Markov process, where the States
0 or 1 correspond to the number of customers being served or, equivalently,
whether or not the server is busy. Let \( B \) denote "system in State 1"
and \( \bar{B} \) "system in State 0." Assume the system is in steady state. Then,
from Ref. 3 we have

\[
P(B) = \frac{\lambda_c}{\lambda_o + \lambda_c}
\]

\[
P(\bar{B}) = \frac{\lambda_o}{\lambda_o + \lambda_c}
\]

\( P(B) \) is interpreted as the probability the HVS is unwilling to maneuver
to avoid a decoy at any given time.

With States \( B \) and \( \bar{B} \) defined we can write

\[
P(H|2 \text{ decoys } \epsilon_B) =
\]

\[
P(H|B \& 2 \text{ decoys } \epsilon_B) P(B|2 \text{ decoys } \epsilon_B)
\]

\[
+ P(H|\bar{B} \& 2 \text{ decoys } \epsilon_B) P(\bar{B}|2 \text{ decoys } \epsilon_B)
\]

39
We have

\[ P(H|B \& 2 \text{ decoys } \epsilon_B^D) = 0 \]

because "H" implies "B" since \( A_H \subseteq A_s \). That is, an HVS would be in \( A_H \) only if it had chosen to overlap with a decoy and hence was in State "B" of the overlap model.

Examine Figure 3.7. The area \( A^* \) is the union of \( A_s^{(1)} \) and \( A_s^{(2)} \), where the latter areas correspond to decoys \( D_1 \) and \( D_2 \), respectively.

Now write

\[
P(H|B \& 2 \text{ decoys } \epsilon_B^D) = P(H|\text{HVSe}A^* \& B \& 2 \text{ decoys } \epsilon_B^D) \\
= \cdot Pr(\text{HVSe}A^*|B \& 2 \text{ decoys } \epsilon_B^D) + P(H|\text{HVSe}A^*|B \& 2 \text{ decoys } \epsilon_B^D) \\
= \cdot P(\text{HVSe}A^*|B \& 2 \text{ decoys } \epsilon_B^D)
\]

As above, \( P(H|\text{HVSe}A^* \& B \& 2 \text{ decoys } \epsilon_B^D) = 0 \) since \( A_H \subseteq A^* \). Further, assume

\[
P(H|\text{HVSe}A^* \& B \& 2 \text{ decoys } \epsilon_B^D) = \frac{A_H - A_1}{A^*}
\]

and

\[
P(\text{HVSe}A^*|B \& 2 \text{ decoys } \epsilon_B^D) = \frac{A^*}{A_o}
\]

so

\[
P(H|B \& 2 \text{ decoys } \epsilon_B^D) = \frac{A_H - A_1}{A_o}
\]

Here we have assumed independence of "HVSeA^*" and "H" from "2 decoys \( \epsilon_B^D \)" when the former are also conditioned on "B." In addition, assume

\( P(B|2 \text{ decoys } \epsilon_B^D) = P(B) \), so that we finally have

40
FIGURE 3.7 AREAS IN QUEUE MODEL OF INFLUENCE OVERLAP

\[ P(H|2 \text{ decoys } e_B) = \frac{A_H - A_1}{A_o} P(B) \]

But this indicates "H" is independent of "2 decoys e_B" regardless of conditioning on "B." Furthermore, it is evident that the same is true for "n decoys e_B" all n = 1, 2, ..., so in general

\[ P(H) = \frac{A_H - A_1}{A_o} \frac{\lambda_c}{\lambda_o + \lambda_c} \]
or in terms of our earlier notation

$$P(H|r_i, \varphi_j, F_2) = P(H|r_i, \varphi_j) = \frac{A_H(r_i) - A_1(r_i, \varphi_j)}{A_0} \cdot \frac{\lambda_c}{\lambda_o + \lambda_c}.$$ 

Retreating back through all the notation we can now express

$$P(HVS|k \text{ new decoys, just classified 1st decoy})$$

$$= \frac{\lambda_c}{\lambda_o + \lambda_c} \sum_i \sum_j w(r_i) A_H(r_i) - A_1(r_i, \varphi_j) \frac{\lambda_c}{A_0}$$

$$\hat{P}_{H2}$$

In particular, "HVS" is independent of $k$, the number of new decoys.

Assuming the HVSs are stochastically independent, we have

$$P(\Delta HVSs|k \text{ new decoys & just classified 1st decoy})$$

$$= \binom{n_H}{l} P_{H2}^l (1 - P_{H2})^{n_H - l}$$

thus

$$P_{23} = \sum_{k=0}^{n_D-1} \sum_{l=1}^{n_H} \frac{l}{l + k} \binom{n_D-1}{k}^D 2^k (1 - P_{D2})^{n_D - l - k} \binom{n_H}{l} P_{H2}^l (1 - P_{H2})^{n_H - l}.$$ 

To obtain $P_{24}$ we simply note

$$P_{24} = P(\text{resume search|just classified 1st decoy})$$

$$= P(0 \text{ HVS and 0 new decoys present|just classified 1st decoy})$$

$$= P(0 \text{ HVS present|just classified 1st decoy})$$

$$\cdot P(0 \text{ new decoys present|just classified 1st decoy})$$

$$= [1 - P_{H2}]^{n_H} [1 - P_{D2}]^{n_D - 1}.$$ 

42
Finally, by the law of total probability

\[ p_{26} = 1 - p_{23} - p_{24} \]

State 6 is analogous to State 2, with the exception that the areas \( A_1 \) and \( B_1 \) are assumed to be zero, i.e., the swept area is dissipated by the time the 2nd or later decoy in the sequence is encountered. Specifically,

\[
P_{D6} = \sum_{i=1}^{n_r} \sum_{j=1}^{n_{\varphi(r_i)}} \frac{w_{D}(r_i)}{n_{\varphi(r_i)}} \frac{B_{D}(r_i)}{A_0}
\]

\[
P_{H6} = \sum_{i=1}^{n_r} \sum_{j=1}^{n_{\varphi(r_i)}} \frac{w_{D}(r_i)}{n_{\varphi(r_i)}} \frac{A_{H}(r_i)}{A_0}
\]

so

\[
p_{63} = \sum_{k=0}^{n_D-1} \sum_{\ell=1}^{n_H} \frac{\ell}{\ell + k} \binom{n_D-1}{k} P_{D6}^{k} (1 - P_{D6})^{n_D-1-k} \binom{n_H}{\ell} P_{H6}^{\ell} (1 - P_{H6})^{n_H-\ell}
\]

\[
p_{64} = [1 - P_{H6}]^{n_H} [1 - P_{D6}]^{n_H}
\]

\[
p_{66} = 1 - p_{63} - p_{64}
\]

3.2 Probabilities \( p'_{31} \) and \( p'_{51} \)

The probabilities \( p'_{31} \) and \( p'_{51} \) are used in computing transition probabilities \( p_{31}^* \) and \( p_{51}^* \). In a sense \( p'_{31} \) and \( p'_{51} \) are pseudotransition
probabilities. Strictly speaking, the \( p'_{31} \) and \( p'_{51} \) are complete sets of transition probabilities in that \( \sum_i p'_{31} = 1 \) and \( \sum_i p'_{51} = 1 \); they are augmented, however, with \( p_{MH} \) to obtain \( p^*_{31} \) and \( p^*_{51} \), as described in Section 2.

The geometrical situations for \( p'_{31} \) and \( p'_{51} \) are identical to those for \( p_{21} \) and \( p_{61} \), respectively. The difference in the situations is that, for the former, an HVS has just been classified, while in the latter a decoy has just been classified. This difference merely requires the substitutions of \( n_D \) for \( n_D - 1 \) and \( n_H - 1 \) for \( n_H \) in the computations for \( p_{21} \) and \( p_{61} \) in order to obtain \( p'_{31} \) and \( p'_{51} \). Hence, we have

\[
p'_{34} = \sum_{k=1}^{n_D} \sum_{\ell=0}^{n_H-1} \frac{k}{k+\ell} \binom{n_D}{k} p_D^k (1 - p_{D2})^{n_D-k} \binom{n_H-1}{\ell} p_H^\ell (1 - p_{H2})^{n_H-1-\ell}
\]

\[
p'_{37} = (1 - p_{H2})^{n_H-1} (1 - p_{D2})^{n_D}
\]

\[
p'_{35} = 1 - p'_{34} - p'_{37}
\]

and

\[
p'_{54} = \sum_{k=1}^{n_D} \sum_{\ell=0}^{n_H-1} \frac{k}{k+\ell} \binom{n_D}{k} p_D^k (1 - p_{D6})^{n_D-k} \binom{n_H-1}{\ell} p_H^\ell (1 - p_{H6})^{n_H-1-\ell}
\]

\[
p'_{57} = (1 - p_{H6})^{n_H-1} (1 - p_{D6})^{n_D}
\]

\[
p'_{55} = 1 - p'_{54} - p'_{57}
\]

where \( p_{D2}, p_{D6}, p_{H2}, \) and \( p_{H6} \) were defined in the preceding subsection.
3.3 Detection Rates

In developing the model structure, reference was made to random variables

\[ T_D = \text{time to detect a decoy} \]

\[ T_H = \text{time to detect an HVS} \]

with pdf's

\[ f_H = \beta_H e^{-\beta_H t}, \quad t \geq 0, \]

\[ f_D = \beta_D e^{-\beta_D t}, \quad t \geq 0. \]

Also in discussing transition probabilities, reference was made to rate \( \lambda_c \), the rate at which an HVS encounters decoys. These are three entities with the common feature of representing Poisson processes, that is, the time between detections (or encounters) has the exponential distribution. The rates corresponding to these processes are \( \beta_H \), \( \beta_D \), and \( \lambda_c \). It is characteristic of the Poisson process with rate \( \lambda \) that, if \( n \) is the number of occurrences in time \( \Delta t \), then

\[ p(n=0; \Delta t) = 1 - \lambda \cdot \Delta t + o(\Delta t) \]

\[ p(n=1; \Delta t) = \lambda \cdot \Delta t + o(\Delta t). \]

We assume the rate \( \lambda \) is dependent on \( r_i \) and \( \phi_j \), where \( r_i \) and \( \phi_j \) are the range and heading angle discussed in Subsection 3.2. In this case
\[
p(n=0;\Delta t) = \sum_i \sum_j p(n=0|r_i,\varphi_j;\Delta t)p(r_i)p(\varphi_j)
\]
\[
= \sum_i \sum_j [1 - \lambda(i,j)\Delta t + o(\Delta t)]p(r_i)p(\varphi_j)
\]
\[
= 1 - \left[ \sum_i \sum_j \lambda(i,j)p(r_i)p(\varphi_j) \right] \Delta t + o(\Delta t)
\]

That is,
\[
\lambda = \sum_i \sum_j \lambda(i,j)p(r_i)p(\varphi_j)
\]

where \(\lambda(i, j)\) is the rate obtained at range \(r_i\) and heading angle \(\varphi_j\).

The conditional rate \(\lambda(i, j)\) is obtained from results contained in Ref. 6, explained as follows.

Consider a general target with speed \(v\) and detection range \(R\). The submarine's speed is \(u\) on a heading \(\varphi_j\) and it is located a distance \(r_i\) from the center of \(A_o\). It is shown in Ref. 6 that the rate at which targets are encountered at bearing \(\beta\) off the submarine heading is given by

\[
\lambda(\beta;i,j) = \frac{\delta_i R}{\pi} f(\beta;u,v)
\]

where \(\delta_i\) is the target density with submarine at \(r_i\) and for \(v \leq u\)

\[
f(\beta;u,v) = v \cos^{-1}\left( -\frac{v}{u} \cos \beta \right) \cos \beta + \sqrt{u^2 - v^2 \cos^2 \beta}
\]

and for \(v > u\)

46
\[
\begin{align*}
    f(\beta;u,v) &= \begin{cases} 
        \pi v \cos \beta & \text{when } -\cos^{-1} \left( -\frac{u}{v} \right) \leq \beta \leq \cos^{-1} \left( -\frac{u}{v} \right) \\
        v \cos^{-1} \left( \frac{u}{v} \cos \beta \right) + \sqrt{u^2 - v^2 \cos^2 \beta} & \text{when } -\cos^{-1} \left( -\frac{u}{v} \right) \leq \beta \leq \cos^{-1} \left( \frac{u}{v} \right) \\
        0 & \text{when } \beta \leq -\cos^{-1} \left( -\frac{u}{v} \right) \text{ or } \beta \geq \cos^{-1} \left( -\frac{u}{v} \right).
    \end{cases}
\end{align*}
\]

These expressions assume an unbounded area. The effect of a bounded area such as we are dealing with is to set \( \lambda(\beta; i, j) = 0 \) when the point on the detection circle at heading \( \beta \) is outside \( A_0 \), since target density \( \delta \) is assumed to be zero outside \( A_0 \). The total rate \( \lambda(i, j) \) for a submarine on heading \( \omega_j \) at range \( r_i \) is obtained by integrating \( \lambda(\beta; i, j) \) with respect to \( \beta \) over the applicable range of \( \beta \). To help visualize the range of \( \beta \) an example case is shown in Figure 3.8. In this example \( \lambda(i, j) \) is given by

\[
\lambda(i,j) = \int_0^\beta_1 \lambda(\beta;i,j)\,d\beta + \int_{\beta_1}^{\beta_2} \lambda(\beta;i,j)\,d\beta .
\]

There are a number of separate geometrical cases that require individual attention in determining \( \lambda(i, j) \). The logic and computations to handle these cases are shown in flow chart form in Figure 3.9. Note that in this flow chart, to conserve space, we denote...
Furthermore, let $n_T$ denote the number of targets. Then

$$
\delta_i = \frac{n_T}{A_0 - A_T(r_1)},
$$

where $A_T(r_1)$ is, depending on target type, either $A_H(r_1)$ or $B_D(r_1)$ as discussed earlier. If we denote $\delta_i'$ to be density when $n_T = 1$, the $\delta_i = n_T \delta_i'$ and it is clear that
FIGURE 3.9 DETERMINATION OF CONDITIONAL DETECTION RATE
\[ \beta_1 = A - \varphi_j \]
\[ \beta_2 = 2\varphi_j + \beta_1 \]
\[ \ell_j = \sqrt{\frac{r_1^2}{\cos \varphi_j - 1} + R^2 - r_1 \cos \varphi_j} \]

**FIGURE 3.9 DETERMINATION OF CONDITIONAL DETECTION RATE (Concluded)**
\[ \lambda = n_T \sum_i \sum_j \lambda'(i, j) p(r_j) p(\phi_j) \]

where \( \lambda'(i, j) \) is obtained from \( \lambda(i, j) \) with \( n_T = 1 \). In terms of earlier notation we have then

\[ \beta_H = n_H \lambda_H \]
\[ \beta_D = n_D \lambda_D \]
\[ \lambda_c = n_H n_D \lambda_{HD} \]

where \( \lambda_H \), \( \lambda_D \), and \( \lambda_{HD} \) are, respectively, the rate of submarine encounter of a single HVS, the rate of submarine encounter of a single decoy, and the rate of single HVS encounter with a single decoy. Components of \( p(\phi_j) \) are also included in Figure 3.9. We take \( p(\phi_j) \) as

\[ p(\phi_j) = \frac{\lambda_j}{\sum_j \lambda_j} \]

where \( \lambda_j \) is the distance from the submarine along its heading \( \phi_j \) to the closer of two boundaries: (1) the detection circle \( R \) centered at the submarine, and (2) the boundary of the operating area \( A_0 \). Thus, \( p(\phi_j) \) is an ad hoc measure of the likelihood of the submarine's being on a particular heading \( \phi_j \). Basically, this measure discounts the probability of the submarine's being on a heading directed out of \( A_0 \) when he is close to the boundary. The probability \( p(r_1) \) is determined as before, i.e., \( p(r_1) = w(r_1) \).

Conditioning on \( r_1 \) and \( \phi_j \) and computing \( \lambda \) as a weighted average were introduced to account for the facts that: (1) we are dealing with a bounded area, and (2) when the submarine is in the search process and has no contacts the target density in the unswept area is affected by the size of the swept area. It is interesting to compare the weighted average \( \lambda \) with the unweighted formulation, call it \( \lambda^* \), where
\[ \lambda^* = \frac{T^n R}{2} \int_0^\pi f(\beta; u, v) d\beta \]

\( \lambda^* \) is the formulation used in the earlier work (Ref. 3). A comparison between \( \lambda \) and \( \lambda^* \) is shown in Figure 3.10. The deviation between the two is most extreme for larger values of detection range \( R \), as would be expected. Deviation also increases with target speed. An interesting comparison between \( \lambda \) and \( \lambda^* \) is in the computation of

\[ p_{12} = \frac{n_D^{\lambda_H}}{n_H^{\lambda_H} + n_D^{\lambda_D}} \]

Consider as an example \( n_H = 1, R_H = 50, n_D = 1 \) and 10, and \( R_D = 100 \) and 200. Table 3.1 shows the comparison.

<table>
<thead>
<tr>
<th>( n_D )</th>
<th>( R_D = 100 )</th>
<th>( R_D = 200 )</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.6689</td>
<td>.8011</td>
</tr>
<tr>
<td>10</td>
<td>.6691</td>
<td>.8650</td>
</tr>
</tbody>
</table>

Table Entry \( \{ p_{12} (\lambda^*), p_{12} (\lambda) \} \)

The differences indicated by this table range from small to nonexistent. It seems appropriate that in future work a simple approximation to \( \lambda \) based on Figure 3.8 should be adequate for most situations.
NOTES: 1. Target Density Equivalent to One Target
    2. Submarine Speed v = 10 kts.

\( \lambda \) - Unbounded Area
\( \lambda \) - Bounded Area (200 nm Radius Circle)

FIGURE 3.10 DETECTION RATE VERSUS DETECTION RANGE

Detection Rates \( \lambda \) and \( \lambda \) — number of targets per hour
TARGET SPEED

NOTES: 1. Target Density Equivalent to One Target in 200 nmi Radius Circular Area.
2. Submarine Speed = 10 kts.

\[ \lambda \] - Unbounded Area
\[ \lambda \] - Bounded Area (200 nmi Radius Circle)

FIGURE 3.10 DETECTION RATE VERSUS DETECTION RANGE

DETECTION RATE \( \lambda \) AND \( \lambda \) - number of targets per hour

DETECTION RANGE \( R \) - nmi

53
4. MODEL SOLUTION AND COMPUTATION

Given the measure of effectiveness (MOE) and the details of model structure, it remains to show how the MOE is related to the model and how it is computed. Recall that the MOE is expressed in terms of the function \( \omega_{ij}(t) \), the probability that at time \( t \) the process is in State \( j \) given that at time zero it was in State \( i \). Assuming that at time zero the process starts in the entry state, we easily narrow the scope to \( \omega_{ij}(t) \). Further, in the six-state model we are interested in misclassification of a decoy because the submarine is removed as a threat so here we focus on \( \omega_{19}(t) \) and \( \omega_{110}(t) \).

Since the six- and ten-state models entail different assumptions, they have different methods of solution. First, the six-state model is treated and then the ten-state.

4.1 The Six-State Model

The six-state model is described by a transition probability matrix \( P \) and a holding time pdf matrix \( H(t) \) where

\[
H(t) = [h_{ij}(t)] \quad \text{and} \quad h_{ij}(t) = h_i(t) \quad \text{all } j.
\]

Recall that the superscript "e" denotes exponential transform, i.e.,

\[
h_i^e(s) = \int_0^\infty dt \ e^{-st} h_i(t) dt.
\]

Howard (Ref. 4) discusses process flow graph methods for obtaining \( \omega_{13}(t) \) from \( P \) and \( H(t) \). The flow graph is modified by removing the self-loop on node 3 (the trapping state). Howard shows that the transmission \( t_{13}(s) \)
from node 1 to the output node of the modified flow graph is $s \varphi_{13}^e (s)$. Hence, $\varphi_{13}^e (s) = \frac{1}{t_{13}} (s)$. This transform turns out to be a ratio of polynomials which can easily be inverted by finding the roots of the denominator. The modified process flow graph is shown in Figure 4.1.

The transmission from node $i$ to $j$ of a flow graph is defined as

$$\overline{t}_{ij} = \frac{1}{\Delta} \sum_{k \in P_{ij}} t_{ij}^k \Delta_{ij}^k,$$

where $\Delta$ is one plus the sum of all loop products of all loops in the graph, $P_{ij}$ is the set of paths leading from $i$ to $j$, $t_{ij}^k$ is the path transmission of the $k$th path leading from $i$ to $j$, and $\Delta_{ij}^k$ is equal to one plus the sum of the loop products of all loops that share no node with the $k$th path from $i$ to $j$. In our case $\overline{t}_{ij}$ is a function of $s$ so we write $\overline{t}_{ij}(s)$. The simple loop products for the graph in Figure 4.1 are: $-P$, $-GF$, $-GHK$, $-DFQ$, $-DHKQ$. They are negative by definition. The multiple loop products are obtained by considering all possible combinations of simple loops that have no nodes in common and multiplying their products. The multiple loop products for Figure 4.1 are: $FGP$, $GHKP$. Hence, we have

$$\Delta = 1 - [P + GF + GHK + DFG + DHKQ] + [FGP + GHKP].$$

There are seven paths from node 1 to node 3. They can be identified by their transmissions $t_{13}^k = B$, $AC$, $ADE$, $AGM$, $AGHN$, $ADQM$, $ADQHN$. The sums $\Delta_{13}^k$ are one for all paths except $AC$, $AGM$, and $AGHN$ for which they are $1-P$ and $B$ for which it is $\Delta$. Hence,

$$\overline{t}_{13}(s) = \frac{1}{\Delta} [BA + AC(1-P) + ADE + AGM(1-P) + AGHN(1-P) + ADQM + ADQHN]$$

$$= B + \frac{A}{\Delta} [DE + (C + GM + GHN)(1-P) + DQ(M+HN)].$$
Each of the letters in \( \Delta \) and \( \mathbf{t}_{13}(s) \) is identified with some \( \pi_{ij}h_{ij}^e(s) \).

To obtain \( \mathbf{t}_{13} \) as a function of \( s \) we must specify the forms of \( h_{ij}^e(s) \). For \( i = 1, 4, 5 \), \( h_i(t) \) is of the form

\[
h_i(t) = \alpha_i e^{-\alpha_i t}, \quad t \geq 0
\]

which implies

\[
h_i^e(s) = \frac{\alpha_i}{s + \alpha_i}.
\]
For \( i = 2 \) and \( 6 \), \( h_i(t) \) is of the form
\[
\frac{(\alpha_i n_i)_{\frac{n_i}{1}}}{(n_i - 1)!} \frac{n_i - 1 - n_i \alpha_i t}{\alpha_i t}, \quad t \geq 0
\]
which implies
\[
h_i^e(s) = \left[ \frac{n_i \alpha_i}{s + n_i \alpha_i} \right]^{n_i}.
\]

To simplify algebra and subscripting the following identifications are made
\[
\alpha_1 = a = n_H^\lambda H + n_D^\lambda D
\]
\[
\alpha_2 = b = n_H D
\]
\[
\alpha_4 = d = n_H^\lambda (n_D - 1)\lambda D
\]
\[
\alpha_5 = f = n_H^\lambda H + n_D^\lambda D
\]
\[
\alpha_6 = c = n_H D.
\]

Now \( \varphi_{13}^e(s) = s^{-\lambda} t_{13}^e(s) \) can be written in terms of a ratio \( P(s)/Q(s) \) of polynomials \( P(s) \) and \( Q(s) \), specifically,
\[
\varphi_{13}^e(s) = \frac{B}{s} + \frac{A P(s)}{s Q(s)}
\]
where
\[
P(s) = \sum_{L=1}^{N_p(n)} p_i^{i-1}
\]
\[
Q(s) = \sum_{L=1}^{N_q(n)} q_i^{i-1}.
\]

In the case \( n = 1 \), we find that \( N_p(n) = 4 \), \( N_q(n) = 5 \), and
\[ p_4 = bp_{23} \]
\[ p_3 = bcp_{25}p_{63} + b(d+f)p_{23} + bdp_{24}p_{43} \]
\[ p_2 = bc(d+f)[p_{26}p_{63} + (1-p_{66})p_{23}] \]
\[ + bcd[p_{24}p_{43}(1-p_{66}) + p_{26}p_{64}p_{43}] \]
\[ + bdf(p_{23} + p_{24}p_{43} + p_{24}p_{45}p_{53}) \]
\[ p_1 = bcd[p_{26}p_{63} + f_{26}p_{64}(p_{43} + p_{45}p_{53})] \]
\[ + (1-p_{66})(p_{23} + p_{24}p_{43} + p_{24}p_{45}p_{53}) \]

and

\[ q_5 = 1 \]
\[ q_4 = b + c(1-p_{66}) + d + f \]
\[ q_3 = (b+d+f)c(1-p_{66}) + bd(1-p_{24}p_{42}) + (b+d)f \]
\[ q_2 = bcd(1-p_{66} - p_{24}p_{42} + p_{24}p_{42}p_{66} - p_{26}p_{64}p_{42}) \]
\[ + (b+d)cf(1-cp_{66}) \]
\[ + bdf(1-p_{24}p_{42} - p_{24}p_{45}p_{52}) \]
\[ q_1 = bcdf(1-p_{66} - p_{24}p_{42} - p_{24}p_{45}p_{52} \]
\[ - p_{26}p_{42}p_{64} - p_{45}p_{52}p_{26}p_{64} + p_{24}p_{42}p_{66} \]
\[ + p_{24}p_{45}p_{52}p_{66} ) . \]

For cases with \( n > 1 \) the algebra involved in obtaining \( P(s) \) and \( Q(s) \) is extremely cumbersome. For this reason a computer program utilizing the IBM FORMAC algebraic language has been developed to handle the algebraic
FORMAC is an extension of PL/1 and provides for the symbolic manipulation of mathematical expressions, e.g., the expression SIN(X) can be differentiated, resulting in the expression COS(X). Expressions can be differentiated, evaluated, replaced, compared, and parsed. The language is explained in detail in Ref. 7 and the program developed for this project is listed in Appendix D. The results of the program in terms of P(s) and Q(s) for n = 2, 3, and 10 are listed in Appendix E.

Returning to the expression for \( \varphi_{13}^e(s) \),

\[
\varphi_{13}^e(s) = \frac{B}{s} + \frac{A P(s)}{s Q(s)}
\]

and substituting for A and B, we obtain

\[
\varphi_{13}^e(s) = p_{13} \frac{1}{s(s+a)} + p_{12} \frac{a P(s)}{s(s+a)Q(s)}
\]

The problem now is to invert the exponential transforms. For the first term on the right we have simply from a table of transforms

\[
p_{13} \frac{1}{s(s+a)} \rightarrow p_{13} (1 - e^{-at})
\]

The second term on the right is more involved. Let

\[
T(s) = s(s+a)Q(s)
\]
\[
W(s) = \frac{P(s)}{T(s)}
\]

We can numerically find the roots of Q(s) since we know the coefficients; call these roots \( r_1, \ldots, r_N \), some of which may be complex. These are also roots of T(s). T(s) in addition has roots \( r_{N+1} = -a \) and \( r_{N+2} = 0 \). Now it is known (e.g., Ref. 8) from algebra that W(s) can be decomposed into partial fractions
\[ W(s) = \sum_{k=1}^{N+2} \frac{Z_k}{s - r_k}, \]

where

\[ Z_k = \frac{P(r_k)/T'(r_k)}{P(r_k) \left( r_k (r_k + a)Q'(r_k) + r_k Q(r_k) + (r_k + a)Q(r_k) \right)}. \]

Then inverting \( W(s) \) we get

\[ w(t) = \sum_{k=1}^{N+2} Z_k e^{r_k t}, \]

So

\[ p_{12} a \frac{P(s)}{s(s+a)Q(s)} \rightarrow p_{12} a \sum_{k=1}^{N+2} Z_k e^{r_k t}. \]

Putting all the terms together we have for the six-state model

\[ \varphi_{13}(t) = p_{13} (1 - e^{-at}) + p_{12} a \sum_{k=1}^{N+2} Z_k e^{r_k t}. \]

4.2 The Ten-State Model

The ten-state model is restricted to exponential type pdf's, so more efficient methods of solution are available for it. The exponential pdf's insure that the ten-state model is a Markov process. We are interested in \( \varphi_{19}(t) \) and \( \varphi_{110}(t) \), or equivalently \( \varphi_9(t) \) and \( \varphi_{10}(t) \) in the vector \( \varphi(t) \) defined by

\[ \varphi(t) = \varphi(0) \hat{\varphi}(t), \]

61
where $\psi(t) = [\varphi_{ij}(t)]$ and $\varphi(0) = (1, 0, 0, \ldots, 0)$. Howard (Ref. 4) shows that $\dot{\psi}(t) = e^{A_{t}}$ (matrix exponential) where $A = \Lambda(P - I)$ with $\Lambda$ a diagonal matrix with elements corresponding to the rates of the exponential holding times. Specifically,

$$A = \text{diag}(\lambda_i)$$

where

$$\begin{align*}
\lambda_1 &= \beta_{H} + \beta_{D} \\
\lambda_2 &= \mu_{D} \\
\lambda_3 &= \mu_{H} \\
\lambda_4 &= \mu_{D} \\
\lambda_5 &= \mu_{H} \\
\lambda_6 &= n_{H}\lambda_{H} + (n_{D}-1)\lambda_{D} + \lambda_{R} \\
\lambda_7 &= (n_{H}-1)\lambda_{H} + n_{D}\lambda_{D} + \lambda_{R} \\
\lambda_8 &= n_{H}\lambda_{H} + n_{D}\lambda_{D} \\
\lambda_9 &= 0 \\
\lambda_{10} &= 0.
\end{align*}$$

An iterative scheme is used for calculating the vector $\varphi(t)$. Given $\varphi(t) = \varphi(0)e^{At}$ we can write

$$\varphi(t+\Delta t) = \varphi(0)e^{A(t+\Delta t)} = \varphi(0)e^{At}e^{\Delta t} = \varphi(t)e^{A\cdot\Delta t}.$$ 

Thus, to compute $\varphi(t)$ at points $t$ that are $\Delta t$ apart we need only compute one matrix exponential, $e^{A\Delta t}$. To compute the matrix exponential $e^{Z}$ we use the Pade approximation

$$e^{Z} = \frac{z_{1}^{-1}z_{2}}{z_{1}},$$

where

62
\[ Z_1 = 16801 - 840Z + 180Z^2 - 20Z^3 + Z^4 \]
\[ Z_2 = 16801 + 840Z + 180Z^2 + 20Z^3 + Z^4 \].

This expression for \( e^Z \) is an extension of a table of Pade approximations for the exponential function contained in Ref. 9.
5. LOGICAL FLOW

This section summarizes the preceding sections on model structure and geometrical analysis in terms of logical flow charts. Figure 5.1 gives a summary flow chart for the six-state model and Figure 5.2 for the ten-state model. These charts show the relationships among the inputs required, preliminary calculations, the major loop on number of decoys, transition probability and rate determination, partial fraction expansion or matrix exponentiation, and calculation of trapping probabilities.
INPUT
SPEEDS: \( V_H, V_D, u \)
RANGES: \( R_H, R_D, \rho_D \)
RATES: \( \lambda_o, \mu_D, \mu_H, \lambda_R \)
AREA: \( A_o \)
NUMBERS: \( n_H, n_D \) (array of values)

CALCULATE
RATES: \( \lambda_H, \lambda_D, \lambda_HD \)
PROBABILITIES: \( P_D, P, P_H2, P_H6 \)

SELECT A VALUE OF \( n_D \)

CALCULATE
RATES: \( a, b, c, d, f \)
TRANSITION PROBABILITIES: \( P = [p_{ij}] \)
COEFFICIENTS OF POLYNOMIALS \( P(s), Q(s) \): \( p_i, q_i \)
ROOTS OF \( T(s) \): \( r_1, \ldots, r_{N+2} \)
COEFFICIENTS OF PARTIAL FRACTION
EXPANSION OF \( \phi_{13}^{(2)}(s) \): \( z_1, \ldots, z_{N+2} \)

CALCULATE
AND OUTPUT
TIME POINTS: \( t = 1, 2, \ldots, 16 \) days
CUMULATIVE TRAPPING ABILITY:
\[
\phi_{13}(t) = p_{13} (1 - e^{-at}) + p_{12} \sum_{k=1}^{N+2} z_k e^{-r_k t}
\]

No \( n_D \) SELECTIONS EXHAUSTED?

Yes

NEW INPUT OR STOP

**FIGURE 5.1** SUMMARY LOGICAL FLOW OF SIX-STATE MODEL
INPUT

SPEEDS: $V_H, V_D, u$
RANGES: $R_H, R_D, R_D'$
RATES: $\lambda_o', \mu_D', \mu_H', \lambda_R$
PROBABILITIES: $P_{MD}, P_{MH}$
AREA: $A_o$
NUMBERS: $n_H', n_D$ (array of values)

CALCULATE

RATES: $\lambda_H, \lambda_D, \lambda_{HD}$
PROBABILITIES: $P_{D2}', P_{D6'}, P_{H2}, P_{H6}$

SELECT A VALUE OF $n_D$

CALCULATE

TRANSITION PROBABILITIES: $P = [p_{i,j}^*]$  
RATES: $A = \text{diag}(\lambda_i)$
MATRICES: $A = A(P-I), e^{A\Delta t}(\Delta t=1)$

CALCULATE

TIME POINTS: $t = 1, 2, \ldots, 16$ days
INITIAL CONDITION: $\varphi(0) = (1, 0, \ldots, 0)$
STATE PROBABILITIES: $\varphi(t+\Delta t) = \varphi(t)e^{A\Delta t}$

OUTPUT

TRAPPING PROBABILITIES: $\varphi_g(t), \varphi_{10}(t)$  
$t = 1, 2, \ldots, 16$

No $n_D$ SELECTIONS EXHAUSTED?

Yes

NEW INPUT OR STOP

FIGURE 5.2 SUMMARY LOGICAL FLOW OF TEN-STATE MODEL
6. MODEL COMPARISON AND SENSITIVITY

This section compares the old and the new models and presents some sensitivity analysis. The purpose is to evaluate what has been developed in order to aid in its use and future modification.

6.1 Old and New Model Geometry

The development of the original three-state semi-Markov model into the model used in this study involves incorporation of the problem geometry. There are two modifications: (1) representation of the boundary conditions imposed by the finite circular operating area, and (2) representation of the dissipation of swept area during the classification of contacts. This section assesses the significance of these modifications.

The effect of the boundary representation is examined by comparing results for a single-sub/single-HVS search with no decoys.* To give a broad basis to the comparison the detection radius is varied parametrically. The difference between the old model and the new is barely perceptible; the comparison is shown in Tables 6.1 and 6.2. The first table shows probability of encounter for a 1-day period, while the second table shows it for a 7-day period. The maximum difference shown is 0.03. This difference is quite small, insignificant in the case of a single target. However, the difference might be magnified by the inclusion of decoys.

*The other parameter values in this case include submarine speed, 10 knots; HVS speed, 15 knots; and a 200-nmi radius operating area.
### Table 6.1

BOUNDARY REPRESENTATION COMPARISON  
(One Day)

<table>
<thead>
<tr>
<th>HVS Detection Radius</th>
<th>Probability of Encounter (One Day)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Old Model</td>
</tr>
<tr>
<td>10</td>
<td>0.06</td>
</tr>
<tr>
<td>20</td>
<td>0.12</td>
</tr>
<tr>
<td>30</td>
<td>0.17</td>
</tr>
<tr>
<td>40</td>
<td>0.23</td>
</tr>
<tr>
<td>50</td>
<td>0.27</td>
</tr>
<tr>
<td>60</td>
<td>0.32</td>
</tr>
<tr>
<td>70</td>
<td>0.36</td>
</tr>
<tr>
<td>80</td>
<td>0.40</td>
</tr>
<tr>
<td>90</td>
<td>0.44</td>
</tr>
<tr>
<td>100</td>
<td>0.47</td>
</tr>
<tr>
<td>110</td>
<td>0.50</td>
</tr>
<tr>
<td>120</td>
<td>0.54</td>
</tr>
</tbody>
</table>

### Table 6.2

BOUNDARY REPRESENTATION COMPARISON  
(Seven Days)

<table>
<thead>
<tr>
<th>HVS Detection Radius (nmi)</th>
<th>Probability of Encounter (Seven Days)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Old Model</td>
</tr>
<tr>
<td>10</td>
<td>0.36</td>
</tr>
<tr>
<td>20</td>
<td>0.59</td>
</tr>
<tr>
<td>30</td>
<td>0.74</td>
</tr>
<tr>
<td>40</td>
<td>0.83</td>
</tr>
<tr>
<td>50</td>
<td>0.89</td>
</tr>
<tr>
<td>60</td>
<td>0.93</td>
</tr>
<tr>
<td>70</td>
<td>0.96</td>
</tr>
<tr>
<td>80</td>
<td>0.97</td>
</tr>
<tr>
<td>90</td>
<td>0.98</td>
</tr>
<tr>
<td>100</td>
<td>0.99</td>
</tr>
<tr>
<td>110</td>
<td>0.99</td>
</tr>
<tr>
<td>120</td>
<td>0.99</td>
</tr>
</tbody>
</table>
Unfortunately, with the inclusion of decoys the boundary representation becomes confounded with the representation of dissipation of swept area.

Figure 6.1 shows two cases of model comparison involving decoys; the variable parameter is decoy detection range. Submarine speed is 10 knots; the other parameter values are shown below. Case 1 is a single CV in a nonconvergence zone with a larger number of lower fidelity devices; Case 2 is an integrated CTG in a convergence zone with a smaller number of higher fidelity devices. In this comparison there is considerable difference between the models. The maximum difference in Case 1 is 0.20 (difference between 0.19 and 0.39); the maximum difference in Case 2 is 0.25 (difference between 0.32 and 0.57). It will be shown below that the difference is due to the zero speed of the decoys, which implies a low rate of dissipation of swept area.

<table>
<thead>
<tr>
<th>Case 1</th>
<th>Case 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV in NCZ</td>
<td>CTG in CZ</td>
</tr>
<tr>
<td>$V_D = 0$ kt</td>
<td>$V_D = 0$ kt</td>
</tr>
<tr>
<td>$n_D = 12$</td>
<td>$n_D = 5$</td>
</tr>
<tr>
<td>$T_c = 3$ hr</td>
<td>$T_c = 10$ hr</td>
</tr>
<tr>
<td>$R_H = 28$ nmi</td>
<td>$R_H = 90$ nmi</td>
</tr>
<tr>
<td>$V_H = 15$ kt</td>
<td>$V_H = 15$ kt</td>
</tr>
</tbody>
</table>

The vertical broken lines in Figure 6.1 indicate decoy ranges which are subject to sensitivity analysis on number of decoys (Case 2 only) in Figure 6.2. The value $R_D = 70$ nmi is the break point between the two models in Case 2 of Figure 6.1, and the difference between models
FIGURE 6.1  MODEL GEOMETRY COMPARISON AS A FUNCTION OF DECOY DETECTION RANGE (CASES 1 AND 2)
Figure 6.2: Model Geometry Comparison as Function of Number of Decoys (Case 2)
is insensitive to decoy numbers in Figure 6.2. On the other hand, 

\[ R_D = 160 \text{ nmi} \] is a point of wide disparity in Figure 6.1, and Figure 6.2 indicates this disparity is a function of number of decoys, with disparity maximum at four decoys and decreasing with fewer or more decoys.

Thus far it is apparent that geometry representation can have a large effect, but the mechanism of the effect is not clear. Case 3 shown in Figure 6.3 clarifies this mystery; Case 3 is a high speed CV in a convergence zone. The important fact illustrated in this figure is that the large difference evident between the new and old models at a decoy speed of zero collapses when the decoy speed is increased to 10 knots.

The conclusions are: (1) geometry representation can have an appreciable effect, (2) the effect depends on the parameters of the problem (e.g., decoy detection range, speed, capture time, and number), and (3) the effect is due primarily to the representation of the dissipation of swept area.

6.2 Probability of Misclassification and Information Retention Time

Inclusion of misclassification probability and retention by the submarine of information on the last decoy classified are the other two major modifications in addition to geometry. Figure 6.4 illustrates the highly significant effect of the misclassification probabilities \( p_{MN} \) and \( p_{MD} \). However, it has been found that retention time of information has virtually no effect over a wide range of situations for almost any reasonable retention time (e.g., 0 to 100 hours).
Sub Speed: 10 kt
HVS Speed: 15 kt
HVS Detection Radius: 90 nmi (CTG)
Decoy Speed: 0 kt
Decoy Detection Radius: 70 nmi (Break Point Figure 6.1)
Classification Time: 10 hr

Figure 6.4 Effect of Misclassification Probability
The models discussed in this document are implemented as operational computer programs and have been used in concept evaluation studies reported elsewhere (Ref. 1). Experience in the development and use of these models allows some general conclusions to be drawn about the methodology.

Two conclusions are easy to draw: (1) potential for target misclassification is a highly significant part of the problem, and (2) retention of information on the last target classified is insignificant.

Another conclusion is that FORMAC is an interesting and powerful tool for analyzing continuous time semi-Markov process, but it can become cumbersome and time consuming in itself. Its use is best restricted to a small number of states (certainly no more than six), or to cases of very sparse transition matrices, where it can be very useful in deriving compact closed form solutions. However, for a larger number of states it appears a discrete time approximation is the better approach where consideration of non-Markovian processes is desirable. In the work described here it seems a 2-hour discrete time step would be the minimum necessary and perhaps longer, say 5 hours, would be acceptable.

Very significant is what has been discovered about the importance of geometry. Geometry representation can have an appreciable effect, but the effect is due primarily to the representation of the dissipation of swept a.ea. The following simplified approach is suggested for future work:
(1) Ignore boundary conditions

(2) Adopt simple modification of unbounded area detection rates via approximations based on Figure 3.10 or an extension of this figure.
Appendix A

DISTRIBUTION OF TIME IN THE ENTRY STATE

The entry state is set up to allow consideration of nonstationary (time varying) encounter rates as the submarine enters the operating area. Let

\[ N_H(t) = \text{encounter rate for HVSs at time } t \]
\[ N_D(t) = \text{encounter rate for decoys at time } t \]
\[ \xi(t) = N_H(t) + N_D(t) \]
\[ \eta_H(t) = \int_0^t N_H(\tau) \, d\tau \]
\[ \eta_D(t) = \int_0^t N_D(\tau) \, d\tau \]
\[ \eta(t) = \int_0^t \xi(\tau) \, d\tau \]
\[ T_D = \text{time to detect an HVS with pdf } f_D(t) \]
\[ T_H = \text{time to detect a decoy with pdf } f_H(t). \]

Assume

\[ f_H(t) = N_H(t)e^{-\eta_H(t)} \quad t \geq 0 \]
\[ f_D(t) = N_D(t)e^{-\eta_D(t)} \quad t \geq 0 . \]

If \( N_H(t) \) and \( N_D(t) \) are constants, then these are exponential distributions. The holding time pdf \( h_1(t) \) is given by
\[ h_1(t) = \xi(t)e^{-\eta(t)} \quad t \geq 0 \]

It can then be shown that

\[ p_{12} = P[T_D = \min(T_{D'}, T_H)] \]

\[ = \int_0^\infty \left[ 1 - e^{-\eta_D(t)} \right] N_H(t)e^{-\eta_H(t)} \, dt \]

To obtain \( N_H(t) \) and \( N_D(t) \) we use results from Ref. 6. Consider Figure A.1, where the submarine is heading directly in toward the center of the operating area. Assuming the detection circle is tangent to the operating area at time zero, the distance between the submarine and the center of the operating area is \( R_H + R_o - ut \) at time \( t \), given the submarine speed \( u \). The angle \( \beta \) is given by
\[
\beta_H(t) = \arccos \left[ \frac{R_H^2 + (R_H + R - ut)^2 - R_o^2}{2R_H(R_H + R - ut)} \right].
\]

Koopman (Ref. 6) shows the following. Assuming the submarine is operating in an infinite area, the encounter rate for HVSs experienced in the bearing region \((-\beta, \beta)\)

\[
\beta_H = \frac{2\delta_H R_H}{\pi} \int_0^\beta f(\beta; u, v_H) d\beta
\]

where \(\delta_H\) is target density. We assume this same formula applies approximately to the situation in Figure A.1, so that

\[
N_H(t) = \frac{2\delta_H R_H}{\pi A_H} \int_0^{\beta_H(t)} f(\beta; u, v_H) d\beta
\]

where \(A_H\) is \(A_0\) minus the overlap of the detection circle. A similar expression is used for \(N_D(t)\). There are a number of logical exceptions to these expressions, but they are not discussed here; the objective of this appendix is to give only an overview of the approach examined. The next step is approximate \(h_1(t)\). The approach taken is to fit

\[
H_1(t) = \int_0^t h_1(\tau) d\tau
\]

with an Erlang distribution

\[
\hat{H}_1(t; \lambda, n) = 1 - e^{-\lambda t} \sum_{k=1}^{n} \frac{\lambda^k t^k}{(k-1)!}, \quad t \geq 0
\]

via a least squares technique on \(\lambda\) for fixed values of \(n\), and then select the value of \(n\) with the least total squared deviation. In sixteen cases
examined, \( n = 1 \) occurred fifteen times, and \( n = 2 \) once. The \( n = 2 \) case is shown in Figure A.2. Since \( n = 1 \), the exponential distribution, is so heavily predominant and the procedure so time consuming, this special consideration of entry has been abandoned and entry is subsumed under search.
Appendix B

THE ERLANG DISTRIBUTION

In this study the most general form of capture time distribution considered is the Erlang distribution. Let $t$ be the random variable time, $n > 0$ a positive integer, and $\mu > 0$ a real number. The Erlang density and cumulative distribution functions are, respectively,

$$g(t; n, \mu) = \frac{(\mu t)^n}{(n-1)!} t^{n-1} e^{-\mu t}, \quad t \geq 0$$

$$G(t; n, \mu) = 1 - e^{-\mu t} \sum_{k=1}^{n} \frac{(\mu t)^{k-1}}{(k-1)!}, \quad t \geq 0,$$

with the convention $0! = 1$. The exponential transform is given by

$$g^e(s; n, \mu) = E[e^{-st}]$$

$$= \left[ \frac{\mu t}{s + \mu t} \right]^n.$$

The expectation, variance, and second moment are

$$E(t) = \frac{1}{\mu}$$

$$\text{Var}(t) = \frac{1}{n \mu^2}$$

$$E(t^2) = \frac{n+1}{n \mu^2}.$$
By varying $n$ and $\mu$ a large number of different shapes can be obtained, as illustrated in Figure B.1. In particular, when $n = 1$ the Erlang distribution is the exponential distribution, and when $n \to \infty$ then $\text{Var}(t) \to 0$, which implies constant capture time. Replacing $\mu n$ by $\mu$ in the density and distribution functions yields the gamma distribution.
Appendix C

DISTRIBUTION OF RANGE
FROM CENTER OF OPERATING AREA

In obtaining expressions for \( P(r_1|C_1) \) and \( P(r_1|F_2) \), a pdf \( k(r) \) for the distance \( r \) from the center of the operating area \( A_o \) was used. This pdf has the form

\[
k(r) = \frac{2\pi}{A_o} r \quad 0 \leq r \leq R_o ,
\]

where \( R_o \) is the radius of \( A_o \). The form follows from the assumption that position is uniformly distributed throughout \( A_o \). Let \((x, y)\) be the rectangular coordinates of position measured from the center of \( A_o \). The assumption may be stated

\[
f(x, y) = \begin{cases} 
\frac{1}{A_o} & \text{if } x^2 + y^2 \leq R_o^2 \\
0 & \text{otherwise} 
\end{cases}
\]

We want to derive \( k(r) \), the pdf of \( r = \sqrt{x^2 + y^2} \). Let

\[
u = x^2 + y^2 \\
w = x^2
\]

or

\[
x = \pm \sqrt{w} \\
y = \pm \sqrt{u-w}
\]

(C-1)

(C-2)
where the sign on the radical depends on the quadrant of $A_o$ (see Figure C.1). The Jacobian $J_1$ of the transformation (C-2) in quadrant $A_1$ is the determinant

$$J_1 = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial w} \end{vmatrix} = \frac{1}{4} \frac{1}{\sqrt{uw - w^2}} .$$

Similarly, $J_2 = -J_1$, $J_3 = J_1$, and $J_4 = -J_1$, so $|J_1| = |J|$ is the same over all quadrants. The transformation (C-1) takes quadrant $A_1$ into a region $B_1$ in the $uw$-plane. This mapping is illustrated in Figure C.2 and is described by the limits:

$$\begin{align*}
x: & \quad 0 \to R_0 \\
y: & \quad 0 \to R_0 \\
u: & \quad 0 \to R_0^2 \\
w: & \quad 0 \to u
\end{align*}$$

The quadrants $A_2$, $A_3$, $A_4$, also map onto regions $B_2$, $B_3$, and $B_4$, which are coincident with $B_1$. Consider $B_1$ the image of $A_1$; we can use the theorem on transformation of random variables (e.g., Ref. 10) to write
\[ H(u, w) = f(\sqrt{w}, \sqrt{u-w}) \mid J \]

\[ = \frac{1}{4A_o} \frac{1}{\sqrt{uw-w}} \quad \text{for } (u, w) \in B_1 \text{ (image of } A_1) \] .

**FIGURE C.2** THE MAPPING OF \( A_1 \) ONTO \( B_1 \)

It is clear, however, that \( B_1 \) is also the image of \( A_2, A_3, A_4 \) so that considering all the transformed probability density we have

\[ h(u, w) = \frac{1}{A_o} \frac{1}{\sqrt{uw-w}} \quad \text{for } (u, w) \in B_1 \] .

Now we integrate out \( w \) in order to obtain the marginal pdf \( g(u) \) of \( u \):

\[ g(u) = \int_0^u h(u, w) \, dw \]

\[ = \frac{\pi}{A_o} \quad \text{for } 0 \leq u \leq R_o^2 \] .

97
Now $r = \sqrt{u}$ so that

$$k(r) = g(r^2)\left|\frac{du}{dr}\right|$$

$$= \frac{2\pi}{A_o} r \quad \text{for} \quad 0 \leq r \leq R_o .$$
Appendix D

FORMAC PROGRAM LISTING

This appendix presents a listing of the program written in the IBM FORMAC language to handle the algebraic simplification of the flow graph transmission for the six-state model. A sample output is also given. The listing is presented in order to give the interested reader who is unfamiliar with FORMAC an idea of what the language is like and what it can do. This appendix can only be considered as an accompaniment to Ref. 7 (the FORMAC handbook); the intention is not to provide an introduction to FORMAC but rather an example. Neither can the program be considered efficient; indeed, many improvements are obvious to someone with only limited knowledge of the language. The following correspondences should be noted in reading the program and relating it to the problem:

<table>
<thead>
<tr>
<th>PROBLEM NOTATION</th>
<th>PROGRAM NOTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>N2, N3</td>
</tr>
<tr>
<td>a through f</td>
<td>AA through PP</td>
</tr>
<tr>
<td>A through F</td>
<td>A through F</td>
</tr>
<tr>
<td>s + a</td>
<td>SPA</td>
</tr>
<tr>
<td>p_i (coefficient in P(s))</td>
<td>CUS(i-1)</td>
</tr>
<tr>
<td>q_i (coefficient in Q(s))</td>
<td>CDS(i-1)</td>
</tr>
<tr>
<td>Δ</td>
<td>DEL, DELTA, DEIR</td>
</tr>
<tr>
<td>P(s)</td>
<td>UP1</td>
</tr>
<tr>
<td>Q(s)</td>
<td>DWN1</td>
</tr>
<tr>
<td>N_s(n) + 1</td>
<td>L1</td>
</tr>
</tbody>
</table>
It is assumed in this listing that $n = 1$ and that $b = c$ (the simplest case considered—the one given in the main text). It is interesting to note that FORMAC is imbedded in PL/1, so that it is possible to incorporate the numerical computation into the same program as the algebraic manipulation. This was not done on this project because an IBM computation facility was not conveniently accessible, and PL/1-FORMAC is unique to IBM.
PROGRAM LISTING

INPUT TL FOR MACPHII PROCESSING
"MICRO: PARCLIFFE OPTION IN (MAIN):
MACRO_OPTIONS;
OPTSFL(LINE_LENGTH=72):
PUT PAGE;
PUT LIST(* PROJECT 136)*5 "CMAC TRY (UT):
DCL PWE X MIN FIXED(31);
DCL PWY X FIXED(31);
DCL PZ1 X FIXED(31);
LET(FNC(FT)= (L(1)*F(2))*S(1)/S(3)*S(1));
N1=1;
N2=1;
N3=1;
N4=1;
N5=1;
BEGIN:
LET IAX=FT(""t 69,dSPI);  
HX=FT(""tN2","dSPB);
CX=FT(""tN2","dSPB);
&X=FT(""tN4","dSPU);
FX=FT(""tN5","dSPF)
PRINT JUT(IAX;HXC;CX;FX);  
LET IA= P12*AK; HB = P3*AX; CC = P2*AX; DU = P2o*BX1
EC = P3*DX; FC = P4*DX; GC = P4*DX*; HH = P4*DX; 
KK = PS*DX; MM = P4*DX; NM = P5*DX; PP = P6*DX; 
QU = P6*DX 
PRINT JUT(IAX;HBC;BC;CF;FB;FU;GU;HH;IKK;MM;NP;QU)
LET JUN = 1 - (PP + G4*FF + G4*HH*KK + DU*FF + D2*HH*KK*CC) 
+ (FF*GU*PP + GU*HH*KK*PP)
CRL = C0DCE (DCL 1A )
PRINT JUT (DELTA:DELTA)
ATMZ (IFLT A):
ATMIZ (IFLT 1):
PRINT JUT (DECl):
ATMZ (IFLT C):
IMAX = 1;
ST1:
LET (DEL=ANG):
ATLZI (ANG):
PINT JUT (UDEL):  
LET (DEL = BPLAC (COL;SPA;S"N"t1*"A;SPA;S"N2"*k, 
SPC;S"N3"*C;S"D;S"N4"*F;SPF;S"N5"*G):
ATI 1 E L (CL):
LET IT2 = (NDEL + LC + G4*PP + G4*HH*KK*1 - PP)
+ (PP*GU*PP + G4*HH*KK*PP)
CXL = C0DEL(12)
ATMZ (IFLT 1):
LALT (ANG=TOP):
ATMIZE (T2P):
SPLAX = 2;
GO TO ST2;
ST4:
LET (12*="N2"):
ATLZI (A09):
PINT JUT (T2P):
LET T2 = BPLAC(T2F;S1A;S"N"t1*"A;SPA;S"N2"*k,
SPC;S"N3"*C;S"D;S"N4"*F;SPF;S"N5"*G):
ATI 1 E L (12):
LET (UP1 = XPAA (NUM12) ; DXX = DEVLP (17) ;

103
PROGRAM LISTING (continued)

M1 = HIWPO*(UP1,S1));
LET(UP1 = EXPAND(UP1*S1));
NV = INT(nEGER(M1));
DO I = 0 TO NV;
NV+1;
LET(CUS("NM") = CNEFF(UP1,S**"NM"));
PRINT_OUT(CUS("NM"));
ATOMICIZE(CUS("NM"));
END;
ATOMICIZE(UP1);
LET(DWN1 = EXPAND(DWN1*S1));
LET(DWN1 = EXPAND(DWN1*S1));
PRINT_OUT(L1);
ATOMICIZE(DWN1);
NV = INTEGER(L1);
DO I = 0 TO NV;
NV+1;
LET(CUS("NM") = CUPFF(DWN1,S**"NM"));
PRINT_OUT(CUS("NM"));
ATOMICIZE(CUS("NM"));
END;
ATOMICIZE(DWN1);
PRINT_LIST(ZEROF KEYF L1)
GO TO STE;

ST2:
LET(AT = EXPAND(NUM(A) UAD ));
BT = EXPAND(DEF(AW, UAD ));
Z(1) = SPA;
Z(2) = SPB;
Z(3) = SPC;
Z(4) = SPD;
Z(5) = SPF; L1:

A I = I TO E;
ATOMICIZE(ASINS);
LET(AS=;0=HS=0; Y=Z("IM"));
LET(HPYY = HIGHTPOW(AT,Y));
LPY = HIGHTPOW(AT,Y);
HPY = HIGHTPOW(AT,Y);
MPY = INTEGER(HPY);
LPY = INTEGER(LPYY);
HPD = INTEGER(IPY);
LPD = INTEGER(LPYY);
IF LPD <= THEN GU ".." 511;
ELSE;
IF LPY < I THEN C,I, I, S11;
ELSE;
IF LPD <= THEN P,LPK = LPD;
LPK = L15 = LPK;
K = 11.1, HPK;
LET(AS = AS + (ULF(A,CY)QKN)WES(\NM - HLPW)));
LET(AS = EXPAND(AS));
IF 1:
LPK = LPK TC HPK;
LET(HK = HK + (ULF(A,CY)QKN)WES(\NM - HLPW)));
L(I(I) S= EXPAND(I)));
END;
ATOMICIZE(AS; I, T);
L(I(I) AT = AS; I = I);S11:
END:
LET( AHR = A1/BT):
IF INDEX = 1 THEN GO TO ST3; ELSE GO TO ST4;
SIE:
FND:
## SAMPLE OUTPUT (continued)

<table>
<thead>
<tr>
<th>SPF</th>
<th>SPD</th>
<th>SPB</th>
<th>SPF</th>
<th>SPD</th>
<th>SPF</th>
<th>SPD</th>
<th>SPF</th>
<th>SPD</th>
<th>SPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>6</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 / 1 SPF, SPD, SPB

<table>
<thead>
<tr>
<th>DEL</th>
<th>SPF P45 P24 D B</th>
<th>P66 P52 - F P45 P26 D B</th>
<th>P64 P52 - F P45 P24 D B</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>P66 P52 - F P45 P26 D B</td>
<td>SPF P24 P42 D H</td>
<td>SPF P24 P26 D H</td>
</tr>
<tr>
<td>SPF</td>
<td>SPF SPD SPB + SPF SPD SPF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>SPF SPF SPD SPF SPD SPF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P64</td>
<td>SPF P24 P42 D SPB SPF SPD SPF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P64</td>
<td>SPF P24 P42 D SPF SPF SPF SPF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T2R</th>
<th>SPF P24 D B</th>
<th>P66 P52 SPF P24 D B</th>
<th>SPF P24 D B</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPF</td>
<td>SPF P43 SPF SPF P26 D B</td>
<td>SPF P26 SPF SPF</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>SPF SPF SPF SPF SPF SPF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPF</td>
<td>SPF SPF SPF SPF SPF SPF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P24</td>
<td>SPF SPF SPF SPF SPF SPF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P24</td>
<td>SPF SPF SPF SPF SPF SPF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P26</th>
<th>SPF SPF SPF SPF SPF SPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPF</td>
<td>SPF SPF SPF SPF SPF SPF</td>
</tr>
<tr>
<td>SPF</td>
<td>SPF SPF SPF SPF SPF SPF</td>
</tr>
<tr>
<td>SPF</td>
<td>SPF SPF SPF SPF SPF SPF</td>
</tr>
</tbody>
</table>

SAMPLE OUTPUT (concluded)

L1 = 4

\[ \text{CDSS}(0) = F \ P45 \ P24 \ L \ H \ P60 \ P52 - F \ P45 \ P28 \ U \ H \ P64 \ P52 - F \ P45 \ P24 \ U \]

\[ \text{CDSS}(1) = F \ P45 \ P24 \ L \ H \ P60 \ P52 + F \ P45 \ P28 \ U \ H \ P64 \ P52 + F \ P45 \ P24 \ U \]

\[ \text{CDSS}(2) = F \ P45 \ P24 \ L \ H \ P60 \ P52 + F \ P45 \ P28 \ U \ H \ P64 \ P52 + F \ P45 \ P24 \ U \]

\[ \text{CDSS}(3) = F \ P45 \ P24 \ L \ H \ P60 \ P52 + F \ P45 \ P28 \ U \ H \ P64 \ P52 + F \ P45 \ P24 \ U \]

\[ \text{CDSS}(4) = 1 \]

The effective texture factor.
Appendix E

POLYNOMIAL COEFFICIENTS

This appendix contains the coefficients of the polynomials \( P(s) \) and \( Q(s) \) for \( n = 2, 3, \) and 10. The coefficients are presented in FORTRAN format due to the fact that they have been printed directly from verified punched cards in order to eliminate typographical errors. To assist interpretation of the coefficients the following correspondences between model terminology and FORTRAN are noted:

<table>
<thead>
<tr>
<th>Model</th>
<th>FORTRAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>( a, b, c, d, f )</td>
<td>( A, B, C, D, F )</td>
</tr>
<tr>
<td>( a^2, b^2, c, d, f^2 )</td>
<td>( A2, B2, C2, D2, F2 )</td>
</tr>
<tr>
<td>( p_{ij} ) (e.g., ( p_{26} ))</td>
<td>( P_{ij} ) (e.g., ( P_{26} ))</td>
</tr>
<tr>
<td>( p_i )</td>
<td>( P(i) )</td>
</tr>
<tr>
<td>( q_i )</td>
<td>( Q(i) )</td>
</tr>
</tbody>
</table>

The \( P(i) \) and \( Q(i) \) are given in Tables E.1 through E.3.
Table E.1

COEFFICIENTS FOR $n = 2$

\[
P(1) = 16FDP26C2d2P53P45P64
    + 16FDp26C2d2P43P64
    - 16FDp24C2d2P66P53P45
    + 16FDp24C2d2P66P53P45
    - 16FDp24C2d2P66P43
    + 16FDp24C2d2P66P43
    + 16FDp23C2d2P46
    + 16FDp23C2d2P46
\]

\[
P(2) = 160DP26C2d2P43P64
    + 16FDp24C2d2P53P45
    + 16FDp24C2d2P66P43
    + 16FDp24C2d2P66P43
    + 16FDp23C2d2P66
    + 16FDp23C2d2P66
    + 16FDp23C2d2P66
    + 16FDp23C2d2P66
\]

\[
P(3) = 4*FDP24C2d2P53P45
    + 16FDp24C2d2P66
    + 16FDp24C2d2P66
    + 16FDp23C2d2P66
    + 16FDp23C2d2P66
\]

\[
P(4) = 4*DP24C2d2P3
    + 16FDp23C2d2P3
    + 16FDp23C2d2P3
\]

\[
P(5) = 4*DP23d2
\]

\[
Q(1) = 16FDP26C2d2P52P45P64
    + 16FDP26C2d2P43P64
    + 16FDP24C2d2P66P52P45
    + 16FDP24C2d2P66P52P45
    + 16FDP24C2d2P66P43
    + 16FDP24C2d2P66P43
    + 16FDP23C2d2P66
    + 16FDP23C2d2P66
\]

112
Table E.1 (continued)

\[ Q(2) = -16\#D\#P24\#P26\#C2\#B2\#P64 \]
\[ \quad +16\#F\#D\#P24\#C\#B2\#P52\#P45 \]
\[ \quad +16\#F\#D\#C2\#P66 \]
\[ \quad +16\#D\#P24\#P42\#C2\#B2\#P66 \]
\[ \quad +16\#F\#C2\#B2\#P66 \]
\[ \quad +16\#F\#D\#C2\#B1 \]
\[ \quad +16\#F\#D\#P24\#P42\#C\#B2 \]
\[ +16\#E\#D\#C\#B2 \]
\[ +16\#D\#C2\#B2 \]
\[ +16\#F\#C2\#B2 \]
\[ Q(3) = -4\#F\#D\#P24\#B2\#P52\#P45 \]
\[ \quad +16\#D\#C2\#B\#P66 \]
\[ \quad +16\#F\#C2\#B\#P66 \]
\[ \quad +16\#C\#B2\#P66 \]
\[ \quad +4\#F\#D\#C2\#P66 \]
\[ \quad +16\#F\#D\#C\#B \]
\[ +16\#D\#C\#B \]
\[ +16\#F\#C\#B \]
\[ +16\#D\#P24\#P42\#C\#B2 \]
\[ +16\#D\#C\#B2 \]
\[ +16\#F\#C\#B \]
\[ +4\#F\#D\#P24\#P42\#B2 \]
\[ +16\#D\#B \]
\[ +4\#F\#D\#C \]
\[ Q(4) = -16\#C2\#B\#P66 \]
\[ \quad +4\#D\#C2\#P66 \]
\[ \quad +4\#F\#C2\#P66 \]
\[ +16\#C\#B \]
\[ +16\#F\#C\#B \]
\[ +4\#F\#D\#B \]
\[ +16\#C\#B2 \]
\[ +4\#F\#D\#C \]
\[ +4\#F\#C2 \]
\[ +4\#F\#C2 \]
Table E.1 (concluded)

\[ Q(5) = -4*G2*P66 \]
\[ +16*C*H \]
\[ +4*D*D \]
\[ +4*F*F \]
\[ +4*B2 \]
\[ +4*C2 \]

\[ Q(6) = 4*G \]
\[ +4*C \]
\[ +D \]
\[ +F \]

\[ Q(7) = 1 \]
Table E.2

COEFFICIENTS FOR n = 3

\[ P(1) = 729 \cdot F \cdot D \cdot P_{26} \cdot C_{3} \cdot B_{3} \cdot P_{53} \cdot P_{45} \cdot P_{64} \]
\[ + 729 \cdot F \cdot D \cdot P_{26} \cdot C_{3} \cdot B_{3} \cdot P_{53} \cdot P_{43} \cdot P_{64} \]
\[ + 729 \cdot F \cdot D \cdot P_{24} \cdot C_{3} \cdot B_{3} \cdot P_{66} \cdot P_{53} \cdot P_{45} \]
\[ + 729 \cdot F \cdot D \cdot P_{24} \cdot C_{3} \cdot B_{3} \cdot P_{53} \cdot P_{43} \cdot P_{64} \]
\[ + 729 \cdot F \cdot D \cdot P_{24} \cdot C_{3} \cdot B_{3} \cdot P_{66} \cdot P_{53} \cdot P_{45} \]
\[ + 729 \cdot F \cdot D \cdot P_{23} \cdot C_{3} \cdot B_{3} \cdot P_{66} \cdot P_{53} \cdot P_{43} \]
\[ + 729 \cdot F \cdot D \cdot P_{23} \cdot C_{3} \cdot B_{3} \cdot P_{66} \cdot P_{53} \cdot P_{43} \]
\[ + 729 \cdot F \cdot D \cdot P_{23} \cdot C_{3} \cdot B_{3} \cdot P_{66} \cdot P_{53} \cdot P_{43} \]

\[ P(2) = 729 \cdot D \cdot P_{26} \cdot C_{3} \cdot B_{3} \cdot P_{43} \cdot P_{64} \]
\[ + 729 \cdot D \cdot P_{24} \cdot C_{2} \cdot B_{3} \cdot P_{53} \cdot P_{45} \]
\[ + 729 \cdot D \cdot P_{24} \cdot C_{2} \cdot B_{3} \cdot P_{66} \cdot P_{43} \]
\[ + 729 \cdot D \cdot P_{24} \cdot C_{2} \cdot B_{3} \cdot P_{66} \]
\[ + 729 \cdot D \cdot P_{23} \cdot C_{3} \cdot B_{3} \cdot P_{53} \cdot P_{45} \]
\[ + 729 \cdot D \cdot P_{23} \cdot C_{3} \cdot B_{3} \cdot P_{53} \cdot P_{43} \]
\[ + 729 \cdot D \cdot P_{23} \cdot C_{3} \cdot B_{3} \cdot P_{66} \]
\[ + 729 \cdot D \cdot P_{23} \cdot C_{3} \cdot B_{3} \cdot P_{66} \]

\[ P(3) = 243 \cdot D \cdot P_{24} \cdot C_{3} \cdot B_{3} \cdot P_{53} \cdot P_{45} \]
\[ + 243 \cdot D \cdot P_{24} \cdot C_{3} \cdot B_{3} \cdot P_{53} \cdot P_{43} \]
\[ + 243 \cdot D \cdot P_{23} \cdot C_{3} \cdot B_{3} \cdot P_{66} \]
\[ + 243 \cdot D \cdot P_{23} \cdot C_{3} \cdot B_{3} \cdot P_{66} \]
\[ + 243 \cdot D \cdot P_{23} \cdot C_{3} \cdot B_{3} \cdot P_{66} \]
\[ + 243 \cdot D \cdot P_{23} \cdot C_{3} \cdot B_{3} \cdot P_{66} \]
\[ + 243 \cdot D \cdot P_{23} \cdot C_{3} \cdot B_{3} \cdot P_{66} \]
\[ + 243 \cdot D \cdot P_{23} \cdot C_{3} \cdot B_{3} \cdot P_{66} \]
\[ + 243 \cdot D \cdot P_{23} \cdot C_{3} \cdot B_{3} \cdot P_{66} \]

\[ P(4) = 27 \cdot F \cdot D \cdot P_{24} \cdot C_{3} \cdot B_{3} \cdot P_{53} \cdot P_{45} \]
\[ + 27 \cdot F \cdot D \cdot P_{24} \cdot C_{3} \cdot B_{3} \cdot P_{66} \]
\[ + 27 \cdot F \cdot D \cdot P_{23} \cdot C_{3} \cdot B_{3} \cdot P_{66} \]
\[ + 27 \cdot F \cdot D \cdot P_{23} \cdot C_{3} \cdot B_{3} \cdot P_{66} \]
\[ + 27 \cdot F \cdot D \cdot P_{23} \cdot C_{3} \cdot B_{3} \cdot P_{66} \]
\[ + 27 \cdot F \cdot D \cdot P_{23} \cdot C_{3} \cdot B_{3} \cdot P_{66} \]

\[ P(5) = 27 \cdot D \cdot P_{24} \cdot B_{3} \cdot P_{43} \]
\[ + 243 \cdot P_{23} \cdot C \cdot B_{3} \cdot P_{66} \]
\[ + 27 \cdot D \cdot P_{23} \cdot d_{3} \]
\[ + 27 \cdot F \cdot P_{23} \cdot B_{3} \]

\[ P(6) = 27 \cdot P_{23} \cdot B_{3} \]

115
Table E.1 (continued)

\[ Q(1) = -729*F*D*P26*C3*B3*P52*P45*P64 \]
\[ -729*F*D*P26*C3*B3*P64 \]
\[ +729*F*P24*C3*B3*P52*P45 \]
\[ -729*F*D*P24*C3*B3*P52*P45 \]
\[ +729*F*D*P24*C3*B3*P66 \]
\[ -729*F*D*P24*C3*B3*P66 \]
\[ +729*F*P24*C3*B3*P66 \]

\[ Q(2) = -729*F*D*P24*C3*B3*P52*P45 \]
\[ -729*F*D*P24*C3*B3*P52*P45 \]
\[ +729*F*D*P24*C3*B3*P66 \]
\[ +729*F*D*P24*C3*B3*P66 \]
\[ -729*F*D*P24*C3*B3*P66 \]
\[ +729*F*D*P24*C3*B3*P66 \]

\[ Q(3) = -243*F*D*P24*C3*B3*P52*P45 \]
\[ -243*F*D*P24*C3*B3*P52*P45 \]
\[ -243*F*D*P24*C3*B3*P66 \]
\[ -243*F*D*P24*C3*B3*P66 \]
\[ +243*F*D*P24*C3*B3*P66 \]
Table E.2 (continued)

\[ Q(4) = -27*F*D*P24*B3*P52*P45 \]
\[ +243*D*C3*B*P66 \]
\[ +243*F*C3*B*P66 \]
\[ +729*C3*B2*P66 \]
\[ +729*F*D*C3*P66 \]
\[ +729*F*D*C3*B2 \]
\[ +729*D*P24*P42*C*B3 \]
\[ +24*D*C3*P66 \]
\[ +243*F*C3*B3 \]
\[ +243*F*C3*B3 \]
\[ +729*D*C2*P66 \]
\[ +729*D*C2*B2 \]
\[ +729*D*C2*B2 \]
\[ +729*F*D*C3 \]

\[ Q(5) = -243*C3*B*P66 \]
\[ +27*D*C3*P66 \]
\[ +27*F*C3*P66 \]
\[ +81*F*D*C*B \]
\[ +243*D*C2*B \]
\[ +243*F*C2*B \]
\[ +243*C3*B \]
\[ +243*D*C*B2 \]
\[ +243*F*C*B2 \]
\[ +27*D*D*B2 \]
\[ +729*D*C2*B2 \]
\[ +729*D*C2*B2 \]
\[ +243*C3*B3 \]
\[ +27*D*P24*P42*B3 \]
\[ +27*D*B3 \]
\[ +27*F*B3 \]
\[ +27*F*D*C2 \]
\[ +27*D*C3 \]
\[ +27*F*C3 \]
Table E.2 (concluded)

\[
\begin{align*}
Q(6) &= -27\times C_3\times P_66 \\
&\quad + 81\times D\times C_8 \\
&\quad + 41\times F\times C_8 \\
&\quad + 9\times F\times D_8 \\
&\quad + 243\times C_2\times B \\
&\quad + 9\times F\times D_2 \\
&\quad + 2\times 3\times C_3\times B_2 \\
&\quad + 27\times D\times B_2 \\
&\quad + 27\times F\times B_2 \\
&\quad + 27\times D_2\times C_2 \\
&\quad + 27\times F\times C_2 \\
&\quad + 27\times B_3 \\
&\quad + 27\times C_3 \\

Q(7) &= 81\times C_8 \\
&\quad + 9\times D_8 \\
&\quad + 9\times F_8 \\
&\quad + 9\times D\times C \\
&\quad + 9\times F\times C \\
&\quad + F_9 \\
&\quad + 27\times B_2 \\
&\quad + 27\times C_2 \\

Q(8) &= 9\times B \\
&\quad + 9\times C \\
&\quad + D \\
&\quad + F \\

Q(9) &= 1
\end{align*}
\]
Table E.2 (concluded)

\[ Q(6) = -27C3P66 \]
\[ +k1D#C#B \]
\[ +R1F#C#B \]
\[ +4F#D#B \]
\[ +243C2#B \]
\[ +9F#D#C \]
\[ +2*3C#B2 \]
\[ +27D#B2 \]
\[ +27F#B2 \]
\[ +27D#C2 \]
\[ +27F#C2 \]
\[ +27B3 \]
\[ +27C3 \]

\[ Q(7) = 81C#R \]
\[ +9D#R \]
\[ +9F#B \]
\[ +9D#C \]
\[ +9F#C \]
\[ +D#D \]
\[ +27B2 \]
\[ +27C2 \]

\[ Q(8) = 9B \]
\[ +9C \]
\[ +D \]
\[ +F \]

\[ Q(9) = 1 \]
Table E.3

COEFFICIENTS FOR n = 10

\[ P(1) = (-F^*P24^*D^*B20^*P66^*P43 \\
+ F^*P26^*D^*B20^*P64^*P43 \\
+ F^*P24^*D^*B20^*P43 \\
- F^*P45^*P24^*D^*B20^*P66^*P53 \\
+ F^*P45^*P26^*D^*B20^*P64^*P53 \\
+ F^*P45^*P24^*D^*B20^*P53 \\
+ D^*B20^*P66 \\
+ F^*P63^*P26^*D^*B20 \\
+ p^*D^*F^*D^*B20) \times 1E+20
\]

\[ P(2) = (-P24^*D^*B20^*P66^*P43 \\
+ P26^*D^*B20^*P64^*P43 \\
+ F^*P24^*D^*B19^*P43 \\
+ F^*P45^*P24^*D^*B19^*P53 \\
- P23^*D^*B20^*P66 \\
+ F^*B20^*P66 \\
+ P23^*F^*D^*B19 \\
+ P63^*P26^*D^*B20 \\
+ P23^*D^*B20 \\
+ P^*D^*F^*D^*B20) \times 1E+20
\]

\[ P(3) = (.45^*F^*P24^*D^*B18^*P43 \\
+ F^*P24^*D^*B19^*P43 \\
+ .45^*F^*P45^*P24^*D^*B18^*P53 \\
- P23^*B20^*P66 \\
+ .45^*P23^*F^*D^*B18 \\
+ P23^*D^*B19 \\
+ P63^*P26^*D^*B20 \\
+ P23^*D^*B20) \times 1E+20
\]

\[ P(4) = (.12^*F^*P24^*D^*B17^*P43 \\
+ .45^*P24^*D^*B18^*P43 \\
+ .12^*F^*P45^*P24^*D^*B17^*P53 \\
- .12^*P23^*F^*D^*B17 \\
+ .45^*P23^*D^*B18 \\
+.45^*P23^*F^*D^*B18 \\
+ P23^*B14^*+1E+20
\]

\[ P(5) = (.21^*F^*P24^*D^*B16^*P43 \\
+ 1.2^*P24^*D^*B17^*P43 \\
+ 1.2^*F^*P45^*P24^*D^*B16^*P53 \\
+ 1.2^*P23^*F^*D^*B16 \\
+ 1.2^*P23^*D^*B17 \\
+ 1.2^*P23^*F^*B17 \\
+ 4.5^*P23^*B18^*\times 1E+19
\]
Table E.3 (continued)

\[
P(6) = (252F\cdot P24\cdot D\cdot B15\cdot P43
+ 2.1P24\cdot D\cdot B16\cdot P43
+ 2.52P45\cdot P24\cdot D\cdot B15\cdot P53
+ 2.52P23\cdot F\cdot D\cdot B15
+ 2.1P23\cdot D\cdot B16
+ 2.1P23\cdot F\cdot B16
+ 12.0P23\cdot B17) * 1E+18
\]

\[
P(7) = (210F\cdot P24\cdot D\cdot B14\cdot P43
+ 2.52P24\cdot D\cdot B15\cdot P43
+ 2.1F\cdot P45\cdot P24\cdot D\cdot B14\cdot P53
+ 2.1P23\cdot F\cdot D\cdot B14
+ 2.52P23\cdot D\cdot B15
+ 2.52P23\cdot F\cdot B15
+ 21.0P23\cdot B16) * 1E+17
\]

\[
P(8) = (12F\cdot P24\cdot D\cdot B13\cdot P43
+ 2.1P24\cdot D\cdot B14\cdot P43
+ 12F\cdot P45\cdot P24\cdot D\cdot B13\cdot P53
+ 12P23\cdot F\cdot D\cdot B13
+ 2.1P23\cdot D\cdot B14
+ 2.1P23\cdot F\cdot B14
+ 25.2P23\cdot B15) * 1E+16
\]

\[
P(9) = (45F\cdot P24\cdot D\cdot B12\cdot P43
+ 12.0P24\cdot D\cdot B13\cdot P43
+ 45F\cdot P45\cdot P24\cdot D\cdot B12\cdot P53
+ 45P23\cdot F\cdot D\cdot B12
+ 12.0P23\cdot D\cdot B13
+ 12.0P23\cdot F\cdot B13
+ 210.0P23\cdot B14) * 1E+14
\]

\[
P(10) = (F\cdot P24\cdot D\cdot B11\cdot P43
+ 45F\cdot P24\cdot D\cdot B12\cdot P43
+ F\cdot P45\cdot P24\cdot D\cdot B11\cdot P53
+ P23\cdot F\cdot D\cdot B11
+ 45F\cdot P23\cdot D\cdot B12
+ 45F\cdot P23\cdot F\cdot B12
+ 1200.0P23\cdot B13) * 1E+12
\]

\[
P(11) = (F\cdot P24\cdot D\cdot B10\cdot P43
+ 100F\cdot P24\cdot D\cdot B11\cdot P43
+ F\cdot P45\cdot P24\cdot D\cdot B10\cdot P53
+ P43\cdot F\cdot D\cdot H10
+ 100F\cdot P23\cdot D\cdot B11
+ 100F\cdot P23\cdot F\cdot B11
+ 4500.0P23\cdot B12) * 1E+10
\]

120
Table E.3 (continued)

\[ P(12) = (\text{constant}) \]
\[ + \sum_{i=1}^{n} \text{term}_i \]
\[ P(13) = \text{constant} \]

\[ (\text{constant}) = (\text{expression}) \]

\[ Q(1) = (\text{expression}) \]

\[ Q(2) = (\text{expression}) \]

\[ Q(3) = (\text{expression}) \]

121
Table E.3 (continued)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>( Q(4) )</td>
<td>((-12F \cdot P_{45} \cdot P_{24} \cdot D \cdot P_{17} \cdot P_{52}))</td>
</tr>
<tr>
<td></td>
<td>(-12F \cdot P_{0} \cdot P_{17} \cdot P_{66}</td>
</tr>
<tr>
<td></td>
<td>( +45D \cdot P_{18} \cdot P_{66}</td>
</tr>
<tr>
<td></td>
<td>( +45F \cdot P_{18} \cdot P_{66}</td>
</tr>
<tr>
<td></td>
<td>(-919 \cdot P_{66}</td>
</tr>
<tr>
<td></td>
<td>(-12F \cdot \overline{P}<em>{2} \cdot \overline{P}</em>{42} \cdot D \cdot P_{17}</td>
</tr>
<tr>
<td></td>
<td>(+1 \cdot 4F \cdot D \cdot P_{17}</td>
</tr>
<tr>
<td></td>
<td>(-45 \cdot \overline{P}<em>{24} \cdot \overline{P}</em>{42} \cdot D \cdot P_{18}</td>
</tr>
<tr>
<td></td>
<td>(+1 \cdot 9 \cdot D \cdot P_{18}</td>
</tr>
<tr>
<td></td>
<td>(+1 \cdot 9 \cdot F \cdot P_{18}</td>
</tr>
<tr>
<td></td>
<td>(+2 \cdot 819 ) \cdot 1E+20</td>
</tr>
<tr>
<td>( Q(5) )</td>
<td>((-21F \cdot F \cdot P_{45} \cdot P_{24} \cdot D \cdot P_{16} \cdot P_{52}) )</td>
</tr>
<tr>
<td></td>
<td>(-21F \cdot D \cdot P_{16} \cdot P_{66}</td>
</tr>
<tr>
<td></td>
<td>(-1 \cdot 2 \cdot D \cdot P_{17} \cdot P_{66}</td>
</tr>
<tr>
<td></td>
<td>(-1 \cdot 2 \cdot F \cdot P_{17} \cdot P_{66}</td>
</tr>
<tr>
<td></td>
<td>(-4 \cdot 5 \cdot P_{18} \cdot P_{66}</td>
</tr>
<tr>
<td></td>
<td>(-21F \cdot P_{24} \cdot \overline{P}<em>{42} \cdot D \cdot P</em>{16}</td>
</tr>
<tr>
<td></td>
<td>(+4 \cdot 845 \cdot F \cdot D \cdot P_{16}</td>
</tr>
<tr>
<td></td>
<td>(-1 \cdot 2 \cdot P_{24} \cdot \overline{P}<em>{42} \cdot D \cdot P</em>{17}</td>
</tr>
<tr>
<td></td>
<td>(+1 \cdot 4 \cdot D \cdot P_{17}</td>
</tr>
<tr>
<td></td>
<td>(+1 \cdot 4 \cdot F \cdot P_{17}</td>
</tr>
<tr>
<td></td>
<td>(+19 \cdot 810 ) \cdot 1E+19</td>
</tr>
<tr>
<td>( Q(6) )</td>
<td>((-252F \cdot F \cdot P_{45} \cdot P_{24} \cdot D \cdot P_{15} \cdot P_{52}) )</td>
</tr>
<tr>
<td></td>
<td>(-252F \cdot D \cdot P_{15} \cdot P_{66}</td>
</tr>
<tr>
<td></td>
<td>(-2 \cdot 1 \cdot D \cdot P_{16} \cdot P_{66}</td>
</tr>
<tr>
<td></td>
<td>(-2 \cdot 1 \cdot F \cdot P_{16} \cdot P_{66}</td>
</tr>
<tr>
<td></td>
<td>(+1 \cdot D \cdot P_{17} \cdot P_{66}</td>
</tr>
<tr>
<td></td>
<td>(-252F \cdot P_{24} \cdot \overline{P}<em>{42} \cdot D \cdot P</em>{15}</td>
</tr>
<tr>
<td></td>
<td>(+15 \cdot 504 \cdot F \cdot D \cdot P_{15}</td>
</tr>
<tr>
<td></td>
<td>(-2 \cdot 1 \cdot P_{24} \cdot \overline{P}<em>{42} \cdot D \cdot P</em>{16}</td>
</tr>
<tr>
<td></td>
<td>(+4 \cdot 45 \cdot D \cdot P_{16}</td>
</tr>
<tr>
<td></td>
<td>(+4 \cdot 45 \cdot F \cdot P_{16}</td>
</tr>
<tr>
<td></td>
<td>(+114 \cdot 817 ) \cdot 1E+18</td>
</tr>
<tr>
<td>( Q(7) )</td>
<td>((-21F \cdot F \cdot P_{45} \cdot P_{24} \cdot D \cdot P_{14} \cdot P_{52}) )</td>
</tr>
<tr>
<td></td>
<td>(-21F \cdot D \cdot P_{14} \cdot P_{66}</td>
</tr>
<tr>
<td></td>
<td>(-2 \cdot 52 \cdot D \cdot P_{15} \cdot P_{66}</td>
</tr>
<tr>
<td></td>
<td>(-2 \cdot 52 \cdot F \cdot P_{15} \cdot P_{66}</td>
</tr>
<tr>
<td></td>
<td>(-2 \cdot 52 \cdot B_{16} \cdot P_{66}</td>
</tr>
<tr>
<td></td>
<td>(-21F \cdot P_{24} \cdot \overline{P}<em>{42} \cdot D \cdot P</em>{14}</td>
</tr>
<tr>
<td></td>
<td>(+38 \cdot 76 \cdot F \cdot D \cdot P_{14}</td>
</tr>
<tr>
<td></td>
<td>(-2 \cdot 52 \cdot P_{24} \cdot \overline{P}<em>{42} \cdot D \cdot P</em>{15}</td>
</tr>
<tr>
<td></td>
<td>(+155 \cdot 8 \cdot D \cdot P_{15}</td>
</tr>
<tr>
<td></td>
<td>(+155 \cdot 8 \cdot F \cdot B_{15}</td>
</tr>
<tr>
<td></td>
<td>(+48 \cdot 5 \cdot B_{16} ) \cdot 1E+17</td>
</tr>
</tbody>
</table>
Table E.3 (continued)

| Q(8) | \((-12\times 10^{5})\times P_{45}\times P_{24}\times D_{0}\times B_{13}\times P_{52}
\quad -1.21\times D_{0}\times B_{14}\times P_{66}
\quad -3.1\times D_{0}\times B_{14}\times P_{66}
\quad -2.19\times F_{0}\times B_{14}\times P_{66}
\quad -25.21\times B_{15}\times P_{66}
\quad -12.52\times F_{0}\times B_{13}\times D_{42}\times P_{42}\times D_{0}\times B_{13}
\quad +77.52\times F_{0}\times D_{0}\times B_{13}
\quad -2.19\times P_{24}\times P_{42}\times D_{0}\times B_{14}
\quad +387.66\times D_{0}\times B_{14}
\quad +387.66\times F_{0}\times B_{14}
\quad +1550.44\times B_{15}\times 10^{16}
| Q(9) | \((-15\times 10^{5})\times P_{45}\times P_{24}\times D_{0}\times B_{12}\times P_{52}
\quad -0.45\times F_{0}\times D_{0}\times B_{12}\times P_{66}
\quad -12.5\times D_{0}\times B_{13}\times P_{66}
\quad -12.5\times F_{0}\times B_{13}\times P_{66}
\quad -210.91\times D_{0}\times B_{12}\times P_{66}
\quad -12.5\times F_{0}\times P_{42}\times D_{0}\times B_{12}
\quad +125.97\times F_{0}\times D_{0}\times B_{12}
\quad -12.5\times P_{24}\times P_{42}\times D_{0}\times B_{13}
\quad +7752.0\times B_{13}\times D_{0}\times B_{13}
\quad +7752.0\times F_{0}\times B_{13}
\quad +30700.0\times B_{14}\times 10^{17}
| Q(10) | \((-9\times 10^{5})\times P_{45}\times P_{24}\times D_{0}\times B_{11}\times P_{52}
\quad -0.9\times F_{0}\times D_{0}\times B_{11}\times P_{66}
\quad -45.0\times F_{0}\times B_{12}\times P_{66}
\quad -120.9\times B_{13}\times P_{66}
\quad +F_{0}\times P_{42}\times D_{0}\times B_{11}
\quad +16796.0\times F_{0}\times D_{0}\times B_{11}
\quad -45.0\times P_{24}\times P_{42}\times D_{0}\times B_{12}
\quad +125970.0\times D_{0}\times B_{12}
\quad +125970.0\times F_{0}\times B_{12}
\quad +775200.0\times B_{13}\times 10^{12}
| Q(11) | \((-1.0\times 10^{5})\times P_{45}\times P_{24}\times D_{0}\times B_{10}\times P_{52}
\quad -1.0\times F_{0}\times D_{0}\times B_{10}\times P_{66}
\quad -100.0\times F_{0}\times B_{11}\times P_{66}
\quad -4500.0\times B_{12}\times P_{66}
\quad +F_{0}\times P_{42}\times D_{0}\times B_{10}
\quad +194756.0\times F_{0}\times D_{0}\times B_{10}
\quad -100.0\times P_{24}\times P_{42}\times D_{0}\times B_{11}
\quad +1679600.0\times D_{0}\times B_{11}
\quad +1679600.0\times F_{0}\times B_{11}
\quad +12597000.0\times B_{12}\times 10^{10}

123
Table E.3 (continued)

\[
\begin{align*}
Q(12) &= (-D^80.P66^6 \\
&= F^810.P66 \\
&= 100.*B11.P66 \\
&= 16796.*F^D.B9 \\
&= 24.*F^D.B10 \\
&= 184756.*D.B10 \\
&= 184756.*F.B10 \\
&= 1679600.*B11)*1E+10
\end{align*}
\]

\[
\begin{align*}
Q(13) &= (-B10.*P66^6 \\
&= 1259.7*F^D.B8 \\
&= 16796.*D.B9 \\
&= 16796.*F^B.B9 \\
&= 184756.*B10)*1E+10
\end{align*}
\]

\[
\begin{align*}
Q(14) &= (0.7752*F^D.B7 \\
&= 12.597*F^D.B8 \\
&= 12.597*F^B.B8 \\
&= 167.96*B0)*1E+12
\end{align*}
\]

\[
\begin{align*}
Q(15) &= (3876*F^D.B6 \\
&= 7.752*F^B.B7 \\
&= 7.752*F^D.B7 \\
&= 15.97*B8)*1E+11
\end{align*}
\]

\[
\begin{align*}
Q(16) &= (15.504*F^D.B5 \\
&= 387.6*F^D.B6 \\
&= 387.6*F^B.B6 \\
&= 7752.*B7)*1E+8
\end{align*}
\]

\[
\begin{align*}
Q(17) &= (4.845*F^D.B4 \\
&= 155.04*F^D.B5 \\
&= 155.04*F^B.B5 \\
&= 3876.*B6)*1E+7
\end{align*}
\]

\[
\begin{align*}
Q(18) &= (11.4*F^D.B3 \\
&= 4845.*F^D.B4 \\
&= 4845.*F^B.B4 \\
&= 1550*F^B.B5)*1E+4
\end{align*}
\]

\[
\begin{align*}
Q(19) &= 19000.*F^D.B2 \\
&= 114000.*F^D.B3 \\
&= 114000.*F^B.B3 \\
&= 485000.*B4
\end{align*}
\]
Table E.3 (concluded)

| Q(20) | 200.0F0108 |
|       | 19000.0D082 |
|       | 19000.0F82 |
|       | 119000.083 |

| Q(21) | 200.0D8 |
|       | 200.0FeW |
|       | 200.0D |
|       | 19000.082 |

| Q(22) | 200.0B |
|       | 0D |
|       | 0F |

| Q(23) | 1.0 |