COLLAGENASE INHIBITORS IN 'PSEUDOMONAS' KERATITIS, ADJUNCTS TO ANTIBIOTIC THERAPY IN RABBITS

George Bohigian, et al

Naval Medical Field Research Laboratory
Camp Lejeune, North Carolina

1 June 1972
THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
Collagenase inhibitors as adjuncts to antibiotic therapy were evaluated in experimentally induced Pseudomonas keratitis in rabbits. Neither the combination of 1% edetic acid (EDTA) and 0.25% polymyxin B sulfate nor that of 1.2% cysteine and 0.25% polymyxin B sulfate was more effective than the polymyxin B sulfate alone. There was a small statistical difference in favor of a combination of edetic acid-cysteine-polymyxin B sulfate when it was compared with an edetic acid-polymyxin B sulfate combination. This difference, although statistically significant, did not appear to be clinically important in the treatment of our experimental model. (U)
<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ROLE</td>
<td>WT</td>
<td>ROLE</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collagenase inhibitors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>keratitis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>corneal ulcer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>antibiotics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>polymyxin B sulfate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>subconjunctival antibiotics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cornea</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Collagenase Inhibitors in *Pseudomonas* Keratitis

Adjuncts to Antibiotic Therapy in Rabbits

LCDR George Bobigian, MC, USN; Mario Valenton, MD, Camp Lejeune, NC; Masso Okumoto, MA, San Francisco; Maj Bobby L Caraway, VC, USAF, Camp Lejeune, NC

Collagenase inhibitors as adjuncts to antibiotic therapy were evaluated in experimentally induced *Pseudomonas* keratitis in rabbits. Neither the combination of 1% edetic acid (EDTA) and 0.25% polymyxin B sulfate nor that of 1.2% cysteine and 0.25% polymyxin B sulfate was more effective than the polymyxin B sulfate alone. There was a small statistical difference in favor of a combination of edetic acid-cysteine-polymyxin B sulfate when it was compared with an edetic acid-polymyxin B sulfate combination. This difference, although statistically significant, did not appear to be clinically important in the treatment of our experimental model.

In experimentally induced *Pseudomonas aeruginosa* keratitis, the organism produces a protease that is apparently collagenase. Several investigators have reported recently that collagenase inhibitors, such as edetic acid (EDTA) and cysteine, are beneficial in experimental collagenase-induced keratitis. The beneficial effect is mediated in part by chelation of the calcium necessary for activity of the enzyme collagenase. In addition, edetic acid has a bactericidal effect on *P. aeruginosa* by disorganizing the outer layer of the cell wall, which facilitates the penetration of antimicrobial agents.

Edetic acid and antibiotic combinations have been shown to have a synergistic effect on *P. aeruginosa* in vitro, and Wilson has shown that edetic acid in vivo is an effective adjunct to antibiotic therapy in keratitis that has been experimentally induced with *Pseudomonas* extract.

The purpose of this study was to determine whether or not collagenase inhibitors were beneficial adjuncts to the usual antibiotic treatment of an animal model of *Pseudomonas* corneal ulcer.

Materials and Methods

Drugs.—Sterile 1% edetic acid (2.9 x 10^-3 M), pH 7.0, was obtained from the University of California Medical Center Pharmacy. The 1.2% L-cysteine-free base (10^-3 M) and 0.25% polymyxin B sulfate were obtained from commercial manufacturers. All drugs were freshly prepared daily in sterile distilled water, and the pH of each solution was checked before and after use.

Strain of Pseudomonas.—The strain of *P. aeruginosa* we used was obtained originally from a patient with an active corneal ulcer. It was sensitive to 50-mg polymyxin B sulfate disks and was identified as type 6 (by the pyocine typing technique) at the Center for Disease Control, Atlanta. A 24-hour growth of this strain at 37°C on blood agar was diluted with physiological saline solution to produce a suspension standardized to 5% transmission at a wavelength of 540 nm against a clear blank in a spectrophotometer. This cell suspension contained approximately 10^9 viable organisms/ml.
Experimental Model.—To produce Pseudomonas keratitis experimentally, we inoculated 45 female New Zealand white rabbits weighing approximately 2 kg each. Four days prior to inoculation, the eyes were anesthetized with one drop of proparacaine hydrochloride, and the lower punctum of each eye was cauterized for 20 seconds with a hot wire. On the day of inoculation, the eyes were again anesthetized, and a circular area of central corneal epithelium, 6 mm in diameter, was removed with a platinum spatula. On the denuded surface, scratch marks were made in four directions with a five-pronged tattoo needle. Approximately 0.1 ml of the Pseudomonas suspension was applied to the corneas of both eyes, and the lids were sutured together with 4-0 black silk and left sutured for 48 hours.

Within 48 hours, all 90 eyes had developed marked purulent conjunctivitis, mild overall corneal haze, and a whitish ulcer infiltrate centrally that usually occupied 25% to 50% of the corneal area (Fig 1). This technique had been used previously with similar results.

Experimental Design.—The right eyes of the infected rabbits were treated with polymyxin B sulfate, alone and in various combinations with the collagenase inhibitors edetic acid and cysteine; the left eyes served as controls, saline solution being used in place of one or more of the drugs. Treatment was begun 48 hours after the Pseudomonas inoculation and was continued for five days. The reason for withholding medication for 48 hours was to create a situation that would resemble an actual clinical situation, since this would enhance the importance of any observed therapeutic benefit.

The infected animals were randomly divided into four groups of ten rabbits each and one group of five rabbits. In group 1, polymyxin B sulfate alone was compared with saline solution; in group 2, a combination of polymyxin B sulfate and edetic acid was compared with that of polymyxin B sulfate and saline solution; in group 3, a combination of polymyxin B sulfate and cysteine was compared with that of polymyxin B sulfate and saline solution; and in group 4, a combination of polymyxin B sulfate, edetic acid, and cysteine was compared with that of polymyxin B sulfate, edetic acid, and saline solution (Table 1).

An amount of each medication, 0.12 ml (2 drops), was applied every two hours during the day (7 AM to 6 PM), with five-minute intervals between drops of different drugs when more than one was applied. In addition, 0.1 ml of each solution was given subconjunctivally in different quadrants of the eyes.

Table 1.—Treatment Groups

<table>
<thead>
<tr>
<th>Group</th>
<th>Right Eye</th>
<th>Left Eye</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Polymyxin B sulfate</td>
<td>Saline solution</td>
</tr>
<tr>
<td>2</td>
<td>Edetic acid & polymyxin B sulfate</td>
<td>Saline solution & polymyxin B sulfate</td>
</tr>
<tr>
<td>3</td>
<td>Cysteine & polymyxin B sulfate</td>
<td>Saline solution & polymyxin B sulfate</td>
</tr>
<tr>
<td>4</td>
<td>Cysteine, edetic acid, polymyxin B sulfate</td>
<td>Saline, edetic acid, polymyxin B sulfate</td>
</tr>
</tbody>
</table>

Table 2.—Method of Scoring Severity of Experimental Pseudomonas Keratitis

<table>
<thead>
<tr>
<th>Percent of Corneal Surface Affected (%)</th>
<th>Grade</th>
<th>Density of Infiltrate</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-25</td>
<td>+1</td>
<td>Faint</td>
<td>+1</td>
</tr>
<tr>
<td>25-50</td>
<td>+2</td>
<td>Moderate</td>
<td>+2</td>
</tr>
<tr>
<td>50-75</td>
<td>+3</td>
<td>Severe</td>
<td>+3</td>
</tr>
<tr>
<td>75-100</td>
<td>+4</td>
<td>Very severe</td>
<td>+4</td>
</tr>
</tbody>
</table>

* Area grade and density grade totaled to express severity score for each eye. Maximum possible score is +8.

Fig 1.—Representative corneal ulcer infiltrate before therapy at 48 hours. Infiltrate graded +2 (area) and +2 (density). Final score of severity, +4.
Fig 2.—Right eyes treated with polymyxin B sulfate (triangles-dashed line) had substantially less keratitis than left eyes treated with saline solution (dots-solid line).

The special group of five infected animals received 0.1 ml of each solution intravenously via the marginal ear vein daily for five days. The reason for this additional control was to verify that subconjunctival therapy received in the right eye could not cross over systemically to affect the control eye.

All treatments were administered by an investigator who was not informed of the content of the solution he was injecting.

Scoring of the Corneal Lesions.—The animals were examined grossly with a slit-lamp every day for two weeks, representative photographs were taken, and the lesions were graded by two observers who did not know which form of treatment the animals had received. The area and the density of the corneal ulcer infiltrates were graded separately from 0 to +4. The area grade and the density grade were then added together to give the score of the severity of the keratitis in each eye (Table 2).

Results

All of the medications were well tolerated. None of the rabbits died during the study. The results in each group were plotted on a series of scattergrams to show a progression of the ulcer infiltrates (Fig 2 to 6). In group 1 (Fig 2), there was a statistically significant difference between the polymyxin B sulfate-treated right eyes and the saline solution-treated left eyes. No statistically significant differences were found in groups 2 and 3 (Fig 3 and 4) on postinoculation days 7 or 14. In group 4 (Fig 5), the cysteine-edetic acid-polymyxin B sulfate combination in comparison with the saline solution-edetic acid-polymyxin B sulfate combination resulted in a statistically significant difference in favor of the cysteine-edetic acid-polymyxin B sulfate combination ($P = .01$).

Fig 3.—Right eyes treated with edetic acid and polymyxin B sulfate (triangles-dashed line) had nearly same degree of keratitis as left eyes treated with saline solution and polymyxin B sulfate (dots-solid line).
clinical score was less than two at day 14. If the χ² was applied when the clinical score was equal to or more than 2, then the differences were no longer statistically significant.

Intravenous medication had no beneficial effect on the natural course of the disease; the keratitis induced in the rabbits treated intravenously with the various drugs followed the same course as that in the controls that received saline solutions.

All of the therapeutic combinations tested are compared in Fig 6.

Comment

In this experimental model, no benefit was derived from the addition of either 1% edetic acid or 1.2% cysteine to 0.25% polymyxin B sulfate when the effects were compared with the effect of polymyxin B sulfate alone. When both of the collagenase inhibitors were added, there was a small difference between this three-way combination (edetic acid, cysteine, and polymyxin B sulfate) and the two-way combination (edetic acid and polymyxin B sulfate). This difference, although "statistically" significant, did not appear to offer any practical "clinical" advantage. All of the observers agreed that the differences were not clinically important. The three-part combination might, of course, have a more favorable effect in vivo if treatment were begun earlier and administered longer. However, our study was expressly designed to show which of these drug combinations, if any, would be more effective than polymyxin B sulfate alone late in the experimental disease. It was assumed that the experimental disease at this stage would more closely correspond to the human disease, the treatment of which is so
The low concentration of polymyxin B sulfate was chosen so that any therapeutic effect displayed by the collagenase inhibitors would not be masked; the antibiotic even in this strength was effective. E. Chowchuvveck, MD; M. Okomoto, MA; and C. Yoneda, MD, using this strain of *P. aeruginosa* and this model, have found 1% edetic acid to have a slightly beneficial effect compared with saline solution (unpublished data). The use of higher concentrations of these collagenase inhibitors has recently been recommended.

The clinical picture of the disease process in rabbits and humans is slightly different. Experimentally induced *Pseudomonas* infections of the cornea in the rabbit are mainly a necrosis of the epithelium and stroma and hence an ulcer infiltrate. In human cases, a similar sequence can be seen, but frequently this can appear more as a corneal melting process. This process may be different than stromal disease seen in the rabbit model; thus, the effects of collagenase inhibitors on corneal melting in humans could not be determined by the present study. The therapeutic effect of collagenase inhibitors on human cases of *Pseudomonas* corneal ulcer will depend on the results of well-controlled studies in the future. In our animal model, topical and subconjunctivally administered edetic acid and cysteine combinations with polymyxin B sulfate did not have a more beneficial effect than polymyxin B sulfate alone.

This project was supported in part by US Naval Hospital, Camp Lejeune, NC, Work Unit M4-009-01-000-A0E and by program grant EY-00026 from the National Institutes of Health, US Department of Health, Education, and Welfare, Bethesda, MD.

The following hospital corpsmen provided technical assistance: Robert J. Sutter, Edward W. Garcia, Charles F. Gataki, and Everett E. Baynes. The experiments reported herein were conducted according to the principles given in Guide for Laboratory Animal Facilities and Care prepared by the Committee on the Guide for Laboratory Animal Resources, National Academy of Sciences—National Research Council.

Key Words—*Pseudomonas aeruginosa*; collagenase inhibitors; keratitis; corneal ulcer; antibiotics; polymyxin B sulfate; cysteine; edetic acid (EDTA); subconjunctival antibiotics; cornea.

Nonproprietary Names and Trademarks of Drugs

Proparacaine hydrochloride—Alcaine, Ophthalmine.

Edetic acid—Nullapen, Sequestrene, Versene Acid.

References

Pseudomonas Keratitis

Bohigian et al