A MARKOV DECISION MODEL FOR COMPUTER-AIDED INSTRUCTION

Richard D. Wollmer

University of Southern California

Prepared for:
Office of Naval Research
Advanced Research Projects Agency

December 1973

DISTRIBUTED BY:
NTIS
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151
A MARKOV DECISION MODEL FOR COMPUTER-AIDED INSTRUCTION

December 1973

Richard D. Wollmer

Sponsored by
Office of Naval Research
Personnel and Training Research Programs

and

Advanced Research Projects Agency

The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the Advanced Research Projects Agency, the office of Naval Research, or the U.S. Government.
ARPA TECHNICAL REPORT
31 December 1973

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>ARPA Order Number : 2284/8-30-72</td>
</tr>
<tr>
<td>2.</td>
<td>ONR NR Number : NR 154-355</td>
</tr>
<tr>
<td>3.</td>
<td>Program Code Number : 1B729</td>
</tr>
<tr>
<td>4.</td>
<td>Name of Contractor : University of Southern California</td>
</tr>
<tr>
<td>5.</td>
<td>Effective Date of Contract : 72 December 31</td>
</tr>
<tr>
<td>6.</td>
<td>Contract Expiration Date : 73 December 31</td>
</tr>
<tr>
<td>7.</td>
<td>Amount of Contract : $200,000.00</td>
</tr>
<tr>
<td>9.</td>
<td>Principal Investigator : J.W. Rigney ((213) 746-2127)</td>
</tr>
<tr>
<td>10.</td>
<td>Scientific Officer : Marshall Farr</td>
</tr>
<tr>
<td>11.</td>
<td>Short Title : Learning Strategies</td>
</tr>
</tbody>
</table>

This Research Was Supported
by
The Advanced Research Projects Agency
and by
The Office of Naval Research
And was Monitored by
The Office of Naval Research
A mathematical model for computer-aided instruction is developed. It is assumed that the course is divided into a hierarchy of levels of difficulty. These levels are such that if a student is able to perform successfully at a given level of difficulty, he can also perform successfully at all levels of lesser difficulty. Furthermore, if a student performs successfully at one level, it increases his probability of being able to perform successfully at the next higher level of difficulty. Given the initial vector of probabilities for successful performance at each level, the vector describing how these probabilities change with successful performances at each level, and the expected times it takes to attempt a successful performance at each level, this model computes an instructional sequence that minimizes the expected time required for the student to complete the course by performing successfully at the highest level of difficulty. Dynamic programming is used to find this sequence. (U)
<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic Programming</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Markov Processes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructional Sequence</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ACKNOWLEDGMENTS

The continued support of Marshall Farr and Joseph Young, Personnel and Training Research Programs, Office of Naval Research, and of Thomas C. O'Sullivan, Program Manager, Human Resources Research, Advanced Research Projects Agency, is gratefully acknowledged.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II. THE MODEL</td>
<td>3</td>
</tr>
<tr>
<td>Mathematical Formulation</td>
<td>3</td>
</tr>
<tr>
<td>Some Solution Properties</td>
<td>4</td>
</tr>
<tr>
<td>Algorithm for Two Levels</td>
<td>8</td>
</tr>
<tr>
<td>Additional Solution Properties</td>
<td>10</td>
</tr>
<tr>
<td>General Algorithm</td>
<td>13</td>
</tr>
<tr>
<td>III. ESTIMATION OF PARAMETERS</td>
<td>14</td>
</tr>
<tr>
<td>Maximum Likelihood</td>
<td>14</td>
</tr>
<tr>
<td>Confidence Intervals</td>
<td>17</td>
</tr>
<tr>
<td>A Linear Estimator Model</td>
<td>20</td>
</tr>
<tr>
<td>IV. EXAMPLE</td>
<td>26</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>29</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>30</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Output for Level 2</td>
<td>27</td>
</tr>
<tr>
<td>2. Output for Level 3</td>
<td>28</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

Several researchers have been interested in the application of optimization techniques to models of learning and instruction. Karush and Dear (1966) developed an optimal strategy for teaching students to learn a list of independent items. The basic assumption was that an item is either in a learned or unlearned state. If it is given in the unlearned state it goes to the learned state with probability c, while once it reaches the learned state it stays there. Atkinson and Paulson (1972) described experiments in which extensions of this model were applied to computer-assisted spelling instruction with elementary school children. Chant and Atkinson (1973) developed an optimization technique for allocating instructional effort to two interrelated blocks or strands of learning material. Their key assumption was that the learning rate for each of the two strands depends solely on the difference between the achievement levels on the two strands.

The model of this report concerns a system where a student is to be taught to perform a certain skill at a given level of competence. He achieves this by working problems through or taking tests at various levels of difficulty. It is assumed that
if a student is able to perform successfully at one level of difficulty
he is able to perform at the next lower or preceding level of difficulty
and consequently at all lower levels of difficulty. This assumption
is particularly applicable in the following two situations.

The first situation is one where the material covered at one
level includes all that covered at preceding levels, plus some
additional material. An example of this is a program developed
at Behavioral Technology Laboratories to teach students Kirchoff's
laws. This course is comprised of eleven levels with the lowest
level defining the units for voltage, current and resistance up to
the highest level which deals with the application of Ohm's law
and Kirchoff's voltage and current laws in complex networks.

The second situation is one where the material and problems
covered at a particular level are virtually the same as at the
immediately preceding level except more clues and hints are given
at the preceding level. A good example of this would be a version
of the Kirchoff's laws program considered earlier at Behavioral
Technology Laboratories in which problems would be given at the
following levels:

1. Problems are given in steps with cues and knowledge
 of results at each step.

2. Problems are given in steps with no cues or knowledge
 of results at each step.

3. The student solves problems in steps but he chooses the steps.
4. The student is simply given problems and asked to solve them.

Note, however, the assumption given for this model would not be applicable for the situation where a given level did not use certain material introduced at preceding levels.

It is also assumed that if a student performs successfully at one level, it will increase his probability of being able to perform successfully at the next higher level. The student completes the course when he performs successfully at the highest level. The aim of the model presented in this paper is to choose the levels at which problems should be assigned in the course sequence so the expected time required by the student to complete the course is minimized.

II. THE MODEL

Mathematical Formulation

The problem of instructing the student so that he completes the course in minimum time is formulated as a Markov decision process. The set of actions are $1, \ldots, N$ where action i is that of giving the student a problem at level i. The levels are numbered in decreasing order of difficulty. Thus level 1 is the hardest and level N the easiest. The state \emptyset is that in which the student has performed successfully at level 1. The states in which the student has not performed successfully at level 1 are characterized by the vectors $p = (p_1, \ldots, p_n)$ where p_i equals the probability that the student will correctly do a problem at level i. It is assumed
that if a student can do a problem at level \(i \), he can also do it at level \(j \) for all \(j > i \). Thus, \(p_i \) is non-decreasing in \(i \).

For each action \(i \), let

\[
q_i = P \text{ [student can perform at level } i - 1 \text{ /student completes problem at level } i \text{ correctly and could not perform at level } i - 1 \text{ before}].
\]

Thus, if the state is \(p \) and we perform action 1, we go to state \(\phi \) with probability \(p_1 \) and remain in state \(p \) with probability \(1 - p_1 \). If we take action \(i > 1 \) we go to state \(\tilde{p} \) with probability \(p_i \) where \(\tilde{p}_{i-1} = p_{i-1} + q_i (1 - p_{i-1}) \), \(\tilde{p}_k = p_k, k \neq i - 1 \), and remain in state \(p \) with probability \(1 - p_i \).

Equivalently, the components of \(\tilde{p} \) above may be represented by the following:

\[
\begin{align*}
\tilde{p}_{i-1} &= (1 - q_i) p_{i-1} + q_i \\
\tilde{p}_k &= p_k, k \neq i - 1.
\end{align*}
\]

Once the system reaches state \(\phi \), it remains there. Associated with each action, \(i \), is a cost \(c_i \) which may be equal to the expected time it takes to attempt a problem at level \(i \). It is desired to choose an action policy that reaches state \(\phi \) at minimum cost.

Some Solution Properties

A policy specifies an action for each state of the system other than state \(\phi \). Let \(V(\pi, p) \) be the total expected cost under policy \(\pi \) when the system is in state \(p \). If \(i \) is the action specified for state \(p \) by \(\pi \), then it follows that:
\[V(\pi, p) = c_i + p_i V(\pi, p) + (1 - p_i) V(\pi, p) \]

(2)

where \(\bar{p}_{i-1} = (1-q_i) p_{i-1} + q_i \) and \(\bar{p}_k = p_k \) for \(k \neq i-1 \).

It is of course desired to find \(\pi \) so that \(V(\pi, p) \leq V(\bar{\pi}, p) \) for all \(p \) and all \(\bar{\pi} \).

Note that if action \(i \) is taken and the student does not complete his task at level \(i \) successfully, the state does not change and action \(i \) will be repeated. Thus any action taken will be repeated until the student completes a problem correctly at which time the state changes and a new action may be taken. In addition, the state resulting from the first time the student performs correctly at level \(i \) is independent of the number of attempts it takes the student to perform successfully at that level. Thus \(\pi \) and \(p \) determine a sequence of correct responses at each level though not the number of trials necessary to obtain these responses. Of course, the sequence must end with one correct response at level \(i \). The expected number of trials necessary for the student to complete a problem successfully at level \(i \) is \(1/p_i \) and the expected cost of this is \(c_i/p_i \).

Consider the policy that requires performance at level \(i \) only for \(p \). The cost of this policy would be \(c_i/p_i \) which would be less than that of any policy requiring more than \(c_i/c_ip_i \) successful performances at level \(i \). Hence, the set of performance sequences for \(p \) that are superior to testing at level \(i \) only is finite and there is an optimal sequence for each \(p \). This establishes the existence of a policy \(\pi \) satisfying \(V(\pi, p) \leq V(\bar{\pi}, p) \) all \(p \) and all \(\bar{\pi} \).
We are now ready to prove the following theorems.

Theorem 1. If $p - r \geq 0$, then $V(\pi, p) \leq V(\pi, r)$, if π is an optimal policy.

Proof: If π consists of one correct response (at level 1) for both p and r, then $V(\pi, p) = c_1/p_1$ while $V(\pi, r) = c_1/r_1$ and the theorem holds. Suppose the theorem holds for all p and r such that π specifies n or fewer total correct responses for r. Consider p and r such that π requires $n + 1$ or fewer correct responses for r and let i be the level at which the first correct response for state r must take place. Then $V(\pi, p) \leq c_1/p_1 + V(\pi, \tilde{r})$ and $V(\pi, r) = c_1/r_1 + V(\pi, \tilde{r})$ where from (1) $\tilde{p}_{i-1} = (1 - q_i) p_{i-1} + q_i$, $\tilde{r}_{i-1} = (1 - q_i) r_{i-1} + q_i$, $\tilde{p}_k = p_k$ and $\tilde{r}_k = r_k$ for $k \neq i-1$. Thus $\tilde{p} \geq \tilde{r}$, \tilde{r} requires n or fewer correct responses and $V(\pi, p) \leq V(\pi, r)$. The theorem follows from induction.

Theorem 2: There is an optimal policy π such that if a_1, a_2, \ldots, a_n is the sequence of the levels of correct responses for state p, then $a_k \geq a_{k+1}$ all k.

Proof: Let π be an optimal policy and a_1, a_2, \ldots, a_n be the sequence specified for p. Suppose there is a k such that $a_k < a_{k+1}$. Let \bar{p} be the state and \bar{c} the expected cost resulting from the correct responses to the sequence $a_1, a_2, \ldots, a_{k-1}$ for the initial state p.

Consider the policy $\bar{\pi}$ which differs from π only in that a_k and a_{k+1} are interchanged in the sequence for p and let $i = a_{k+1}$, $j = a_k$.

-6-
If $j < i-1$, then $V(\pi, p) = V(\pi, p) = c + c_i/\tilde{p}_i + c_{i-1}/\tilde{p}_{i-1} + V(\pi, r)$ where from (1),

$$r_{i-1} = (1-q_i) \tilde{p}_{i-1} + q_i, \quad r_{j-1} = (1-q_j) \tilde{p}_{j-1} + q_j, \quad r_{\ell} = \tilde{p}_{\ell} \quad \text{all other } \ell$$

and consequently $V(\pi, p) = V(\tilde{\pi}, p)$. Also from (1), if $j = i-1$, then

$$V(\pi, p) = \tilde{c} + c_i/\tilde{p}_i + c_{i-1}/\tilde{p}_{i-1} + V(\pi, r),$$

where r is defined above while

$$V(\tilde{\pi}, p) = \tilde{c} + c_i/\tilde{p}_i + c_{i-1}/[(1-q_i)\tilde{p}_{i-1} + q_i] + V(\pi, r).$$

Thus $V(\tilde{\pi}, p) \leq V(\pi, p)$ and $\tilde{\pi}$ is also optimal. Continuing in this manner, an optimal sequence for p is eventually obtained in which the members of the sequence are in non-increasing order. The theorem follows since p is general.

Thus the search for an optimal policy may be confined to those which yield a sequence of correct responses at levels that are non-increasing in the sequence.

As noted before, if one elicits one correct response at level i,

p_{i-1} is transformed to $(1-q_i) p_{i-1} + q_i$. Applying this transformation recursively it follows that if one elicits k correct responses at level i, p_{i-1} is transformed to $(1-q_i)^k p_{i-1} + (1-q_i)^{k-1} q_i + \cdots + q_i$ which sums to $1 - (1-q_i)^{k+1}$. Thus, if π is a policy of the above type and specifies $k(i)$ correct responses at level i for p, then

$$V(\pi, p) = \sum_{i=1}^{N} k(i) c_i/\tilde{p}_i$$

where

$$\tilde{p}_N = p_N$$

$$\tilde{p}_i = 1 - (1-p_i) (1-q_{i+1})^{k(i+1)} \quad \text{for } i < N$$
Let $V_n(p)$ be the minimum cost for state p if we restrict instruction to levels 1, \ldots, n. That is no instruction takes place at levels $n + 1$, $n + 2$, \ldots, N. Of course, only the first n components of p are relevant in determining $V_n(p)$ and throughout the remainder of this paper it will be assumed that p is restricted to p_1, \ldots, p_n in $V_n(p)$.

In other parts of this paper, the symbol p will be used to represent restrictions of p to certain components where the restriction is obvious. In particular, in the expression $V_n(p, p')$, p represents the restriction of p to $p_1, p_2, \ldots, p_{n-1}$.

From Theorem 2 and (3) it follows that

$$V_n(p) = \min \left[V_n^k(p) \right]$$

where

$$V_n^k(p) = k \frac{c_n}{p_n} + V_{n-1}(p, 1-(1-q_n)^{k(p_n-1)})$$

$$V_1(p) = \frac{c_1}{p_1}.$$

Note that in the right hand side of the second line of (4) p represents the restriction of p to $p_1, p_2, \ldots, p_{n-1}$.

Algorithm for Two Levels

For the two levels problem it follows from (4) that

$$V_2(p) = \min \left[V_2^k(p) \right]$$

where

$$V_2^k(p) = k \frac{c_2}{p_2} + \frac{c_1}{1 - (1-q_2)^{k(p_1-1)}}$$

$$V_1(p) = \frac{c_1}{p_1}.$$
Consequently,
\[v^k_2(p) - v^{k-1}_2(p) = \frac{c_2}{p^2} + \frac{1}{1-(1-q_2)^k(l-p_2)} - \frac{c_1}{(1-(1-q_2)^{k-1}(l-p_2))}, \quad (6) \]

\[v^k_2(p) \leq v^{k-1}_2(p) \text{ if and only if the expression in } (6) \text{ is less than or equal to zero. This happens if and only if } \]

\[p_2 \geq f(k, p_1) \text{ where } \]

\[f(k, p_1) = \frac{c_2}{c_1q_2} \left[\frac{(1-q_2)^k(l-p_1) - (2-q_2)}{(1-q_2)^{k-1}(l-p_2)} + \frac{1}{k-1} \right] \quad (7) \]

for \(k = 1, 2, \ldots \)

This, requiring a student to perform successfully \(k \) times at level 2 is preferred to requiring him to perform successfully \(k-1 \) times at level 2 if \(p_2 > f(k, p_1) \), while requiring him to perform successfully \(k-1 \) time at level 2 is preferred if \(p_2 < f(k, p_1) \), and these two strategies yield equal costs if \(p_2 = f(k, p_1) \).

Theorem 3: In (7), \(f(k, p_1) \) is nondecreasing in \(k \) and is non-negative in all \(k \).

Proof: Substituting in (7) and rearranging terms one obtains

\[f(1, p_1) = \frac{c_2}{c_1q_2} \left[\frac{p_1q_2 + (1-(1-p_1^2))}{(1-p_1)} \right] \text{ which is clearly non-negative. Also, } f(k, p_1) - f(k-1, p_1) = \frac{c_2}{c_1} \left[\frac{1}{(1-q_2)^{k-1}(l-p_2)} - \frac{1}{(1-q_2)^{k-1}(l-p_2)} \right] \]

which is non-negative since the positive term of the second factor in the numerator exceeds 1 while the negative one is less than 1.
Thus, \(f(k, p_1) \) is increasing in \(k \).

\[f(k, p_1) = 0 \text{ and } f(k, p_1) \text{ as in (7) for } k = 1, 2, \ldots, m, \text{ where } m \text{ is such that } f(m, p_1) \geq 1 \text{ and } f(m-1, p_1) < 1. \]

Then the value of \(k \) that minimizes (5) is that which satisfies

\[f(k, p_1) \leq p_2 < f(k + 1, p_1). \]

Proof: If \(i < k \), it follows immediately from Theorem 3 that

\[V^(k)_2(p) < V^(k-1)_2(p) < \ldots < V^1_2(p) \]

and similarly if \(i > k \), \(V^k_2(p) < V^{k+1}_2(p) \)

Thus from Theorem 4, for fixed \(p_1 \), the number of successful performances required at level 2 to minimize cost is an increasing step function of \(p_2 \), starting at 0 for \(p_2 = 0 \) and advancing in increments of one. The minimizing cost may be found from (5) once \(k \) is known.

Additional Solution Properties

In calculating \(V_n(p) \), it is much more difficult to get a closed form such as that for \(V_1(p) \) and \(V_2(p) \). However, as this section will show, for fixed \(p_{n-1}, p_{n-2}, \ldots, p_1 \), the value of \(k \) that minimizes (4) is a non-decreasing step function in \(p_n \) with a value of 0 at \(p_n = 0. \)

However, the increments of the step function are not necessarily one. The next lemma and two theorems show this. First, define
\[f_n(j, k, p) = (k-j) c_n / \left[V_{n-1}(p, 1-(1-q_n)^{j} (1-p_{n-1}^{j}))- V_{n-1}(p, 1-(1-q_n)^{k}(1-p_n)) \right] \] (8)

for \(j < k \), \(p = (p_2, \ldots, p_n) \).

Lemma 5: In (8), \(f_n(j, k, p) > 0 \) when defined and \(V_n^j(p) > V_n^k(p) \) for \(p_n < f_n(j, k, p) \); \(V_n^j(p) < V_n^k(p) \) for \(p_n > f_n(j, k, p) \); and equality holds for \(p_n = f_n(j, k, p) \).

Proof: The denominator of \(f_n(j, k, p) \) is non-negative by Theorem 1. The theorem then follows from the definition of \(V_n^k(p) \) in (4).

Theorem 6: The number of successful performances required at level \(n \) in order to realize \(V_n(p) \) is non-decreasing in \(p_n \).

Proof: For \(i = 1 \) the theorem obviously holds since only one successful performance is required for all \(p_1 \). For \(n > 1 \) assume the theorem is false. Then there is a system with \(k > 1 \), \(p_n < \tilde{p}_n \) such that \(V_n^k(p, p_n) < V_n^j(p, p_n) \) and \(V_n^j(p, \tilde{p}_n) < V_n^k(p, \tilde{p}_n) \). Let \(f_n(j, k, p) \) be as defined in Lemma 5. Then \(\tilde{p}_n < f_n(j, k, p) \) and \(p_n > f_n(j, k, p) \) for a contradiction.

Thus, it has now been shown that for fixed \(p_1, p_2, \ldots, p_{n-1} \), the value of \(k \) that minimizes \(V_n^k(p) \) is a non-decreasing step function of \(p_n \).

Of course, for \(p_n = 1 \), the minimizing value of \(k \) cannot exceed \(V_{n-1}(p)/c_n \), since any value exceeding this would be inferior to \(k = 0 \).
Also, \(f_n(j, k, p) \geq c_n / \left[V_{n-1}(p, 1 - (1 - q_n)^j (1 - p_{n-1})) - V_{n-1}(p, 1) \right] \).

Thus, if \(\frac{V_n(p, 1 - (1 - q_n)^j (1 - p_{n-1}))}{c_n} \leq V_{n-1}(p, 1) \), \(f_n(j, k, p) \geq 1 \) and \(j \) successful performances is preferred to \(k \) successful performances for all \(k > j \). Thus, the sequence of optimal values of \(k \) in (4) is a subsequence of the set \(0, 1, 2, \ldots, \min \{ \lfloor V_{n-1}(p) / c_n \rfloor, j \} \)

where \(j \) is the smallest integer satisfying
\[V_{n-1}(p, 1 - (1 - q_n)^j (1 - p_{n-1})) \leq c_n + V_{n-1}(p, 1). \]

Theorem 7: Suppose \(j < k < \ell \) and \(f_n(j, k, p) > f_n(k, \ell, p) \) and \(p_1, p_2, \ldots, p_{n-1} \) are fixed. Then \(V_n^k(p) \neq V_n(p) \) for any \(p_n \).

Proof: For \(p_n < f_n(j, k, p) \), \(V_n^j(p) < V_n^k(p) \) while for \(p_n \geq f_n(j, k, p) \), \(p_n > f_n(k, \ell, p) \) and \(V_n^\ell(p) < V_n^k(p) \).

Theorem 8: Suppose \(n(1), n(2), \ldots, n(m) \) is an increasing sequence of integers such that \(f_n(n(i), n(i+1), p) \) is increasing in \(i \) and that \(V_n^j(p) \neq V_n(p) \) for any \(p_n \) if \(j \) is not in this sequence.

Then \(V_n^{n(i)}(p) = V_n(p) \) for \(f_n(n(i-1), n(i), p) < p_n \leq f_n(n(i), n(i+1), p) \).

Proof: For \(p_n > f_n(n(i-1), n(i), p), V_n^{n(i)}(p_n) < V_n^{n(i)}(p, p_n) \)
\[\cdots < V_n^{n(1)}(p, p_n) \text{ for } p_n \leq f_n(n(i), n(i+1), p), V_n^{n(i)}(p, p_n) \leq V_n^{n(i+1)}(p, p_n) < \cdots < V_n^{n(m)}(p, p_n). \]
Q.E.D.
This means one may start with the sequence 0, 1, ..., min
\[\{ V_{n-1}(p)/c_n, j \} \]
where \(j \) is the smallest integer such that
\[V_{n-1}(p, 1-(1-q_n)^j(1-p_{n-1})) \leq c_n + V_{n-1}(p) \]
eliminate those members that cannot be optimal for any \(p_n \) by Theorem 7, continue to eliminate from the remaining sequence until the sequence left satisfies the conditions of Theorem 8. This procedure must be finite since only a finite number of eliminations may occur.

General Algorithm

Formally, the algorithm for finding the value of \(k \) that minimizes \(V_n^k(p) \) as a function of \(p_n \) is as follows:

Algorithm 1

1. Set \(n = 1 \) and \(V_n(p) = c_1/p_1 \).
2. If \(n = N \), terminate. Otherwise increase \(n \) by one and define \(n(0), n(1), ..., n(m) \) where \(n(i) = i \) and
 \[m = \min \{ [V_{n-1}(p)/c_n], j \} \]
 where \(j \) is the smallest integer satisfying
 \[V_{n-1}(p, 1-(i-q_n)^j(1-p_{n-1})) \leq c_n + V_{n-1}(p, 1) \]
3. Compute \(f_n(n(i), n(i+1), p) \) for \(i = 1, \ldots, k-1 \) according to the formula in (8). For \(n > 2 \), \(V_{n-1}(p) \) may be calculated by Algorithm 2.
4. If no \(i \) satisfies \(f_n(n(i), n(i+1), p) > f_n(n(i+1), n(i+2), p) \)
delete from the sequence any \(i \) such that \(f_n(n(i), n(i+1), p) \geq 1 \)
and return to 2 as the value of \(k \) which minimizes \(V_n(p) \).
is that which satisfies $f_n(n(i-1), n(i), p) < p_n \leq f_n(n(i), n(i+1), p)$. Otherwise delete any i from the sequence satisfying $f_n(n(i), n(i+1), p) > f_n(n(i+1), n(i+2), p)$, relabel the members of the remaining sequence $n(0), n(1), \ldots, n(m)$ in increasing order with $m + 1$ equaling the number of elements in the remaining sequence and return to step 3.

Given the sequences generated by algorithm 1, the optimal number of successful performances to require at each level and $V_n(p)$ for $n > 1$ may be found as follows.

Algorithm 2

1. Set $m = n$ and define $\tilde{p}_n = p_n$, $k(n)$ as the $n(j)$ that satisfies $f_n(n(j-1), n(j), p) < p_n \leq f_n(n(j), n(j+1), p)$.

2. Decrease m by one.

3. Define $\tilde{p}_m = 1 - (1-p_m)(1-q_{m+1})^{k(m+1)}$. Then define $k(m)$ as the $n(j)$ that satisfies $f_m(n(j-1), n(j), p) < \tilde{p}_m \leq f(n(j), n(j+1), p)$.

4. If $m = 2$, define $\tilde{p}_2 = 1 - (1-p_2)(1-q_2)^{k(2)}$ and go to 5. Otherwise go to 2.

5. Terminate. $V_n(p) = \frac{\sum_{i=0}^{n} k(i)c_i}{\tilde{p}_n}$ where $k(1) = 1$.

III. ESTIMATION OF PARAMETERS

Maximum Likelihood

The past performances of students may be used to obtain a maximum likelihood estimate of the p and q input vectors.

Let a_{ki} and b_{ki} respectively be the number of incorrect and
correct responses of students at level \(i \) who had given \(k \) correct responses at level \(i + 1 \), and define \(L(p, q) \) as the likelihood function of the vector \((p, q)\). It follows from (3) that

\[
L(p, q) = \prod_{i=1}^{n} \prod_{k=0}^{m} (1-p_i)^{a_{ki}} (1-q_{i+1})^{k} a_{ki} (1-(1-p_i) (1-q_{i+1})^{k}) b_{ki}.
\]

(9)

Taking the partial derivatives of \(L(p, q) \) with respect to all \(p_i \) and \(q_i \) one obtains (10) and (11) setting them to zero yields (12) and (13).

\[
\frac{\partial L(p, q)}{\partial p_i} = L(p, q) \sum_{i=1}^{m} \left[\frac{-a_{ki}}{1-p_i} + \frac{b_{ki} (1-q_{i+1})^{k}}{1-(1-p_i) (1-q_{i+1})^{k}} \right]
\]

(10)

\[
\frac{\partial L(p, q)}{\partial q_{i+1}} = L(p, q) \sum_{k=0}^{m} \left[\frac{-ka_{ki}}{1-q_{i+1}} + \frac{kb_{ki} (1-p_i) (1-q_{i+1})^{k-1}}{1-(1-p_i) (1-q_{i+1})^{k}} \right]
\]

(11)

\[
\sum_{k=0}^{m} a_{ki} = \sum_{k=0}^{m} \frac{b_{ki} (1-p_i) (1-q_{i+1})^{k}}{1-(1-p_i) (1-q_{i+1})^{k}}
\]

(12)

\[
\sum_{k=0}^{m} ka_{ki} = \sum_{k=0}^{m} \frac{kb_{ki} (1-p_i) (1-q_{i+1})^{k}}{1-(1-p_i) (1-q_{i+1})^{k}}.
\]

(13)
Note that in (12) and (13) the only unknown that parameter \(p_i \)
depends on is \(q_{i+1} \) and vice versa. Thus the \(p \) and \(q \) vectors may
be estimated by solving sets of two simultaneous equations in two
unknowns. However, there is no analytical way of solving these
equations in general for \(p_i \) and \(q_{i+1} \). Nevertheless, suppose
one takes into account only the values of \(k \) with the highest number
of observations. Denote these values by \(r \) and \(s \).

Then from (12) and (13) one obtains

\[
a_{ri} + a_{si} = \frac{b_{ri}(1-p_i)(1-q_{i+1})}{1-(1-p_i)(1-q_{i+1})} + \frac{b_{si}(1-p_i)(1-q_{i+1})}{1-(1-p_i)(1-q_{i+1})} \quad (14)
\]

\[
r a_{ri} + s a_{si} = \frac{rb_{ri}(1-p_i)(1-q_{i+1})}{1-(1-p_i)(1-q_{i+1})} + \frac{s b_{si}(1-p_i)(1-q_{i+1})}{1-(1-p_i)(1-q_{i+1})} \quad (15)
\]

Subtracting \(r \) times equation (14) from equation (15) yields

\[
(s-r) a_{si} = \frac{(s-r)b_{si}(1-p_i)(1-q_{i+1})}{1-(1-p_i)(1-q_{i+1})} \quad (16)
\]

which yields

\[
a_{si} = \frac{b_{si}(1-p_i)(1-q_{i+1})}{1-(1-p_i)(1-q_{i+1})} \quad (17)
\]
From (17) and (18) one obtains

\[(1-p_i)(1-q_{i+1})^r = \frac{a_{ri}}{a_{ri} + b_{ri}} = \bar{X}_r \] \hspace{1cm} (19)

\[(1-p_i)(1-q_{i+1})^s = \frac{a_{si}}{a_{si} + b_{si}} = \bar{X}_s \] \hspace{1cm} (20)

where \(\bar{X}_r \) and \(\bar{X}_s \) are the proportion of unsuccessful performances at level \(i \) given \(r \) and \(s \) successful performances at level \(i+1 \) respectively. Solving these two equations for estimates of \(p_i \) and \(q_{i+1} \) one obtains

\[p_i = 1 - \frac{\bar{X}_s}{\bar{X}_s - \bar{X}_r} \] \hspace{1cm} (21)

\[q_i = 1 - \left(\frac{\bar{X}_s}{\bar{X}_r} \right)^{\frac{s-r}{s-r}} \] \hspace{1cm} (22)

Confidence Intervals

Consider the two Bernoulli random variables, \(X_r \) and \(X_s \), with parameters \((1-p_i)(1-q_{i+1})^r \) and \((1-p_i)(1-q_{i+1})^s \) respectively.

From (19) and (20) it follows that \(\bar{X}_r \) and \(\bar{X}_s \) are the sample means of such random variables. Thus, it follows that for large sample sizes, a 100(1-\(\beta \)) percent confidence interval for \((1-p_i)(1-q_{i+1})^r \) is given by:
\[L_{1r} = \overline{X}_r - \frac{Z}{\sqrt{a_{ri} + b_{ri}}} \sqrt{\overline{X}_r(1 - \overline{X}_r)} \] (23)

\[L_{2r} = \overline{X}_r + \frac{Z}{\sqrt{a_{ri} + b_{ri}}} \sqrt{\overline{X}_r(1 - \overline{X}_r)} \] (24)

and for \((1-p_r)(1-q_{i+1})^s\) by

\[L_{1s} = \overline{X}_s - \frac{Z}{\sqrt{a_{si} + b_{si}}} \sqrt{\overline{X}_s(1 - \overline{X}_s)} \] (25)

\[L_{2s} = \overline{X}_s + \frac{Z}{\sqrt{a_{si} + b_{si}}} \sqrt{\overline{X}_s(1 - \overline{X}_s)} \] (26)

where \(Z = Z_{1-\beta}/2\); that is \(P[Z \leq Z_{1-\beta}/2] = 1 - \beta/2\) where \(Z\) is standard normal.*

Since the probabilities that \((L_{1r}, L_{2r})\) and \((L_{1s}, L_{2s})\) bracket \((1-p_i)(1-q_{i+1})^r\) and \((1-p_i)(1-q_{i+1})^s\) are each \(1-\beta\) and independent, the probability that both of these bounds hold is \(1 - 2\beta + \beta^2 \geq 1 - 2\beta\).

From this it follows that \(\frac{L_{1s}}{L_{2r}} \) and \(\frac{L_{2s}}{L_{1r}} \) form a 100 (1-\(\beta \)) percent confidence interval for \((1-q_i)^{s-r} \). Similarly it follows that \(\frac{L_{1r}}{L_{2r}} \) and \(\frac{L_{2s}}{L_{1s}} \) form 100 (1-\(\beta \)) percent confidence interval for \((1-p_i)^{s-r} \).

These sets of bounds taken to the \(\frac{1}{(s-r)} \) power give 100(1-\(\beta \))\(^{s-r} \) percent confidence intervals for \((1-q_{i+1}) \) and \((1-p_i) \) respectively. Consequently a 100(1-\(\alpha \)) percent confidence interval for \(p_i \) is given by

\[
P_1 = 1 - \left(\frac{L_{2r}}{L_{1s}} \right)^{s-r} \tag{27}
\]

\[
P_2 = 1 - \left(\frac{L_{1r}}{L_{2s}} \right)^{s-r} \tag{28}
\]

and for \(q_{i+1} \) by

\[
Q_1 = 1 - \left(\frac{L_{2s}}{L_{1r}} \right)^{s-r} \tag{29}
\]

\[
Q_2 = 1 - \left(\frac{L_{1s}}{L_{2r}} \right)^{s-r} \tag{30}
\]

where \(L_{1s}, L_{2s}, L_{1r}, L_{2r} \) are as defined in (15 - 18) and \(\beta = (1-\alpha/2)^{s-r} \).

Note that the above simplifies if \(s-r = 1 \) and that this is likely to happen as the two most likely choices for the number of successful performances to require at a given level are likely to be consecutive integers.
A Linear Estimation Model

In this model the student is given a questionnaire to determine his level of competence. Each question is scored one or zero, depending on whether the student answers the question right or wrong. The p_i's and q_i's for a student are each assumed to be linear combinations of the scores he receives on a question. Thus,

$$p_i = \sum_j u_{ij} w_j$$

(31)

$$q_i = \sum_j v_{ij} w_j$$

(32)

where w_j is the score on question j for $j > 1$ and $w_0 = 1$.

This yields, for the vector pair (u, v), the likelihood function

$$L(u, v) = \prod_{i=1}^{n} \prod_{t \in \overline{X}_j} (1 - \sum_j u_{ij} w_{jt}) (1 - \sum_j v_{ij+1} w_{jt})^{k} \prod_{t \in \overline{X}_1} (1 - \sum_i u_{ij} w_{jt})$$

(33)

where w_{jt} is the score of student or trial t on question j and

$$\overline{X}_j = \{ t: \text{student responds incorrectly at level} \ i \}$$

$$X_i = \{ t: \text{student responds correctly at level} \ i \}$$
Note that in (33) \(k \) is actually a function of \(t \).

Taking partial derivatives of \(L(u, v) \) one obtains:

\[
\frac{\partial L(u, v)}{\partial u_{ij}} = L(v, v) \left[\sum_{t \in X_1} \frac{-w_{jt}}{1 - \sum_j w_{jt} u_{ij}} + \sum_{t \in X_i} \frac{w_{jt}(1 - \sum_j v_{i+1j} w_{jt})^k}{1 - (1 - \sum_j v_{i+1j} w_{jt})(1 - \sum_j v_{i+1j} w_{jt})^k} \right]
\]

(34)

\[
\frac{\partial L(u, v)}{\partial u_{ij}} = L(u, v) \left[\sum_{t \in X_1} \frac{-kw_{jt}}{1 - \sum_j v_{i+1j} w_{jt}} + \sum_{t \in X_i} \frac{kw_{jt}(1 - \sum_j v_{i+1j} w_{jt})^{k-1}}{1 - (1 - \sum_j v_{i+1j} w_{jt})(1 - \sum_j v_{i+1j} w_{jt})^k} \right]
\]

(35)

Setting both derivatives equal to zero, one obtains:

\[
\sum_{t \in X_1} \frac{w_{jt}}{1 - \sum_j w_{jt} u_{ij}} = \sum_{t \in X_i} \frac{w_{jt}(1 - \sum_j v_{i+1j} w_{jt})^k}{1 - (1 - \sum_j v_{i+1j} w_{jt})(1 - \sum_j v_{i+1j} w_{jt})^k}
\]

(36)

\[
\sum_{t \in X_1} \frac{kw_{jt}}{1 - \sum_j v_{i+1j} w_{jt}} = \sum_{t \in X_i} \frac{kw_{jt}(1 - \sum_j v_{i+1j} w_{jt})^{k-1}}{1 - (1 - \sum_j v_{i+1j} w_{jt})(1 - \sum_j v_{i+1j} w_{jt})^k}
\]

(37)
Since different values of \(I \) lead to different denominators in the terms of (36) and (37), some simplification of these expressions is needed. Let:

\[
\begin{align*}
 w_{ijk} &= \text{number of one scores for question } j \text{ resulting in successful performances at level } i \text{ following } k \text{ successful performances at level } i+1. \\
 \bar{w}_{ijk} &= \text{number of zero scores for question } j \text{ resulting in successful performances at level } i \text{ following } k \text{ successful performances at level } i+1. \\
 w'_{ijk} &= \text{number of one scores for question } j \text{ resulting in unsuccessful performances at level } i \text{ following } k \text{ successful performances at level } i+1. \\
 \bar{w}'_{ijk} &= \text{number of zero scores for question } j \text{ resulting in unsuccessful performances at level } i \text{ following } k \text{ successful performances at level } i+1.
\end{align*}
\]

Suppose further that only question \(j \) is to be considered on the questionnaire. Then (36) and (37), when applied to \(u_{ij}, v_{i+1j}, u_{i0}, v_{i+10} \) become:

\[
\begin{align*}
 \sum_{k=0}^{m} \frac{w'_{ijk}}{1-u_{ij}-u_{i0}} &= \frac{\sum_{k=0}^{m} w_{ijk}(1-v_{i+1j}-v_{i+10})^k}{1-(1-u_{ij}-u_{i0})(1-v_{i+1j}-v_{i+10})^k} \quad (38) \\
 \sum_{k=0}^{m} \frac{k w'_{ijk}}{1-v_{i+1j}-v_{i+10}} &= \frac{\sum_{k=0}^{m} k w_{ijk}(1-u_{ij}-u_{i0})(1-v_{i+1j}-v_{i+10})^{k-1}}{1-(1-u_{ij}-u_{i0})(1-v_{i+1j}-v_{i+10})^k} \quad (39)
\end{align*}
\]
\[\sum_{k=0}^{m} \frac{w'_{ijk}}{1-u_{ij}-u_{i0}} + \sum_{k=0}^{m} \frac{w_{ijk}}{1-u_{i0}} = \sum_{k=0}^{m} \frac{w_{ijk}(1-v_{i+1}v_{i+10})^k}{1-(1-u_{ij}-u_{i0})(1-v_{i+1}v_{i+10})^k} \]

(40)

\[+ \sum_{k=0}^{m} \frac{\tilde{w}_{ijk}(1-v_{i+10})^k}{1-(1-u_{i0})(1-v_{i+10})^k} \]

\[\sum_{k=0}^{m} \frac{kw'_{ijk}}{1-v_{ij}-v_{i0}} + \sum_{k=0}^{m} \frac{kw_{ijk}}{1-v_{i0}} = \sum_{k=0}^{m} \frac{kw_{ijk}(1-u_{ij}-u_{i0})(1-v_{i+1}v_{i+10})^{k-1}}{1-(1-u_{ij}-u_{i0})(1-v_{i+1}v_{i+10})^k} \]

(41)

\[+ \sum_{k=0}^{m} \frac{kw_{ijk}(1-u_{i0})(1-v_{i+10})^{k-1}}{1-(1-u_{i0})(1-v_{i+10})^k} \]

However, when (37) and (38) are multiplied by \(1-u_{ij}-u_{i0}\) and \(1-v_{i+1}v_{i+10}\) they become (12) and (13) with \(w'_{ijk}, w_{ijk}, u_{ij+10}v_{i+1+j+10}\) replacing \(a_k, b_{ki}, p_l\), and \(q_{i+1}\) respectively.

Thus if one takes into account observations corresponding only to the two highest values of \(k, r\) and \(s\), one obtains from (19-22).

\[u_{ij+u_{i0}} = 1 - \left(\frac{w'_{ijr}}{w_{ijr} + w'_{ijr}} \right)^{s-r} \left(\frac{w'_{ijs}}{w_{ijs} + w'_{ijs}} \right)^{s-r} \]

(42)

-23-
\[v_{i+1} + v_{i+10} = 1 - \left[\frac{\bar{w}_{ijs}(\bar{w}_{ijr} + \bar{w}_{ijr}')}{{\bar{w}_{ijr}}(\bar{w}_{ijs} + \bar{w}_{ijs}')} \right] \frac{1}{s-r} \] (43)

Subtracting (38) and (39) from (40) and (41) and then multiplying through by 1-u_{i0} and 1-v_{i+10} yield (12) and (13) with \(\bar{w}_{ijk}, \bar{w}_{ijk'}, u_{i0}, \) and \(v_{i+10} \) replacing \(a_{ki}, b_{ki}, p_i, \) and \(q_{i+1} \) respectively. Thus, after considering only \(r \) and \(s \) as values of \(k \), one obtains from (19-22) and (42) and (43).

\[u_{i0} = 1 - \left(\frac{\bar{w}_{ijr}}{\bar{w}_{ijr} + \bar{w}_{ijr}'} \right) \frac{s}{s-r} \left(\frac{\bar{w}_{ijs}'}{\bar{w}_{ijs} + \bar{w}_{ijs}} \right) \frac{-r}{s-r} \] (44)

\[\frac{v_{i+10} = 1 - \left[\frac{\bar{w}_{ijs}(\bar{w}_{ijr} + \bar{w}_{ijr}')}{\bar{w}_{ijr} (\bar{w}_{ijs} + \bar{w}_{ijs}')} \right] \frac{1}{s-r} \] (45)

\[u_{ij} = \left(\frac{\bar{w}_{ijr}}{\bar{w}_{ijr} + \bar{w}_{ijr}'} \right) \frac{s}{s-r} \left(\frac{\bar{w}_{ijs}'}{\bar{w}_{ijs} + \bar{w}_{ijs}} \right) \frac{-r}{s-r} \frac{s}{s-r} \left(\frac{\bar{w}_{ijr} + \bar{w}_{ijr}'}{\bar{w}_{ijs} + \bar{w}_{ijs}'} \right) \] (46)
In a similar manner one could also obtain 100(1-\(\alpha\)) percent confidence intervals for \(u_{ij}', v_{i+lj}'\), \(u_{i0}'\), and \(v_{i+10}'\) by noting that 100(1-\(\alpha\)) percent confidence intervals for \(u_{ij} + u_{i0}\) and \(v_{i+lj} + v_{i+10}\) are also 100(1-\(\alpha\)) percent confidence intervals for \(u_{ij}\) and \(v_{i+lj}\) and making the appropriate substitutions in (23-30). Note that the length of these confidence intervals tends to zero as the sample size for both \(k=r\) and \(k=s\) tend to infinity and consequently the estimates in (44-47) are consistent.

In (44-47) the weights are based on the assumption that all weights except for question \(j\) are zero. For the more general case where this is not assumed, it is suggested that the weights used be the average of the results in (44-47) taken over all \(j\). That is:

\[
v_{i0} = 1 - \frac{1}{n} \sum_{j} \left(\frac{\overline{w}_{i,j,r}}{\overline{w}_{i,j,k} + \overline{w}_{i,j,r}} \right) \frac{s}{s-r} \left(\frac{\overline{w}_{i,j,s}}{\overline{w}_{i,j,s} + \overline{w}_{i,j,s}} \right)^{-r} \frac{1}{s-r}
\]

\[
v_{i+10} = 1 - \frac{1}{n} \sum_{j} \left[\frac{\overline{w}_{i,j,s}(\overline{w}_{i,j,r} + \overline{w}_{i,j,r})}{\overline{w}_{i,j,r}(\overline{w}_{i,j,s} + \overline{w}_{i,j,s})} \right] \frac{1}{s-r}
\]
\[u_{ij} = \frac{1}{n} \left(\frac{-w_{ijr}}{w_{ijr} + w_{ijr}} \right)^{s-r} \left(\frac{-w_{ijs}}{w_{ijs} + w_{ijs}} \right)^{s-r} \]

\[v_{i+1j} = \frac{1}{n} \left[\frac{-w_{ijs}(w_{ijr} + w_{ijr})}{w_{ijr}(w_{ijs} + w_{ijs})} \right]^{s-r} - \frac{1}{n} \left[\frac{-w_{ijs}(w_{ijr} + w_{ijr})}{w_{ijr}(w_{ijs} + w_{ijs})} \right]^{s-r} \], \quad j \neq 0 \tag{50} \tag{51}

where \(\bar{n} \) is the number of questions on the questionnaire.

IV. EXAMPLE

Consider the three level problem with the following data.

\[(c_1, c_2, c_3) = (6.7, 4.3, 1.9) \]
\[(p_1, p_2, p_3) = (.07, .23, .46) \]
\[(q_2, q_3) = (.6, .8) \]

It then follows that \(V_1(p_1) = 6.7/p_1 \).
For level 2, substitute the appropriate values for \(c_1, c_2, p_1, q_2 \) in (7) to obtain
\[
f(k, p_1) = 0.995(0.4)^k - 1.498 + 1.15/0.4^{k-1}
\]
This yields \(f(1, p_1) = 0.050, f(2, p_1) = 1.536 \). Since the latter exceeds one, no more than one successful performance at level 2 will ever be required. This yields the following table for \(V_2(p) \).

<table>
<thead>
<tr>
<th>(i)</th>
<th>(n(i))</th>
<th>(f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.000</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0.050</td>
</tr>
</tbody>
</table>

Table 1: Output for level 2

This table may be read as follows. For \(0 \leq p_2 \leq 0.050 \), require no successful performances at level 2. For \(p_2 > 0.050 \), require one successful performance at level 2.

For level 3, note from (8) that
\[
f_3(k-1, 1, p) = 1.9/\left[V_2(p, 1 - 0.77(0.2)^{k-1}) - V_2(p, 1 - 0.77(0.2)^k) \right].
\]
In order to find \(f_3(0, 1, p) \), \(V_2(p, 1 - 0.77(0.2)^0) = V_2(p, 0.846) \) and
\(V_2(p, 1 - 0.77(0.2)^2) = V_2(p, 0.969) \) must be calculated by algorithm 2. For the calculation of \(V(p, 0.23) \), \(k(2) = 1 \) by table 1. Thus \(p_1 = 1 - 0.4(0.93) = 0.628 \) and \(V(p, 0.23) = 4.3/0.23 + 6.7/0.628 = 29.37 \). Similarly, \(V(p, 0.846) = 15.75 \).
Thus \(f_3(0, 1, p) = 1.9/(29.37 - 15.75) = 0.140 \). Similarly, \(V_2(p, 1 - 0.77(0.2)^2) = V_2(p, 0.969) = 15.11 \) and \(f(1, 2, p) = 2.97 \). For \(k > 3 \), \(V_2(p, 1 - 0.77(0.2)^{k-1}) \leq V_2(p, 0.969) = 15.11 \) and \(V_2(p, 1 - 0.77(0.2)^k) \geq V_2(p, 1) = 14.97 \). Thus
\(f(k-1, k, p) \geq 4.3/(15.11 - 14.97) = 30.71 > 1. \) Thus no more than 1 successful performance at level 3 can be required, yielding the following table.

<table>
<thead>
<tr>
<th>i</th>
<th>n(i)</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>.000</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>.140</td>
</tr>
</tbody>
</table>

Table 2: Output for level 3.

Table 1 and 2 contain the information necessary to use algorithm 2 to calculate \(V(0.07, 0.23, 0.46) \). From table 2, \(k(3) = 1 \) since \(.140 \leq .46 < 1 \). Thus \(\tilde{p}_2 = 1 - .77(0.2) = .846 \). From table 1, \(k(2) = 1 \) since \(.140 < .628 < 1 \) and \(\tilde{p}_1 = 1 - .93(0.4) = .628 \). Thus one successful performance is required at each level and the expected time to complete the course is

\[
V(0.07, 0.23, 0.46) = 6.7/.628 + 4.3/.846 + 1.9/.46 = 19.88.
\]

-28-
List of Symbols

\[p = (p_1, \ldots, p_N) \]
state vector where \(p_i \) is the probability student can perform at level \(i \).

\(q_i \)
probability student can perform at level \(i-1 \) given that he performs successfully at level \(i \) and could not previously perform successfully at level \(i-1 \).

\(V(\pi, p) \)
expected cost under policy \(\pi \) when the system is in state \(p \).

\(V_n(p) \)
minimum cost for state \(p \) if we restrict instruction to levels \(1, \ldots, n \).

\(V_n^k(p) \)
same as \(V_n(p) \) except that exactly \(k \) successful performances at level \(n \) are required.

\(f(k, p_i) \)
the value of \(p_n \) such that \(V_n^k(p) = V_{n-1}^{k-1}(p) \) for fixed \(p_i \).

\(f_n(j, k, p) \)
the value of \(p_n \) such that \(V_n^j(p) = V_n^k(p), j < k \).

\(a_{ki} \)
number of incorrect responses at level \(i \) following \(k \) correct responses at level \(i+1 \).

\(b_{ki} \)
number of correct responses at level \(i \) following \(k \) correct responses at level \(i+1 \).

\(L(p, q) \)
the likelihood function of the vector \((p, q) \).

\(w_j \)
score on question \(j \).

\(u_{ij} \)
weight of question \(j \) upon \(p_i \).

\(v_{ij} \)
weight of question \(j \) upon \(q_i \).

\(w_{ijk} \)
as defined in text.

\(\overline{w}_{ijk} \)
as defined in text.

\(\underline{w}_{ijk} \)
as defined in text.

\(\overline{w}_{ijk} \)
as defined in text.
References

