This is a simplified version of an economy considered by W. P. Drews, in which the sizes of the institutionalized "consumer groups" and the prices charged by other institutions controlling "resources" are manipulated by these institutions in an effort for each to achieve its share of the total money flows as agreed upon by the "political" process (for example by traditions and negotiations).

This institutionalized view of the economy injects into the usual framework of technological relations an additional mechanism (which Drews calls the invisible hand), the "political" process, which can arbitrarily set the proportions of total money flows to different institutions. Our purpose is to show that once these are agreed upon, all other quantities, such as the levels of industrial production, prices of consumer goods and resources, and the sizes of consumer groups can be determined. Brouwer's Fixed-Point theorem is applied to prove the last statement.
INSTRUCTIONS

1. **ORIGINATING ACTIVITY:** Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. **REPORT SECURITY CLASSIFICATION:** Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. **GROUP:** Automatic downgrading is specified in DoD Directive 5200.20 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. **REPORT TITLE:** Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.

4. **DESCRIPTIVE NOTES:** If appropriate, enter the type of report, e.g., interim, program, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. **AUTHOR(S):** Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. **REPORT DATE:** Enter the date of the report as day, month, year or month, year. If more than one date appears on the report, use date of publication.

7a. **TOTAL NUMBER OF PAGES:** The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. **NUMBER OF REFERENCES:** Enter the total number of references cited in the report.

8a. **CONTRACT OR GRANT NUMBER:** If applicable, enter the applicable numbers of the contract or grant under which the report was written.

8b, 8c, & 8d. **PROJECT NUMBER:** Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

9a. **ORIGINATOR'S REPORT NUMBER(S):** Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. **OTHER REPORT NUMBER(S):** If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

10. **AVAILABILITY LIMITATION NOTICES:** Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

 1. "Qualified requesters may obtain copies of this report from DDC."
 2. "Foreign announcement and dissemination of this report by DDC is not authorized."
 3. "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through ____________.
 4. "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through ____________.
 5. "All distribution of this report is controlled. Qualified DDC users shall request through ____________.

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. **SUPPLEMENTARY NOTES:** Use for additional explanatory notes.

12. **SPONSORING MILITARY ACTIVITY:** Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. **ABSTRACT:** Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. **KEY WORDS:** Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, ratios, and weights is optional.
DREWS INSTITUTIONALIZED DIVVY ECONOMY

by

George B. Dantzig

TECHNICAL REPORT 73-7
September 1973

DEPARTMENT OF OPERATIONS RESEARCH

Stanford University
Stanford, California

Reproduction and distribution only, of this report was partially supported by the Office of Naval Research under contract N-00014-67-A-0112-C011; U.S. Atomic Energy Commission Contract AT(04-3)-326-PA #18; and National Science Foundation Grant GP 31393X1.

Reproduction in whole or in part is permitted for any purposes of the United States Government. This document has been approved for public release and sale; its distribution is unlimited.

///
In this variant of an economy considered by W. P. Drews there are \(r \) resource groups each of which sells their basic resource (e.g., labor, oil, coal) to \(n \) industries (activities) that produce consumer goods. By adjusting the (relative) prices \((\lambda_1, \lambda_2, \ldots, \lambda_r) \) that they charge for their resources, they can alter the proportions \((y_1, y_2, \ldots, y_r) \) of total money flows they receive relative to one another. By tradition, the political process, or by arbitration the proportions \(y_i \) are given. Ownership of the resource groups is in the hands of \(s \) consumer groups each of whom may own wholly or part of a resource group. For our purposes the money flows \((y_1, y_2, \ldots, y_r) \) are transferred in some known way to the consumer groups and result in \((\delta_1, \delta_2, \ldots, \delta_s) \) being the known given relative money flows to the \(s \) consumer groups. The cost of resource inputs (which includes the cost of labor), however, can affect the prices of \(n \) types of consumer goods and therefore can affect the total cost that each consumer group must pay-out to buy their characteristic bill-of-goods. If the latter cost is too high a consumer group will attempt to alter (reduce) the proportions of the population \((\mu_1, \mu_2, \ldots, \mu_s) \) aligned with it. For any selected set of resource prices \((\lambda_1, \ldots, \lambda_r) \), it may not be possible, however, for all consumer groups to adjust their sizes \(\mu_j \).
simultaneously to achieve an exact balance between the revenues each receives and each pays out to purchase consumer goods. Our purpose will be to show, however, that we can "divvy" up the economy according to any preassigned money flow amounts \((γ_1, γ_2, \ldots, γ_r), (δ_1, δ_2, \ldots, δ_s)\) and can find prices \((λ_1, λ_2, \ldots, λ_r)\) and sizes \((μ_1, μ_2, \ldots, μ_s)\) so that the implied cost of the consumer goods for each consumer group is in exact balance with its revenues.

The \(s\)-consumer groups are assumed to have characteristic consumption vectors \(C_1, C_2, \ldots, C_s\) of \(n\) types of consumer goods expressed in absolute terms per person \((C_j > 0 \text{ are column vectors})\). The economy will be assumed to consist of \(n\) activities that produce \(n\) types of consumer goods inter-related by a square Leontief type input-output matrix \(L\). The level of activities \(X\) thus satisfy:

\[
LX = \sum_{j=1}^{s} C_j \mu_j = C\mu, \quad \sum_{j=1}^{s} \mu_j = 1, \quad \mu_j > 0.
\]

We now assume that the \(k\)th consumer good activity must purchase (per unit of activity level) \(R_{ik} > 0\) units of basic resources \(i\). Thus the total cost of purchases of all basic resources per unit of activity \(k\) is \(\sum_{i=1}^{r} λ_i R_{ik}\). The row vector of costs of all \(n\) activities per unit level is \(\sum_{i=1}^{r} λ_i R_i\) where \(R_i = (R_{i1}, R_{i2}, \ldots, R_{in})\). The implicit prices for consumer goods \(Y\) thus satisfy:
The various relations may be usefully displayed in tableau form:

<table>
<thead>
<tr>
<th>Resource Inputs</th>
<th></th>
<th>Resource Prices: λ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>μ</td>
</tr>
<tr>
<td>Consumer group size bill of goods:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Characteristic input-output matrix:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leontief square</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L = C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resource Prices: λ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R \rightarrow \lambda Y$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Money flows</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

where λ is the scalar proportionality factor. Thus from our definitions the revenues received for the i-th resource must satisfy for some choice of scalar factor λ

$$\lambda_i R_i X = \lambda Y_i$$ \hspace{1cm} \text{for } i = (1, \ldots, r) \hspace{1cm} (3)$$

and the expenditures for consumer goods by the j-th consumer group must satisfy for the same choice of scalar factor λ

$$Y C_j u_j = \lambda \delta_j$$ \hspace{1cm} \text{for } j = (1, \ldots, s) \hspace{1cm} (4)$$

where the equality of the scalar factors can be shown from (1) and (2). Substituting the values of X and Y from (1) and (2) we have

$$\lambda_i R_i L^{-1} C \mu = \lambda Y_i$$ \hspace{1cm} \text{for } i = (1, \ldots, r) \hspace{1cm} (5)$$

$$\lambda R L^{-1} C \mu = \lambda \delta_j$$ \hspace{1cm} \text{for } j = (1, \ldots, s) \hspace{1cm} (6)$$
If we let

$$[N_{ij}] = [R_i L^{-1} C_j] \quad \text{where } M \text{ is } r \times s,$$

then (5) and (6) simply state that we seek a λ in the simplex

$$S = \{ \lambda | \lambda_i \geq 0, \sum_{i=1}^r \lambda_i = 1 \} \text{ and a } \mu \text{ in the simplex } T = \{ \mu | \mu_j \geq 0, \sum_{j=1}^s \mu_j = 1 \}$$

such that the rescaled matrix $[\lambda_i M_{ij} \mu_j]$ has row sums proportional to $\gamma = (\gamma_1, \ldots, \gamma_r)$ and column sums proportional to $\delta = (\delta_1, \ldots, \delta_s)$.

Theorem: Given $M > 0$ and $\gamma = (\gamma_1, \ldots, \gamma_r) \geq 0, \delta = (\delta_1, \ldots, \delta_s) > 0, \Sigma \gamma_i = \Sigma \delta_j$, then there exist $\lambda \in S$, $\mu \in T$ and a scalar ξ such that

$$\sum_i \lambda_i M_{ij} \mu_j = \xi \delta_j, \sum_j \lambda_i M_{ij} \mu_j = \xi \gamma_i \text{ for } i = (1, \ldots, r) \text{ and } j = (1, \ldots, s).$$

Proof: Starting with any $\lambda \in S$ determine a mapping of $\lambda \rightarrow \mu \in T$ by

setting $\mu_j = \delta_j / \sum_{i=1}^S \lambda_i M_{ij}$ and $\mu_j = \mu_j' / \sum_{j=1}^S \mu_j'$ for $j = 1, \ldots, s$.

Diagram:

- **S Simplex:** $\{ \lambda | \sum_{i=1}^r \lambda_i = 1, \lambda_i \geq 0 \}$
- **T Simplex:** $\{ \mu | \sum_{j=1}^s \mu_j = 1, \mu_j \geq 0 \}$
Next map back this \(\mu \rightarrow \overline{\lambda} \in S \) by \(\overline{\lambda}' = \gamma_i / \sum_{j=1}^{S} M_{ij} \mu_j \) and set
\[\overline{\lambda}'_i = \overline{\lambda}'_i / \sum_{i=1}^{r} \lambda'_i \] for \(i = 1, \ldots, r \). The composite of the two successive mappings is a mapping in \(S: \lambda \rightarrow \overline{\lambda} \) which is clearly continuous in \(\lambda \) if \(M_{ij} > 0 \). By the Brouwer Fixed-Point Theorem, there exists a \(\lambda \) such that \(\overline{\lambda} = \lambda \). \(\text{Q.E.D.} \)