RE-ENTRY PHYSICS: FINAL REPORT

Office of Naval Research Contract No.
N00014-67-A-0204-0040, NR 061-141

Reference: ONR: 438; RDC: mg
NR 061-141

Submitted by

Fluid Mechanics Laboratory
Department of Mechanical Engineering
Massachusetts Institute of Technology
Cambridge, Mass. 02139

This research was supported by the Advanced Research Projects Agency of the Department of Defense and monitored by the Office of Naval Research under Contract No. N00014-67-A-0204-0040, NR 061-141

This document has been approved for public release and sale; its distribution is unlimited.

December 1973
Kinetics Phase-Space Theory
Dissociation Monte Carlo Trajectories
Recombination Stratified Flows
Ion-Molecule Reactions Momentumless Wakes

The modified phase space theory of reaction rates and Monte Carlo trajectory calculations we applied to the problem of three-body recombination and dissociation of diatomic molecules. Reactions studied include:

\[\text{N}_2 + \text{A}_x \rightarrow \text{N} + \text{N} + \text{Ar} \]
\[\text{HC} + \text{Ar} \rightarrow \text{H} + \text{C} + \text{Ar} \]
\[\text{H}_2 + \text{H} + \text{H} + \text{H} \]
and in the ion molecule reactions

\[\text{F}^- + (\text{Ar, N}_2, \text{CO}) \rightarrow \text{F} + e^- + (\text{Ar, N}_2, \text{CO}) \]

\[\text{Br}^- + \text{Ar} \rightarrow \text{Br} + e^- + \text{Ar} \]

On the basis of comparisons made between the phase space theory predictions of the rate coefficients and experimental measurements it is concluded that the phase space theory is capable of yielding good a priori estimates of three-body rate coefficients over a wide temperature range.

Exploratory experiments were carried out in a stratified-flow wind tunnel in an attempt to measure the growth of momentumless wake in a stratified flow. It was concluded that the small wind tunnel was not a sufficiently refined facility for making the desired measurements.
ABSTRACT

The modified phase space theory of reaction rates and Monte Carlo trajectory calculations were applied to the problem of three-body recombination and dissociation of diatomic molecules. Reactions studied include:

\[
\begin{align*}
N_2 + \text{Ar} & \rightarrow H + \text{N} + \text{Ar} \\
\text{HCl} + \text{Ar} & \rightarrow H + \text{Cl} + \text{Ar} \\
\text{H}_2 + H & \rightarrow H + H + H
\end{align*}
\]

and in the ion-molecule reactions

\[
\begin{align*}
\text{F}^- + (\text{Ar}, \text{N}_2, \text{CO}) & \rightarrow \text{F} + \text{e}^- + (\text{Ar}, \text{N}_2, \text{CO}) \\
\text{Br}^- + \text{Ar} & \rightarrow \text{Br} + \text{e}^- + \text{Ar}
\end{align*}
\]

On the basis of comparisons made between the phase space theory predictions of the rate coefficients and experimental measurements it is concluded that the phase space theory is capable of yielding good a priori estimates of three-body rate coefficients over a wide temperature range.

Exploratory experiments were carried out in a stratified-flow wind tunnel in an attempt to measure the growth of momentumless wake in a stratified flow. It was concluded that the small wind tunnel was not a sufficiently refined facility for making the desired measurements.
THE MODIFIED PHASE-SPACE THEORY OF REACTION RATES WAS APPLIED TO THE PROBLEM OF THE THREE-BODY RECOMBINATION AND DISSOCIATION OF DIATOMIC MOLECULES. THE RESULTS ILLUSTRATE THE IMPORTANT INFLUENCE OF THE WEAK ATTRACTION MINIMUM IN THE THIRD-BODY INTERACTION POTENTIAL AND THE EFFECT OF BARRIER PENETRATION FOR RECOMBINATION AT LOW TEMPERATURES. THE SYSTEM \(\text{N}_2 + \text{Ar} \) WAS USED AS A TYPICAL ILLUSTRATIVE EXAMPLE, AND GOOD AGREEMENT WAS OBTAINED BETWEEN THE THEORETICAL PREDICTIONS AND THE EXPERIMENTAL MEASUREMENTS OF THE REACTION RATE COEFFICIENTS OVER THE TEMPERATURE RANGE 200-12,000*K. THE RECROSSING FACTOR AND THE NONEQUILIBRIUM FACTOR WERE OBTAINED FROM MONTE CARLO TRAJECTORY CALCULATIONS FOR STATES NEAR THE DISSOCIATION LIMIT. THE TRAJECTORIES WERE SAMPLED WITHIN THE REACTION ZONE WITH A WEIGHT PROPORTIONAL TO THE EQUILIBRIUM REACTION RATE, AND NUMERICALLY INTEGRATED IN BOTH TIMEWISE DIRECTIONS TO DETERMINE THE COMPLETE HISTORIES OF THE COLLISIONS. A SIMPLE, SEPARABLE FUNCTION FOR THE EQUILIBRIUM TRANSITION RATE \(R(\varepsilon_i, \varepsilon_f) \) FROM INITIAL ENERGY STATES \(\varepsilon_i \) TO FINAL ENERGY STATES \(\varepsilon_f \), WHICH COULD BE CHARACTERIZED BY THREE PARAMETERS, WAS OBTAINED TO FIT THE NUMERICAL DATA.

*Numbers in parenthesis refer to publications listed and page 7
ical data and was used to solve the steady-state master equation. Distributions of the trajectories with respect to energies and impact parameters are presented, and several typical trajectories are shown to illustrate the important features of the collisions. The contribution to the over-all reaction rate from the "complex mechanism" was also obtained.

Monte Carlo Trajectory Calculations of the Dissociation of HCl in Ar

The modified phase-space theory of reaction rates was applied to the dissociation of HCl in a heat bath of argon atoms. Excellent agreement was obtained between the theoretical predictions and the shock-tube measurements of the dissociation rate coefficient over the temperature range 2500-5000°K. The recrossing correction factor and nonequilibrium correction factor were obtained from Monte Carlo trajectory calculations for states near the dissociation limit. The trajectories were sampled within the reaction zone, with a weight proportional to the equilibrium reaction rate, and numerically integrated in both timewise directions to determine the complete histories of the collisions. A simple separable function for the equilibrium transition rate $R(\varepsilon_i, \varepsilon_f)$ from initial states ε_i to final states ε_f was obtained to fit the numerical data with sufficient accuracy and was used to solve the steady-state master equation. Important features of collisions of highly asymmetric diatomic molecules
are discussed, and several typical reactive trajectories are shown to illustrate the importance of rotational motion in such collisions.

Thermal Dissociation and Recombination of Hydrogen According to the Reactions: $H_2 + H \rightarrow H + H + H$ (3)

Three-body recombination and dissociation rate coefficients (k_r and k_d respectively) for the reactions $H_2 + H \rightarrow H + H + H$ have been evaluated for temperatures ranging between 300 and 10,000 K on the basis of the modified phase-space theory of reaction rates and Monte Carlo trajectory calculations. The semiempirical Porter-Karplus surface for H_3 was used in the calculations. Good agreement was obtained between the theoretical estimates of k_d and the bulk of the dissociation rate measurements. However, in contrast to some of the recent experimental investigations, neither the extremely steep temperature decay (αT^{-6}) of k_r at high temperatures nor the existence of a pronounced maximum in k_r at moderate temperatures are supported by this theoretical work. Possible reasons for these differences are suggested. A simple ratio was deduced which relates $k_r^{(H)}$ and the corresponding rate coefficients of the isotopes of hydrogen. The result is in good agreement with available experimental measurements and enables one to predict the latter rate coefficients without additional trajectory calculations. An example is given to illustrate the capability of the present Monte Carlo method in obtaining other useful information about atomic and molecular collision processes.

Research initiated under ONR Contract No. N00014-67-0204-0040, NR 061-141 and completed under NSF Research Grant GP-32522X
Phase-Space Theory of Electron Detachment in Slow Atomic Collisions

A classical phase-space theory for the excitation of electrons in slow atomic collisions is presented. An equation which governs the energy transfer between the electron and the heavy particles is derived for slow collisions (adiabatic approximation). This equation is analogous to the first law of thermodynamics for an open system. The theory contains only one adjustable parameter and gives excellent correlation for existing experimental measurements of detachment rate coefficients of \(F^- + (Ar, \cdot \cdot \cdot, CO) \) and \(Br^- + Ar \). Possible modifications to the present theory are summarized. It is anticipated that the theory should be applicable to other electronic rate processes such as ionization and charge transfer.

Research initiated under ONR Contract No. N00014-67-0204-0040, NR 061-141 and completed under NSF Research, Grant GP-32522X.
MOMENTUMLESS WAKE GROWTH IN STRATIFIED FLOW

Experiments were conducted in a stratified-flow wind tunnel to determine the growth of momentumless wakes in a stratified flow. Zero momentum wakes were formed behind a flat disc supplied at its center with an axial jet, the momentum of the latter being adjusted to balance the calculated drag of the disc. Wake growth and gravitational collapse were detected visually by smoke injection and by sampling with a hydrocarbon analyzer after introducing ethane into the jet. Experiments were conducted at disc Reynolds numbers exceeding 200, which was a sufficient condition to ensure turbulent growth.

While wake growth and subsequent collapse were visually evident when smoke was introduced into the wake, the iso-concentration lines of ethane showed no marked gravitational collapse corresponding to that observed with the smoke tracer, although turbulent wake growth was clearly evident. Because a long sampling time of about a minute was required to determine each concentration reading, it was concluded that some unsteadiness in vertical flow velocity component was smearing out what would otherwise be steeper vertical concentration gradients, causing significant differences between the near instantaneous smoke trace and the time-averaged ethane concentrations.

It was concluded that the steady flow technique for examining momentumless wake growth and collapse in a stratified flow would encounter significant difficulties because of flow unsteadiness when operating close to the critical Froude number. The small wind tunnel used in these experiments was not a refined facility and could not be used for quantitative measurements of the type desired.

