PRESENCE OF ERABUTOXINS A AND B IN VENOM OF THE SEA SNAKE LATICAUDA SEMIFASCIAータ FROM TAIWAN

C.S. Kao, et al

Naval Medical Research Unit No. 2
Taipei, Taiwan

1973
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
BIOCHEMISTRY DEPARTMENT

R. QUENTIN BLACKWELL, PH.D., HEAD

ADMINISTRATIVE INFORMATION

THIS WORK WAS SUPPORTED BY THE BUREAU OF MEDICINE AND SURGERY, DEPARTMENT OF THE NAVY, WASHINGTON, D. C.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

R. H. VATTEN
CAPT MC USN
COMMANDING OFFICER
SHORT COMMUNICATION

PRESENCE OF CRABUTOXINS A AND B IN VENOM OF THE
SEA SNAKE LATICAUDA SEMIFASCIA FROM TAIWAN

C.-S. KAO, C.-S. LIU AND R. Q. BLACKWELL

REPORT DATE
1973

PROJECT NO.

CONTRACT OR GRANT NO.

REPORT TITLE

AUTHOR IT NAME (FIRST NAME, MIDDLE INITIAL, LAST NAME)

REPORT NUMBER

DISTRIBUTION STATEMENT

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

PUBLISHED IN TOXICOLOGY 11: 383-385, 1973

SUMMARY

12 SPONSORING MILITARY ACTIVITY

BUREAU OF MEDICINE AND SURGERY

DEPARTMENT OF THE NAVY

WASHINGTON, D. C. 20372

UNCLASSIFIED

NATIONAL TECHNICAL INFORMATION SERVICE

2150 CHAPLAIN DRIVE, SPRINGFIELD, VA 22151

UNCLASSIFIED
Erabutokins A and B in Taiwan L. semiferiscata
SHORT COMMUNICATION

PRESENCE OF ERABUTOXINS a AND b IN VENOM OF THE SEA SNAKE LATICAUDA SEMIFASCIATA FROM TAIWAN*

C.-S. KAO, C.-S. L IU and R. Q. BLACKWELL†
Department of Biochemistry, U.S. Naval Medical Research Unit No. 2, Taipei, Taiwan,
Republic of China

(Accepted for publication 5 March 1973)

Two principal toxins from venom of the sea snake Laticauda semifasciata have been purified and their amino acid compositions studied previously. TAMIYA and ARAI (1966), working with venom obtained from sea snakes collected in Okinawan waters, called the two toxins Erabutoxins a and b; amino acid compositions and sequences of the two compounds were reported by SATO and TAMIYA (1971). TU et al. (1971) obtained two similar toxins, called Toxins a and b, from the same species of Laticauda collected in Philippine waters; results of their amino acid analyses are somewhat different from those of Sato and Tamiya. In the present paper we report results of studies made on the two principal toxins obtained from venom of Laticauda semifasciata collected in Taiwan. As summarized below, our results are in complete agreement with those of Sato and Tamiya.

Sea snakes used in this study were collected in the vicinity of Pescadores Islands in the Formosan Strait west of Taiwan and near Green Island and Orchid Island which are near the southeast end of Taiwan. Venom was collected by milking live snakes and was pooled for analysis. Methods used for venom fractionation and further chemical characterizations were essentially those reported in our previous study of Hydrophis cyanocinctus (LIU et al., 1973).

Protein fractions obtained by chromatographic separation of venom components are shown in Fig. 1. Fractions IV, V and VI had relatively high lethality as measured by screening tests in mice. For example, 10 µg quantities of each fraction, injected intraperitoneally (in 0.2 ml of saline) into 20 g mice caused death in all animals within 30 min; five mice were used to test each fraction at the 10 µg level. Higher amounts of all three fractions also killed all animals tested, while studies were not made at lower levels.

Fraction IV was not investigated further; from its chromatographic behavior, it appears to be identical with the minor fraction, Erabutoxin c, described by TAMIYA (1972) and TAMIYA and ABE (1972). Fractions V and VI were desalted with a Sephadex G-15 column and purified by column chromatography on CM 52 carboxymethylcellulose using an ammonium acetate buffer system. Portions of purified fractions were lyophilized, carboxy-
C.-S. KAO, C.-S. IU and R. Q. BLACKWELL

FIG. 1. RESULTS OF TYPICAL SEPARATION OF PROTEIN COMPONENTS FROM LYOPHILIZED VENOM OF Laticauda semifasciata.

Seventy-seven milligrams of dry venom were dissolved in 2 ml of the initial buffer (pH 6.3, 0.01 M sodium phosphate containing 0.01 M sodium chloride) and applied to the column packed with Whatman carboxymethylcellulose, CM-52. Gradient elution was achieved with 500 ml of initial buffer and 500 ml of final buffer (pH 6.3, 0.01 M sodium phosphate containing 0.5 M sodium chloride). Fractions V and VI were isolated for further study.

<table>
<thead>
<tr>
<th>Amino acid residue</th>
<th>Fraction V Molar ratio</th>
<th>Erabutinin a Molar ratio</th>
<th>Toxin a Molar ratio</th>
<th>Fraction VI Molar ratio</th>
<th>Erabutinin b Molar ratio</th>
<th>Toxin b Molar ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM-Cys</td>
<td>215</td>
<td>8.0</td>
<td>8</td>
<td>150</td>
<td>8.0</td>
<td>8</td>
</tr>
<tr>
<td>Asp</td>
<td>135</td>
<td>5.0</td>
<td>5</td>
<td>75</td>
<td>4.0</td>
<td>4</td>
</tr>
<tr>
<td>Thr</td>
<td>125</td>
<td>4.6</td>
<td>5</td>
<td>90</td>
<td>4.8</td>
<td>5</td>
</tr>
<tr>
<td>Ser</td>
<td>205</td>
<td>7.6</td>
<td>8</td>
<td>145</td>
<td>7.7</td>
<td>8</td>
</tr>
<tr>
<td>Glu</td>
<td>225</td>
<td>8.3</td>
<td>8</td>
<td>150</td>
<td>8.0</td>
<td>8</td>
</tr>
<tr>
<td>Pro</td>
<td>90</td>
<td>3.3</td>
<td>4</td>
<td>65</td>
<td>3.5</td>
<td>4</td>
</tr>
<tr>
<td>Gly</td>
<td>140</td>
<td>5.2</td>
<td>5</td>
<td>95</td>
<td>5.1</td>
<td>5</td>
</tr>
<tr>
<td>Val</td>
<td>50</td>
<td>1.9</td>
<td>2</td>
<td>34</td>
<td>1.8</td>
<td>2</td>
</tr>
<tr>
<td>Ile</td>
<td>80</td>
<td>3.0</td>
<td>4</td>
<td>55</td>
<td>3.0</td>
<td>4</td>
</tr>
<tr>
<td>Leu</td>
<td>27</td>
<td>1.0</td>
<td>1</td>
<td>16</td>
<td>0.9</td>
<td>1</td>
</tr>
<tr>
<td>Tyr</td>
<td>32</td>
<td>1.2</td>
<td>1</td>
<td>17</td>
<td>0.9</td>
<td>1</td>
</tr>
<tr>
<td>Phe</td>
<td>55</td>
<td>2.0</td>
<td>2</td>
<td>33</td>
<td>1.8</td>
<td>2</td>
</tr>
<tr>
<td>Lys</td>
<td>110</td>
<td>4.1</td>
<td>4</td>
<td>75</td>
<td>4.0</td>
<td>4</td>
</tr>
<tr>
<td>His</td>
<td>32</td>
<td>1.2</td>
<td>1</td>
<td>42</td>
<td>2.2</td>
<td>2</td>
</tr>
<tr>
<td>Arg</td>
<td>80</td>
<td>3.0</td>
<td>3</td>
<td>50</td>
<td>2.7</td>
<td>3</td>
</tr>
</tbody>
</table>

* SATO and TAMAYA (1971).
† TU et al. (1971).

methylated, hydrolyzed for 24 hr at 108°C with constant boiling hydrochloric acid containing mercaptoethanol (1/2000 v/v) (KEUTMANN and POTTS, 1969), and analyzed for their amino acid composition. Results are given in Table 1 and compared with results obtained
Erabutoxins in *L. semifasciata*

by previous workers. Except for isoleucine, where recovery was incomplete, presumably because of incomplete hydrolysis of the isoleucylisoleucine bond (Sato and Tamiya, 1971), amino acid compositions of Fractions V and VI agree completely with those given by Sato and Tamiya (1971) for Erabutoxins a and b. Compositions of Toxins a and b reported by Tu et al. (1971) had several differences.

Peptide maps of our tryptic digests of Fractions V and VI were identical except for one peptide from each which had different mobilities. Those peptides were analyzed for amino acid composition with the following results. The peptide from Fraction V had 2 cysteinyl and 3 seryl residues and one each of asparaginyl (determined as aspartyl after hydrolysis), threonyl, glutamyl, prolyl, glycyl, tyrosyl, and lysyl. Composition of the peptide from Fraction VI was the same except for absence of asparaginyl and presence of one histidyl group. These results match those obtained by Sato and Tamiya (1971) for that section of the erabutoxin molecules between amino acid residues 16 and 27. The sole difference between Erabutoxins a and b reported by Sato and Tamiya (1971) was at position 26 which was occupied by asparaginyl in Erabutoxin a and by histidyl in Erabutoxin b.

From these results it was concluded that the two toxic fractions isolated from venoms collected from specimens of *Laticauda semifasciata* in Taiwan are identical to those reported by Sato and Tamiya in *L. semifasciata* from Okinawa and different from Toxins a and b reported by Tu et al. (1971) from *L. semifasciata* from the Philippines.

Acknowledgement—We thank Dr. J.-J. Gunning for providing the sample of lyophilized crude venom and Miss Helen Hsin for amino acid analyses.

REFERENCES


