STATE OF THE SEA AROUND TROPICAL CYCLONES
IN THE
WESTERN NORTH PACIFIC OCEAN

by

SAMSON BRAND, JACK W. BLELOCH,
AND DONALD C. SCHERTZ

JUNE 1973
State of the Sea Around Tropical Cyclones in the Western North Pacific Ocean.
From: Commanding Officer, Environmental Prediction Research Facility, Naval Postgraduate School, Monterey, CA 93940
To: Distribution List
Subj: Meteorological Research Publication; forwarding of
Encl: (1) "State of the Sea Around Tropical Cyclones in the Western North Pacific Ocean." ENVPREDRSCHFAC Tech. Paper No. 5-73.

1. Enclosure (1) is forwarded for information.

G. D. HAMILTON

Distribution List
Environmental Prediction Research Facility Master Distribution List of 1 January 1973:

LIST I: SNDL Nos. 21 (Hawaii and Norfolk only), 22, 23B, 24B, 24C, 24E, 24F, 26A, 26B1, 26B2, 26CC (Taiwan only), 26QQ, 27C (Puerto Rico only), 28B (ASWGRU 3 only), 28C1, 28J (COMSERVGRU 3 only), 28L (COMPHIBRONS 1, 3, 5, and 7 only), 29B, 29E, 29G, 29H, 29J, 29L (DLGN-25, DLG-22, DLG-33, DLG-21, DLG-30, DLG-29, DLG-10, DLG-11, DLG-15, DLG-24, DLG-31, DLG-35, and DLG-18 only), 31A, 31H, 32A, 32PP, 41A, 41B, 42S (VXN-8 only), 42X, 42CC2, 50A (Hawaii and Norfolk only), 51A (SACLANT only).

LIST II: SNDL Nos. A1, A-2A, A3 (OP-09, OP-986G and OP-945 only), B2 (RADM Kotsch only), C4F7 (Guam, Asheville, Atsugi, Barbers Pt., Bermuda, Corpus Christi, Cubi Pt., Guantanamo, Key West, Kingville, Mayport, Midway, Misawa, Okinawa, Puerto Rico and Yokosuka only), C4F9 (Bethesda only), FD2, FF5, FF38, FF41, FF42, FKA1A (less AIR-03), FKA1E, FKR4A, FRL, FT13, FW1, FW2, FW3, FW4 (less Keflavik and London), V5 (Okinawa, Iwakuni and Kaneohe Bay only).

LIST III: Item Nos. 1, 2, 3, 6, 7, 8, 9, 10, 16, and 21.

LIST IV: Item Nos. 2, 3, and 8.

LIST V: Item Nos. 1, 2, and 4.
LIST VI: Item Nos. 2, 4, 5, and 6.

LIST VII.a: Item Nos. 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 17, 18, and 19.
VII.b: Item Nos. 3, 5, and 6.
VII.d: Item Nos. 5, 6 and 7.

LIST VIII: Item Nos. 1, 2, 16 and 17.

LIST IX.a: Item Nos. 1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 16, 17, 18, 20, 21, 22, 23, 25, 26, 27, 28, 29, 32, 33, 34, 36, 37, and 38.
IX.b: Item Nos. 2, 4, 5, 6, and 7.
IX.c: Item Nos. 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14, and 15.
IX.d: Item No. 3.
IX.e: Item No. 7.

LIST X: Item Nos. 3, 4, 5, 6, 7, 8, 10, 30, 36, 37 and 38.

LIST XI: Item Nos. 1 and 2.

LIST XII: Item Nos. 1, 3, 4, 5, 6, 7, and 8.

LIST XIII: Item Nos. 4, 5, 6, 7, 8, 9, 12, 37, 38, 39, 40, 41, 44, 45, 47, 48, 49, 50, 51, 54, 56, 58, 61, 69, 75, 76, 77, 78, 79, 80, 81, 88, 90, 91, 92, 93, 94, 95, 96, 103, 106, 107, 108, 109, 110, 120, 123, 125, 126, 128, 132, 133, 134, 135, 136, 138, and 142.
STATE OF THE SEA AROUND TROPICAL CYCLONES IN THE WESTERN NORTH PACIFIC OCEAN

by

SAMSON BRAND
JACK W. BLELLOCH
and
DONALD C. SCHERTZ

JUNE 1973
ABSTRACT

The combined sea-height data for the year 1971 for the western North Pacific Ocean are examined to determine the sea-state characteristics around tropical storms and typhoons. The results from subjectively analyzed sea-state charts show that the areal extent about the storms of the combined sea height in the 9-15 ft range is primarily a function of storm duration, intensity (maximum sustained wind) and size. Equations derived by linear regression techniques are presented for describing the state of the sea about tropical cyclones.
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Comparisons of the combined sea height around tropical cyclones for a similar intensity category</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Combined sea height around 21 tropical storms and typhoons plotted against distance from storm center and given as a function of intensity</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>The combined sea-height isopleths about tropical cyclones given as a function of direction of movement</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>The mean distance from the storm centers of the 9-, 12- and 15- ft combined sea heights as derived from the 21 tropical storms and typhoons from the FWC, Guam analyses</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Equations for describing the sea states around tropical cyclones in the 9-15 ft range of combined sea height</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>The mean distance and standard deviation from the storm center of the 9-, 12- and 15- ft combined sea heights compared with the standard error of estimate from the equations</td>
<td>14</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

One of the more difficult analyses the Navy forecaster is concerned with is the combined sea-height analysis, especially when a tropical cyclone is present on his map. Most analysts agree that problems are caused by: (1) the lack of data surrounding storms; (2) subjective observations; and (3) subjective analyses. An attempt is made in this paper to resolve part of the problem by establishing a more objective way to define the state of the sea about tropical cyclones. This will not only improve the product but also make it more consistent. These inconsistencies are evident if the combined sea-height analyses of separate meteorological/oceanographic centers are compared.

The differences dramatically emphasize the need for a more objective way to examine the sea-state analysis problem -- to say nothing of the forecast problem, which is highly dependent on the initial analysis.

1. The combined sea height is defined as the square root of the sum of the squares of "significant" sea and swell height. Sea is wind waves and swell consists of wind generated waves which have advanced into regions of weaker or calm winds. "Significant" will be defined here as the average height of the highest one third of the waves observed over a specified time.
Ship captains are seriously concerned with sea states around tropical cyclones, since sea conditions affecting storm evasion or ship movement can cover a much larger area than the wind associated with the storm. A miscalculation concerning a building sea condition could lead to a destructive rendezvous with a tropical cyclone.

The purpose of this paper is to provide the operational forecaster with information which, in conjunction with conventional analysis and prediction techniques, should be a useful aid in both typhoon evasion and ship routing procedures. It is also intended to familiarize the ship captain with sea-state characteristics associated with tropical cyclones.
2. DATA AND METHOD OF ANALYSIS

In this study 21 tropical storms and typhoons which occurred in the months of July-November 1971 in the western North Pacific (excluding the South China Sea) were examined. Combined sea-height data were available for 173, 12-hr analyses for these 21 tropical cyclones. From each of the analyses, the distance out from the storm center of the 9-, 12- and 15-ft isopleths of combined sea height were obtained (8-point compass values) for all stages of storm intensity. Values were radially averaged and the resulting average distances from the storm centers were compared with the meteorological parameters associated with the storms. The 8-point compass values relative to the direction of movement of the storm centers were also evaluated to determine the sea-state asymmetries present about the storms.

For purposes of this study, combined sea-height values for heights greater than 15 ft were not examined because of the lack of data and observational and analysis problems.

1Subjective combined sea-height analyses are produced operationally for the western North Pacific area by the U. S. Fleet Weather Central, Guam and by Optimum Track Ship Routing, Fleet Numerical Weather Central, Monterey, California.
It was felt that conclusions could not be drawn for sea
heights >15 ft, but that sufficient data were available for
meaningful conclusions in the 9-15 ft range.

Verploegh (1961) estimated the average observational
error for a visual observation of wave height varies from
1 ft at 5-ft wave heights to 3 ft at 18-ft wave heights.

In the average, for each of the 173 analyses examined,
there were more than 20 ship observations available for
analysis in this height range in the area around the tropical
cyclones.
3. DISCUSSION OF RESULTS

Most of the research concerning the sea state near tropical cyclones has been observational in nature (Tannehill, 1936; Arakawa and Suda, 1953; Arakawa, 1954; Pore, 1957; Unoki, 1956; Unoki, 1957a; Unoki, 1957b; Unoki, 1957c; and Ijima, 1957). Numerical modeling of the sea states about tropical cyclones (Devillaz, 1967; and Laevastu, et al, 1973) is rather new but the results are rapidly approaching those of models derived by empirical methods.

Although there have been many observational and theoretical studies on this topic, very little has been done to aid the analyst and forecaster. Unoki (1957c), after examining a number of typhoons to the east of Japan, derived empirical formulae and diagrams to serve as a first-guess for the wave heights and wave periods about tropical cyclones. The only input parameter required was storm intensity.¹

The analyst also has available the relationships between the wave height and the surface wind, fetch length and wind duration (U. S. Naval Oceanographic Office, 1966). These relationships have been developed on the basis of theoretical

¹Unoki's results are biased somewhat toward the faster moving higher latitude recurved tropical cyclones to the east of Japan.
considerations and empirical laws and are not specifically
directed to the small scale of a tropical cyclone. However,
they can be modified for a particular storm if certain
assumptions are made concerning fetch length, wind duration,
and wind distribution.

It thus became apparent that there was a need for an
objective way to describe the sea state about storms with
input which would be readily available to the analyst, fore-
caster or even ship captain.

In order to compare the combined sea-height values of
operationally produced analyses with those of other obser-
vational or empirical studies, a common intensity category
was selected and compared. The range selected was the
65-99 kt category and comparative results can be seen in
Figure 1. The U. S. Fleet Weather Central (FWC), Guam and
Optimum Track Ship Routing (OTSR), Fleet Numerical Weather
Central, Monterey values are those derived from a homogeneous
set of analyses for the same tropical storms and typhoons as
were described previously. The H. O. 604 values have been
derived from wave height and wind speed empirical relation-
ships (U. S. Naval Oceanographic Office, 1966) incorporating
a number of necessary assumptions because of the small scale
of tropical cyclones. Unoki's values are based on his
observational studies and have been converted from minimum sea-level pressure to maximum wind.\footnote{2}

Based on the comparisons shown in Figure 1, it was concluded that the OTSR values were low and that the FWC, Guam analyses were realistic. The FWC, Guam analyses were, therefore, selected to form a basis for equations describing the sea states about tropical cyclones.

Tropical cyclone intensity (maximum sustained wind) and its relationship to sea state is an important parameter, but it was found that the length of time the storm existed and the size of the storm (circulation size) were also very important. Figure 2 shows an example of how the combined sea height varies as a function of distance from the storm center for individual storm intensity categories.\footnote{3} The mean values presented here have been derived from the FWC, Guam combined sea-height analyses around the 21 tropical storms and typhoons discussed earlier. Note the large variation of the state of the sea as a function of storm intensity.

\footnote{2}Although there are many conversion schemes available to the Joint Typhoon Warning Center, Guam, they have found the relationship proposed by K. Takahashi of Japan to be the most accurate ($V_{\text{max}} \text{ (kt)} = 13.4 \sqrt{1010-\text{Min. SLP (mb)}}$). This relationship was therefore used to convert Unoki's values.

\footnote{3}It should be emphasized that these are mean values and they are radially averaged. The asymmetry about the storm center will be discussed later.
Figure 2. The combined sea height (9 to 15 ft range) around 21 tropical storms and typhoons (based on 173 analyses for the year 1977) plotted against distance from storm center and given as a function of intensity.
An average tropical storm (found in the range of 35-64 kt) could expect 12-ft seas (in the mean) 217 n mi from the storm center; while an intense typhoon (>100 kt) could expect 12-ft seas (in the mean) 454 n mi from the center. Table 1 shows the standard deviations about the mean, and the number of analyses contributing to the mean, for each of the sea-height values and for each intensity category. For example, intense typhoons (>100 kt) could expect 12-ft seas to fall in the range from 317 n mi to 591 n mi from the center (mean value of 454 n mi) two-thirds of the time. Thus, it can be seen, the variation about the mean can be considerable.

Equations describing the sea states about tropical cyclones were developed using a stepwise regression computer program. The average radius to the height of the 9-, 12- and 15-ft combined sea heights (R_9, R_{12}, and R_{15}) of the FWC, Guam analyses were used as the dependent variables. The following twelve parameters were evaluated as possible independent variables:

1. Month
2. Storm Duration - length of time storm has existed
3. Latitude
4. Longitude
5. Maximum Wind
6. Speed of Storm
Table 1. The mean distance and standard deviation from the storm center of the 9-, 12- and 15-ft combined sea heights, as derived from the 173 analyses (21 tropical storms and typhoons) from FWC, Guam. The values are presented as a function of intensity category.

<table>
<thead>
<tr>
<th>Intensity Category</th>
<th>Combined Sea Height (ft)</th>
<th>Mean Distance (n mi)</th>
<th>Std Deviation (n mi)</th>
<th>No. of Analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤34 Knots</td>
<td>9</td>
<td>278</td>
<td>148</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>157</td>
<td>125</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>77</td>
<td>91</td>
<td>17</td>
</tr>
<tr>
<td>35-64 Knots</td>
<td>9</td>
<td>317</td>
<td>170</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>217</td>
<td>141</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>143</td>
<td>123</td>
<td>61</td>
</tr>
<tr>
<td>65-99 Knots</td>
<td>9</td>
<td>421</td>
<td>210</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>313</td>
<td>177</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>237</td>
<td>145</td>
<td>60</td>
</tr>
<tr>
<td>≥100 Knots</td>
<td>9</td>
<td>576</td>
<td>160</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>454</td>
<td>137</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>362</td>
<td>115</td>
<td>35</td>
</tr>
</tbody>
</table>
(7) Size of Storm - average radius to outer closed surface isobar

(8) Past 12-hr latitudinal displacement

(9) Past 12-hr longitudinal displacement

(10) Past 24-hr change in maximum wind

(11) Difference in degrees latitude of the 700-mb ridge position due north of storm to latitude of storm position

(12) Height of 700-mb ridge due north of storm

The following criteria had to be met in order for equations for R_9, R_{12} and R_{15} to be accepted:

(a) The regression equations had to have a multiple correlation coefficient of at least 0.8 and be significant at the 0.1% level.

(b) The equations had to be limited to four independent variables.

Table 2 shows the resulting equations for describing the sea state about tropical cyclones. The variables given in the equations are presented in order of their importance in the regression analysis. It is interesting that the speed of the storm was not as important a consideration as storm duration, intensity, size, and the 700-mb ridge height value to the north of the storm. The storm duration was selected as the most significant variable.
Table 2. Regression equations for describing the sea state around tropical cyclones in the 9- to 15-ft range of combined sea height.

\[\begin{align*}
R_9 &= 60.721 + 0.244 \text{Dur} + 0.029 \text{I} + 0.552 \text{Siz} - 0.190 \text{H7R} \\
&\quad [N=173, \text{Multiple Correlation Coefficient} = .80] \\
R_{12} &= 56.609 + 0.193 \text{Dur} + 0.030 \text{I} + 0.481 \text{Siz} - 0.182 \text{H7R} \\
&\quad [N=173, \text{Multiple Correlation Coefficient} = .82] \\
R_{15} &= 44.215 + 0.160 \text{Dur} + 0.030 \text{I} + 0.416 \text{Siz} - 0.145 \text{H7R} \\
&\quad [N=173, \text{Multiple Correlation Coefficient} = .84]
\end{align*} \]

Definition of Parameters Used

- \(R_9\) - Average radius from the storm center to the combined sea-height isopleth of 9 ft, in degrees latitude.
- \(R_{12}\) - Average radius from the storm center to the combined sea-height isopleth of 12 ft, in degrees latitude.
- \(R_{15}\) - Average radius from the storm center to the combined sea-height isopleth of 15 ft, in degrees latitude.
- \(\text{Dur}\) - Number of 12-hourly periods from the beginning of the life cycle of the storm (originating at issuance of first warning).*
- \(\text{I}\) - Storm intensity (maximum sustained wind in kt).
- \(\text{Siz}\) - Storm size (average radius to the outer closed surface isobar in degrees latitude).
- \(\text{H7R}\) - Height of the 700-mb ridge to the north of the storm in decameters.

*Experience during the 1971 season shows this point in the life cycle of the storms corresponds to a wind speed of about 35 kt.
For each sea-height category, the standard error of estimate of the mean distance from the storm center, is markedly smaller than the standard deviation of the mean distance from the storm center (Table 3).

Table 3. The mean distance and standard deviation from the storm center of the 9-, 12- and 15-ft combined sea heights derived from the 173 tropical cyclone analyses examined. Also presented is the standard error of estimate found by incorporating equations shown in Table 2.

<table>
<thead>
<tr>
<th>Combined Sea Height (ft)</th>
<th>Mean Distance From Center (n mi)</th>
<th>Standard Deviation (n mi)</th>
<th>Standard Error of Estimate (n mi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>415</td>
<td>185</td>
<td>113</td>
</tr>
<tr>
<td>12</td>
<td>299</td>
<td>161</td>
<td>93</td>
</tr>
<tr>
<td>15</td>
<td>217</td>
<td>141</td>
<td>77</td>
</tr>
</tbody>
</table>

Standard deviation of the differences between the observed values and the calculated values using the derived equations.
4. SOME ADDITIONAL CONSIDERATIONS

In order to determine the asymmetry of the isopleths of combined sea height about the storm center, the sea-height values (method described in Section 2) were examined relative to storm direction of movement. The results can be seen in Figure 3, for three direction of movement categories -- westerly, northwesterly, and northeasterly. In general, it can be seen that areas of higher seas in the 9- to 15-ft range exist to the rear of the storm as well as toward the right semicircle relative to the direction of movement. The greatest asymmetry exists with storms after recurvature (storm heading 001°-090°). It is interesting that the geometric centers of the isopleths are consistently about 100 n mi toward the right and to the rear of the storms relative to direction of movement. (Note that the mean storm intensity for these categories varied from 64.6 kt to 76.5 kt.) This distance would tend to be smaller for storms of less than typhoon intensity and larger for more intense typhoons.

It should be pointed out that the conclusions derived from this study have been for one specific area, the western North Pacific Ocean to the east of the Philippines. It would be premature to say that these results apply to other tropical cyclone areas of the world. In fact, a cursory examination of South China Sea tropical cyclones indicates that the average radii of the 9- to 15-ft isopleths of combined sea
Figure 3. The combined sea height isopleths (9-15 ft) about tropical storms and typhoons given as a function of direction of movement. Means and standard deviations for the parameters associated with the storms are given for each movement category.
height are approximately 15-20% smaller for similar intensity categories. The fact that tropical cyclones are markedly affected by the Philippines as they cross into the South China Sea (Brand and Blelloch, 1973) may account for part of the difference, but this has yet to be examined. The limited fetch length for a confined area such as the South China Sea is an additional factor.

The asymmetry considerations noted above, in conjunction with the statistical information presented previously, should aid the analyst or forecaster in describing the sea states about tropical cyclones using input parameters readily available to him. (An example is given in the Appendix.) Using information for the parameters as derived by conventional prediction techniques, he could also produce forecast sea-state conditions. This should be of value in typhoon evasion and ship routing procedures in the western North Pacific Ocean.
REFERENCES

APPENDIX

Schematic example of the sea states about a recurving typhoon in the western North Pacific Ocean. Sea-height values (9- and 15-ft) have been obtained from the equations in Table 2, and modified by the asymmetry shown in Figure 3.
The combined sea-height data for the year 1971 for the western North Pacific Ocean are examined to determine the sea-state characteristics around tropical storms and typhoons. The results from subjectively analyzed sea-state charts show that the areal extent about the storms of the combined sea height in the 9-15 ft range is primarily a function of storm duration, intensity (maximum sustained wind) and size. Equations derived by linear regression techniques are presented for describing the state of the sea about tropical cyclones.
<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ROLE</td>
<td>WT</td>
<td>ROLE</td>
</tr>
<tr>
<td>Sea state</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tropical cyclones</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wave heights</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typhoons</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combined sea heights</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hurricanes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>