A MACHINE-INDEPENDENT ALGOL PROCEDURE FOR ACCURATE FLOATING-POINT SUMMATION

Michael A. Malcolm
Stanford University

Prepared for:
Office of Naval Research
National Science Foundation

June 1973

DISTRIBUTED BY:
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151
A MACHINE-INDEPENDENT ALGOL PROCEDURE
FOR ACCURATE FLOATING-POINT SUMMATION

by

Michael A. Malcolm

STAN-CS-73-374
June 1973

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

DISTRIBUTION STATEMENT A
Approved for public release; Distribution Unlimited
A MACHINE-INDEPENDENT ALGOL PROCEDURE
FOR ACCURATE FLOATING-POINT SUMMATION

Michael A. Malcolm

June 1973

This work was supported by the Office of Naval Research, Contract N00014-67-A-0112-0029, and NSF Contract GJ29988X.
procedure sum (x, n, m, result, fail);
value n, m; integer n, m; real result;
array x; label fail;
begin comment This Algol 60 procedure is an implementation of the
floating-point summation technique described in Malcolm (1971). This
implementation is machine-independent in the sense that it will work on
any computer having a floating-point number system F characterized as
follows: Each number $x \in F$ has a radix-β t-digit fraction where $t \geq 1$.
The radix β can be any positive integer greater than 1. The exponent e is assumed to lie in the range
$$b \leq e \leq B,$$
where $b \leq 0$ and $B > t$. Each nonzero $x \in F$ has the representation
$$x = \pm \cdot d_1 d_2 \ldots d_t \cdot \beta^e,$$
where d_1, \ldots, d_t are integers satisfying
$$0 \leq d_i \leq \beta - 1, \ (i=1, \ldots, t).$$
The number 0 is contained in F, but no assumption is made about its
representation. All floating-point operations (e.g., addition and multi-
plication) are assumed to result in either 0 or a normalized floating-
point number contained in F. The machine may do either proper rounding
or chopping (truncation). (Note that this definition of F excludes
machines using extra-length accumulators for intermediate arithmetic.
However, this algorithm is seldom needed on such machines.)

The parameters β and t of F are automatically computed at
execution time by a technique described in Malcolm (1972). Since the
range of the floating-point exponent cannot be determined automatically,
the input parameter \(m \) is used for allocating the set of accumulators used by the algorithm.

Provided no overflow or underflow occurs, and none of the \(x[i] \) are larger than \(10^m \), or smaller than \(10^{-m} \), in magnitude, and
\[
n \leq 2^{l+1}/16 , \quad \text{where} \quad l = \lfloor t/2 \rfloor,
\]
then
\[
\text{result} \approx \sum_{i=1}^{n} x[i]
\]
is returned with nearly full-precision accuracy. The bound on the relative error is given by Theorem 2 in Malcolm (1971) as
\[
\frac{1}{(t+1)/\log_{10} 16} 2^{-t}.
\]
If any of the \(x[i] \) are larger than \(10^m \) or smaller than \(10^{-m} \), then the error exit fail is taken.

```
Boolean rnd; integer beta, t, t2, nu, L, U;
procedure ENVIRON (beta, t, rnd);
Boolean rnd; integer beta, t;
beg{comment This procedure is an Algol 60 translation of the (first) Fortran subroutine ENVIRON given in Malcolm (1972). ;

real a, b, e;

for e := 2, 2xe while (a+1)-a=1 do a := e;
for e := 2, 2xe while a+b=a do b := e;
beta := (a+b)-a; rnd := a+(beta-1) > a; t := 0;
for a := 1, betaXa while (a+1)-a=1 do t := t+1

end ENVIRON;

ENVRON (beta, t, rnd); t2 := t+2; nu := \ln(16)/\ln(beta);
U := entier (mXln(10)/(ln(beta)Xnu)) + 1;
L := entier((-mXln(10)/ln(beta) - t2)/nu);
```
In the notation of Malcolm (1971), \(t = t_2 \) is the padding that each of the numbers added to the accumulators will have. Each of the \(x[i] \) will be split into two halves (i.e. \(q=2 \)) having the last \(t_2 \) digits equal zero. The variable \(nu \) above is used for \(v \) defined in Equation (2) of Malcolm (1971). The value for \(nu \) computed above is rather arbitrary and was chosen to make \(nu \) sufficiently smaller than \(t_2 \). The variables \(U \) and \(L \) are the upper and lower bounds on the indices of the accumulators which are declared in the following block. They are chosen to allow the \(x[i] \) to range from \(10^{-m} \) to \(10^m \) in magnitude. In slightly different notation, they are

\[
U = \left\lfloor \frac{m}{\log_{10} \beta} \right\rfloor ,
\]

\[
L = \left\lfloor \frac{-m/\log_{10} \beta - \lfloor t/2 \rfloor}{v} \right\rfloor ;
\]

\begin{verbatim}
begin array accumulators[L:U]; integer ex;
 real xL, xH;

integer procedure e(x);
value x; real x;
begin comment This procedure computes the exponent \(e \) of the floating-point number \(x \).
 real y, q; integer ex;
 x := abs(x); ex := 0; for y := 1,q
 while \(x>y \) do begin ex := ex+1; q := beta^y; end;
 for y := q, y/beta while \(x<y \) do ex := ex-1;
e := ex
end e;
\end{verbatim}
comment initialize the array of accumulators;
for i:=L step 1 until U do accumulators[i] := 0;

comment accumulate the nonzero x[i]s;
for i:=1 step 1 until n do if x[i]#0 then
begin ex := e(x[i]);
if entier(ex/mu)>U V ex-t2<1xnu then go to fail;
comment Now the x[i] is split into a high- and low-order part, xH and xL. The method used here is to add the proper power of β to x[i] to force it to preshift t2 digits to the right and then either truncate or round the last t2 significant digits. Then the same power of β is subtracted to cause a post normalization which brings in t2 trailing zero digits. The resulting high-order part of x[i] is then subtracted from x[i] to produce the low-order part such that the sum of the high- and low-order parts is exactly equal to x[i]. This method of splitting a floating-point number into two halves is similar to that given by Dekker (1971). ;
xH := beta^((ex-1+t2)); xH := (xH+x[i]) - xH;
xL := x[i] - xH;
comment xH and xL can now be added to the appropriate accumulators. ;
accumulators[entier(ex/mu)] := xH;
accumulators[entier((ex-t2)/nu)] := xL
end; comment Now sum the accumulators in decreasing order. ;
result := 0;
for i:=U step -1 until L do
result := result + accumulators[i]
end
end sum
References

