THE LITERATURE OF GAMING, SIMULATION, AND MODEL-BUILDING: INDEX AND CRITICAL ABSTRACTS

RAND Corporation

Prepared for:
Defense Advanced Research Projects Agency
June 1972

DISTRIBUTED BY:
National Technical Information Service
U. S. Department of Commerce
5285 Port Royal Road, Springfield Va. 22151
DISCLAIMER NOTICE

THIS DOCUMENT IS THE BEST QUALITY AVAILABLE.
COPY FURNISHED CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
The Literature of Gaming, Simulation, and Model-Building: Index and Critical Abstracts

M. Shubik, G. Brewer and E. Savage

A Report prepared for

ADVANCED RESEARCH PROJECTS AGENCY
The Literature of Gaming, Simulation, and Model-Building: Index and Critical Abstracts

M. Shubik, G. Brewer and E. Savage

A Report prepared for
ADVANCED RESEARCH PROJECTS AGENCY
Bibliographies of Selected Rand Publications

Rand maintains a number of special subject bibliographies containing abstracts of Rand publications in fields of wide current interest. The following bibliographies are available upon request:

- Aerodynamics
- Arms Control
- China
- Civil Defense
- Communication Satellites
- Communication Systems
- Computer Simulation
- Computing Technology
- Decision Making
- Game Theory
- Maintenance
- Middle East
- Policy Sciences
- Probability
- Program Budgeting
- SIMSCRIPT and Its Applications
- Southeast Asia
- Space Technology and Planning
- Statistics
- Systems Analysis
- USSR/Past Europe
- Weapon Systems Acquisition
- Weather Forecasting and Control

To obtain copies of these bibliographies, and to receive information on how to obtain copies of individual publications, write to: Publications Department, Rand, 1700 Main Street, Santa Monica, California 90406.
REPORT TITLE
THE LITERATURE OF GAMING, SIMULATION, AND MODEL-BUILDING: INDEX AND CRITICAL ABSTRACTS

AUTHOR(S) (Last name, first name, initial)
Shubik, M., Brewer, G., Savage, E.

REPORT DATE
June 1972

CONTRACT OR GRANT NO.
DAHC15-67-C-0141

ORIGINATOR'S REPORT NO.
R-620-ARPA

ABSTRACT
A bibliography of professional literature on gaming, model-building and simulation, attempting to cover as much of the work in these fields as possible. Each listing is abstracted, indexed and classified, as well as coded according to an evaluation scheme.

KEY WORDS
- Gaming
- Bibliography
- Computer Simulation
PREFACE

In 1970 and 1971, Rand conducted a critical evaluation of the activity and products of gaming, model-building, and simulation, under the sponsorship of the Defense Advanced Research Projects Agency. The specific aim of that inquiry was to assess the usefulness of gaming in military-political policymaking. Its general aim was to contribute to the definition of common standards and the refinement of objectives that are necessary to the advancement of the gaming profession.

As means to those ends, the authors compiled a bibliography of the professional literature of the past thirty years and made a critical review of much of it. This report describes their bibliographic and classification system and presents indexes and abstracts of the publications entered in it. Longer interpretive reviews of some of those publications are presented in a companion report, R-732-ARPA, Reviews of Selected Books and Articles on Gaming and Simulation, by Martin Shubik and Garry D. Brewer. A related study by the same authors is R-1060-ARPA, Models, Simulations, and Games—A Survey.

Dr. Shubik, a consultant to The Rand Corporation, spent the academic year 1970-1971 in Santa Monica on leave from Yale University, where he is Professor of the Economics of Organizations. Dr. Brewer and Mrs. Savage are members of Rand's Social Science Department.
ACKNOWLEDGMENTS

The authors are grateful to Rand colleagues Norman C. Dalkey and Harvey A. DeWeerd for helpful advice, and to those who designed and currently operate Rand's Text and Catalog System, especially Robert A. Duis and Sally Belford.
CONTENTS

PREFACE ... iii

ACKNOWLEDGMENTS ... v

Section
 I. INTRODUCTION ... ix
 II. THE CLASSIFICATION SYSTEM xi
 III. INDEX BY CATEGORY ... 1
 IV. INDEX BY AUTHOR .. 75
 V. ABSTRACTS .. 89

Appendix
 A. SAMPLE CODING SHEET .. 119
 B. PRODUCTION .. 121

vii
I. INTRODUCTION

The crisis resulting from the "information explosion" in the intellectual disciplines is often exacerbated by something that should alleviate it: the classification and abstracting of professional literature. Abstracting is regarded as a low-grade service to be performed by already overburdened research assistants. Thus depreciated, it is small wonder that abstracts rarely give an indication of the quality of the literature or its professional contribution, and that they are seldom even read. The present study is an effort to upgrade both the activity of classifying and abstracting the professional literature and its results in usefulness to the practitioner.

The authors have made a broad survey of the literature on model-building, simulation, and gaming, attempting to cover as much of the work in these fields as possible. To manage this large bibliography, they adapted a computer-based file management system developed at Rand that stores and dispenses bibliographic and evaluative data of publications.* When complete, the bibliography should contain several thousand entries. The file is regularly updated. In time, it is hoped, the file will be able to produce specialized bibliographies at the request of members of the professional community for a small fee. One could ask for a bibliography based on any of the numerous possible combinations of classification categories—for example, all publications that deal with operational gaming, that were published before 1945, that were funded by the Army, and that are rated excellent.

This Report deals with a subset of the large bibliography, that is, publications that struck the authors as deserving of detailed classification and a critical review.** Section II depicts the classification scheme, and Appendixes A and B respectively show a sample coding sheet and describe in detail the steps taken to produce the indexes and abstracts that appear in Sections III-V. A few publications, believed to warrant even further comment, are duly listed in Sections III-V, but instead of being abstracted, they are treated in Martin Shubik and Garry D. Brewer, Reviews of

* The Mark IV File Management System.
** Emphasis in this subset is on unclassified, secondary studies. The authors' approach to games themselves is presented in Martin Shubik and Garry D. Brewer, Questionaire: Models, Computer Machine Simulations, Games and Studies. The Rand Corporation, P-4672, August 1971. The authors plan later to issue an analogous survey of the classified literature.
Selected Books and Articles on Gaming and Simulation, The Rand Corporation, R-732-ARPA.

Key problems faced in the production of a referenced bibliography are the selection of classification categories and the measurement of attributes. Ideally, publications should be classified according to an optimal set of \(m \) properties, each of which has an operationally useful measure. The \(m \) might be a measure that naturally attaches to a property; for example, one could rate or evaluate a publication on a continuous scale from 0 to 1 or on a discrete scale from 1 to 10. In other cases, a binary 0/1 or Yes/No measure might be more appropriate. Often, though, quantitative measures are not applicable—for example in indicating how complex a game is. Besides the immediate difficulty of arriving at an operational definition of "complexity," it is doubtful that the concept allows a transitive rendering. It would be neatest and most tractable if each property could be expressed on a 0 to 1 scale. Then the classification scheme could be represented by an \(m \)-dimensional space, and any specific categorization would be a point in that space.

The procedure followed here has been more prosaic, and a price has been paid for the convenience and simplicity of adapting the existing Rand system. Part of the price is a loss of descriptive precision. For example, though the system allows for coding a publication in multiple subject categories, it cannot allow for the coding of the relative amounts of each.

The categories and their definitions, likewise, are imperfect, but they are a serviceable starting point. As a check on reliability, the authors discussed both the categories and the actual coding-evaluation of each publication until they arrived at a consensus. The abstracts were individually written but collectively scrutinized for comprehensiveness and fairness. A more sophisticated alternative to this triadic method would be to retain a slightly larger group of professionals as an evaluation panel for professional publications. They would review the same publications independently, and then their views would be polled by one of several methods available to obtain unbiased group evaluations.\(^*\)

Amidst the diversity of current activities in model-building, simulation, and gaming, a community of professionals is emerging. The authors hope here to provide some of the tools for the definition of standards and refinement of objectives that will advance this development.

\(^*\) The Delphi Method developed at Rand might be adapted to this purpose. Conceived as an alternative to simulation in long-range forecasting, Delphi is a means of soliciting the opinions of experts through successive, individual interrogations, during which an expert is fed information about the opinions of other experts and is given a chance to reconsider and revise his views. After several iterations, a statistical group opinion is calculated. See O. Helmer, *Analysis of the Future: The Delphi Method*, The Rand Corporation, P-3558, March 1967, and N. C. Dalkey, *Delphi*, The Rand Corporation, P-3704, October 1967.
II. THE CLASSIFICATION SYSTEM

1-0 ABSTRACTED: AUTHOR
1-1 ABSTRACTED: NO
1-2 ABSTRACTED: REVIEWED
1-3 ABSTRACTED: YES

Comments

1-0 If the publication is printed with a useful abstract, it is used as is or with minor modifications or supplementary remarks.
1-1 Includes publications whose contents are adequately described by their titles, are short in length, or otherwise do not warrant a full abstract.
1-2 Publications deserving fuller treatment. They are reviewed in Martin Shubik and Garry D. Brewer, Reviews of Selected Books and Articles on Gaming and Simulation, The Rand Corporation, R-732-ARPA.
1-3 Most of the publications in this survey, abstracted by the authors.

2-0 ARTICLE TYPE: ALLIED TOPIC, RELEVANT
2-1 ARTICLE TYPE: DISCURSIVE
2-2 ARTICLE TYPE: GAME DESCRIPTION
2-3 ARTICLE TYPE: GAME DOCUMENTATION
2-4 ARTICLE TYPE: GAME RESULTS

Comments

2-0 Many topics, not strictly gaming, simulation, and model-building, have been included in this survey if they are related to gaming in important ways. For example, social psychological
treatments of learning theory and behavior have important general implications for the design and planning of educational games.

2-1 "Discursive" is not used in a pejorative sense, but implies that a publication is abstract, lightly covers a number of topics, or discusses gaming in a non-gaming context.

The remaining categories are self-explanatory. The reader will recall, however, that multiple categories may be checked for the same publication. For example, if a game is briefly noted in a publication on the teaching of an unrelated topic, 2-0, 2-1, and 2-2 would perhaps be checked.

3-0 CLASSIFICATION: CONFIDENTIAL
3-1 CLASSIFICATION: FOUO
3-2 CLASSIFICATION: NATO CONFIDENTIAL
3-3 CLASSIFICATION: NA; UNCLASSIFIED
3-4 CLASSIFICATION: SECRET
3-5 CLASSIFICATION: TOP SECRET

Comments

Classification as determined by the U.S. government. Foreign or specialized equivalents will be adapted to this list where appropriate.

3-3 Includes publications subject to special export control: each transmittal to a foreign government must have the prior approval of O.N.R., Code 462.

4-0 FUNDING SOURCE: ARPA
4-1 FUNDING SOURCE: FOUNDATION
4-2 FUNDING SOURCE: JCS
4-3 FUNDING SOURCE: NA
4-4 FUNDING SOURCE: OTHER
4-5 FUNDING SOURCE: OTHER DOD
4-6 FUNDING SOURCE: OTHER U.S. GOVERNMENT
4-7 FUNDING SOURCE: PRIVATE (BUSINESS, SELF, MISC.)
4-8 FUNDING SOURCE: UNIVERSITY
4-9 FUNDING SOURCE: USA
4-10 FUNDING SOURCE: USAF
4-11 FUNDING SOURCE: USN
Comments

4-1 Loosely defined; includes the National Science Foundation, private foundations, and internally generated Rand research.
4-4 Includes foreign governments.
4-6 All non-DOD operating agencies.

5-0 GAME FACILITY ()

Comments

If the work described in the publication has been done at any formal gaming facility, the name is entered here. Most often it is left blank; whether it is filled in or not is useful in indicating the growth of formal gaming centers. This and category 6 are the only open-ended categories in this classification system. Calling for a printout of category 5 or 6 will yield a list of organizations and people most active in the field, as reflected by the literature.

6-0 GAME NAME ()

Comments

If a game or a gaming experiment rated OF NOTE or EXCELLENT has not been named by its author, the present authors give it a name. If a descriptive name does not apply, the game is called by the name of its author, plus, if it is one of several by him, a number designating the order in which the publication was read, not the relative date the game was devised. Whether a game rated below OF NOTE or EXCELLENT is given a name depends on other considerations, such as the intrinsically high value of a game that has been written up indifferently, or its being particularly exemplary in a negative way.

7-0 MATHEMATICAL SOPHISTICATION: 1. NONE
7-1 MATHEMATICAL SOPHISTICATION: 2. SLIGHT
7-2 MATHEMATICAL SOPHISTICATION: 3. MODERATE
7-3 MATHEMATICAL SOPHISTICATION: 4. MIDDLING
7-4 MATHEMATICAL SOPHISTICATION: 5. HIGH
Duels, pursuit and evasion games, and much of the literature on game theory are often presented in highly technical mathematical form, and few except a small number of specialists are able to follow the discussion. On the other hand, many free-form games use little or no special abstract symbol manipulation, relying instead on simple algebra or perhaps elementary difference or differential equations. Characterizing the moderate to middling range is largely a matter of judgment, but in general it corresponds to the density and difficulty of the symbols used.

Comments

A game's primary purpose is not always evident, nor is a stated purpose necessarily the real one. The category 8-4 includes a few cases of what appeared to be thinly veiled advertising or hucksterism.

The present authors accept responsibility for misjudgments that may occur in the sensitive realm of assessing quality. In having met regularly to reach a consensus on the precise classification and abstract of each publication, they trust that they have minimized such errors over what a single evaluator could do. The authors look forward to the time when
a larger sample of expert opinion will engage in a continuous review of the professional publications (see above, p. 2). Both the means and the extremes of their polled judgments will be important, the means to show informed consensus, and the extremes to warn of "outliers" and significant new ideas that may initially find little favor in the establishment. The latter suggests a problem in the sociology of science as well as in its substance.

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-0</td>
<td>RAND PUBLICATION: DOCUMENT; INTERNAL NOTE; WORKING NOTE</td>
</tr>
<tr>
<td>10-1</td>
<td>RAND PUBLICATION: NA; NOT RAND</td>
</tr>
<tr>
<td>10-2</td>
<td>RAND PUBLICATION: PAPER</td>
</tr>
<tr>
<td>10-3</td>
<td>RAND PUBLICATION: RESEARCH MEMORANDUM; REPORT</td>
</tr>
</tbody>
</table>

Comments

This category has been added because much of the literature in the field has emanated from The Rand Corporation.

<table>
<thead>
<tr>
<th>Subject Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-0</td>
<td>SUBJECT: ARTIFICIAL INTELLIGENCE</td>
</tr>
<tr>
<td>11-1</td>
<td>SUBJECT: BARGAINING/BIDDING</td>
</tr>
<tr>
<td>11-2</td>
<td>SUBJECT: BUSINESS/OR/LOGISTICS</td>
</tr>
<tr>
<td>11-3</td>
<td>SUBJECT: ECONOMICS</td>
</tr>
<tr>
<td>11-4</td>
<td>SUBJECT: EDUCATION</td>
</tr>
<tr>
<td>11-5</td>
<td>SUBJECT: GAME THEORY</td>
</tr>
<tr>
<td>11-6</td>
<td>SUBJECT: GAME THEORY, METHODOLOGY, AND TECHNOLOGY</td>
</tr>
<tr>
<td>11-7</td>
<td>SUBJECT: OTHER</td>
</tr>
<tr>
<td>11-8</td>
<td>SUBJECT: POLITICAL-DIPLOMATIC-MILITARY</td>
</tr>
<tr>
<td>11-9</td>
<td>SUBJECT: POLITICAL SCIENCE</td>
</tr>
<tr>
<td>11-10</td>
<td>SUBJECT: SOCIAL PSYCHOLOGY/PSYCHIATRY</td>
</tr>
<tr>
<td>11-11</td>
<td>SUBJECT: SOCIOLOGY/ORGANIZATION THEORY</td>
</tr>
<tr>
<td>11-12</td>
<td>SUBJECT: URBAN PLANNING/ECOLOGY</td>
</tr>
<tr>
<td>11-13</td>
<td>SUBJECT: WAR GAMING</td>
</tr>
</tbody>
</table>

Comments

Where the subject of a publication is not clear-cut, multiple subjects have been marked. A publication describing a scenario, for example, would be
classified under the subject of the scenario, and perhaps also under 11-6, especially if it discussed methodological problems in scenario writing.

11-5 The more abstract, esoteric category, this also subsumes studies that suggest game-theoretic applications to other fields, such as organization theory, if highly sophisticated mathematics are used.

11-6 Emphasizes the mechanics of gaming: hardware, software, and facilities.

12-0 TYPE PUBLICATION: BIBLIOGRAPHY
12-1 TYPE PUBLICATION: BOOK
12-2 TYPE PUBLICATION: JOURNAL ARTICLE/CHAPTER IN A BOOK
12-3 TYPE PUBLICATION: POPULAR ARTICLE/MAGAZINE
12-4 TYPE PUBLICATION: TECHNICAL REPORT
12-5 TYPE PUBLICATION: UNPUBLISHED PAPER

Comments

12-4 Rand Papers, for example, are classified in this category.
12-5 Includes casual papers, memos, etc., that can be acquired only through private means.

13-0 YEAR PUBLISHED: 1945 OR BEFORE
13-1 YEAR PUBLISHED: 1946-1950
13-2 YEAR PUBLISHED: 1951-1955
13-3 YEAR PUBLISHED: 1956-1960
13-4 YEAR PUBLISHED: 1961-1965
13-6 YEAR PUBLISHED: 1971-
III. INDEX BY CATEGORY

The number at the end of each citation denotes the placement of the abstract for that publication in Sec. V.

ABSTRACTED: AUTHOR

K. C. Bowen, The Structure and Classification of Operational Research Games, Experimental, Gaming Methodology, 1971 D-09081
B. C. Cohen, 'Political Gaming in the Classroom,' Education, Political Science, 1962 D-16064
M. Cole and A. Schneider, 'Amount of Reward and Information in a Two-Person Game,' Experimental, Payoff, 1964 D-16067
S. Cole and J. L. Phillips, 'The Propensity to Attack Others as a Function of the Distribution of Resources in a Three Person Game,' Coalitions, Psychology, 1967 D-16068
J. S. Coleman, 'Academic Games and Learning,' Education, Teaching, 1968 D-16069
N. C. Dalkey, STROP: A Strategic Planning Model Operatinal War Gaming, Modal, 1966 D-19509
M. Deutsch, 'Trust and Suspicion,' Psychology, Experimental, 1958 D-20523
M. Deshler, 'Some Military Applications of the Theory of Games, Game Theory, War Gaming, Of Note, 1959 D-22423
S. Enke, 'Logistics Laboratory Problem I After Two (Simulated) Years Logistics,' Modal, 1957 D-24802
A. G. Feltel, 'Operational Gaming in Planning Education,' Describes CLUG, Modal, 1966 D-26917
C. L. Fry, 'A Developmental Examination of Performance in a Tacit Coordination Game Situation,' Experimental, Modal, 1967 D-28897
W. A. Gambon, 'A Theory of Coalition Formation,' Sociology/Organization Theory, Modal, 1961 D-29503
M. A. Geisler, W. W. Haythorn and W. A. Steger, Simulation and the Logistics Systems Laboratory, Training, Gaming Technology, Of Note, 1962 D-30435
H. H. Kelley and M. M. Shapiro, 'An Experiment on Conformity to Group Norms Where Conformity is Detrimental to Group Achievement,' Experiments in Psycholgy, Not Evaluated, 1954 D-46153
H. H. Kelley, L. L. Beckman, and C. S. Fischer, 'Negotiating the Division of a Reward Under Incomplete Information,' Experimental Social Psychology, Not Evaluated, 1967 D-46154
G. Pieters and S. Stryker, 'Bargaining Behavior and Orientations in Coalition Formation,' Experimental, Organization Theory, Modal, 1965 D-68771
M. B. Schaffer, 'Lanchester Models of Guerrilla Engagements Game Theory, Modal, 1967 D-75872
K. D. Shee and E. A. Cohen, Jr., 'Extension of Min-Max Theory to the Seek Investment Problem Arising in Strategic Systems Selection Decisions, Operational, Game Theory, War Gaming, Modal, 1971 D-77918
F. J. Stech and C. G. McIntee, 'Cooperative and Competitive Price Bidding in a Duopoly Game,' Experimental, Modal, 1971 D-82033
G. H. Symonds, 'A Study of Consumer Behavior by Use of Competitive Business Games,' Experimental, Modal, 1968 D-84462
B. J. Vossen and G. Corona, Missiles: A Game of Missile Logistics, Operational, War Gaming, Modal, 1959 D-90311
R. B. Wilson, 'Competitive Bidding With Disparate Information,' Game Theory, Of Note, 1969 D-93432

ABSTRACTED: NO

A. C. Haggard and J. Moore, 'A Time-Sharing Methodology for Constructing Social Simulations Gaming Technology, Modal, 1970 D-39469
B. Lieberman, 'Trust: A Notion of Trust in Three-Person Games and International Affairs,' Experimental, Social Psychology, Modal, 1964 D-51745

R. Werner and J. T. Werner, bibliography of Simulations: Social Systems and Education, Gaming Methodology, Of Note, 1969 D-37515

J. D. Williams, The Complete Strategic Game Theory, Not Evaluated. 1966 D-93434

J. Zil et al., Four Simulations from the Creative Studies Inc.: Contract Negotiations, Managing the Worker, The Personnel Department, and Reorganization Business, Not Evaluated, 1970 D-96961

U.S. Naval Institute, Navy Unmanned Electronic War 'Game,' Not Evaluated, 1959 D-97509

ABSTRACTED: REVIEWED ✴

C. C. Ait, Serious Games, Education, Limited Use, Reviewed 1970 D-00082

R. H. Adams and J. L. Jenkins, 'Simulation of Air Operations with the Air-Battle Model,' War Gaming, Model, Reviewed, 1960 D-03561

R. F. Barton, A Primer on Simulation and Gaming Methodology, Of Note, 1970 D-40075

E. Berne, Games People Play Social Psychology, Model, Reviewed, 1964 D-05801

R. C. Bell, Board and Table Games From Many Civilizations, Education, Limited Use, Reviewed, 1960 D-05803

A. Blaquiere, F. Gerard and G. Urban Planning, Bad, Reviewed. 1969 R-58002

T. A. Cowan, Games of Strategy: Theory and Applications, Games Ancient and Oriental and How to Play Them, POM, Methodology, Urban Planning, Model, Reviewed. 1363 to date D-97515

M. Davis, Game Theory: A Nontechnical Introduction Game Theory, Of Note, Reviewed, 1970 D-19504

E. Falkner, Games Ancient and Oriental and How to Play Them Of Note, Reviewed, 1961 D-26501

R. Fuller, Buckminster Fuller Presentations to Congress: The World Game, Sociology, Bad, Reviewed 1967 D-29341

H. Guettzow, 'Simulation in the Consolidation and Utilization of Knowledge About International Relations,' POM, Reviewed, 1969 D-31076

H. Guettzow, et al., Simulation in International Relations, POM, Political Science, Organizations, Reviewed, Model, 1963 D-35078

H. Hesse, 'Modern World History: Philosophy of Gaming, Excellent, Reviewed, 1969 D-37785

W. R. Liverpool, The American Kriegsspiel War Gaming, Excellent, Reviewed, 1898 edition D-51743

R. D. Luce and H. Raiffa, Games and Decisions: Introduction and Critical Survey Game Theory, Excellent, Reviewed, 1957 D-53231

H. J. R. Murray, A History of Board Games Other Than Chess, Entertainment, Excellent, Reviewed, 1952 D-60051

J. Najat, Pay, Drama, and Imagination in Childhood, Experimental, Social Psychology, Excellent, Reviewed, 1951 D-67431

E. S. Quade, Analysis for Military Decisions Business/ OR, POM, Gaming Methodology, Of Note, Reviewed, 1954 D-69041

F. Schuh, The Master Book of Mathematical Recreations, Game Theory, Excellent, Reviewed, 1943 D-75873

M. G. Werner, War Gaming Methodology, War Gaming, Excellent, Reviewed, 1959 D-91613

R. L. Wing et al., The Production and Evaluation of Three Computer-Based Economics Games for the Sixth Grade Education, Of Note, Reviewed, 1967 D-93431

Industrial C. A. and the Armed Forces, Political Simulations, POM, Model, Reviewed, 1969 D-97502

Directory of Organizations and Activities Engaged or Interested in War Gaming, United States Army Strategy and Tactics Analysis Group, War Gaming, Model, Reviewed, 1963 D-97503

ABSTRACTED: YES

C. C. Ait, Survey of the State of the Art: Social, Political, and Economic Models, and Simulations, Gaming Technology, Model, 1965 D-00081

C. C. Ait, War Gaming,' Limited Use. 1964 D-00083

R. Axelrod, A Voting Game Political Science, Of Note, 1966 D-03841

K. Back, 'The Game and the Myth as Two Languages of Social Science,' Philosophical-Speculative, Of Note, 1963 D-04003

M. H. Banks, A. J. R. Groom, and A. N. Oppenheim, 'Gaming and Simulation in International Relations,' POM, Limited Use, 1968 D-04004

C. W. Bastable, 'Business Games, Models, and Accounting,' Training, Theory Development, Model, 1960 D-04006

O. Benson, 'Simulation of International Relations and Diplomacy,' POM, Limited Use, 1965 D-05804

A. Binder, 'Learning and Extinction of Leadership Preferences in Small Groups,' Game Theory, Political Science, Model, 1966 D-07906

States Army Strategy and Tactics Analysis Group, War Gaming, Modal, Reviewed, 1963 D-97503

Manual War Gaming United States Naval War College, How To, Training, Modal, 1969 D-97504

The General POM, Of Note, 1963 to date D-97505

5 Years of Fun, The Story of Parker's, Inc., Entertainment, Modal, 1958 D-97506

Recommended, item of Toy Classification, Not Evaluated, 1965 D-97507

Science Information Exchange, Notices of Research Projects in Gaming, Game Theory, Miscellaneous Subjects, Modal, 1971 D-97508

First Tooling for Exercise for Logistics Systems Laboratory, Operational, Gaming Methodology, Modal, 1957 D-97511

The War Game and How It Is Played, Moby: Warfares for the Schooling of Army Officers, Teaching, War Gaming, Historical Necessity, Modal, 1960 D-97512

Spartan International The Magazine of Simulation Games, Entertainment, Gaming Methodology, War Gaming, Modal, 1971 D-97514

Children's Games and Sports, Sociology, Entertainment, Modal, 1969 D-97516

U.S. Department of State, Game Theory and its Application to the Social Sciences, Business, OR, POM, Modal, 1964 D-97518

U. C. Davis, A Model of Society, Operational, Urban Planning, Modal, 1969 D-97520

ARTICLE TYPE: FIELI TOPIC, RELEVANT

E. Berne, Games People Play, Social Psychology, Modal, Reviewed, 1964 D-05801

S. W. Becker and N. Balloch, Organization Structure and Complex Problem Solving, Exponent, business, Of Note, 1969 D-05806

A. Blaquiere, F. Gerard and G. Letman, Quantitative and Qualitative Games, Game Theory, Reviewed, Of Note, 1969 D-08385

D. Black, Lewis Carroll and the Theory of Games, Voting, Representation, Modal, 1969 D-08388

R. P. Browning, Computer Programs as Theories of Political Processes, Political Science, Theory Development, Of Note, 1962 D-09998

R. Cainko, Of Man, Play, and Games Research, Sociology/Organization Theory, Excellent, 1965 D-12502

N. D. Cohen, An Attack Defense Game with Matrix Strategies Game Theory, Modal, 1966 D-16056

J. P. Crecine, Computer Simulation in Urban Research, Decision Making, Urban Planning, 1968 D-18323

H. A. CuPeed, An Israeli Scenario for a Laboratory Simulation, POM, Gaming Methodology, Of Note, 1968 D-20522

M. V. Dresher, A Sampling Inspection Problem in Arms Control Agreements, A Game Theoretical Analysis, Game Theory, Of Note, 1962 D-22421

M. Dresher, Some Military Applications of the Theory of Games, Game Theory, Of Note, 1959 D-22423

T. C. Drabek and J. E. Haas, "Realism in Laboratory Simulation: Myth or Method?" Experimental Sociology, Limited Use, 1967 D-22424

W. A. Garrison, 'A Theory of Coalition Formation,' Sociology/Organization Theory, Modal, 1961 D-29503

M. A. Gesler, "Rand's Role in Logistics Systems War Gaming, Limited Use, 1966 D-30432

F. Gould, 'Man Against His Environment: A Game Theoretic Framework,' Agricultural Economics, Geography, Of Note, 1963 D-32024

O. Griswold, 'Succession with an Ally,' Experimental, Sociology/Organization Theory, Modal, 1969 D-33620

H. Heise, 'Magister Ludi: Philosophy of Gaming, Excellent, Reviewed, 1969 D-37785

R. L. Helmbold, Decision in Battle: Breakpoint Hypotheses and Engagement Termination Data Operational, Gaming Technology, Excellent, 1971 D-37787

S. M. Johnson, A Search Game Game Theory, Of Note, 1964 D-43821

H. Kahn and I. Mann, Game Theory, Game Theory, Modal, 1957 D-45001

H. L. Kelley and M. M. Shapiro, "An Experiment on Conformity to Group Norms Where Conformity is Detrimental to Group Achievement," Experimental Psychology, Not Evaluated, 1954 D-46153

P. J. Kwiat, Computer Simulation Programming Languages: Perspective and Prospects, Research, Gaming Technology, Of Note, 1967 D-46882

I. K. Cohen and R. L. Van Horn. A Laboratory Exercise for Information Systems

J. S. L. Cohen. Illus. of Large Games, 'Fighting the Electoral College

L. I. Press. 'Analysis of Multivariate Data.' Gaming Technology, Method, 1969 D-68662

J. Roberts, B. Sutton-Smith, and A. Kendon, 'Strategy in Games and Folk Tales.' Sociology, Of Note, 1963 D-71784

L. S. Shapley. Notes on N-Person Games With Correlation Games. Game Theory, Excellent, 1965 D-75901

L. S. Shapley and M. Shubik, 'The Prize and the Myth as Two Languages of Social Science.' Social Psychology, Of Note, 1968 D-77903

L. S. Shapley, Values of Large Market Games: Status of the Problem. Game Theory, Of Note, 1964 D-77904

M. Shubik, 'Games of Status.' Theory Development, Sociology, Not Evaluated, 1971 D-77920

V. Spink, Improvisation for the Theater: Harlequin, Drama, Gaming Methodology, Of Note, 1963 D-81523

B. Sutton-Smith, J. M. Roberts, and R. M. Koredine, 'Game Involvement in Adults.' Sociology, Theory Development, Of Note, 1963 D-84001

R. Zimmerman and J. E. Werner, Bibliography of Simulations: Social Systems and Education. Gaming Methodology, Of Note, 1969 D-91614

R. B. Wilson, 'Competition Bidding With Disparate Information.' Game Theory, Of Note, 1969 D-93432

J. D. Williams, The Complete Strategist. Game Theory, Not Evaluated, 1966 D-93433

R. D. Wolman, Some Methods for Determining the Most Vital Link in a Railway Network. PDM, Of Note, 1963 D-94651

ARTICLE TYPE: DISCOURSE

C. C. Abt, Serious Games Education, Limited Use, Reviewed, 1970 D-00082

C. C. Abt, 'War Gaming,' Limited Use, 1964 D-00083

K. Back, 'The Game and the Myth as Two Languages of Social Science.' Philosophical-Speculative, Of Note, 1963 D-04003

M. H. Banks, A. J. R. Groom, and A. P. Oppenheim, 'Gaming and Simulation in International Relations.' PDM, Limited Use, 1968 D-04004

R. F. Barton, A Primer on Simulation and Gaming. Game Theoretic Methodology, Of Note, 1970 D-04005

C. W. Bastable, Business Games, Models, and Accounting.' Training. Theory Development, Method, 1960 D-04006

R. C. Bell, Board and Table Games From Many Civilizations. Entertainment, Gaming Technology, Of Note, 1965 D-05804

S. W. Becker and N. Kalo, 'Game Theory, Of Note, 1963 D-07907

Theoretical Perspectives 'nd Cases from Four Continents, Research, Business, Psychology, Political Science, Modal, 1970 - D-38882
O. Grusky, 'Succession with an Ally,' Experimental, Sociology/Organization Theory, Modal, 1969 - D-38883
H. Guetzkow, 'Simulation in the Consideration and Utilization of Knowledge About International Relations,' POM, Modal, Reviewed, 1969 - D-39467
H. Guetzkow et al., 'Simulation in International Relations,' POM, Political Science, Organizations, Reviewed, Modal, 1963 - D-39469
H. Hatry, F. Jackson, and P. Lever, TEMP0 Military Planning Game: Description and Discussion, War Gaming, Bad, 1962 - D-39473
D. P. Hayes, 'The Cornell Datalogger,' Experimental, Gaming Technology, Modal, 1969 - D-39475
O. Hefner, A Use of Simulation for the Study of Future Values Experimental Social Psychology, Modal, 1966 - D-39476
O. Helman, An Approach to the Study of a Developing Economy by Operational Gaming Economics, Modal, 1963 - D-39477
O. Helman, Political Analysis of the Future, Gaming Methodology, Modal, 1969 - D-39478
D. R. Hitchcock, A Note on Evaluating Operational Gaming, Gaming Methodology, Of Note, 1958 - D-39479
A. C. Hoggatt, Measuring the Coerciveness of Behavior in Quantity Variation Duopoly Games, Economics, Of Note, 1967 - D-39480
A. C. Hoggatt and J. Moore, A Time-Sharing Methodology for Constructing Social Simulations, Gaming Technology, Modal, 1970 - D-39483
A. C. Hoggatt, Response of Paid Student Subjects to Differential Behavior of Robots in Bilateral Duopoly Games, Psychology, Of Note, 1969 - D-39484
R. F. Hopkins, Game Theory and Generalization in Ethics, Philosophical Speculative, Sociology, Limited Use, 1965 - D-39487
E. Hunt, Conversational Computing Systems as Laboratory Instruments, Gaming Technology, Modal, 1969 - D-39488
J. Huminic, Home Leaders: A Study of the Play-Element in Culture Sociology, Gaming Methodology, Of Note, Reviewed, 1950 - D-39489
R. W. Husband, Cooperative Versus Solitary Problem Solution, Experimental, Gaming Theory, Of Note, 1940 - D-39491
R. Isaacs, Differential Games: A Mathematical Theory With Applications to Warfare and Pursuit, Control and Optimization Game Theory, War Gaming, Of Note, Reviewed, 1965 - D-39493
J. R. Jackson, Learning from Experience in Business Decision Games, Business, Modal, 1959 - D-39494
J. R. Jackson, UCLA Executive Game #2: A Preliminary Report, Teaching, Business, 1958 - D-39496
K. R. Wright, J. R. Jackson, and J. L. McKenney, UCLA Executive Game #2, Computing Instructions: Teaching, Business, Of Note, 1958 - D-39498
S. M. Johnson, A Search Game: Game Theory, Of Note, 1964 - D-39499
H. Kahn and I. Mann, Game Theory Game Theory, Modal, 1957 - D-39500
H. Kahn and I. Mann, Monte Carlo Gaming Methodology, Modal, 1957 - D-39501
H. Kahn and I. Mann, Techniques of Systems Analysis, POM, Of Note, 1957 - D-39502
H. Kahn and I. Mann, Ten Common Pitfalls, Gaming Methodology, Of Note, 1957 - D-39503
H. Kahn and I. Mann, War Gaming, Of Note, 1957 - D-39504
L. B. Kelley, Fighting a Logistics War in the Laboratory, Logistics, Modal, 1959 - D-39507
H. H. Kelley and M. M. Shapiro, "An experiment on Conformity to Group Norms Where Conformity is Detrimental to Group Achievement," Experimental Psychology, Not Evaluated, 1954 - D-39509
J. W. Kitchen, Optimal Attitude for Antimissile Detonations: A Game Theory Analysis, Game Theory, Of Note, 1952 - D-39511
P. J. Kiviat, Computer Simulation Programming Languages. Perspectives and Prognosis, Research, Gaming Technology, Of Note, 1967 - D-39512
W. Kahn, Game Theory and Models of Negotiation, Negotiation Theory, International Relations, Experimental, Of Note, 1962 - D-39515
D. Little and R. Feller, STAPOL, A Simulation of the Impact of Policy, Values, and Technological and Societal Developments upon the Quality of Life Political Science, Modal, 1970 - D-39518
B. Lieberman, I-Trust: A Notion of Trust in Three-Person Games and International Affairs, Experimental, Social Psychology, Modal, 1964 - D-39521
I. Mann and L. S. Shapley, Values of Large Games, VI: Evaluating the Electoral College, Game Theory, Of Note, 1964 - D-39523
G. R. McNicholas, An Objective Appraisal of War Gaming, POM, Of Note, 1970 - D-39524
J. E. Maloney, Modern War Gaming: State of the Art, War Gaming, Modal, 1960 - D-39526
W. V. McBee, Gaming as a Military Research Procedure, War Gaming, Of Note, 1963 - D-39527
W. H. McGrath, The Simulation Laboratory as a Developmental Tool Gaming, Methodology, Modal, 1958 - D-39530
G. Wol, Behavioral Processes in Different Minimal Social Situations, Social Psychology, Modul, 1970 D-94652
G. Wol, Interpersonal Social Psychology, Modul, 1970 D-94653

FUNDING SOURCE: USA
J.A. Bruner, W.N. Flournoy, 'A Technique for Evaluating the Structure of US Army Forces in an Area Declination Role Operational War Gaming, Modul, 1970 D-09999
F.Sayre, Map Maneuvers, War Gaming, Of Note, 1908 D-74501

Directory of Organizations and Activities Engaged or Interested in War Gaming United States Army Strategy and Tactics Analysis Group, War Gaming, Modul, Reviewed, 1963 D-97503

FUNDING SOURCE: USAF
J.R. Brunn, Narrative Description of an Analytic Theatre Air Ground Warfare System, War Gaming, Of Note, 1955 D-09096
R.W. Conway, 'Some Tactical Problems in Digital Simulation,' Experimental, Gaming Methodology, Modul, 1963 D-16073
N.C. Dalkey, Games and Simulations, Game Theory, Gaming Theory, Modul, 1964 D-19502
N.C. Dalkey, 'Solveable Nuclear War Models,' Game Theory, Of Note, 1965 D-19505
W.P. Davidson, 'A Public Opinion Game,' Social Psychology, Political Science, Modul, 1961 D-19506
R.H. Davis, 'Arms Control Simulation: The Search for an Acceptable Method,' Operational, POM, Modul, 1963 D-19507
N.C. Dalkey, STTOP, A Strategic Planning Model, Operational War Gaming, Modul, 1966 D-19509
M. Dreher, Some Military Applications of the Theory of Games Game Theory, War Gaming, Of Note, 1959 D-22423
T.E. Draake and J. E. Haas, 'Realism in Laboratory Simulation: Myth or Method?' Experimental Sociology, Limited Use, 1967 D-22244
S. Enke, Logistics Laboratory Problem After Two (Simulated) Years Logistics, Modul, 1957 D-24802
M.M. Flood, 'Some Experimental Games,' Bargaining, Game Theory, Of Note, 1958 D-28051
D.R. Fulkerson and S.M. Johnson, 'A Tactical Air Game,' War Gaming, Game Theory, Of Note, 1957 D-29343
M.A. Geisel and A.S. Ginsburg, Man-Machine Simulation Experience Gaming Technology, Modul, 1965 D-30411
M.A. Geisel, A First Experiment in Logistics Simulation War Gaming, Modul, 1959 D-30433
M.A. Geisel, 'The Simulation of a Large-Scale Military Activity,' Business,Of/Logistics, Facilities, Of Note, 1959 D-30434
GAME FACILITY (EDUCATIONAL LABS, GENERAL)

GAME FACILITY (ESL, U. MICHIGAN)

GAME FACILITY (GAME LAB, SDC)
A. Binder, "Learning and Extinction of Leadership Preferences in Small Groups," Game Theory, Political Science, Modular, 1966 D: 07906
A. S. Cooperband, 'The Use of a Computer in Conducting Psychological Experiments,' Game Theory, Modular, 1966 D: 07906

GAME FACILITY (HBS, HARVARD)
J. L. McKenney, An Evaluation of a Decision Simulation as a Learning Environment, Experimental, Business, Modular, 1963 D: 54010

GAME FACILITY (ICAF, WASHINGTON)
Indulcional College of the Armed Forces, World Politics Simulation PDM, Modular, Reviewed, 1969 D: 97502

GAME FACILITY (ICD, MSU)

GAME FACILITY (IFF, MIDDLETOWN)

GAME FACILITY (ILGS, BIRMINGHAM, ENG.)

GAME FACILITY (LANGUAGE-DYNAMO)

GAME FACILITY (LANGUAGE-FORTRAN)

GAME FACILITY (LANGUAGE-GASP)

GAME FACILITY (LANGUAGE-GPS II)

GAME FACILITY (LANGUAGE-SIMSCRIPT)

GAME FACILITY (LANGUAGE-DYNAMO)

GAME FACILITY (LANGUAGE-GENERAL SURVEY)
P. J. Kwiat, Computer Simulation Programming Languages: Perspective and Progress, Research, Gaming Technology, Of Note, 1967 D: 46882

GAME FACILITY (LANGUAGE-GPS II)

GAME FACILITY (LANGUAGE-SIMSCRIPT)

GAME FACILITY (LANGUAGE-GPS II)

GAME FACILITY (LANGUAGE-SIMSCRIPT)

GAME FACILITY (LANGUAGE-SIMSCRIPT)

GAME FACILITY (LANGUAGE-SIMSCRIPT)
GAME FACILITY (POLIS, U.C. SANTA BARBARA)
R C. Noel, 'The Polis Network,' An Intercampus Consortium for Instructional Innovation in
International Relations, Teaching, POM, Game Methodology, 1971
D-63152
R C. Noel, 'The Polis Laboratory,' Teaching, POM, Game Technology, 1969
D-63153
F J Stieh and C G. McClintock, 'Cooperative and Competitive Price Bidding in a
Duopoly Game,' Experimental, Modal, 1971 D-82033
The State-of-the-Art in Urban Gaming Models: Urban Planning, Reviewed, Limited Use,
1971 D-97515

GAME FACILITY (RAC)
J A. Bruner, W N. Flannery, A Technique for Evaluating the Structure of US Army Forces
in an Area Dominance Role, Operational Game, 1970 D-99999

GAME FACILITY (SAGA, WASHINGTON)
C C. Act, 'War Gaming,' Limited Use, 1964 D-00083

GAME FACILITY (SOCIOLGY LAB, CORNELL)
D P. Hayes, 'The Cornell Datalogger,' Experimental, Gaming Technology, Modal, 1969
D-35206

GAME FACILITY (SRL, RAND)
R L. Chapman and M G. Weiner, COWHEE: A Film Story of Systems Research
Laboratory's Research Activities, War Gaming, Limited Use, 1955 D-14487
R L Chapman and J L. Kennedy, The Background and Implications of the Systems
Research Laboratory's Studies Social Psychology, Modal, 1955 D-14488
H Guetzkow, ed, Simulation in Social Science: Readings Business/OR, POM, Political
D-35077
J G. March, 'Some Recent Substantive and Methodological Developments in the Theory
of Organizational Decision-Making,' Business/OR/Logistics, Modal, 1962
D-54009

GAME FACILITY (TWR, JAPAN)
R D. Specht, 'War Games,' Operational POM, Modal, 1958 D-81521

GAME FACILITY (WBSI, LA JOILLA)
The State-of-the-Art in Urban Gaming Models: Urban Planning, Reviewed, Limited Use,
1971 D-97515

GAME FACILITY (WORLD GAME, SIU)
B Fuller, Buckminster Fuller Presentations to Congress: The World Game, Sociology, Bad,
Reviewed 1970 D-29341
T B. Turner, 'World Game Pattern Recognition System for Resource Utilization Planning,'
Urban Planning, Sociology, Bad 1970 D-80081

GAME NAME (A BUSINESS GAME FOR TEACHING AND RESEARCH)
P. Fedor, and G. Wort, Data Analysis in a Business Game, Business/ OR, Modal, 1970
D-26916
R Kitz, and G. Wott, A Computer Program for an Oligopoly Business Game,
Experimental, Economics, Of Note, 1970 D-45006

GAME NAME (AIR BATTLE MODEL)
R H. Adams and J L. Jenkins, 'Simulation of Air Operations with the Air Battle Model,'
War Gaming, Modal, Reviewed, 1960 D-00031

GAME NAME (AMA BUSINESS GAME)
J R. Jackson, 'Learning from Experience in Business Decision Games,' Business, Modal,
1959 D-42501

GAME NAME (AMERICAN KRIEGSSPIEL)
W R. Livermore, 'The American Kriegsspiel War Gaming, Excellent, Reviewed, 1898
Edition D-51743
E A. Raymond and H W. Baer, Jr, 'A History of War Games,' Survey, Of Note, 1938
D-69507
R D. Specht, 'War Games,' Operational POM, Modal, 1958 D-81521

GAME NAME (APEX-AIR POLLUTION EXERCISE)
A E. Cochran, ME 1RO APEX: A General Description, Teaching, Urban Planning, Modal,
1969 D-16072
M Nagelberg, D L Little, Selected Urban Simulations & Games Urban Planning,
Summary of Urban Games and Characteristics, Modal, 1970 D-61501

The State-of-the-Art in Urban Gaming Models: Urban Planning, Reviewed, Limited Use,
1971 D-97515

GAME NAME (A SAMPLE WAR GAME)
Manual War Gaming, United States Naval War College, 'How to,' Training, Modal, 1959
D-97504

GAME NAME (A TACTICAL AIR GAME)
D R Fuikerson and S M. Johnson, 'A Tactical Air Game,' War Gaming, Game Theory, Of
Note, 1957 D-29343

GAME NAME (A VIETNAM PEACE GAME)
J Laucht, 'A Vietnam Peace Game: Computer-Assisted Simulation of Complex Situations
in International Relations,' POM, Teaching, Advocacy, 1967 D-49001

GAME NAME (A VOTING GAME)
R Axelrod, 'A Voting Game Political Science, Of Note, 1966 D-03841

GAME NAME (BASELOGS)
L. Gann, R. A. Levine, and W H. McAllothin, BaseLog Base Logistics Management
Game Operational, War Gaming, Modal, 1958 D-29501

GAME NAME (BOARD GAMES)
S. A. Boorman, 'The Protracted Game,' Board Games, Of Note, 1969 D-00078
Cho-Yo, Japanese Chess: The Science and Art of War or Struggle, Philosophically Treated,
Philosophical, PDM, Of Note, Reviewed, 1905 D-14490
E. Falkner, Games Ancient and Oriental and How to Play Them Of Note, Reviewed,
1961 D-26501
H J. R. Murray, 'A History of Board Games Other Than Chess Entertainment, Excellent,
Reviewed, 1952 D-60051
A. Smith, 'The Game of Go Entertainment, Of Note, 1956 D-80281

GAME NAME (BRIDGE)
C. N. Nappes, 'Declarer: A Learning Bridge-Playing Program Which Generalizes and
Infer,' Artificial Intelligence, Of Note, 1971 D-61502
F. Schuh, 'The Master Book of Mathematical Recreations,' Game Theory, Excellent,
Reviewed, 1943 D-75873

GAME NAME (BUILD)
The State-of-the-Art in Urban Gaming Models: Urban Planning, Reviewed, Limited Use,
1971 D-97515

GAME NAME (BUSINESS GAMES, GENERAL)
C. R. Anderson, 'An Experiment on Behavioral Learning in Consumer Credit Game,'
Business, Education, Of Note, 1970 D-20524
C. W. Bastafl, 'Business Games, Models, and Accounting,' Training, Theory
Development, Modal, 1960 D-00060
J D. Stanley, 'Management Games Education or Entertainment?,' Business, Advocacy,
Bad, 1962 D-82032

GAME NAME (CAREER GAME)
C. Cherryholmes, 'Some Current Research on Effectiveness of Educational Simulations:
Implications for Alternative Strategies,' Experimental, Political Science, Of Note,
1966 D-14491

GAME NAME (CARNEGIE TECH MANAGEMENT GAME)
S. D. Deep, B M. Bass, and J A. Vaughan, 'Some Effects on Business Gaming of
Previous Quasi-T-Group Affiliations,' Business, Social Psychology, Training, Of Note,
1967 D-20524
H. Guetzkow, ed, Simulation in Social Science: Readings Business/OR, POM, Political
D-35077
J R. Jackson, 'Learning from Experience in Business Decision Games,' Business, Modal,
1959 D-42501
J G March, 'Some Recent Substantive and Methodological Developments in the Theory
of Organizational Decision-Making,' Business/OR/Logistics, Modal, 1962
D-54009

GAME NAME (CATCH THE GIANT)
F Schuh, The Master Book of Mathematical Recreations, Game Theory, Excellent,
Reviewed, 1943 D-75873

GAME NAME (CATS--CHICAGO AREA TRANSPORTATION STUDY)
M Nagelberg, D L Little, Selected Urban Simulations & Games Urban Planning,
Summary of Urban Games and Characteristics, Modal, 1970 D-61501
GAME NAME (CENTRAL FRONT)
Gaming Experiments. POM, Excellent, 1964 D-03661

GAME NAME (CHATURANGA)
E. A. Raymond and H. W. Baer, Jr., 'A History of War Games,' Survey, Of Note, 1938
D-69507

GAME NAME (CHESS)
E. A. Raymond and H. W. Baer, Jr., 'A History of War Games,' Survey, Of Note, 1938
D-69507

GAME NAME (CHILDREN'S GAMES, GENERAL)
V. Spolin, Improvisation for the Theater, Handbook, Drama, Gaming Methodology, Of
Note, 1963 D-81523

GAME NAME (CITY I)
M. Nagelberg, D. L. Little, Selected Urban Simulations & Games, Urban Planning,
Summary of Urban Games and Characteristics, Modal, 1970 D-61501

GAME NAME (CITY II)
M. Inbar and C. S. Stoll, 'Games: Man and Man-Machine,' Political Science, Sociology,
Urban Planning, Not Evaluated, 1971 D-41801

GAME NAME (CITY III)
M. Inbar and C. S. Stoll, 'Games: Man and Man-Machine,' Political Science, Sociology,
Urban Planning, Not Evaluated, 1971 D-41801

GAME NAME (CITY MODEL)
The State-of-the-Art in Urban Gaming Models, Urban Planning, Reviewed, Limited Use,
1971 D-97515

GAME NAME (CLUG)
A. G. Feldt, 'Operational Gaming in Planning Education,' Describes CLUG, Modal, 1966
D-26917
M. Inbar and C. S. Stoll, 'Games: Man and Man-Machine,' Political Science, Sociology,
Urban Planning, Not Evaluated, 1971 D-41801

GAME NAME (CLUG-CORNELL LAND USE GAME)
C. S. Greenblatt, 'Simulations, Games, and the Sociologist,' Sociology, Limited Use, 1971
D-33617
M. Nagelberg, D. L. Little, Selected Urban Simulations & Games, Urban Planning,
Summary of Urban Games and Characteristics, Modal, 1970 D-61501
H. Schen, Urban Systems Gaming-Development in Germany, Teaching, Urban Planning,
Of Note, 1971 D-75874
The State-of-the-Art in Urban Gaming Models, Urban Planning, Reviewed, Limited Use,
1971 D-97515

GAME NAME (CODE 50)
Game,' Operational War Gaming, Modal, 1967 D-07909

GAME NAME (CONEX I, II, III, AND IV)
L. Bloomfield, Anticipating Conflict-Control Policies, The 'Conex' Games as a Planning
Tool, Teaching, POM, Modal, 1970 D-08389

GAME NAME (CRISIS GAMES)
H. Averch and M. M. Levin, Diplomacy in the Political-Military Conduct of Escalating
Crises, POM, Of Note, 1965 D-03661
M. H. Banks, A. J. R. Groom, and A. N. Oppenheimer, 'Game and Simulation in
International Relations,' POM, Limited Use, 1968 D-04004
L. P. Bloomfield and N. J. Paddenford, 'Three Experiments in Political Gaming,' POM, Of
Note, 1959 D-08382
S. F. Giffen, The Cross Game Simulating International Conflict, POM, Game Methodology,
Limited Use, Reviewed, 1965 D-31121
R. E. Quandt, 'On the Use of Game Models in Theories of International Relations,' POM,
Game Theory, Limited Use, 1961 D-69043

GAME NAME (DELPHI)
O. Helmer, A Use of Simulation for the Study of Future Values, Experimental Social
Psychology, Modal, 1966 D-37782
O. Helmer, Political Analysis of the Future, Gaming Methodology, Modal, 1969
D-37784

GAME NAME (DEMOCRACY)
M. Inbar and C. S. Stoll, 'Games: Man and Man-Machine,' Political Science, Sociology,
Urban Planning, Not Evaluated, 1971 D-41801

GAME NAME (DISASTER GAME)
C. Cherryholmes, 'Some Current Research on Effectiveness of Educational Simulations:
Implications for Alternative Strategies,' Experimental, Political Science, Of Note, 1966
D-14491
M. Inbar and C. S. Stoll, 'Games: Man and Man-Machine,' Political Science, Sociology,
Urban Planning, Not Evaluated, 1971 D-41801

GAME NAME (DOMINOES)
F. Schuh, The Master Book of Mathematical Recreations, Gaming Theory, Excellent,
Reviewed, 1943 D-75873

GAME NAME (DUOPOLY)
F. J. Stech and C. G. McClintock, 'Competitive and Competitive Price Bidding in a
Duopoly Game,' Experimental, Modal, 1971 D-82033

GAME NAME (ELECTION GAME)
C. Cherryholmes, 'Some Current Research on Effectiveness of Educational Simulations:
Implications for Alternative Strategies,' Experimental, Political Science, Of Note, 1966
D-14491

GAME NAME (EMPIRIC)
M. Nagelberg, D. L. Little, Selected Urban Simulations & Games, Urban Planning,
Summary of Urban Games and Characteristics, Modal, 1970 D-61501

GAME NAME (EXPERIMENTAL OLIGOPOLY BUSINESS GAME)
M. Shubik, G. Wolf, and H. B. Eisenberg, An Experimental Oligopoly Business Game,
Psychology, Economics, Not Evaluated, 1970 D-77914
M. Shubik, An Experimental Oligopoly Business Game: Part II, Some Theory,
Mathematical Structure and Parameters, Economics, Not Evaluated, 1970 D-77915

GAME NAME (FAMILY PLANNING GAME)
Family Planning Policy Game, Sociology, Urban Planning, Of Note, 1971 D-58914

GAME NAME (FAST-VAL)
R. L. Heimbach, Decision in Battle: Breakpoint Hypotheses and Engagement Termination
Data Operational, Gaming Technology, Excellent, 1971 D-37787
D-51741

GAME NAME (FLOOD EXPERIMENTAL GAMES)
M. M. Flood, 'Game Learning Theory and Some Decision-Making Experiments,'
Decision-making, 1954 D-28053
M. M. Flood, A Preference Experiment, Sociology, Gaming Methodology, Modal, 1951
D-28054

GAME NAME (FREE ENTERPRISE)
M. Inbar and C. S. Stoll, 'Games: Man and Man-Machine,' Political Science, Sociology,
Urban Planning, Not Evaluated, 1971 D-41801
R. L. Wing, et al., The Production and Evaluation of Three Computer-Based Economics
Games for the Sixth-Grade Education, Of Note, Reviewed, 1967 D-93431

GAME NAME (GAME OF SCIENCE)
T. A. Cowan, The Game of Science, Excellent, Reviewed, 1965 D-16060

GAME NAME (Ghetto)
C. S. Greenblatt, 'Simulations, Games, and the Sociologist,' Sociology, Limited Use, 1971
D-33617
M. Inbar and C. S. Stoll, 'Games: Man and Man-Machine,' Political Science, Sociology,
Urban Planning, Not Evaluated, 1971 D-41801
The State-of-the-Art in Urban Gaming Models, Urban Planning, Reviewed, Limited Use,
1971 D-97515

GAME NAME (GO)
S. A. Boorman, The Protracted Game, POM, Of Note, 1969 D-09078
A. Smith, The Game of Go Entertainment, Of Note, 1956 D-80281
GAME NAME (METROPOLIS)
H. Schran, Urban Systems Gaming-Development in Germany, Teaching, Urban Planning, 1971 D-75874

GAME NAME (MISSLOGS)
B. J. Voosen, D. Corona, Misslogs: A Game of Missile Logistics, Operational, War Gaming, 1959 D-90312

GAME NAME (MODEL-BORDER-CONTROL)

GAME NAME (MODEL ECONOMIES)

GAME NAME (MODEL PLANET)

GAME NAME (NEXUS)
H. Schran, Urban Systems Gaming-Development in Germany, Teaching, Urban Planning, 1960 D-75874

GAME NAME (NORTH FLANK)

GAME NAME (NOTOPS)

GAME NAME (PATS-PITTSBURGH AREA TRANSPORTATION STUDY)

GAME NAME (PME)

GAME NAME (METRO)
H. Schran, Urban Systems Gaming-Development in Germany, Teaching, Urban Planning, 1971 D-75874
D-08387

GAME NAME (P.O.G.E.--PLANNING OPERATIONAL GAMING EXPERIMENT)

GAME NAME (POKER)
H. O. Yardley, The Education of a Poker Player, Business, Excellent, 1957 D-96001

GAME NAME (POLEX)

GAME NAME (POLIMETRIC)

GAME NAME (POLIS)

GAME NAME (PRISONER'S DILEMMA)
R. F. Hooke, 'Game Theory and Generalization in Ethics,' Philosophical Speculative, Sociology, Limited Use, 1965 D-39473
S. Oskamp and D. Perelman, Factors Affecting Cooperation in a Prisoner's Dilemma Game, Experimental, Modal, 1965 D-64711
A. Rapoport and A. M. Charnah, 'Prisoner's Dilemma, A Study of Conflict and Cooperation Game Theory, Social Psychology, Of Note, 1965 D-69505
V. Sermat, 'Is Game Behavior Related to Behavior in Other Interpersonal Situations?' Social Psychology, Bargaining, Modal, 1970 D-77281
M. Shubik, 'Game Theory, Behavior, and the Paradox of the Prisoner's Dilemma: Three Solutions,' Experimental, Game Theory, Not Evaluated, 1970 D-77919
G. Wolf, Behavioral Processes in Different Minimal Social Situations, Social Psychology, Modal, 1970 D-94652

GAME NAME (PUBLIC OPINION GAME)

GAME NAME (REFORM)

GAME NAME (REGION)

GAME NAME (ROUSE)
F. Schuh, 'The Master Book of Mathematical Recreations, Gaming Theory, Excellent, Reviewed, 1943 D-75873

GAME NAME (SCANCAP)
D. F. Blumberg, 'The City as a System: Operational Planning,' POM, Excellent, 1969 D-08384

GAME NAME (SEE)
D. R. Hitchcock, 'A Note on Evaluating Operational Gaming Methodology,' Of Note, 1958 D-38931

GAME NAME (SF CRP--A. D. LITTLE MODEL)

GAME NAME (SIERRA)

GAME NAME (SIERRA LEONE)

GAME NAME (SIMSOC)

GAME NAME (SIMULATED STOCKMARKET)

GAME NAME (SOLITARIE)

GAME NAME (SOLIC 1--SEX AND RISK)
P. Slovic, M. S. Weinstein, and S. Lichtenstein, 'Sex Differences in the Risks a Person Selects for Himself and the Risks He Selects for Someone Else,' Social Psychology, Modal, 1967 D-80081

GAME NAME (SOLIC 2)
P. Slovic, 'Differential Effects of Real Versus Hypothetical Payoffs on Choices Among Gambles,' Risk, Payoffs, Modal, 1969 D-80082

GAME NAME (SOLDIER'S GAME)
F. Schuh, 'The Master Book of Mathematical Recreations, Gaming Theory, Excellent, Reviewed, 1943 D-57587

GAME NAME (SOUTH FLANK)

GAME NAME (STAN O)
J. A. Bruner, W. N. Flouma, A Technique for Evaluating the Structure of US Army Forces in an Area Domination Role Operational War Gaming, Modal, 1970 D-09999

GAME NAME (STAPOL)
D. Little and R. Feller, STAPOL, A Simulation of the Impact of Policy, Values, and Technological and Societal Developments upon the Quality of Life, Political Science, Modal, 1970 D-51742

GAME NAME (STAR POWER)
C. S. Greenhut, 'Simulations, Games, and the Sociologist,' Sociology, Limited Use, 1971 D-33617

GAME NAME (STRAP)
N. C. Oakley, Families of Models, War Gaming, Limited Use, 1965 D-19501
N. C. Oakley, Games and Simulations, Gaming Theory, Game Theory, Modal, 1964 D-19502
GAME NAME (STRIP)	N. C. Dalkey, Families of Models: War Gaming, Limited Use, 1965	D-19501
GAME NAME (STROP)	N. C. Dalkey, Families of Models: War Gaming, Limited Use, 1965	D-19501
GAME NAME (TEMPER)	C. C. Alt, War Gaming, Limited Use, 1964	D-00083
GAME NAME (THE GLASS BEAD GAME)	H. Hess, Masterpiece of Gaming, Excellent, Reviewed, 1969	D-37785
GAME NAME (TRADE OFF)	H. Schran, Urban Systems Gaming-Development in Germany, Teaching, Urban Planning, Of Note, 1971	D-75874
GAME NAME (UCLA BUSINESS GAME #2)	J. R. Jackson, ‘Learning from Experience in Business Decision Games,’ Business, Modal, 1959	D-42501
GAME NAME (WOLF & SHEEP)	F. Schuh, The Master Book of Mathematical Recreations, Gaming Theory, Excellent, Reviewed, 1943	D-75873
GAME NAME (WORLD DYNAMICS)	J. W. Forrester, World Dynamics Urban Planning, Reviewed Bad, 1971	D-28351
GAME NAME (WORLD GAME)	B. Fuller, Buckminster Fuller Presentations to Congress: The World Game, Sociology, Bad, Reviewed, 1970	D-29341
GAME NAME (WORLD POLITICS SIMULATION)	Industrial College of the Armed Forces, World Polities Simulation POM, Model, Reviewed, 1969	D-97502
GAME NAME (XRAY)	G. H. Fisher, Cost Considerations in Systems Analysis POM, War Gaming, Modal, 1971	D-27401
MATHEMATICAL SOPHISTICATION: 1. NONE	C. C. Ait, Survey of the State of the Art: Social, Political, and Economic Models and Simulations Gaming Technology, Modal, 1965	D-00081
M. A. Geisler, *A First Experiment in Logistics System Simulation: War Gaming*, War, 1959 D-30433

A. C. Haggart, *Response of Pupil Students to Differential Behavior of Robots in Binarized Duplo Golf Games,* Psychology, Of Note, 1969 D-39470

M. Shubik, *Games of Status,* Theory Development, Sociology, Not Evaluated, 1971 D-77920

Mathematical Sophistication: 4. Middling

F. Schuh, *The Master Book of Mathematical Recreations*, Game Theory, Excellent, Reviewed, 1943 D-75873

Mathematical Sophistication: 5, High

S. M. Johnson, *A Search Game Game Theory, Of Note, 1964 D-43821

L. S. Shapley, *Notes on N-Person Games VIII: Core of Convex Games Game Theory,* Excellent, 1965 D-77901

R. B. Wilson, *Competitive Bidding With Disparate Information,* Game Theory, Game Theory, Of Note, 1969 D-93432

Purpose: Entertainment

R. C. Bell, *Board and Table Games From Many Civilizations, Entertainment,* Of Note, Reviewed, 1960 D-05803

E. Fallis, *Games Ancient and Oriental and How to Play Them Of Note,* Reviewed, 1951 D-26501

H. J. M. Murray, *A History of Board Games Other Than Chess Entertainment,* Excellent, Reviewed, 1952 D-60051

F. Schile, *The Master Book of Mathematical Recreations*, Game Testing, Excellent, 1943 D-75873

A. Smith, *The Game of Go Entertainment, Of Note,* Reviewed, 1956 D-80281

J. D. Williams, *The Complete Strategist, Game Theory, Not Evaluated,* 1946 D-93433

The General POM, Of Note, 1963 to date D-97505

75 Years of Fun, *The Story of Parker Brothers, Inc.* Entertainment, Modul, 1958 D-97506

Purpose: Experimental

A. Binder, *Learning and Extinction of Leadership Preferences in Small Groups*, Game Theory, Political Science, Modal, 1966 D-07906

M. Cole and A. Schneider, *Amount of Reward and Information in a Two-Person Game*. Experimental, Payoff, 1964 D-16067

W. J. Crow and R. C. Noel, *The Valid Use of Simulation Results*. Experimental, Political Science, Of Note, 1965 D-18325

R. W. Husband, *Cooperative Versus Solitary Problem Solution*. Experimental, Gaming Theory, Of Note, 1940 D-40974

H. H. Kelley and M. M. Shapiro, *An Experiment on Conformity to Group Norms Where Conformity is Detrimental to Group Achievement*. Experimental Psychology, Not Evaluated, 1954 D-46153

G. Modestki, *Simulations, 'Realities,' and International Relations Theory*. Model Building, Validation, Of Note, 1970 D-58913

R. P. Browning, ‘Computer Programs as Theories of Political Processes,’ Political Science, Theory Development, Of Note, 1962 D-09998
R. Callows, Of Man, Play, and Games, Research, Sociology/Operation Theory, Excellent, 1961 D-12502
T. A. Cowan, The Game of Science, Excellent, Reviewed, 1955 D-16060
W. D. Copen, ‘Simulation in the Study of Politics, Urban Planning, Political Science,’ 1968 D-16070
R. W. Conway, ‘Some Tactical Problems in Digital Simulation,’ Experimental, Gaming, Methodology, Model, 1963 D-16073
N. C. Dalkey, ‘Solvare Nuclear War Models,’ Game Theory, Of Note, 1965 D-19505
E. Falkinger, ‘Games Ancient and Oriental and How to Play Them,’ Of Note, Reviewed, 1961 D-26501
M. M. Flood, ‘Some Experimental Games, Bargaining, Game Theory, Of Note, 1958 D-28051
M. M. Flood, ‘A Preference Experiment Sociology, Gaming Methodology, Model, 1951 D-28054
J. W. Forrester, ‘Industrial Dynamics—After the First Decade,’ Operational, Gaming Methodology, Model, 1968 D-28352
P. Gould, ‘Man Against His Environment; A Game Theoretic Framework,’ Agricultural Economics, Geography, Of Note, 1963 D-32024
H. Guetzkow, ‘Simulation in the Consolidation and Utilization of Knowledge About International Relations,’ PDM, Model, Reviewed, 1969 D-35076
H. Guetzkow, et al., ‘Simulation in International Relations,’ PDM, Political Science, Organizations, Reviewed, Model, 1963 D-35078
C. F. Hermann, ‘Validation Problems in Games and Simulations With Special Reference to Models of International Politics,’ Gaming Methodology, PDM, Limited Use, 1967 D-37788
J. Huizinga, Homo Ludens: A Study of the Play-Element in Culture Sociology, Gaming Methodology, Of Note, Reviewed, 1950 D-40972
P. J. Kiviat, ‘Computer Simulation Programming Languages: Perspective and Progression,’ Research, Gaming Technology, Of Note, 1967 D-46882
R. D. Luce and H. Raiffa, Games and Decisions: Introduction and Critical Survey, Game Theory, Excellent, Reviewed, 1957 D-53321
I. Mann and L. S. Shapley, Values of Large Games, VI: Evaluating the Electoral College: Exactly, Political Science, Of Note, 1962 D-54001
John Mayberry, ‘Principles for Assessment of Simulation Model Validity,’ Operational, Gaming Methodology, Model, 1971 D-54015
G. Modesto, ‘Simulations, Re-Runs, and International Relations Theory,’ Model Building, Validation, Of Note, 1970 D-58913
H. J. R. Murray, ‘A History of Board Games Other Than Chess Entertainment, Excellent, Reviewed, 1952 D-60501
R. C. Noel, ‘The Poli’s Laboratory,’ Teaching, PDM, Gaming Technology, Model, 1969 D-63153
J. Piaget, Play, Dreams, and Imagination in Childhood Experimental, Social Psychology, Excellent, Reviewed, 1951 D-67431
R. E. Quandt, ‘On the Use of Game Models in Theories of International Relations,’ PDM, Game Theory, Limited Use, 1961 D-69043
1969: D-97502
Microsoft War Gaming United States Naval War College, 'How to,' Training, Modal, 1969
D-97504
U.S. Naval Institute, 'Navy Unwinds Electronic War Game,' Not Evaluated, 1959
D-97509
'The War Game and How It Is Played: Mimic Warfare for the Schooling of Army Officers,' Teaching, War Gaming, Historical Curiosity, Modal, 1914: D-97512

PURPOSE: TRAINING
C. W. Bastable, 'Business Games, Models, and Accounting,' Training, Theory Development, Modal, 1960: D-04006
K. J. Cohen and M. H. Miller, 'Management Games, Information Processing and Control,' Business, 1963: D-45066
D. R. Crichton and F. W. Broadbent, 'An Investigation to Determine Effects of Simulation Training on Student Teaching Behavior,' Education, Gaming Methodology, Of Note, 1969: D-18324
A. G. Feld, 'Operational Gaming in Planning Education,' Describes CLUG, Modal, 1966: D-26917
J. R. Jackson, 'Learning from Experience in Business Decision Games,' Business, Modal, 1959: D-42501
K. R. Wright, J. R. Jackson, and J. L. McKenzie, UCLA Executive Game #2, Computation Instructions, Teaching, Business, Of Note, 1958: D-42505
W. R. Livermore, The American Kriegspiel War Gaming, Excellent, Revised, 1898: Edition D-51743
J. Piaget, Play, Dreams, and Imitation in Childhood Experimental, Social Psychology, Excellent, Reviewed, 1951: D-67431
F. Sayre, Map Maneuvers War Gaming, Of Note, 1968: D-74501
V. Spolin, Improvisation for the Theater: Handbook, Drama, Gaming Methodology, Of Note, 1963: D-81523
I. Sayre, 'Games Used in Economic Management,' Advocacy, Modal, 1970: D-84461
B. J. Vossen and D. Corona, Missions: A Game of Missile Logistics, Operational, War Gaming, Modal, 1959: D-90311
M. G. Weiner, War Gaming Methodology: War Gaming, Excellent, Reviewed, 1959: D-91613
Industrial College of the Armed Forces, World Politics Simulation, POM, Modal, Reviewed, 1969: D-97502
Microsoft War Gaming United States Naval War College, 'How to,' Training, Modal, 1969: D-97504
'The War Game and How It Is Played: Mimic Warfare for the Schooling of Army Officers,' Teaching, War Gaming, Historical Curiosity, Modal, 1914: D-97512

QUALITATIVE ASSESSMENT: I. NOT EVALUATED
B. C. Cohen, 'Political Gaming in the Classroom,' Education, Political Science, 1962: D-16064
K. J. Cohen and M. H. Miller, Management Games, Information Processing and Control,' Business, 1963: D-16066
M. Cole and A. Schneider, 'Amount of Reward and Information in a Two-Person Game,' Experimental, Payoff, 1964: D-16067
J. S. Coleman, 'Academic Games and Learning,' Education, Teaching, 1968: D-16069
W. D. Coplen, Simulation in the Study of Politics Urban Planning, Political Science, 1968: D-16070
A. G. Feld, 'Operational Gaming in Planning Education,' Describes CLUG, Modal, 1966: D-26917
H. E. Kelley and M. M. Shapio, 'An Experiment on Conformity to Group Norms Where Conformity is Detrimental to Group Achievement,' Experimental Psychology, Not Evaluated, 1954: D-46153
H. E. Kelley, L. L. Beckman, and C. S. Fischer, 'Negotiating the Division of a Reward Under Incomplete Information,' Experimental Social Psychology, Not Evaluated, 1967: D-46154
L. S. Shapley and M. Shubik, Concepts and Theories of Pure Competition Game Theory, Not Evaluated, 1963: D-77903
M. Shubik, The Dollar Auction Game: A Paradox in Non-cooperative Behavior and Escalation of Bidding, Not Evaluated, 1970: D-77907
M. Shubik, Game Theory, Behavior, and the Paradox of the Prisoner's Dilemma: Three Solutions, Experimental, Game Theory, Not Evaluated, 1970: D-77919
M. Shubik, 'Games of Status,' Theory Development, Sociology, Not Evaluated, 1971: D-77920
J. D. Williams, The Complete Strategist: Game Theory, Not Evaluated, 1966: D-93433
J. J. Zil, et al., Four Simulations from Creative Studies Inc.: Contract Negotiations, Managing the Worker, The Personnel Department, and Reorganization Business, Not
D-97504
75 Years of Fun. The Story of Parker Brothers, Inc. Entertainment, Modal, 1958
D-97506
First Toll-Up Exercise for Logistic Systems Laboratory. Operational, Gaming Methodology, Modal, 1957 D-97511
'The War Game and How It Is Played: Microwarfare for the Schooling of Army Officers,' Teaching, War Gaming, Historical Curiosity, Modal, 1914 D-97512
Spartan International. The Magazine of Simulation Games Entertainment, Gaming Methodology, War Gaming, Modal, 1971 D-97514
Children's Games and Sports. Sociology, Entertainment, Modal, 1969 D-97516
U.S. Department of State, Game Theory and its Application to the Social Sciences, Business, TR, POM, Modal, 1964 D-97518
U. C. Davis. / Model of Society, Operational, Urban Planning, Modal, 1969 D-97520

QUALITATIVE ASSESSMENT: 5. LIMITED USE
C. C. Abt, Serious Games Education, Limited Use, Reviewed, 1970 D-00082
C. C. Abt, 'War Gaming,' Limited Use, 1964 D-00083
M. H. Banks, A. J. R. Groom, and A. N. Oppenheimer, 'Gaming and Simulation in International Relations,' POM, Limited Use, 1968 D-04004
O. Benson, 'Simulation of International Relations and Diplomacy,' POM, Limited Use, 1965 D-05804
W. J. Crow, 'Simulation: The Construction and Use of Functioning Models in International Relations,' POM, Limited Use, 1966 D-18321
N. C. Dalkey, Families of Models War Gaming, Limited Use, 1965 D-19501
E. T. Drakeb and J. E. Haas, 'Realism in Laboratory Simulation: Myth or Method?' Experimental Sociology, Limited Use, 1967 D-22424
F. D. Dufty, 'An Experimental Approach to the Theory of the Firm,' Economics, Game Theory, Limited Use, 1961 D-23002
M. A. Giesler, 'A Rand's Role in Logistics Systems War Gaming, Limited Use, 1966 D-30432
S. F. Giffen, 'The Cross Game: Simulating International Conflict,' POM, Game Methodology, Limited Use, Reviewed, 1965 D-31121
C. S. Greenblatt, 'Simulations, Games, and the Sociologist,' Sociology, Limited Use, 1971 D-33617
C. F. Hermann, 'Validation Problems in Games and Simulations With Special Reference to Models of International Politics,' Gaming Methodology, POM, Limited Use, 1967 D-37788
R. F. Hoekman, 'Game Theory and Generalization in Ethics,' Philosophical Speculative, Sociology, Limited Use, 1965 D-39473
J. P. Pryor, 'Simulation: Budgeting for a What If... Popularization, Limited Use, 1970 D-68621
R. E. Quandt, 'On the Use of Game Models in Theories of International Relations,' POM, Game Theory, Limited Use, 1961 D-69043
D. R. Reiss, 'Games, Business, Limited Use, 1961 D-70903
R. S. Lissak, Games Limited Use, 1965 D-75877
F. L. Simon, 'The Teaching Computer as a Gaining Laboratory,' Gaming Technology, Limited Use, 1971 D-88761
Games Can Teach the Boss His Business, Business, Limited Use, 1970 D-97501

QUALITATIVE ASSESSMENT: 5. BAD
D. F. Blumberg, The City as a System Urban Planning, Bad, Reviewed, 1969 D-08384
W. D. Coplin, 'Inter-Nation Simulation and Contemporary Theories of International Relations,' POM, Bad, 1966 D-16059
B. Fittler, Buckminster Fuller Presentations to Congress: The World Game Sociology, Bad, Reviewed, 1970 D-29341
H. S. Hays, F. Jackson, and P. Levy, TEMPO Military Planning Game: Description and Discussion, War Gaming, Bad, 1962 D-35504
J. D. Stanley, 'Management Games: Education or Entertainment?' Business, Advocacy, Bad, 1962 D-82032

RAND PUBLICATION: NA; NOT RAND
C. C. Abt, Survey of the State of the Art Social, Political, and Economic Models and Simulations Gaming Technology, Modal, 1965 D-00081
C. C. Abt, Serious Games Education, Limited Use, Reviewed, 1970 D-00082
C. C. Abt, 'War Gaming,' Limited Use, 1964 D-00083
R. H. Adams and J. L. Jenkins, 'Simulation of Air Operations with the Air-Battle Model,' War Gaming, Modal, Reviewed, 1960 D-0361
C. Anderson, 'An Experiment on Behavioral Learning in a Consumer Credit Game,' Business, Education, Of Note, 1970 D-02141
R. A. Axelrod, A Voting Game Political Science, Of Note, 1966 D-03841
K. Back, 'The Game and the Myth as Two Languages of Social Science,' Philosophical-Speculative, Of Note, 1963 D-04003
M. H. Banks, A. J. R. Groom, and A. N. Oppenheimer, 'Gaming in Simulation in International Relations,' POM, Limited Use, 1968 D-04004
R. F. Barton, A Primer on Simulation and Gaming, Gaming Methodology, Of Note, 1970 D-04005
C. W. Bastable, 'Business Games, Models, and Accounting,' Training, Theory Development, Modal, 1950 D-04006
E. Berne, Games People Play Social Psychology, Modal, Reviewed, 1964 D-05801
R. C. Bell, Board and Table Games From Many Civilizations Entertainment, Of Note, Reviewed, 1960 D-05803
O. Benson, 'Simulation of International Relations and Diplomacy,' POM, Limited Use, 1965 D-05804
A. Binder, 'Learning and Extinction of Leadership Preferences in Small Groups,' Game Theory, Political Science, Modal, 1966 D-07906
D. F. Blumberg, The City as a System Urban Planning, Bad, Reviewed, 1969 D-08384
Limited Use, Reviewed, 1965 D-31121
M. M. Gold and A. C. Steddy, 'The Effect of Role-Playing in a Problem-Solving Situation,' Science, 64, 1956 D-32022
R. F. Goodman, Inter-Community Simulation: An Experiment in Simulation-Gaming, Political Science, Model, 1968 D-32023
P. Gould, 'Man Against His Environment: A Game Theoretic Framework,' Agricultural Economics, Geography, Of Note, 1963 D-32024
C. S. Greenblatt, 'Simulations, Games, and the Sociologist,' Sociology, Limited Use, 1971 D-33617
O. Grossky, 'Succession with an Ally,' Experimental, Sociology/Organization Theory, Model, 1969 D-33620
H. Guetzkow, 'Simulation in the Consolidation and Utilization of Knowledge About International Relations,' POM, Model, Reviewed, 1969 D-35075
H. Guetzkow, et al., Simulation in International Relations, POM, Political Science, Organizations, Reviewed, Model, 1963 D-35078
J. C. Harsanyi, 'A General Theory of Rational Behavior in Game Situations,' Game Theory, Of Note, 1966 D-35503
H. Hettie, F. Jackson, and P. Letter, TEMPO Military Planning Game: Description and Discussion, War Gaming, Bad, 1962 D-35504
D. P. Hayes, 'The Cornell Datalogger,' Experimental, Gaming Technology, Model, 1969 D-35506
O. I. Ijssel, Political Analysis of the Future, Gaming Methodology, Model, 1969 D-37784
H. Hasse, Magister Ludorum Philosophy of Gaming, Excellent, Reviewed, 1969 D-37787
C. C. Herrmann, 'Validation Problems in Games and Simulations With Special Reference to Models of International Politics,' Gaming Methodology, POM, Limited Use, 1967 D-37788
D. R. Hitchcock, A Note on Evaluating Operational Gaming Methodology, Of Note, 1958 D-38931
A. C. Higgett, 'Measuring the Cooperativeness of Behavior in Quantity Variation Duopoly Games,' Economics, Of Note, 1967 D-39466
A. C. Higgett and J. Moore, A Time-Sharing Methodology for Constructing Social Simulations Gaming Technology, Model, 1970 D-39469
A. C. Higgett, 'Response of Paid Student Subjects to Differential Behavior of Robots in Bilateral Duopoly Games,' Psychology, Of Note, 1969 D-39470
R. F. Hopkins, 'Game Theory and Generalization in Ethics,' Philosophical Speculative, Sociology, Limited Use, 1965 D-39473
E. Hunt, 'Conversational Computing Systems as Laboratory Instruments,' Gaming Technology, Model, 1969 D-40971
J. Husznga, Homo Ludens: A Study of the Play-Element in Culture Sociology, Gaming Methodology, Of Note, Reviewed, 1950 D-40972
R. W. Husband, 'Cooperative Versus Solitary Problem Solution,' Experimental, Gaming Theory, Of Note, 1940 D-40974
J. R. Jackson, 'Learning from Experience in Business Decision Games,' Business, Model, 1959 D-42501
J. R. Jackson, UCLA Executive Game #2, A Preliminary Report, Teaching, Business, 1958 D-42503
K. R. Wright, J. A. Jackson, and J. I. Jackson, UCLA Executive Game #2, Correcting Instructions, Teaching, Business, Of Note, 1958 D-42505
L. B. Kelley, 'Fighting a Logistics War in the Laboratory,' Logistics, Model, 1959 D-46151
H. H. Kelley and M. M. Shapiro, 'An Experiment on Conformity to Group Norms Where Conformity is Detrimental to Group Achievement,' Experimental Psychology, Not Evaluated, 1954 D-46153
H. H. Kelley, L. L. Hechman, and L. S. Fischer, 'Negotiating the Division of a Reward Under Incomplete Information,' Experimental Social Psychology, Not Evaluated, 1967 D-46154
W. Kuhn, 'Game Theory and Models of Negotiation,' Negotiation Theory, International Relations, Experimentation, Of Note, 1962 D-48701
D. Little and R. Feller, STAPOL, A Simulation of the Impact of Policy, Values, and Technological and Societal Developments upon the Quality of Life, Political Science, Model, 1970 D-51742
W. R. Livermore, The American Triangula: War Gaming, Excellent, Reviewed, 1898 D-51743
B. Lieberman, 'Trust: A Notion of Trust in Three-Person Games and International Affairs,' Experimental, Social Psychology, Model, 1964 D-51745
G. M. Nicholas, 'An Objective Appraisal of Air War Gaming,' POM, Of Note, 1970 D-54002
F. J. McHugh, Fundamentals of War Gaming War Gaming, Of Note, Reviewed, 1966 D-54003
E. S. Maloney, 'Modern War Gaming: State of the Art,' War Gaming, Model, 1960 D-54004
V. V. McRae, 'A Survey of Marketing Games,' Business, Of Note, 1967 D-54005
J. L. McNamara, 'An Evaluation of a Decision Simulation as a Learning Environment,' Experimental, Business, Model, 1963 D-54010
John P. Mayberry, 'Principles for Assessment of Simulation Model Validity,' Operational,
G. H. Snyder, Deterrence and Power, POM, Bargaining Of Note, 1962 D-80882
P. A. Twedt, Instructional Simulation Systems General Bibliography, Of Note, 1969 D-83391

SUBJECT: BUSINESS/OR/LOGISTICS

C. W. Bastable, Business Games, Models, and Accounting, Training, Theory Development, Modal, 1960 D-04006
H. Borio, Computer Applications in the Behavioral Sciences, Teaching, Business, POM, Of Note, 1965 D-09079
K. J. Cohen and M. H. Miller, Management Games, Information Processing and Control, Business, 1963 D-16066
S. Eriks, Logistics Laboratory Problems After Two (Simulated) Years, Logistics, 1957 D-24802
P. Feder, and G. Wolf, Data Analysis in a Business Game Business/OR, Modal, 1970 D-26915
G. S. Fishman and P. J. Kiviat, The Analysis of Simulation Generated Time Series, Methodology, Excellent, 1967 D-27403
J. W. Forrester, Industrial Dynamics, After the First Decade, Operational, Gaming Methodology, Modal, 1968 D-28352
M. A. Gesler, A Note on the Role of Logistics Systems, War Gaming, Limited Use, 1966 D-30432
H. Harper, J. Jackson, and P. Lever, TEMPO Military Planning Game: Description and Discussion, War Gaming, Bad, 1962 D-35504
J. R. Jackson, Learning from Experience in Business Decision Games, Business, 1959 D-42501
J. R. Jackson, UCLA Executive Game #2: A Preliminary Report, Teaching, Business, 1958 D-42503
K. R. Wright, J. R. Jackson, and J. L. McKenney, UCLA Executive Game #2, Computer Instructions, Teaching, Business, Of Note, 1958 D-42505
L. B. Kelley, Fighting a Logistics War in the Laboratory, Logistics, Modal, 1959 D-46151
W. H. McElhinnin, The Simulation Laboratory as a Developmental Tool Gaming Methodology, Modal, 1958 D-54008
W. H. McElhinnin, G. C. Noonan, Jr., et al., The Simulated Aircraft and Its Failure Model in LP1 Logistics, Modal, 1958 D-54011
L. J. Pryor, Simulation Budgeting for a What If Institute Popularization, Limited Use, 1970 D-68621
E. S. Quade, Analysis for Military Decisions Business/OR, POM, Gaming Methodology, Of Note, Reviewed, 1964 D-69041
R. M. Rainer, Simulated Wars in LP1 Logistics, Operational, Modal, 1958 D-95003
R. L. Sisson, Games, Business, Limited Use, 1961 D-79063
J. D. Stanley, Management Games: Education or Entertainment? Business, Advocacy, 1964 D-83629
V. Spolin, Improvisation for the Theater, Handbook, Drama, Gaming Methodology, Of Note, 1963 D-81523
P. A. Twelker, Instructional Simulation Systems General Bibliography, Modal, 1969 D-83391
J. J. Sullivan, 'The Economics Laboratory at UCSB,' Teaching, Business, Gaming Methodology, 1970 D-84002
B. Suits, 'What is a Game?' Theory Development, Of Note, 1967 D-84003
C. J. Thomas and W. L. Deemer, Jr., The Role of Operational Gaming in Operations Research, Gaming Methodology, Excellent, 1957 D-85936
S. Umpleby, 'The Teaching Computer as a Gaming Laboratory,' Gaming Technology, Limited Use, 1971 D-88761
R. L. Van Horn, 'Validation of Simulation Results,' Gaming Methodology, Operational, Of Note, 1971 D-89501
M. G. Weiner, War Gaming Methodology, War Gaming, Excellent, Reviewed, 1959 D-91613
R. Werner and J. T. Werner, Bibliography of Simulations: Social Systems and Education, Gaming Methodology, Of Note, 1969 D-91614
M. G. Weiner, 'Gaming,' War Gaming, Methodology, Excellent, 1968 D-91615
Manual War Gaming United States Naval War College, How to, Training, Modal, 1969 D-97504
The General POM, Of Note, 1963 to date D-97505
Science Information Exchange, Notices of Research Projects in Gaming, Game Theory, Miscellaneous Subjects, Modal, 1971 D-97508
U.S. Naval Institute, 'Navy Unmiles Electronic War Game,' Not Evaluated, 1959 D-97509
First Top-Up Exercise for Logistics Systems Laboratory, Operational, Gaming Methodology, 1957 D-97511
Spartan International: The Magazine of Simulation Games, Entertainment, Gaming Technology, War Gaming, Modal, 1971 D-97514

SUBJECT: OTHER
R. Buck, 'The Game and the Myth as Two Languages of Social Science,' Philosophical Speculative, Of Note, 1963 D-04003
R. C. Bell, Board and Table Games From Many Civilizations, Entertainment, Of Note, Reviewed, 1960 D-05803
H. Borst, Computer Applications in the Behavioral Sciences, Teaching, Business, POM, Of Note, 1965 D-09079
Chu-To, Japanese Chess: The Science and Art of War and Strategy, Philosophically Treated, Philosophical, POM, Of Note, Reviewed, 1955 D-14490
T. A. Cowan, 'The Game of Science Excellent, Reviewed, 1965 D-16060
E. Falkner, Games Ancient and Oriental and How to Play Them Of Note, Reviewed, 1961 D-26501
B. Fuller, Buckingham Fuller Presentations to Congress: The World Game, Sociology, Bad, Reviewed, 1970 D-29341
P. Gould, 'Man Against His Environment: A Game Theoretic Framework,' Agricultural Economics, Geography, Of Note, 1963 D-32024
H. Hesse, Magister Ludorum Philosophy of Gaming, Excellent, Reviewed, 1969 D-37785
H. J. R. Murray, A History of Board Games Other Than Chess, Entertainment, Excellent, Reviewed, 1952 D-60051
J. Roberts, B. Sutton-Smith, and A. Kendon, 'Strategy in Games and Folk Tales,' Sociology, Of Note, 1963 D-71784
A. Smith, 'The Game of Ga Entertainment, Of Note, 1956 D-80281
V. Spolin, Improvisation for the Theater, Handbook, Drama, Gaming Methodology, Of Note, 1963 D-81523
P. A. Twelker, Instructional Simulation Systems General Bibliography, Modal, 1969 D-83391
H. O. Yardley, The Education of a Poker Player, Business, Excellent, 1957 D-96001
75 Years of Fun, The Story of Parker Brothers, Inc, Entertainment, Modal, 1958 D-97506
Recommended System of Toy Classification Not Evaluated, 1965 D-97507
'Children's Games and Sports,' Sociology, Entertainment, Modal, 1969 D-97516

SUBJECT: POLITICAL-DIPLOMATIC-MILITARY
H. M. Banks, A. J. R. Groom, and A. N. Oppenheim, 'Gaming and Simulation in International Relations,' POM, Limited Use, 1968 D-04004
O. Benson, 'Simulation of International Relations and Diplomacy,' POM, Limited Use, 1965 D-05804
L. Bloomfield, Anticipating Conflict-Control Policies, The 'Conex' Games as a Planning Tool Teaching, POM, Modal, 1970 D-08389
S. A. Boorman, The Protracted Game: Anticipating Conflict-Contraction Poles. The 'Conex' Games as a Planning Tool Teaching, POM, Modal, 1961 D-09078
H. Borst, Computer Applications in the Behavioral Sciences, Teaching, Business, POM, Of Note, 1965 D-09079
Chu-To, Japanese Chess: The Science and Art of War and Strategy, Philosophically Treated, Philosophical, POM, Of Note, Reviewed, 1905 D-14490
W. D. Coplin, 'Inter-Nation Simulation and Contemporary Theories of International Relations,' POM, Bad, 1966 D-16059
B. C. Conen, 'Political Gaming in the Classroom,' Education, Political Science, 1962 D-16064
W. J. Crow, 'A Study of Strategic Doctrines Using the Inter-Nation Simulation,' POM, Of Note, 1965 D-16064
W. J. Crow, 'Simulation: The Construction and Use of Functioning Models in International Relations,' POM, Limited Use, 1966 D-18321
W. J. Crow, 'A Study of Strategic Doctrines Using the Inter-Nation Simulation,' POM, Modal, 1963 D-18322
W. J. Crow and R. C. Noel, The Valid Use of Simulation Results Experimental, Political Science, Modal, 1965 D-18325
H. Guetzkow, et al., Simulation in International Relations, PDM, Political Science, Organizations, Reviewed, Modal, 1963 D-35077
D. Heimer, Political Analysis of the Future Gaming Methodology, Modal, 1969 D-37784
R. F. Hopkins, 'Game Theory and Generalization in Ethics,' Philosophical Speculative, Sociology, Limited Use, 1965 D-39473
D. Little and R. Feller, STAPP, A Simulation of the Impact of Policy, Values, and Technological and Societal Developments upon the Quality of Life Political Science, Modal, 1970 D-51742
B. Lieberman, t-Trust: A Notion of Trust in Three-Person Games and International Affairs, Experimental, Social Psychology, Modal, 1964 D-51745
I. Mann and L. S. Shapley, Values of Large Games: IP Evaluating the Electoral College, Exactly Political Science, Of Note, 1962 D-54001
R. C. Noel, The Pols Laboratory, Teaching, PDM, Gaming Technology, Modal, 1969 D-63153
R. E. Quandt, 'On the Use of Game Models in Theory,' of International Relations, PDM, Game Theory, Limited Use, 1961 D-69043
T. W. Roberson, Game Theory and Politics: Recent Soviet Views Game Theory, Of Note, 1970 D-71782
P. A. Tadker, Instructional Simulation Systems General Bibliography, Modal, 1969 D-83991
R. Verbrugge, Intentional System and Foreign Policy Approaches: Implications for Crisis Modeling and Management, PDM, Gaming Methodology, Modal, 1971 D-84501
S. Verba, 'Simulation, Reality, and Theory in International Relations,' Political Science, Modal, 1964 D-90051
R. Werner and J. T. Werner, Bibliography of Simulations: Social Systems and Education, Gaming Methodology, Of Note, 1966 D-91612
SUBJECT: SOCIAL PSYCHOLOGY/Psychiatry
K. Back, 'The Game and the Mw': Two Languages of Social Science,' Philosophical Speculative, Of Note, 1963 D-04003
E. Berne, Games People Play, Social Psychology, Modal, Reviewed, 1964 D-05801
M. Cole and A. Schneider, 'Amount of Reward and Information in a Two-Person Game,' Experimental, Payoff, 1964 D-16067
S. G. Cole and J. L. Phillips, 'The Propensity to Attack Others as a Function of the Distribution of Resources in a Three Person Game,' Coalitions, Political Science, 1967 D-16068
D. Cronin, 'Experience as a Factor in Experimental Gaming Behavior,' Social Psychology, Of Note, 1970 D-16070
M. Deutsch, 'Trust and Suspiion,' Psychology, Experimental, 1958 D-20523
P. Feder and G. Wolf, Data Analysis in a Business Game Business/OR, Modal, 1970 D-26916
C. L. Fry, 'A Developmental Examination of Performance in a Tact Coordination Game Situation,' Experimental, Modal, 1967 D-28987
D. S. Fuji, 'Human Factors Engineering,' Experimental, Social Psychology, Modal, 1971 D-45324
P. S. Gallo and C. McCloot, 'Cooperative and Competitive Behavior in Mixed-Motive Games,' Research, Social Psychology, Modal, 1965 D-29502
O. Helmer, A Use of Simulation for the Study of Future Values, Experimental Social Psychology, Modal, 1966 D-37182
A. C. Hoggatt and J. Moore, A Time-Sharing Methodology for Constructing Social Simulations, Gaming Technology, Modal, 1970 D-39469
A. C. Hoggatt, 'Response of Paid Student Subjects to Differential Behavior of Robots in B-terminal Duopoly Games,' Psychology, Of Note, 1969 D-39470
E. Hunt, 'Conversational Computing Systems as Laboratory Instruments,' Gaming Technology, Modal, 1969 D-40501
R. W. Husband, 'Cooperative Versus Solitary Problem Solution,' Experimental, Gaming Theory, Of Note, 1940 D-40974
H. H. Kelley and M. M. Shapiro, 'An Experiment on Conformity to Group Norms Where Conformity is Determinant to Group Achievement,' Experimental Psychology, Not Evaluated, 1954 D-46153
H. H. Kelley and L. B. Beckman, and C. S. Fischer, 'Negotiating the Division of a Reward Under Incomplete Information,' Experimental Social Psychology, Not Evaluated, 1967 D-46154
B. Lieberman, t-Trust: A Notion of Trust in Three-Person Games and International Affairs, Experimental, Social Psychology, Modal, 1964 D-51745
T. H. Naylor, J. L. Balintfy, O. S. Burdick, A. S. Heron, and K. Chu, 'Self-Administered Instructions for the Temtimes Game,' Agile, Experimental, 1965 D-64711
J. Piaget, Play, Dreams, and Imitation in Childhood, Experimental, Social Psychology, Excellent, Reviewed, 1951 D-67431
L. I. Press, M. S. Rogers, and G. H. Shure, 'An Interactive Technique for the Analysis of Multivariate Data,' Gaming Theory, Modal, 1969 D-68628
G. Psathas and S. Stryker, Bargaining Behavior and Orientation in Coalition Formation, Experimental, Organization Theory, Modal, 1965 D-68771
A. Rapoport and A. M. Chammah, Prisoner's Dilemma, A Study of Conflict and Cooperation Game Theory, Social Psychology, Of Note, 1965 D-69506
J. R. Seaman, The Leven's Laboratory for Experimental Social Psychology, Research, Modal, 1969 D-71131
J. Roberts, R. S. Smith, and A. Kendra, Strategy in Games and Folk Tales.
Science Information Exchange, ‘Notices of Research Projects in Gaming,’ Game Theory, Miscellaneous Subjects, Modal, 1971 D-97508

SUBJECT: WAR GAMIN
C. C. All, ‘War Gaming,’ Limited Use, 1964 D-00083
M. A. Boorman, The Protracted Game, Of Note, 1969 D-99996
J. R. Brum, Narrative Description of an Analytic Theatre Air Ground Warfare System, War Gaming, Of Note, 1955 D-30433
J. A. Brum, W. N. Fourth, A Technique for Evaluating the Structure of US Army Forces in an Area Dominance Role, Operational War Gaming, Modal, 1970 D-99999
Cho-Yo, Japanese Chess: The Science and Art of War or Strategy, Philosophically Treated Philosophical, Of Note, Reviewed, 1905 D-14490
N. C. Dalkey, Families of Models, War Gaming, Limited Use, 1965 D-19501
N. C. Dalkey, Games and Simulations, Game Theory, Gaming Theory, Modal, 1964 D-19502
N. C. Dalkey, Central Nuclear War Games, War Gaming, Modal, 1965 D-19503
N. C. Dalkey, ‘Solvable Nuclear War Models,’ Game Theory, Of Note, 1965 D-19500
N. C. Dalkey, TRAP: A Strategic Planning Model Operational War Gaming, Modal, 1966 D-19509

H. A. DeWit, Operational-Military Scenarios, Gaming Methodology, Of Note, 1967 D-20521
M. Drescher, Games of Strategic Theory and Applications Two Person Zero Sum Games, Duels, Military Applications Of Note, Reviewed, 1961 D-24242
M. Drescher, Some Military Applications of the Theory of Games, Game Theory, Of Note, 1959 D-24243
M. A. Gesler and A. S. Gunsmith, Man-Machine Simulation Experience Gaming Technology, Modal, 1965 D-30431
M. A. Gesler, Rand's Role in Logistics Systems War Gaming, Limited Use, 1966 D-30432
M. A. Gesler, A First Experiment in Logistics System Simulation War Gaming, Limited Use, 1959 D-30433
H. Harney, F. Jackson, and P. Lever, TEMPO Military Planning Game: Description and Discussion, War Gaming, Bad, 1962 D-35504
R. L. Heimbold, Decision in Battle: Breakpoint Hypotheses and Engagement Formation Data Operational, Gaming Methodology, Excellent, 1971 D-37787
D. R. Hitchcock, A Note on Evaluating Operational Gaming, Gaming Methodology, Of Note, 1958 D-38931
S. M. Johnson, A Search Game Game Theory, Of Note, 1964 D-43821
H. Koh, and I. Mann, War Gaming, POM, Of Note, 1957 D-45005
L. B. Kelley, ‘ Fighting a Logistic Game in the Laboratory,’ Logistics, Modal, 1959 D-46151
Bibliography on Military Applications of Operations Research, War Gaming, Modul, 1969 D-54007
A. M. Mood, War Gaming as a Technique of Analysis, POM, Gaming Technology, Of Note, 1954 D-58911
J. Morschauer, 'How to Play War Games in Miniature, POM, Of Note, 1962 D-58912
E. W. Paxson, War Gaming Theory and Methodology, Excellent, 1962 D-65001
R. M. Rauner, Simulated Wars in L.P.J. Logistics, Operational, Modul, 1958 D-69503
E. A. Raymond and H. W. Baer, Jr., 'A History of War Games,' Survey, Of Note, 1938 D-69507
F. S. Sayre, Map Maneuvers War Gaming, Of Note, 1938 D-74501
M. B. Schaefer, Defender Models of Guerrilla Engagements, Game Theory, Modul, 1967 D-75872
C. P. Siska, L. A. Giamboni, and J. R. Lind, Analytic Formulation of a Theater Air Ground Warfare System War Gaming, Modul, 1954 D-79061
G. H. Snyder, Deterrence and Power,' POM, Bargaining, Of Note, 1960 D-80882
R. D. Specht, War Games,' Operational, POM, Modul, 1958 D-81521
R. Strauch, A Preliminary Treatment of Mine-Sunk Defense: Game Theoretic Analysis, Game Theory, Of Note, 1965 D-82031
P. A. Tweeker, Instructional Simulation Systems General Bibliography, Modul, 1969 D-83391
C. J. Thomas and W. L. Deemer, Jr., The Role of Operational Gaming in Operations Research,' Gaming Methodology, Excellent, 1957 D-85936
B. J. Voosen and C. O. Corona, Missions: A Game of Missile Logistics, Operational, War Gaming, Modul, 1959 D-90311
M. G. Werner, An Introduction to War Games War Gaming, Of Note, 1959 D-91612
M. G. Werner, War Gaming Methodology, War Gaming, Excellent, Rev. ed, 1959 D-91613
M. G. Werner, 'Gaming,' War Gaming, Methodology, Excellent, 1958 D-91615
J. D. Williams, The Complete Strategist Game Theory, Not Evaluated, 1966 D-93433
Directory of Organizations and Activities Engaged or Interested in War Gaming United States Army Strategy and Tactics Analysis Group, War Gaming, Modul, Reviewed, 1963 D-97503
Manual War Gaming United States Naval War College, How to, Training, Modul, 1969 D-97504
The General POM, Of Note, 1963 to date D-97505
U.S. Naval Institute, Navy Unveils Electronic War Game,' Not Evaluated, 1959 D-97509
'The War Game and How It Is Played: Mimic Warfare for the Schooling of Army Officers,' Teach, a, War Gaming, Historical Curiosity, Modul, 1914 D-97512
Spartan International: The Magazine of Simulation Games Entertainment, Gaming Methodology, War Gaming, Modul, 1971 D-97514
TYPE PUBLICATION: BIBLIOGRAPHY
P. A. Tweeker, Instructional Simulation Systems General Bibliography, Modul, 1969 D-83391
R. Werner and J. T. Werner, Bibliography of Simulations: Social Systems and Education, Gaming Methodology, Of Note, 1969 D-91614
Directory of Organizations and Activities Engaged or Interested in War Gaming United States Army Strategy and Tactics Analysis Group, War Gaming, Modul, Reviewed, 1963 D-97503
Science Information Exchange, Notices of Research Projects in Gaming, Game Theory, Miscellaneous Subjects, Modul, 1971 D-97508
TYPE PUBLICATION: BOOK
C. C. Abt, Survey of the State of the Art: Social, Political, and Economic Models and Simulations Gaming Technology, Modul, 1965 D-00081
C. C. Abt, Serious Games Limited Use, Reviewed, 1970 D-00082
R. F. Barton, A Primer on Simulation and Gaming Methodology, Of Note, 1970 D-04005
E. Berne, Games People Play, Social Psychology, Modul, Reviewed, 1964 D-05801
R. C. Bell, Board and Table Games From Many Civilizations, Entertainment, Of Note, Reviewed, 1960 D-05803
D. F. Blumberg, The City as a System Urban Planning, Bad, Reviewed, 1969 D-08384
A. Bliquiers, F. Gerard and G. Leitmann, Quantitative and Qualitative Games Game Theory, Reviewed, Of Note, 1969 D-08385
S. S. Boocock and E. O. Schild, Editors, Simulation Games in Learning, Education, Modul, Reviewed, 1968 D-09077
S. A. Boorman, The Protacted Game POM, Of Note, 1969 D-09078
H. Borko, Computer Applications in the Behavioral Sciences, Teaching, Business, POM, Of Note, 1965 D-09079
R. Caflios, Of Man, Play, and Games Research, Sociology/Organization Theory, Excellent, 1961 D-12502
Chu-Yo, Japanese Chess: The Science and Art of War or Struggle, Philosophically Treated, Philosophical, POM, Of Note, Reviewed, 1905 D-14490
W. D. Coplin, Simulation in the Study of Politics Urban Planning, Political Science, 1968 D-16070
M. D. Davis, Game Theory: A Nontechnical Introduction, Game Theory, Of Note, Reviewed, 1970 D-19504
M. Dresher, Games of Strategy: Theory and Applications of Zero Person Sum Games, Milatary Applications, Of Note, Reviewed, 1961 D-22422
E. Falkner, Games Ancient and Oriental and How to Play Them Of Note, Reviewed, 1961 D-26501
S. G. Cole and J. L. Phillips, 'The Personality to Attack Others as a Function of the Distribution of Resources in a Three-Person Game,' Coalitions, Psychology, 1967 D-16068
R. W. Conaway, 'Some Tactics Problems in Digital Simulation,' Experimental, Gaming Methodology, Model, 1963 D-16073
W. J. Crow, 'A Study of Strategic Doctrines Using the Inter-Nation Simulation,' POM, Model, 1963 D-18322
D. R. Cruickshank and W. F. Brodbeck, 'An Investigation to Determine Effects of Simulation Training on Student Teaching Behavior,' Education, Gaming Methodology, Of Note, 1969 D-18324
N. C. Dalkey, 'Solvable Nuclear War Models,' Game Theory, Of Note, 1965 D-19505
R. H. Davis, 'Arms Control Simulation: The Search for an Acceptable Method,' Operational, POM, Model, 1963 D-19507
M. Deutsch, 'Trust and Suspicion,' Psychology, Experimental, 1958 D-20523
T. E. Drabek and J. E. Haas, 'Realism in Laboratory Simulation: Myth or Method?' Experimental Sociology, Limited Use, 1967 D-22424
N. F. Dutt, 'An Experimental Approach to the Theory of the Firm,' Economics, Game Theory, Limited Use, 1961 D-23002
A. G. Feld, 'Operational Gaming in Planning Education,' Describes CLUG, Model, 1966 D-26917
G. H. Fishe, 'Cost Considerations in Systems Analysis,' POM, Game War, Model, 1971 D-27401
M. M. Flood, 'Some Experimental Games,' Bargaining, Game Theory, Of Note, 1958 D-28051
A. Flood, 'Simulation Studies of International Conflict,' POM, Of Note, 1970 D-28052
J. W. Forster, 'Industrial Dynamics --After the First Decade,' Operational, Gaming Methodology, Model, 1968 D-28352
J. W. Forrester, 'Industrial Dynamics --A Response to Ansoff and Slevin,' Operational, Theory Development, Business, Model, 1968 D-28353
C. L. Fry, 'A Developmental Examination of Performance in a Coordination Game Situation,' Experimental, Model, 1967 D-28897
D. R. Fulker and S. M. Johnson, 'A Tactical Air Game,' War Gaming, Game Theory, Of Note, 1957 D-29343
W. A. Gamson, 'A Theory of Coalition Formation,' Sociology/Organization Theory, Model, 1961 D-29353
M. A. Geiser, 'The Simulation of a Large-Scale Military Activity,' Business/ORG/Logistics, Facilities, Of Note, 1959 D-30434
H. Goldhamer and H. Speier, 'Some Observations on Political Gaming,' POM, Excellent, 1959 D-32021
P. Gould, 'Man Against His Environment: A Game Theoretic Framework,' Agricultural Economics, Geography, Of Note, 1963 D-32024
C. S. Greenblatt, 'Simulations, Games, and the Sociologist,' Sociology, Limited Use, 1971 D-33617
O. Grunsky, 'Succession with an All,' Experimental, Sociology/Organization Theory, Model, 1969 D-33624
H. Guettzow, 'Simulation in the Consequentiality and Utilization of Knowledge About International Relations,' POM, Model, Reviewed, 1969 D-35076
C. F. Hermann, 'Validation Problems in Games and Simulations with Special Reference to Models of International Politics,' Gaming Methodology, POM, Limited Use, 1967 D-37788
A. C. Hoggatt, 'Measuring the Cooperation of Behavior in Quantity Variation Duopoly Games,' Economics, Of Note, 1967 D-39464
A. C. Hoggatt, 'Response of Paid Student Subjects to Differential Behavior of Robots in Simulated Duopoly Games,' Psychology, Of Note, 1969 D-39470
R. F. Hopkins, 'Game Theory and Generalization in Ethics,' Philosophical Speculative, Sociology, Limited Use, 1965 D-39473
R. W. Husbands, 'Cooperative Versus Solitary Problem Solution,' Experimental, Gaming of Organizational Decision-Making, Model, Of Note, 1940 D-40974
J. R. Jackson, 'Learning from Experience in Business Decision Games,' Business, Model, 1959 D-42501
L. E. Kelley, 'Fighting a Logistics War in the Laboratory,' Logistics, Model, 1959 D-46151
H. H. Kellie and M. M. Shapiro, 'An Experiment on Conformity to Group Norms Where Conformity is Detrimental to Group Achievement,' Experimental Psychology, Not Evaluated, 1954 D-46153
H. H. Kellie, L. L. Beckman, and C. S. Fischer, 'Negotiating a Division of a Reward Under Incomplete Information,' Experimental Social Psychology, Not Evaluated, 1967 D-46154
W. Kuhn, 'Game Theory and Models of Negotiation,' Negotiation Theory, International Relations, Experimentation, Of Note, 1962 D-48701
B. Lieberman, 'tTrust: A Notion of Trust in Three-Person Game and International Affairs,' Experimental, Social Psychology, Model, 1964 D-51745
V. W. McRae, 'Game as a Military Research Procedure,' War Gaming, Of Note, 1963 D-54005
John P. Mayberry, 'Principles for Assessment of Simulation Model Validity,' Operational, Gaming Methodology, Model, 1971 D-54015
R. J. Meeker and G. H. Shure, 'Pacific Bargaining Tactics: Some Outsider Influences,'
IV. INDEX BY AUTHOR

The number preceding each title denotes the placement of the abstract of that publication in Sec. V.

ABT, C. C.

ADAMS, R. H.

ADDIS, M.
D-93431 The Production and Evaluation of Three Computer-Based Economics Games for the Sixth Grade (Westchester County, New York: Board of Cooperative Educational Services, 1967).

ALEXANDER, L. T.

ALGER, C. F.

ANDERSON, C. R.

ANDERSON, L. T.

ANSOFF, H. I.

ARMSTRONG, R. H. R.

ASHWORTH, E. R.

AVERCH, R.

AXELROD, R.

BACK, K.

BAER, H. W., Jr.

BAGLEY, S. K.

BALSINGI, M.

BALSINTY, J. L.

BALOFF, N.

BANKS, M. H.
D-04004 'Gambling and Simulation in International Relations,' Political Studies, Vol. 16, No. 1 (1968), pp. 1-17.

BARRINGER, R. E.

BARTON, R. F.

BASS, B. M.

BASTABLE, C. W.

BEALE, E. M. L.
D-05805 The Role of War Gaming in Military Operational Research (London: Admiralty, Department of Operational Research, Memo No. 190, January 1961).

BECKER, G. M.

BECKER, S. W.

BECKMAN, L. L.

BELL, R. C.
D-05803 Board and Table Games From Many Civilizations (London: Oxford University Press, 1960).

BEM, D. J.

BENNIS, W. C.

BENSON, O.
BERGNER, E.

BERNE, E.
D-05801 Games People Play (New York: Grove Press, 1964)

BICK, J. H.
D-07909 'Code 50: A Multi-Weapon, Multi-Target Nuclear Exchange Game,'
(Paper presented at AMRAC Proceedings, ARPAN Project Defender, November 1967)

BINDER, A.
D-07906 'Learning and Extinction of Leadership Preferences in Small Groups,'

D-07907 'Leadership in Small Groups: A Mathematical Approach,'
Journal of Experimental Psychology, Vol. 69, No. 2 (1965), pp. 126-134

BIRNBERG, J. G.
D-07908 'Effect of Three Voting Rules on Resource Allocation Decisions,'

D-08001 'An Experimental Study of the Allocation of Financial Resources Within Small Hierarchical Task Groups,'

BIXENSTINE, V. E.
D-93434 'Forms of Social Control in Two-Person, Two-Choice Games,'

BLACK, D.
D-08388 'Lewis Carroll and the Theory of Games,'

BLACK, R. R.
D-35505 'Group Problem Solving Effectiveness under Conditions of Pooling vs.

BLAQUEIRE, A.

BLOOMFIELD, L. P.
D-08381 'The Political-Military Exercise: A Progress Report,'

D-08382 'Three Experiments in Political Gaming,'

D-08383 'POLEX: The Political-Military Exercise,'

D-08387 'After Neo-Isolationism, What?'

D-08389 Anticipating Conflict-Control Policies, The Cones' Games as a Planning Tool

BLUMBERG, D. F.

BONACICH, P.
D-09080 'Putting the Dilemma Back Into Prisoner's Dilemma,'

BOOCOCK, S. S., Ed.

BOGART, S. A.

BORKO, H.

BOUCHER, W. I.

BOWEN, K. C.

BOWER, J. L.
D-09076 'Group Decision Making: A Report of an Experimental Study,'

BROADBENT, F. M.
D-18324 'An Investigation to Determine Effects of Simulation Training on Student Teaching Behavior,'
Education Technology, Vol. 9, No. 10 (October 1959).

BROCK, P.
D-09997 'Techniques for Evaluating Military Organizations and Their Equipment,'

BRODY, R. A.

BROWN, J. R.
D-09996 Narrative Description of an Analytic Theatre Air-Ground Warfare System
(Santa Monica: The Rand Corporation, RM-1428, 1955).

BROWNING, R. P.
D-09998 'Computer Programs as Theories of Political Processes,'

BRUNER, J. S.

BRUNNER, R. D.
D-10000 Processes in Political Development: Simulating Theories of Political Systems
(Doctoral dissertation, Yale University, 1971).

BUCHELE, R.

BUCHEL, J. R.

BULL, H.
D-11776 'International Theory: The Case for a Classical Approach,'

BURDICK, D. S.

CAILOIS, R.
D-12502 Of Man, Play, and Games, translated from the French by Barash Meyer

CAMPBELL, F. M.
D-12501 'Monopolies: Management Decision Making Game Applied to Tool Room Management,'

CARZO, R.
D-12503 'Effects of Flat and Tall Organization Structure,'

CHADWICK, R. W.
D-14492 An Empirical Test of Five Assumptions in an Inter-Nation Simulation About
GREENBLATT, C. S.

GREENE, J. J.

GREENLAW, P. S.

GREENNINGS, S., Ed.

GROOM, A. J. R.

GRUSKY, O.

GUETZKOW, H.

D-6950: A Taxonomy of 2 x 2 Games (Ann Arbor: The University of Michigan, Mental Health Research Institute, 1968).

HAAS, J. E.

HALDI, J.

HANFORD, E. A.

HARSANYI, J. C.

HATRY, H.

HAWKINS, L. G., Jr.

HAYES, D. P.

HAZTHORN, W. W.

HELMBOLD, R. L.
D-37787 Decision in Battle: Breakpoint Hypotheses and Engagement Termination Data (Santa Monica: The Rand Corporation, R-772 PR, June 1971).

HELMER, O.

D-37783 An Approach to the Study of a Developing Economy by Operational Gaming (Santa Monica: The Rand Corporation, P-2718, 1963).

HENSHAW, R. C, Jr.

HERMANN, C. C.

HEWMAW, M. G.

HERRON, L. E.

HESTER, A.
D-70211 The Game Monopolists (Santa Monica: The Rand Corporation, RM-1917-1 PR, March 1960).

HITCHCOCK, D. R.

HODGETTS, R. M.

HOGGATT, A. C.

HOPKINS, R. F.

HUZINGA, J.
ROME, S.
D-71781 Communication and Large Organizations (Santa Monica: System Development Corp., SP-1690/000/00).

RYLL-NARDZEWSKI, C.

SAMPSON, E. E.

SAND, F.

SAYPE, F.
D-74501 Map Manoeuvres (Fort Leavenworth, Kansas: U. S. Army, Staff College Press, 1908).

SCHAEFFER, M. B.

SCHELLING, T. C.

SCHILD, E. O., Ed.

SCHILLING, G. F.

SCHNEIDER, A.

SCHRAPA, H.

SCHUB, F.

SCHWARTZ, D. C.

SCODEL, A.

SEILER, J. A.

SERNAT, V.

SHAPIRO, M. M.

SHAPILEY, L. S.

SHEIN, V. S.

SHURE, K. D.

SISKA, C. P.
WILSON, K. V.

WILSON, R. B.

WING, R. L.
D-93431 The Production and Evaluation of Three Computer-Based Economics Games for the Sixth Grade (Westchester County, New York: Board of Cooperative Educational Services, 1967).

WOLF, G.
D-77914 An Experimental Oligopoly Business Game (New Haven: Yale University, Department of Administrative Sciences, Report No. 33, April 1970).

WOLF, J. J.

WOLIN, B. R.

WOLLMER, R. D.

WRIGHT, K. R.
D-42505 UCLA Executive Game #2, Computing Instructions (Los Angeles: UCLA Graduate School of Business, Discussion Paper #69, April 8, 1958).

YANOUZAS, J. N.

YARDLEY, H. O.

YO, C.

YONT, L.

ZIF, J. J.

NO AUTHOR
D-97501 'Games Can Teach the Boss His Business,' CHANGING TIMES The Kiplinger Magazine (November 1970), p. 45-47.
D-97505 The General (Baltimore, Maryland: Avalon Hill Co., since 1963).
D-97512 The War Game and How It Is Played: Memic Warfare for the Schooling of Army Officers. Scientific American (December 5, 1914), pp. 470-471.
V. ABSTRACTS

This is a report of a hasty (3-month) survey of computer models (including straight econometric models) in simulation and gaming. A questionnaire was circulated to 80-90 institutions and persons, to which 10-15 percent responded. Others were interviewed personally. Some information on costs is given. 81 pp.

Not abstracted; reviewed in R-732-ARPA.

Coded: Not abstracted; not reviewed.

Not abstracted; reviewed in R-732-ARPA.

An attempt at an impartial assessment of industrial dynamics approximately ten years after its inception. Little evidence was found to indicate that industrial dynamics should be viewed as a distinctive body of theory about the behavior of firms. Both this article and a rebuttal by Forrester (D-28353) are devoid of discussion of actual applications of the discipline and their success or failure. 15 pp.

A group of 280 students was given a set of experiments designed to compare the effectiveness of consumer-credit instruction through gaming and through conventional classroom methods. Gaming proved to be as effective as conventional methods for factual learning, but effective in the case of students majoring in business education. Men had a slight advantage over women in the gaming context. 9 pp.

Not abstracted; reviewed in R-732-ARPA.

A summary description of a series of games played at Rand to explore the effects of crisis management situations on military and political participants. Specifically, it examines command and control problems of political actors over military forces in environments of high uncertainty. It is argued that the different responsibilities, perceptions, and operational styles of the participants account for the divergence in the strategies they recommend. The role of information is downgraded in this exercise because neither group is denied essential data. Whatever differences exist are primarily attributable to orientational differences. Good general discussion of some fundamental problems. 12 pp.

This describes how gaming techniques were used in examining three hypothetical European crises occurring in the late 1960s. The aims were to identify some of the political and military constraints that affect national decisionmaking during crises; to discern whether or not common patterns of action appear in different crises; and to infer military requirements in crises. On the basis of the gaming experience, the authors make judgments about: (1) the effects of the three-game structure on decisionmaking; the quality and quantity of decisions in these games compared with decisions in real crises; (2) the escalation of violence in the games compared with that in real crises; (3) the impact of internal and external information flows on the game decisions; (4) questions identified by these plays that deserve further study. The authors found that differences in game structure affect the conduct of hypothetical crises in important ways. For example, these differences sometimes govern the impact of threats and diplomatic moves, dictate the pace of escalation, and interfere with perceptions of an adversary's objectives. Regulating the information flows within a crisis game is exacting and vital. Circumscribing the role of the Control team is troublesome. Notwithstanding these and other difficulties, the experience suggests that the value of modeling, though not a means of predicting crises, can identify many factors likely to enter future crisis decisionmaking. Also it can assist military planners in anticipating needs of crisis decisionmakers. They judge that, considering the importance of its objectives, the cost of such gaming is moderate compared with other research techniques. The gaming procedures described are but three of a broad range of possibilities. This type of gaming is adaptable to a variety of research needs. This is an excellent, thoughtful article. More work of this caliber is needed. 31 pp.

This paper is an imaginative attempt to construct and operate a voting game that replicates aspects of the legislative process. The game's heuristic, educational, and experimental purposes are clearly sketched out. Eighteen 'soft' propositions about legislative behavior are advanced and checked against the game play. Rules and a summary of one iteration of play are provided. Experimental data generated in the run are presented and conservatively analyzed. This document shows that much has been derived from very few resources. A genuine educational purpose has been fulfilled with a cheap, easy to use, and highly imaginative game. 28 pp.

The article describes a survey made of the participants in the series of political-military games conducted at M.I.T.'s Center for International Studies since 1958. A personal interview of a small group was made and a questionnaire mailed to most of the gamers. The questionnaire and many interesting results are presented in the article. The respondents were asked to give their opinions about the uses of gaming as a technique for teaching and training, as an adjunct to policy planning, and as a research tool. Gaming subjects are compared as to utility and learning value. Gaming as a learning experience is discussed, with the conclusion that it is a sensitizing process that hightens awareness of things already known. The familiarization problem is discussed. Respondents thought that prior participation in a political-military exercise increased the quantity and quality of the policy alternatives they perceived. Benefits and limitations of gaming are noted all through the article, making it an extremely important appraisal of games as participants see them. 21 pp.

Instead of attributing disputes among social scientists to philosophical differences, as is usual, the author attributes those disputes to linguistic differences. Model-makers and gamers, whose work stresses rigorous control,
definition, and management, use a different language (although the component words have the same verbal distinctions) than humanists, who transcend the denoted meanings of words to intuitions of social structure and process. Examples cited are Harold Guetzkow’s Inter-Nation Simulation versus Arnold Toynbee’s representation of international relations, and the work of experimental psychologists versus that of Freue, and his followers. Gaming and game theory are singled out as being particularly important to the development of the social sciences, but the author argues that the rigor and precision of gaming should be accompanied by the creation of ‘myths,’ which are relevant but have no precision,’ and then the results of the two approaches should be compared. Thus, the ideal social scientist should ‘not be a mongrelizer, but he should be bilingual.’ 7 pp.

A restatement of the old saga: first came Kriegspiele, which developed and changed over the years; then came the Japanese with their Total War Re-}

A discussion of the conjunction between accounting and gaming for theory development and training purposes. The author gives several dramatic illustrations of what different accounting procedures imply for the decisionmaking of a business firm. Of course, a game is played for the benefit of the accountant to give him a better idea of different outcomes. Though its attempt to model some aspects of accounting theory is very crude, the article is important in demonstrating yet another promising application of games. 5 pp.

A series of five critical reviews of the TEMPER model. The first deals with the actual model in simulation, its purposes and uses. The second addresses the political inputs in the structure, the third the economic inputs, the fourth bargaining, negotiation, and strategic decisionmaking, and the fifth the data base. The reviewers conclude that the model is not viable as an instrument of research and that it would be cheaper to scrap the model and start over than to attempt to salvage it. 123 pp.

Not abstracted; reviewed in R-732-ARPA.

Not abstracted; reviewed in R-732-ARPA.

Not abstracted; reviewed in R-732-ARPA.

A superficial article on the use of gaming in international relations. 21 pp.

This is a rather disappointing rehash of several well-known articles on gaming, including C. J. Thomas and W. Deemer, ‘The Role of Operational Gaming in Operations Research’ (D-85936, below) and M. G. Weiner, ‘Gaming’ (D-91615, below). The author seems to have added nothing to the original pieces and in several places states points less well or even incorrectly. 32 pp.

Based on an analysis of task characteristics and group problem-solving behavior, the division-of-labor form of organization was hypothesized to be superior in performance to the committee or hierarchical forms in a business game or simulation. These experimental results strongly support the hypothesis. An interaction was also found between organization structure and rate of improvement in performance. It was greatest among groups whose initial performance was poor. The problem-solving efficiency of different organization structures is discussed. 12 pp.

This experiment involved a three-person game in which the members voted for a leader; the designated leader then made a decision for the group. The amount of reinforcement each member was given for his decisions as leader was under experimental control. Earlier work with this game had reported a correspondence between observed voting behavior and that predicted for a Markov model based on the reinforcement probabilities. Voting choices showed learning trends and asymptotic states that were predictable to a significant extent from the model. In the present experiment, a variation was introduced midway in the game whereby members were reinforced equally instead of differentially. The subjects showed sensitivity to the shift by changing their voting preferences. The Markov model proved generally adequate at asymptotic predictions. 11 pp.

Coded, not abstracted; not reviewed.

This paper is concerned with the effect of the voting rule adopted by a Capital Budgeting Committee on the allocation of resources among divisions. A laboratory experiment indicates that the different voting rules have different characteristics measured in terms of the size of the total budget allocation made and the inter-division variability. The literature of behavioral research on resource allocation is divided into three groups: (1) approaches that attempt through observation of organization or decisions to isolate decision rules, (2) those concerned with interpersonal or intergroup strategies, and (3) those concerned with processes by which individual sub-units aggregate their decisions. 16 pp.

CODE 50 is a three-move, all-computer, highly complex, multi-strike war game. The basic scenario consists of a first strike, a counter-strike with all surviving weapons, and a third and final strike by the initial attacker using uncommitted and undestroyed weapons. Though this paper is little more than a crude outline of CODE 50, it reveals several interesting things: (1) the game has no geography, although the description alludes to a requirement for bigger computers, (2) weapons and target types are limited in number by the computer program, not the empirical context, (3) time is not specifically represented in the game because of the simple analytical forms selected, and (4) input data requirements are astronomical, and one wonders how many of the model parameters have been calculated or only guessed at. Finally, CODE 50 is reported able to make up war plans for both sides even down to the level of preparing sorties for the individual bombers, and the authors ‘almost daily, in response to the wishes of our contractors, make changes in the game.’

The article is a report of the M.I.T. Political-Military Exercise. A review of the policy-level political-military game is presented, including: how a game is organized, the time to play the game, the physical arrangements of the game, the administrative staff, and the playing of the game. Examples are drawn from the M.I.T. POLEX and POLEX-DAIS games. The implications of political gaming for serious policy and for teaching and training are identified. The article suggests topics for further research in gaming such as: game realism, personal involvement of the participant in the game, and misperception of messages from the other team. 16 pp.

The article describes three games on problems in international affairs held at M.I.T. to see what research and teaching values this technique might yield. One, the Endicott House game, employed senior faculty and research personnel and was conducted under the auspices of the United Nations Project at the Center for International Studies. The other two experiments, using undergraduate students, were held under the Political Science Section. The authors describe the selection of the problem for the game. The Endicott House game posed a change in Poland's regime. The undergraduate games focussed on the Berlin crisis. Time span for the games varied from three days to six weeks depending on the time the players could devote to the game. The game plans are outlined and deviations from the plans during play are noted. The format included bilateral diplomacy, a Security Council meeting, and a meeting of the United Nations General Assembly. Umpires were used to brief the players, give general guidance, and supply new facts. Lessons learned from the experiments are given. For example, a more definite purpose would have been useful. The authors considered the experiments a qualitatively successful.

For Military Review: Bloomfield and Whaley revised an article appearing in *ORBIS* (Winter 1965). D-08381). The result is a gentle pitch for Military Review's select audience. The authors adduce an array of theoretical arguments for policy-relevant, political-diplomatic-military gaming. After all is said we are left with the thought that, "...the teaching and training possibilities of political-theoretical concepts do provide a theory of proportional representation for the appointment of parliamentary seats. Carroll's proposal merits attention as a historical curiosity, but subsequent and more rigorous work surpasses its substantive and theoretical contributions. See, for example, Robin Farquharson, *Politics of Voting* (New Haven: Yale University Press, 1969). 11 pp.

A theoretical discussion of the use of professional political exercises and descriptions of four such exercises directed by the author. The discussion covers the possibility of predicting policy behavior, innovations in the "free-game" technique, data gathering and analysis, and the political exercise as a research tool. The exercises deal with the "post-Vietnam nonintervention syndrome," controlling conflict, "after neo-isolationism, what?", great-power relations, the multilateral option, and the role of arms and arms control.

This document summarizes in a cursory way some developments in group decision theory and reports on an experiment in which 58 committees, divided into "rational teams" and "foundations," made various budget decisions. A foundation has a transitive group ordering. Members of rational teams each have the same utility but different subjective probabilities. On the average, the teams performed better than the foundations. The author suggests that future experiments should place more stress on the interaction among search, analysis, information structure, and decision rules. 26 pp.

Not abstracted; reviewed in R-732-ARPA.

This is a fascinating small book that points a direct analogy between the ancient Chinese game of Wei-chi (an ancient Chinese game) and political developments in China. The author discusses the takeover of the Chinese Communists from the very start of their operations in terms of a global Go game played on the map of China. The analogy is fascinating; he handles the delicate interrelationship between tactics and strategy judiciously. The concept of encirclement and the concept of extremely remissful control over large areas of territory are central to this game. The situations discussed are simultaneously more fluid and more static than in chess or in conventional Western thinking about war. If one does not overstretch the analogy, this book is well worth reading.

A compendium of articles arranged in 25 chapters. Quality varies from article to article, but overall, and for its time, the compilation presented a useful and thorough overview for the behavioral scientist wondering what the computer could do for him. Naturally, time-sharing does not appear. Full chapters are devoted to computers and the behavioral scientist; the history
and development of computers, computer functions and applications; data
representation; programming fundamentals and machine language; and the
university computing center. Other chapters deal with specific topics such as
data processing in psychological research, multiple linear regression mod-
els, factor analysis, study of perception, automated teaching, simulation of
cognitive processes, automatic language data processing, and computer mu-
sic. 633 pp.

D-10000
"Putting the Dilemma Back Into Prisoner’s Dilemma." Journal

The author argues that the rigid play of most Prisoner’s Dilemma exper-
iments removes an important element from the analysis: communication
among players. He develops an index of the degree of dilemma in the game
and illustrates the index in several experiments. The criticism may be valid,
but the case presented here is not convincing. 9 pp.

D-10001
The Structure and Classification of Operational Research
Games (London: Ministry of Defence, Defence Operational Analysis Estab-

This paper explores the basic structure and purposes of games. The analysis
and classification scheme indicates sequences of games that can be played
as logical stages in the understanding of decision processes. Computer simu-
al and analytical modeling are included with the classification, which is
applied to children’s games and game theory as well as to operational re-
search games.

D-10002
Narrative Description of an Analytic Theatre Air Ground
Warfare System (Santa Monica: The RAND Corporation, RM-1428, 1955).

The Tactical Air-Ground Study (TAGS) is described in detail in a supple-
ment to RM-1338, Analytic Formulation of a Theater Air-Ground Warfare
System. The present paper presents a thumbnail sketch of the TAGS model,
notes its relationship to antecedent research (see RM-1022/1, RM-1072,
RM-1338), and makes a case for TAGS inclusion in Air Force planning
practice. Air, ground, and supporting logistics network operations are de-
tailed. This paper is a careful summary that should be read before other
documents in the TAGS series. 25 pp.

D-10003
"Techniques for Evaluating Military Organizations and Their
Equipment." Naval Research Logistics Quarterly, Vol. 9 (1962), pp. 211-

As a survey of general, introductory ideas about gaming and analytical
approaches, this article is thorough, straightforward, and sensible. If the
reader expects, however, to learn much about the evaluation of military sys-
tems and equipment, he may be disappointed. The piece is recommended
highly for the neophyte gamer. 18 pp.

D-10004
"Computer Programs as Theories of Political Processes," Journal
1962.

This article was significant in 1962 for relating the work then being done by
Cyril and March and their colleague at Carnegie Tech to the concerns of
political science. Browning’s thesis is that computer models can be used
effectively to develop (through the cumulative process and the requirement
of thoroughness and logical precision) the systematic frameworks necessary
to build games of various political processes. Among the processes that
Browning considers suitable for computer modeling are routine bureaucratic
decisionmaking, problem-solving with the GPS approach; incremental deci-
sion processes, events having characteristic feedback and high information
content; and certain types of conflict situations characterized by their selec-
tion of priorities and sequential treatment of crisis. This was an excellent,
thoughful, insightful article for its time. Unfortunately, the profession gen-
erally was not ready for the sophistication of Browning’s ideas. Only recently
have political scientists, for example J. P. Crence, begun to do the things
that Browning sketched out. 17 pp.

D-10005
A Technique for Evaluating the Structure of US Army Forces
in an Area Domination Role (McLean, Virginia: Research Analysis Corpora-
December 1970.

A highly aggregated, two-sided war game in which the U.S. force operates
from a single base camp to dominate a designated area. Decisions for both
sides are made by human players with incomplete information about the
opponent’s activities. Only one player is required for each side. A game
controller assesses detection and the battles manually or with computer
assistance. The game is designed to solve force-structure problems. The lack
of supporting data makes it impossible to judge the accuracy of the model.
The demonstration games used estimates. 168 pp.

D-10006
Processes in Political Development: Simulating Theories of

A useful essay in model-building and specification in political science. Two
verbal theories concerning political development are examined and are tran-
slated into computable simulations. While carrying out this task the re-
searcher is able to examine the theories systematically and in great detail.
This study should be of interest to any political scientist interested in gaming
or simulation. 329 pp.

D-10007
"International Theory: The Case for a Classical Approach," World

This is an elegant, gentlemanly protest against ‘new-fangled’ methods of
research in international relations. While one might take issue with his
sweeping denunciations of most things quantitative, there is much to be said
for Bull’s central thesis that the scientific approach has been long on promises
and short on goods delivered. What he objects to most is the simplification
inherent in any model, simulation, or game. His point is valid, a mod-
el’s performance is not the same as the reference system it attempts
to describe. Recalling a modeler’s dictum to ‘model simple but think com-
plex’, Bull seems to be saying that the current crop of scientific theorists
are not thinking at all. For example, with respect to Karl Deutsch and Bruce
Russett, Bull remarks that they ‘have succeeded in providing figures only to
be blinded by the illumination they cast’ (p. 374). The main lessons of this
article for the serious gamer are (1) keep in active touch with the reference
system being gamified, and (2) don’t believe your game results per se too
strongly. 16 pp.

D-10008
Game Theory in the Behavioral Sciences (Pittsburgh: University
Not abstracted; reviewed in R-732-ARPA.

D-10009
"Monopolies: Management Decision Making Game Applied to
Tool Room Management," The Journal of Industrial Engineering, Vol. II,
No. 5 (September-October 1960), pp. 572-577. F. M. Campbell, E. R. Ash-

A description of the civilian version of The Rand Corporation’s MONO-
LOGS logistics game. The authors converted the game to the educational
setting, simplified it to include a narrow class of inventory control problems,
and made it totally manual in the interests of economy. Apparently the
demilitarization was successful; according to the authors, the pedagogic
goals of generating interest and transmitting information were realized. 6 pp.

D-10010
Of Man, Play, and Games, translated from the French by Bar-
ash Meyer (New York: The Free Press, 1961; published as Les Jeux et les
Not abstracted; reviewed in R-732-ARPA.

D-10011
"Effects of Flat and Tall Organization Structure," Administrative

In a laboratory experiment, ‘tall’ and ‘flat’ organization structures were
tested for their effects on group performance. The tall organization struc-
tures were superior on two measures of performance: profit and the rate of
return on revenues. Groups with a flat organization took more time to
resolve conflicts and to coordinate efforts than did those with a tall struc-
ture. 14 pp.

D-10012
"An Experimental Imperfect Market," The Journal of Political

This is possibly the earliest article on experimental economic gaming, pre-
dating the construction of computer games by several years. Professor
Chamberlin ran several experiments in his classes at Harvard to examine the
fluctuation around equilibrium in a simple simulated economic market. The

The System Research Laboratory engaged in the study of complex organizations with the aim of developing ways to look at organizations, evaluate group performance, and train personnel better. This monograph discusses the Laboratory's experiments in which an air-defense direction center was modeled as the complex organization. Results suggest that making a man-machine system work requires full use of the human group-learning ability. Techniques are devised to exploit this ability in order to maximize use of the system's resources. It appears, further, that the application of the group-learning ability is best investigated through studies of complete systems with the students behind the instruments and then, results have implications in system design, especially personnel selection and training. 15 pp.

Not abstracted; reviewed in R-732-ARPA.

Not abstracted; reviewed in R-732-ARPA.

Report of an examination of six studies of educational effectiveness. It concludes that claims of enhanced learning and attitude change through the educational use of simulation and games are overstated or at least premature. Student learning of facts and principles, retention of information, problem-solving, and attitude change were not found to differ consistently or significantly, whether games, simulation, or conventional teaching methods were used. The only observed difference was increased student interest in the case of game-play. Several procedures and educational uses of games other than those examined are mentioned, including having the students design their own games and validate the theoretical structure of existing games. A list of unpublished work on this topic is appended. This article is a rare example of an attempt to grapple with fundamental questions in gaming. 4 pp. (See also D-71783.)

Five assumptions about interrelations between the political and economic characteristics of nations are explored for their empirical adequacy, clarity of formulation, and logical consistency. The assumptions are (1) Given a specific decision latitude, a high likelihood of retaining office should be associated with a high level of validator satisfaction. (2) Given a specific level of national security, a high level of validator satisfaction should be associated with a high level of consumption satisfaction. (3) Given a specific level of consumer goods in a nation, a high level of consumption satisfaction should be associated with a low level of basic capability. (4) A high likelihood of revolution is assumed to be associated with low levels of manager satisfaction, high levels of decision latitude, and low levels of forced internal control as a proportion of total force capability. (5) National security is assumed to be greater the greater the sum of basic and force capabilities of a nation and its military allies compared with the sum of the capabilities of nations in opposing alliances. Ten variables in the INS model are interrelated with the five basic assumptions. These assumptions were tested by calculating the product moment correlation between a set of indices developed in the article. 16 pp.

A compact survey of simulation languages for the simulation of parallel, continuous systems, typified by the MIDAS or DYSAC languages. 14 pp.

This paper presents the results and the method of analysis for an attack-defense game involving the allocation of resources. Each player is assumed to have several different types of resources to be divided into an optimal fashion among a fixed set of targets. The payoff function of the game is convex. The 'No Soft-Spot' principle of M. Drescher, and the concept of the generalized inverse of a matrix are used to determine optimal strategies for each player and the value of the game. 28 pp.

Given the relative antiquity of this article, one might expect little useful information and fewer insights for the present-day reader. This is not so. Granted, the reader can safely skip over the de rigueur recitation of the history of gaming, and he might also skim through the dated descriptions of business games circa 1960. But when the discussion turns to game uses, complexity, purposes, costs, and limitations, full attention is warranted because many of these issues remain as viable as ever. A partial listing follows: (1) At what size do games change their qualitative nature? (2) What effects are noticeable when time is compressed (or expanded) in game play? (3) What effects are attributable to varying levels of risk and uncertainty? (4) How valuable is information? (5) How important is systematic analysis in the course of game play? (6) What are the relations between time and levels of analysis in the game? (7) What does a game really cost? (8) Is a game really the best way to accomplish a given task? (9) Does a given game stimulate or suppress creative urges in players? The article serves as a good reminder, to the practicing gamer, of the vast expanses of supportive research remaining to be done, and, to the neophyte gamer, of the opportunities that beckon. 35 pp.

This article sketches the major arguments usually adduced for and against computer-based behavioral science laboratories. A 'Collision-Prediction-Situation' on a radar screen, a training and theory-development exercise using a radar screen to predict automobile collisions, conducted at the System Development Corporation, is cited in illustration. The author argues that the 100,000 separate pictorial observations and associated responses generated in the experiment could not have been handled practically except by a computer. A time-shared system was used to generate the pictorial stimuli, to record subject responses, to re-format these data for analysis, to analyze the data, and to print out the results. An average cost of $7.50 per hour is noted. The conclusion is that great experimental benefits are possible to achieve, in fact have been achieved, but they depend upon enormous sunk costs in programmer time and hardware outlays. Time-sharing or similar, more-or-less general-purpose laboratory facilities might be the only practical way to achieve these benefits. 4 pp.

The author introduces his article as 'an analytical comparison, primarily on the level of middle-range theory, of the substantive assumptions contained in INS with contemporary international relations theory.' It is in fact a pedantic argument for the use of the Inter-Nation Simulation as a theory device, in support of which the author appends no less than 108 footnotes in 16 short pages. The author has ferreted out laudatory comments on every aspect of INS. By this account Guetzkow and his colleagues rank as the foremost theoreticians in the field. Such unabashed advocacy has little to recommend it. Proposals to develop the 'all computer international relations simulation' represent a form of intellectual entrepreneurial that is ill-suited to this prestigious professional journal. 16 pp.
Subjects were allowed to compete for points in a payoff box. The amount

In this concise, well-reasoned paper, the author argues that games can be used to aid the learning process by helping to elicit the nature of the learning process itself. That is to say, games help to imbibe into experience and cognition the structure of social action on which the human sciences are based (p. 75). The standard communication of factual information, well known to most students, is criticized as providing insufficient motivation and reinforcement of newly learned ideas through action in some context. In general, the author is arguing for a major rethinking of conventional teaching methods and suggests that games might be a useful alternative to consider first. 8 pp.

For system tasks involving signal detection, a method is presented by which statistical decision theory can be used to derive limiting conditions for adequate operator performance from results obtained in an abstracted laboratory task. The limiting conditions can then serve as a basis for making design decisions regarding functions allocation and for specifying operating rules. As illustrative, the method is applied to a collision-prediction task on which previous research suggested that performance depends on the ability to detect a nonzero rate of change in the relative bearing between the two objects moving on converging paths. 5 pp.

The authors explore what happens to communication networks under various experimental conditions. The types of patterns studied include the wheel, chain, and circle. Results: if groups went from the wheel to the circle, they would then generally go to the chain. The leaders also would change. There was more stability of leadership when leaders were elected. 15 pp.

Describes various forms of simulation that are being developed in political science; emphasis is given to 'reality' games in which players take the part of real-life decisionmakers in particular countries, working their way through the solution of realistic problems. 14 pp.

Variables of training and ego-involvement were studied in cohesive, noncohesive, and 'nominal' groups of two members each, based on sociometric choice. Results: only on ego-involving problems were there significant differences among the groups and then only in the number of unique ideas produced. The cohesive-trained groups were significantly better than all other groups. No significant differences were observed between the trained and untrained noncohesive groups. Sociometric choices for brainstorming partners were significantly related to the subjects' perceptions of their own skill. 4 pp.

Training in decisionmaking cannot produce the 'complete' executive, and the concentration on such training in business gaming cannot be justified. Business games should also include training in information processing and implementation of decisions. Other improvements are suggested. 28 pp.

Subjects were allowed to compete for points in a payoff box. The amount was varied by manipulating the magnitude of the payoff. At times information about the opponent's payoff was held back. Results: players with more favorable payoffs remained stable, choosing one alternative 60-65 percent of the time. Players with the smallest payoff varied most. 11 pp.

Hypothesis: an apparently strong person would be disadvantaged in a 3-person game in which coalitions are possible. This hypothesis was tested by use of a modified version of a task that permitted close interpersonal contact prior to formation of a coalition. The test was run under three conditions. Result: the hypothesis was confirmed in all conditions. 2 pp.

A discussion of academic simulation games, their goals and the means of accomplishing them. Conclusions: (1) the use of games fundamentally changes the process by which learning takes place, (2) the use of games in learning fundamentally changes the nature of the task that schools perform, and (3) simulation games are especially appropriate for embedding in students' experience and cognition the structure of social action on which the human sciences are based. 10 pp.

Articles on the application of simulation to the study of international relations, municipal budgeting, METRO etc., by a number of political scientists then working on simulation projects.

It is hypothesized that a period of reflection on the environment increases the probability that a subject will behave in a 'jointly rational' manner. He may thus learn behavior appropriate for the maximization of joint utility, and may discover that certain behavior is necessary for individual maximization of expected utility in a particular conflict environment. Many independent variables undoubtedly influence the rate at which the two experience effects occur. The nature of interpersonal communication, the size of the decisionmaking group, the complexity of the environment, and the availability of information about the environment all affect the rate and kind of learning. Precisely how they affect it, however, is not obvious. Finally, we need to learn more about the interplay between experience and 'trust' in conflict environments. Trust appears to be well substantiated as an element in conflict resolution, but how trust is established is another matter. From the evidence presented, it seems that detachment enhances trust. The extent to which it does is worth further investigation. 7 pp.

This manual is a revised and condensed version of the author's unpublished master's thesis. APEX, the Air Pollution Exercise, is a man-machine, teaching and training game derived from the earlier M.E.T.R.O. urban planning game of Richard Duke and his associates (see D-23004, below). Comprehensive and thorough, this manual explains much about the game's hypothetical environment, players and typical styles of play, but not its underlying theoretical structures. APEX is currently being used at the University of Southern California to train prospective air pollution control officers for the National Air Pollution Control Administration, its prime sponsor. 59 pp.

A study of the conduct of investigations using simulated experimentation after the model has been formulated and the computer program completed. It considers the problem of estimating the precision of the results and means of improving that precision. It is one of the earliest treatments of the specific problems of validation in digital simulation. The author begins with the pessimistic statement, 'I believe that in general simulation models take longer to construct, require much more computer time to execute, and yield
much less information than their authors expected." He focuses on the phase in which one determines how to execute the experiment, addressing the problems of equilibrium and variability and sample size. The first refers to the time-consuming need often to run a simulation model extensively before it reaches a state worth investigating. To remedy that problem, one should choose starting conditions that exclude some data from the initial period but that minimize the excluded interval. As regards variability, sample size, and replication, simulation is thought to produce relative results much more efficiently than absolute results. Conway recommends (1) continuous assessment rather than periodic sampling, (2) executing a single continuous run, achieving "replication" by increasing the length of the run, (3) using the mean value, except in the initial stabilization period of the run, to estimate the two mean system state. It is not always the most efficient estimate, but it is simple, unbiased, and increases in efficiency the longer the run. 14 pp.

This article attempts to link the epistemological efforts of Egon Brunswik with the attempts of Guetzkow and his colleagues to construct an "Inter-Nation Simulation." The basic line of thought is hampered by excessive and often incomprehensible jargon. The brief sketch of INS has been done better elsewhere (see D-35078). The philosophical arguments comprising the bulk of the paper have little utility to gamers. 18 pp.

A simple and straightforward description of the Inter-Nation Simulation (INS) and its use in teaching strategic principles. Beyond a few general remarks concerning a pilot study, no case is made for or against application. 10 pp.

A description of the use of computer simulation in urban research, including studies of voting behavior, decisionmaking, urban development, and planning, and macro-micro models of the urban system. 11 pp.

Compared with conventional teacher-training methods, simulation was shown to have a significant effect on increasing motivation and teacher interest but no measurable impact on existing consistent and significant behavioral changes. The subjects were 30-40 student teachers randomly assigned from the State University of New York at Brockport. Experimental controls were stringent, specifying random selection of four 20-member groups, two of which were trained with simulation techniques, and the remaining two with traditional techniques. Sex and grade-point average differences were not significant between the groups. The subjects were randomly assigned to teaching posts. The test problem was to "handle the constantly disrupting child." Evaluation was done by means of interviews, a questionnaire designed for the experiment, and a self-reporting instrument, the Perceived Problem Inventory. Cited in Stanley Dropkin and Marvin Taylor, Perceived Problems of Beginning Teachers and Related Factors, Journal of Teacher Education, Vol. 14 (December 1964), pp. 384-390. Results showed strikingly that aside from the novelty and "fun" aspects of simulation, conventional teacher-training methods would have provided equivalent training for the situation tested. 4 pp.

An investigation of the validity of attributing to nations the behavior of individuals and groups participating in a simulation. Simulation of a disputed but historically accurate situation was constructed to test the roles of (1) players' psychological attributes, (2) the social context in which they operate, and (3) the nature of the situation they confront in the outcome of a simulation. A two-hour personality test was administered to 1,124 subjects to determine their attitudes toward militarism, nationalism, and risk-taking. Of that number, 384 were chosen to participate in three experiments to compare personal psychological attributes with situational elements. The experiments showed that personal attributes and the social context significantly affected the outcomes. This is an interesting study of validation, and it is valuable in pointing out that before a game or simulation can be validated, the model and the purpose of validation must be specified. 29 pp.

A description of a family of models, STOP, STRIP and STRAP, that deal with the problem of strategic allocations. STOP is a highly aggregated, two-sided war game. STRAP is an intermediate two-sided war game. STRAP is a detailed plan generator. STOP is explained in some detail and an example shown with initial conditions, allocations, final conditions, and payoffs outlined. Problems of defining the payoff in a central nuclear war are discussed. An extension of STOP is being developed that will analyze the problem of allocating funds to force structures. 29 pp.

The author argues that game theory has a role, though more modest than initially thought, in military planning. An initial effort to be gained from the game theoretic perspective include expanded attention spaces and the examination of numerous alternative solutions, the explicit inclusion of the basic two-(or many-) sidedness of military conflicts, and the opportunity for optimization. Most military situations are too complex to be dealt with fully by game theory; they can be approached, through the processes of problem decomposition and partial analysis. Cited as examples are the STRIP, STRAP, and STOP family of models built at Rand in the 1960s. 17 pp.

This paper, prepared for a NATO operations research conference, argues that the development of fully formulated nuclear war games is hampered by three basic difficulties: (1) payoffs we hard to define in nuclear war, (2) a criterion is hard to determine in a highly non-zero-sum setting, and (3) the inherent complexity of the game context prevents even marginally acceptable representation. The critical difference between nuclear and nonnuclear war (and war games) is that which distinguishes catastrophe from non-catastrophe. STOP, one of a family of nuclear war models constructed at Rand, is described in terms of how it overcomes the three difficulties. This is a brief introduction to the game and is insufficient for acquiring a thorough understanding. 11 pp.

Not abstracted; reviewed in R-732-ARPA

This excellent article demonstrates well why mathematized game theory and more free-wheeling gaming enterprises have not been melded to many productive ways. The piece offers a solid proof of the existence of a stable, non-cooperative solution in a central nuclear war game. To attain these results, several strong assumptions have to be invoked: (1) each side in the two-person game shall exhibit increasing concern as critical levels of damage are approached, (2) non-negligible counterforce capabilities exist, and (3) a single weapon, single target, and single exchange only are allowed. The tradeoff between realism and analytic tractability is clearly made in favor of the latter. The difficulty is in returning to a real context with careful and pertinent insight. The article indicates the author's ability to shift back and forth between the two contexts: one wonders if he is skilled or substantively knowledgeable persons could perform as well. 8 pp.

Group affiliations exert an important effect on a person's opinions. When a person is under cross-pressures he can react in several ways: he may vacillate back and forth on the issue, he may tend toward the stronger pressure, or he may retreat to a 'no opinion' position. To understand how a person forms a considered opinion on a public issue, one must study the
process where he arrives at the position that will best serve his needs. The author’s prime concern is with the teaching of opinion formation to college undergraduates. He argues that role-playing in a game context can help show how socioeconomic status, personal interests, primary group affiliation, secondary group membership, and other factors enter into opinion formation. While this game is an oversimplification of the opinion formation process, it does have utility. As a learning tool it brings out some of the forces that shape an opinion. As an empirical research tool the game provides an opportunity to make more direct observations about the interaction of pre-existing attitudes and interests, primary group pressures, and secondary group influences. The free-form gaming procedures are detailed sufficiently in the body of the paper that they could be reproduced by a knowledgeable instructor. Apparently the author’s own experiences with the play of the game were positive. Some consideration of the techniques’ limitations is appended. The article stands up well with the passage of time and serves as a paradigm for the construction of easy, disposable, cheap classroom gaming exercises. (Originally published as Rand Corporation P-2042, July 1960) 11 pp.

To study arms control as a distinct problem, the author surveys certain methodologies including individual and group planning, scenarios, crisis games, symbolic simulation, and environmental simulation. He concludes that for prediction and evaluation, none of the techniques is adequate. However, environmental simulation, e.g., the works of Guetzkow, Kennedy, and Chapman, does offer the researcher control possibilities that are worth exploring. Small, well-defined aspects of the arms control issue might be studied under laboratory or experimental conditions, but the general problem will most likely defy conventional analytic treatment. 12 pp.

Many disarmament or arms-control agreements can be monitored by sample inspections. Unlike the usual sampling procedures, sampling for arms-control agreements is performed the task best. 14 pp.

This small, rapidly computable model of central nuclear war was developed to help the analyst evaluate quickly a large number of possible plans, each of which depends on the actions of the enemy. The game, coded for an IBM 7040-44, evaluates a pair of Red and Blue allocations of missiles and bombers to some combination of four target systems: missile sites, bomber fields, bomber defenses, and value targets. One pair of Red and Blue allocations can be evaluated in about 1/50 second. Although the model is basically static, time enters into STROP in determining the average number of bombers or missiles at risk during enemy attack; in assessing the effect of warning and relative execution times; and in assessing the effect of the number of times a capability that can also be used to take into account the results of withholding portions of the forces for later attack. The outcome of nuclear exchange can be evaluated if the attacks on both sides are completely preplanned, or if one or both sides have a retargeting capability to compensate for losses to enemy fire. STROP distinguishes between value targets and military targets. In addition to exploring strategic plans, it can be used to evaluate force mixes. 51 pp.

The article is a good short lesson in writing scenarios. The author gives a brief history of political-military scenarios, which can serve variously as background contexts, settings for war games, and narratives of war games. To be effective the scenario should be modeled as closely as possible on the existing world; changes from this world should be explained as completely as possible. Two problems with scenarios, credibility and relevance, are discussed in some cases. Credibility, should predominate, otherwise future problems cannot be studied. The problem of the player’s reaction to the scenario is handled and suggestions are given to avoid the problem. 14 pp.

This is an excellent political-diplomatic-military scenario in which world events are hypothesized for 1968-1973. First, the author describes the work of SDC’s laboratory simulations in general. Then, for this scenario, assumptions about world events for the future five-year period are listed, and the hypothesized situations in Europe, the Far East, Soviet Union, United States, and the Middle East are described in some detail. Looking at the scenario several years later, one is impressed with how many of the hypothesized events have actually occurred. This plus the scenario’s conciseness and plausibility, points up the benefits of using the work of a master scenarist, 7 pp.

Description of a game theory matrix used in a task with built-in interpersonal obstacles. Three motivational orientations were given: (1) cooperative, (2) individualistic, (3) competitive. Subjects receiving cooperative instructions performed the task best. 14 pp.

Using the Carnegie Tech Management Game as an experimental vehicle, the authors assigned 93 graduate students in business to nine ‘companies’ according to whether they had in the same or different T-groups in the previous 15-week academic period. The companies composed of players who were separated from their T-group colleagues performed more effectively than those whose T-group was left intact. The latter reported less internal conflict but were less effective in playing the game. It is speculated that the loss of effectiveness derived from overconfidence in the other players’ dependability. This is an interesting use of games, psychological theory, and a currently popular training technique. 6 pp.

This small book records the work of 25 participants at a conference sponsored by the Ford Foundation in 1961. The discussion papers are generally very brief and vary in quality. Several provide a background for the Carnegie Tech Management Game. A chapter on the future of games in business education anticipates quite well what has happened since 1961, though it overlooked the influence of time-sharing and the problems of mass data processing.

Many disarmament or arms-control agreements can be monitored by sample inspections. Unlike the usual sampling procedures, sampling for arms-control agreements must take into account the possibility that the statistical universe from which samples are to be drawn may have been tampered with so as to decrease the probability of detection of a violation. In this report the author formulates a game-theoretic model for studying a sampling problem in which the inspector is allowed to examine a fixed (usually small) number of items or natural events (e.g., items for an assembly line under an agreement limiting military production, or seismic events under a nuclear test-ban agreement). It is assumed that the inspections are performed within a fixed time period or a series of events of fixed length. Optimal sampling procedures are derived as functions of the number of inspections and the size of the statistical universe. Some variations on the model are briefly considered. 29 pp.

Not abstracted; reviewed in R-732-ARPA.
you will need to form a picture of the market and your cost. These players were not particularly skilled in economics. The results were in many ways unsatisfactory but they do point up the relationship between psychological and economic variables.

A general description of the Cornell Land Use Game (CLUG), concentrating on the rules of the game and the behavior of the players rather than on rules. Feldt believes such games should be used only as teaching and communication devices.

This is a fair and brief elliptical description of what could be an extremely important form of gaming. The idea of a time-shared data base and analytical programs is well developed, although the distorting influence of bureaucracy is not mentioned. A longer and more explicit treatment of X-RAY is called for 314 pp.

A good, clear exposition of a neglected topic. It applies spectral analysis to the investigation of time-series data generated by simulated stochastic models. An heuristic background for understanding statistical spectral analysis is presented, and three simulated experiments are used as examples of how to apply the technique. As simulation data are generally autocorrelated, one cannot apply common statistical tools used to study independent observations. Salient time properties of autocorrelated processes can be studied by spectral analysis in a way that is only interpretable for both descriptive and comparative purposes. When studying the stochastic process, one is usually interested in both the average level of an activity and deviations from that level. The duration of these deviations may also be of interest because autocorrelation commonly leads to overestimations of the reliability of both sample means and variances. To illustrate the technique, the authors simulate a simple, single server queueing model having Poisson arrivals, exponentially distributed or constant service time, and a first-come, first-served (or shortest-operation) rule for job assignment to a queue. Differences in statistical properties of items, such as queue length, are identifiable using spectral analysis. More generally, this estimation procedure provides a tool for comparing simulated time series with real-world data and for understanding the implications of alternative assumptions for the output of simulated stochastic models. 32 pp.

A discussion of the statistical problems that arise in computer simulation experiments. Three problem areas inherent in all stochastic system simulation models are discussed: verification, which determines whether a model actually behaves as an experimenter assumes it does; validation, which tests whether the model reasonably approximates a real system; and problem analysis, which seeks to ensure proper execution of a simulation and proper handling of its results. The study makes no attempt to embody any systematic simulation experiment from initial conception to analysis of final results, defining the statistical problems that arise at each step and relating them to the formal body of statistical tools. Since the aim is to promote awareness of problems, not to solve them, the study offers no general solutions but provides references germane to the statistical problems described. 41 pp.

A method is described for estimating and collecting the sample size needed to estimate the mean of a process (with a specified level of statistical precision) in a simulation experiment. Steps are also discussed for incorporating the determination and collection of the sample size into a computer library routine that can be called by the ongoing simulation program. The authors present the underlying probability model that enables denotation of the variance of the sample mean as a function of the autoregressive representa-

tion of the process under study. They also describe the estimation and testing of the parameters of the autoregressive representation in a way that can easily be "built into" a computer program. Several reliability criteria are discussed for use in determining sample size. Since these criteria assume that the variance of the sample mean is known, an adjustment is necessary to account for the substitution of an estimate for this variance. It is suggested that data from a distribution be used as the sampling distribution, with equivalent degrees of freedom determined by analogy with a sequence of independent observations. 18 pp.

This paper reports the results of six informal experiments to assess the applicability of the game theory to computer simulation experiments in 1952. The experiments involved bargaining for the sale of a car, running a reverse auction for a job, running a fair division procedure to distribute some goods. They were all conducted on an extremely informal level, except for one game, without communication, which was run for 100 trials. The author uses his experience with these games to discuss some of the problems of the application of game theory. In spite of the informality of the games, the paper is provocative and extremely useful. It represents one of the earliest attempts to relate game-theoretic concepts to actual bargaining and fair division. 22 pp.

A succinct, careful evaluation of the use of models such as INS and the Goldhammer Game in the study of international relations. The author provides a careful evaluation of the applicability of game theory to real-world problems of international relations. Neither optimistic nor pessimistic, it raises the appropriate questions about what is meant by validation. 4 pp.

Cited: not abstracted; not reviewed.

A group of individuals is asked to select one from a set of alternatives. The experiment is arranged so that each individual has a strong incentive to guide the group selection toward the alternative he prefers. The first member of the group to announce a selection commits the group by his act. This experiment was conducted to gain insight into the organization, administration, and analysis of other preference experiments and to find an experimental form that would permit testing a variety of mathematical theories of social organization. The report reproduces an experiment conducted at Harvard University, including documentation, conversation of the group during play, and the results of the play. 43 pp.

Not abstracted; reviewed in R-332-ARPA.

An assertion that industrial dynamics, described as the application of feedback concepts to social systems, is evolving toward a theory of structure in systems while remaining an approach to corporate policy and design. The case is not well supported or persuasive. 18 pp.

The author asserts the importance of industrial dynamics as a new theoretical way of viewing organizations and restates his philosophy concerning modeling, validation, and information gathering. 19 pp.

The behavioral science laboratories designed to facilitate experimental research ranging from studies of individual-choice behavior to studies of
organizational processes and the large-scale simulation of international political conflict. Electronic equipment was selected to minimize the need for special instruments for single experiments and to reduce the number of experiments occupying laboratory space on a semi-permanent basis. The complex consists of an individual-behavior laboratory, a small-group behavior laboratory, and a large-group behavior laboratory. They occupy three distinct areas of 2900 square feet, and an adjacent 1000 square feet of space is used for offices and waiting rooms. The electronic and acoustical design permits small rooms to be used independently. Electronic equipment consists of a manually controlled system serving the small- and large-group labs and a separate, automated facility for individual-behavior labs. They are interfaced with cable trunkage, which enables the transmission of auditory and visual signals between the two systems. Each of the group labs is fitted with jacks for ceiling and wall microphones and closed-circuit television camera; mounts for remote-control cameras; a closed-circuit video monitor; recessed ceiling speakers; a substitution remote-control console; and furniture that can be stored under the observation deck. Approximately 500 communication links and equipment activities are available for control. The individual-behavior lab is designed to automatically control the presentation or exchange of auditory and visual information among the experimenter, 12 subject booths, and the control station. Each booth has a closed-circuit television camera with zoom lens, a 9-in. color-cathode-ray video monitor, a digital display, two signal lights, a combination speakerphone and microphone headset, and 8 lighted pushbuttons recessed in the woofer. 7 pp.

The tacit coordination game performances of 24 fourth graders and 24 eighth graders were compared with control groups. Subjects played three 2-person, 3-choice games with several like-aged partners from different ascendance quartiles. The game required subjects to repeatedly anticipate the object choice of a partner and provide increased information for doing so. College subjects outperformed eighth graders, who outperformed fourth graders (p's less than .001). College and eighth-grade subjects improved with successive partners (p's less than .06, .001). The pattern and object convergence strategies found in the college subjects were less evident in eighth graders and were absent in fourth graders. Differences between partners' ascendance scores predicted game success in college and eighth-grade subjects only. 5 pp.

Not abstracted; reviewed in R-732-ARPA.

Addressing a well-known problem, the author argues that through the use of human-factors engineering, personnel may be encouraged to stay in the armed services. He shows how considerable savings in training costs were realized by the judicious use of human grouping principles, human-engineered visual displays, and human-centered design principles in the design of the Air Force Satellite Control Facility. While the article does not have high merit, the topic is ideally suited to gaming treatment. 5 pp.

A discrete linear model of a tactical 'air war is formulated as a multi-move game. The symmetric case, in which the attrition rates are the same for both sides, is solved for both finite and infinite campaigns. Examples and interpretations of the results conclude the article. This is an elegant and quite difficult piece of work, but the theorems can be read and understood by someone with minimal mathematical training. 9 pp.

A description of the game Baselegs, which was developed by Rand's Logistics Department to demonstrate the interaction between logistics and operations on a fighter-interceptor air base of the ADC type. 17 pp.

A survey of experiments on cooperative and competitive behavior in mixed-motive games. Little theoretical explanation is given. 10 pp.

Coalition formation is a pervasive aspect of social life. This paper presents a theory of coalition formation with a statement of conditions and assumptions. While applicable to groups of varying sizes, it is shown to be consistent with Caplow's theory of coalitions in the triad. It successfully handles the experimental results of Vinacze and Arkoff. Finally, the applicability of various work in n-person game theory is discussed with the conclusion that, in its present state, it fails to provide a basis for a descriptive theory of coalitions. 10 pp.

A discussion of the impact Rand's logistics systems work has had on the Air Force. One study, the systems approach to base stockage, is outlined, and successful tests of the technique are presented. The author provides a glimpse of an organization that was an early leader in the gaming and simulation techniques. No substantive gaming work is presented. 12 pp.

The paper discusses the activities of the Rand Logistics Systems Laboratory during its first year of operation, when the lab tested a series of proposed changes in the Air Force supply system. The test consisted of comparing a simulated 1956 AF system with the system modified to reflect the proposed supply policies. The experiment indicated that the logistics system providing the newer supply policies was a better system according to the criterion established. At the same time, the experiment did highlight the difficulty of testing logistics policies under even the idealized conditions of the lab and the problems of interpreting experimental findings. 47 pp.

A concise, general description of mid-project activities at Rand's Logistics Simulation Laboratory (LSL). The discussion of Laboratory Problem II notes that the exercise was intended to test alternative logistics policies for the Air Force, to integrate existing research with operational requirements, and to develop man-machine laboratory techniques and facilities. The author notes the LSL enterprise raises the question of the personnel requirements for conducting serious system simulation. LSL, whose work extended over several years, had 30 professionals and about 20 support staff, rather elaborate laboratory facilities, and adequate computational support. 9 pp.

A comparison of a game-simulation technique, developed at Rand and used extensively in the Logistics Systems Laboratory, with other simulation techniques. The use of the Rand technique in logistics research is described, and its advantages and disadvantages are discussed. 77 pp.

Not abstracted; reviewed in R-732-ARPA.
D-33017 "Simulations, Games, and the Sociologist." The American Sociologist, Vol. 6 (May 1971), pp. 161-164. C. S. Greenblatt. 1971. Perhaps the author's only-recent introduction to simulation and games accounts for the meagerness of this article on games for educational purposes. The following games are touched on: the Cornell Land Use Game (CLUG); Democracy and Ghetto, two of James Coleman's many games; INS; and Starpower, by Garry Shirts, of the Western Behavioral Science Institute. 4 pp.

D-33020 'Succession without an Ally,' Administrative Science Quarterly, Vol. 14, No. 2 (June 1969), pp. 155-170. O. Grossji. 1969. Sixty business organizations were simulated in the laboratory to examine the effects of succession with and without an ally. The two most significant findings were (1) succession with an ally moderated the effects of formalization, which is a component of executive succession, and (2) succession of an executive with an ally greatly altered the formal structure of an organization. 16 pp.

D-33052 Perspectives on Public-Systems Gaming (McLean, Virginia: Research Analysis Corporation, 1965). L. G. Hawkins, Jr. 1965. Misinterpreting the pur, se of analytic efforts in the San Francisco and Pittsburgh Community Programs (CRP), the author calls them 'games.' They are, rather, simulation models, having negligible or no interaction among participants. This article does little more than perpetuate commercially inspired and seemingly self-serving discussions about the programs. 13 pp.

D-33053 A General Theory of Rational Behavior in Game Situations, Econometrica, Vol. 34, No. 3 (July 1966), pp. 613-634. J. C. Harmsny. July 1966. The von Neumann-Morgenstern theory of games does not yield deterministic solutions (corresponding to unique payoff vectors) for two-person variable-sum games and for n-person games. The present paper outlines a general theory of rational behavior in game situations that does yield deterministic solutions for all classes of games. The theory is based on two classes of rationality postulates: those defining rational behavior as such, and those defining rational expectations concerning the other players' behavior. It is argued that this new approach greatly increases the applicability of game theory to economics and the other social sciences. 22 pp.

D-33054 TEMPO Military Planning Game: Description and Discussion (Santa Barbara: G.E.-TEMPO, May 1962). H. Harry, F. Jackson, P. Lever, May 1962. A description of the TEMPO Military Planning Game, whose stated purpose was to provide a pedagogical device which could excite interest and acceptance of specific methodological tools in sophisticated military force-structure long-range planning. (p. 1) Neither the 2-page description nor the 4 pages of rules of play provide enough information to play the game or to
permit a critical scrutiny of it. The document in general seems intended, rather, to promote the enterprise and secure funding for it. 26 pp.

There are at least three schools of thought as to whether group decision processes are superior to individual processes. One school argues that group decisions are superior to individual decisions because of the effects of pooling; a second holds that group superiority derives from interaction, which allows a joint product to emerge; and the third dismisses both the statistical and interactionist schools. Contending that group decisions may at best only be a compromise of individual contributions. This imaginative experiment demonstrated that one can obtain a group score superior to that obtained by simple pooling; the pooled score is significantly inferior to that obtained through interaction; and group judgment approaches the best individual judgment rather than the worst, as might be expected. The experiment used 158 adult subjects ranging in age from 25 to 55, arranged in groups of six to eight members. The subjects viewed the film Twelve Angry Men and prefaced the behavior of the 12 characters in the film, as a test of their understanding of social events against those actually occurring in the film.' (p. 150). The study offers evidence that group judgment procedures do have some utility and that gaming techniques, particularly time-shared games, might be a fruitful vineyard to tend. 11 pp.

Description of a computer-oriented datalogging system designed to record events directly on computer tape. It is possible to record 100 independent sources of information for long-term monitoring of participation by group members. Conduction microphones worn on the forehead permit complete isolation of each subject's voice during conversations. The datalogger is directly linked to an IBM 1800 process computer. 2 pp.

A brief description of the design of a simulation workshop conducted at the University of Pittsburgh on the effect of technological change on American values. The participants, divided into several groups, were asked to make decisions affecting the character of our environment, (b) to estimate the societal consequences of decisions, and (c) to evaluate the desirability of these consequences. The purpose of the experiment was to take a critical look at the simulation technique as a tool for social planning of the future. This document identifies the participants, gives the rules, and describes and assesses the experiment. 36 pp.

A discussion of the use of operational gaming or simulation for studying the total economy of a developing country. Precise data and consistent economic theory do not exist for developing economies; therefore simulation is a useful technique since it relies on partly articulated and largely intuitive judgments by experts. The authors advocate the use of human participants because there are many hard-to-quantify social and political factors in an economic system that computer simulation cannot handle. Suggestions are given for designing a simulative game model to investigate economic problems on a national scale. In summary, the authors assert that the game technique permits the systematic tapping of the knowledge and insight of experts in diverse specialties and provides a means of taking into account intangible factors in the economic system. This article may be somewhat dated by now. 23 pp.

In this paper, prepared for the 1969 meetings of the American Political Science Association, Helmer recommends the use of the Delphi and Cross-Impact Matrix methodologies to study the future in five areas of national policy: (1) international political indicators, (2) national goals, (3) capitalism versus communism, (4) cost effectiveness of foreign policy, and (5) negotiations. While the author's unbridled enthusiasm for political forecasting needs tempering, he is to be commended for having ventured into an intellectual vacuum. The gamer will be duly wary of Helmer's thesis that by gaming (particularly role-playing through scenario) and other operations analysis techniques, the future can be forecasted. 10 pp.

Not abstracted; reviewed in R-732-ARPA.

A sales pitch for the model-building activities of Arthur D. Little Inc. for the San Francisco Community Renewal Program. As the author, a vice-president of ADL, did not play a substantive part in the design, construction, or attempted implementation of the model, this account is superficial and uncritical. 10 pp.

This is a first-rate, meticulous, critical examination of a central theoretical concept in war gaming and analysis, the breakpoint hypothesis. The breakpoint hypothesis is used to determine when and how to terminate simulated combat for war games, simulations, and analyses. Simply, it indicates at what level of casualties one side will give up a battle. Addressing the question of what constitutes win and loss in combat, the study finds that 'Until a better theoretical explanation of the battle termination process becomes available, the soundness of models of war games such as war games and computer simulations that make essential use of breakpoint hypotheses is suspect' (p. v). The author points out that the empirical evidence he collected for over 1000 different battles does not support the theoretical predictions of the breakpoint; that other variables besides casualty rates and levels have to be considered; and that actual battle is a dynamic decision process where one combatant relates to his opponent through time, not acting merely on the basis of absolute levels of casualties. A rigorous, thorough rethinking of an important, commonly used theoretical argument, this report includes an outline of what a proper theory must be capable of doing. A valuable bibliography is appended. 96 pp.

Validation is an important, misunderstood, and frequently abused part of model design, construction, and operation. The author discusses several types of validity criteria to show that the validity of a game or simulation is intimately connected to its purpose. 'Internal validity' refers to the extent of between-model run-invariance with all significant aspects of the model held constant; 'face validity' is the subjective feeling that a model is producing plausible outcomes; 'variable-parameter validity' is the analysis of the sensitivity of a model's initial conditions and parameters; 'event validity,' the extent to which specified relationships in a model can be substantiated by systematic external analysis. Having human players further complicates the validation process. The author concludes, with respect specifically to political-diplomatic-military games, that 'Validation questions other than that of face validity, have yet to be explored for most operating models' (p. 230). He does not explain why that is so. This article is a fair, nontechnical summary of several validation issues for the layman. It does not satisfactorily resolve the issues it raises, however. For example, How is a sensitivity analysis done? Of what use is a model that has not been analyzed for sensitivity? What is the difference between specification, verification, and validation of a model? How does data validation differ from model validation? The technically inclined reader is referred to George S. Fishman and Philip J. Kiviat, Digital Computer Simulation: Statistical Considerations (Santa Monica: The Rand Corporation, RM-5317-PR, November 1967), for a more rigorous and competent treatment of these topics. 16 pp.

Distinctions between operational gaming for research, demonstration, and
teaching are made to suggest that different gaming purposes may demand
different functional forms of games. It is argued convincingly that games for
research may not be useful for advocacy or demonstration because the
former are not intended to transmit or demonstrate information as much as
to discover information. Likewise, a training game probably will not reveal
much that is new or interesting about an environment because it is meant
to teach principles or techniques that are already known. The author notes
that because of professional respect among gamers, the scientific worth of
a model or game is not generally questioned when used to demonstrate or
advocate; (A colleague) is not likely to question us as to our assumptions
or research techniques. It is presupposed that some professional standards
underlie the message being advocated. One suspects, however, that the such
standards are in short supply and are not widely held and adhered to in 5 pp.

D-29466 'Measuring the Cooperativeness of Behavior in Quantity
Variation Duopoly Games,' Behavioral Science, Vol. 12, No. 2 (March

An economic game involving two players was employed to create a labora-

tory market environment in which there were elements of cooperation and
competition. Paper profits (scores) were received by the players in repeated
play of a game that can be defined as a non-zero-sum, two-person game with
no preplay communication. Each of twelve subjects was matched simultane-
ously with two robots, one of which was programmed to respond cooper-
atively and the other to respond non-cooperatively toward the moves made
by the subject. The subjects believed that they were matched against other
human participants in groups of three. Indices of cooperativeness were
defined within the context of the economic theory of the game, in such a
way that the differential cooperativeness of a subject toward the two robots
could be measured dynamically over the path of the game. It was concluded
that subjects tended to be more cooperative with cooperative robots than
with non-cooperative robots. This paper is a good example of careful experi-
mental gaming that can be mass-produced quite cheaply and easily repli-
cated in a good computerized facility. It was run at the gaming lab of the
University of California at Berkeley.

D-29467 'A Laboratory to Facilitate Computer-Controlled Behavioral

This is a brief but useful description of a university experimental gaming
laboratory. It shows the layout, gives information on computer capability,
and makes some observations on costs and uses. 6 pp.

D-29468 A Learning Tool for Group Problem-Solving: Simulating the
Budgeting of Aid for a Small Country (Berkeley: University of California,
Center for Research in Management Science, Working Paper No. 300,

Coded; not abstracted; not reviewed.

D-29469 A Time-Sharing Methodology for Constructing Social Simula-
tions (Berkeley: University of California, Center for Research in Manage-
August 1970.

Coded; not abstracted; not reviewed.

D-29470 'Response of Paid Student Subjects to Differential Behavior of
Robots in Bifurcated Duopoly Games,' The Review of Economic Studies,

Report of an experiment in which a live player plays two robot firms, each
in independent markets. The robot firms are programmed to show different
levels of cooperation; cooperation is defined by a specific parameter in the
construction of the robot decision rules. The 32 subjects were categorized
according to the California Psychological Inventory. The experiment was
run in the automated laboratory at the University of California, Berkeley.
Two hypotheses were tested: (1) differences in cooperativeness between
markets for each subject will be strongly related to the settings of the robot
parameters, and (2) the absolute level of cooperativeness will be strongly
related to the psychological and sociological subsets of variables. Both hypo-
theses were confirmed. This work is an example of small experiments that
should be done in profusion to study structured behavior in economic sce-
narios. 15 pp.

D-29471 'General Management Simulations: An Approach for the Sev-
enties,' Simulation and Games (September 1970), Vol. 1, No. 3, pp. 119-123.

Coded; not abstracted; not reviewed. See D-39472 for essentially the same
arguments.

D-29472 'Management Gaming for Didactic Purposes, A New Look,'

The basic argument of this paper is that simply constructed but interesting
games may be better for teaching purposes than complicated, sophisticated
games. To illustrate, it describes Top Management Simulation, a hybrid
version of Smith, Estey, and Vines' Integrated Simulation game, and gives
a superficial discussion of the game play and structure. While many of the
general arguments may have merit, one is not convinced on the strength
of this article alone. 11 pp.

D-29473 'Game Theory and Generalization in Ethics,' Review of Polit-

The ethical principle of 'generalization,' the practice of appealing to the
consequence of a collectivity's doing something as a criterion for its right-
ness, is examined with respect to certain concepts from game theory. It is
suggested that by prescribing prudent strategies, game theory often brings
normative structure to state-of-nature situations. Game theory differs from
the generalization principle in that individual rather than collective calcula-
tions ordinarily form the basis for choice. Game theory may help structure
an ethical-normative society, while the generalization principle may help
maintain it. An intriguing, but ultimately unconvincing, attempt to meld
diverse intellectual traditions. 10 pp.

D-40571 'Conversational Computing Systems as Laboratory Instru-

Hunt briefly summarizes the laboratory facilities available to psychologists
in 1968. Unfortunately, the recent explosive development of computer
graphics has dated much of the article. The arguments for a dedicated versus
a shared, general computer facility are well presented. Some estimates of lab
costs are given. 4 pp.

D-40572 Homo Ludens: A Study of the Play-Element in Culture (Bos-

Not abstracted; reviewed in R-732-ARPA.

D-40573 'Drug Effects Upon Choice Behavior in Mixed Motive

Drugs can influence strategic behavior. D-amphetamine, amobarbital, and
a combination of the two were given to some 46 adult male and female paid
volunteers, who were then pitted in a series of symmetrical, mixed-motive
games. The two-person games included 'Exploiter,' 'Leader,' 'Hero,' and
'Marty,' and forms of Prisoner's Dilemma. The size of the dosage was such
as to produce mood changes but not to debilitate the subjects. Payment was
non-trivial and based on performance levels. It was found that the subject's
style of play was affected much more than his effectiveness. Drug effects
increased total competition and attempted exploitation in the subjects. This
is a fine piece of experimentation and provides an interesting reading list of
related studies. 10 pp.

D-40574 'Cooperative versus Solitary Problem Solution,' The Journal of

A simple experiment was designed to test whether individuals solved prob-
lems better than pairs of individuals. Forty subjects were given three types
of problems, and their performances were compared with forty pairs of
subjects who were instructed to do the same tasks cooperatively. The tests
included a code solution, a jigsaw puzzle, and five arithmetic problems. For
the code and jigsaw tests, cooperation worked significantly better; for arith-
metic problems it made no difference. However, cooperative problem-solv-
ing took more time than did individual. 3 pp.

This preprinted excerpt from the authors' forthcoming book, Developing Social Simulations, describes briefly describes several games that are suitable for use in high schools and perhaps colleges (undergraduate level). Addresses are also given for obtaining additional information on the following games: City II, Dispatcher, American Government Simulation, Caribou Hunting, CLU, Consumer, Crisis, Dangerous Parallel, Democracy, Destiny, Dig, Diplomacy, Disaster, Economic Decision Games, Economic System Game, The Free Enterprise Game, Gettysburg, Generation Gap, Glacto, Inter-Nation Simulation, Life Career Game, Management, Market, Marketplace, NAPOLI. PLANS, The Railroad Game, The Sierra Leone Game, SIMSOC. SITTE, Starpower, The Sumerian Game c. and Trade a. and Develop.

Not abstracted; reviewed in R-732-ARPA.

A general survey of business games as of 1959. It describes the UCLA Business Game, Mark II, using the player's manual as the outline. Conceptual and intellectual connections between the UCLA games, the Carnegie Tech game (described as 'promising'), and the American Management Association game are noted. Though the article is substantively outdated, it reveals that much business gaming was underway even before the advent of large-scale computational capabilities, and shows that fairly sophisticated and complicated games can be built and played without computers. 15 pp.

Not abstracted; reviewed in R-732-ARPA.

This provides supporting documentation for the UCLA Business Game, Mark II, using the player's manual as the outline. Conceptual and intellectual connections between the UCLA games, the Carnegie Tech game (described as 'promising'), and the American Management Association game are noted. Though the article is substantively outdated, it reveals that much business gaming was underway even before the advent of large-scale computational capabilities, and shows that fairly sophisticated and complicated games can be built and played without computers. 15 pp.

This provides supporting documentation for the UCLA Business Game, Mark II, using the player's manual as the outline. Conceptual and intellectual connections between the UCLA games, the Carnegie Tech game (described as 'promising'), and the American Management Association game are noted. Though the article is substantively outdated, it reveals that much business gaming was underway even before the advent of large-scale computational capabilities, and shows that fairly sophisticated and complicated games can be built and played without computers. 15 pp.

This paper was written as a chapter for a book. Military Planning in an Uncertain World, that was never published. It presents some useful basic ideas of game theory for the gamer or behavioral scientist. Especially noteworthy is a discussion of the different aspects of a deterrence situation. 65 pp.

This paper was written as a chapter for a book. Military Planning in an Uncertain World, that was never published. It presents some useful basic ideas of game theory for the gamer or behavioral scientist. Especially noteworthy is a discussion of the different aspects of a deterrence situation. 65 pp.

This paper was written as a chapter for a book. Military Planning in an Uncertain World, that was never published. It presents some useful basic ideas of game theory for the gamer or behavioral scientist. Especially noteworthy is a discussion of the different aspects of a deterrence situation. 65 pp.

This paper was written as a chapter for a book. Military Planning in an Uncertain World, that was never published. It presents some useful basic ideas of game theory for the gamer or behavioral scientist. Especially noteworthy is a discussion of the different aspects of a deterrence situation. 65 pp.

This is a brief paper on the do's and don'ts of gaming in three parts: techniques of systems analysis, techniques of operations research, and philosophical and methodological comments on gaming. The paper is done in characteristic Herman Kahn style. Under the main headings there are subheadings covering key words that characterize. For example, under the heading Designing the offensive, of course, and criticism; under Operations Research appear probability and statistics. Monte Carlo, game theory, elementary economics and programming. The paper concludes with ten common pitfalls (published separately; see above). 45 pp.
other locations. The game was designed by Richard Levitan and Martin Shubik in accordance with current economic theory. (See also D-68002.) 14 pp.

Report of a study of the behavior of naive subjects in a strategy-making situation where a normative solution, i.e., game theory, can be stated. In simplest game-theory terms, subjects were required to find optimal strategies in a two-person zero-sum game under certain conditions. The game-theory solution provides a logical reference or ideal to which the actual game players are compared. The procedure provides a dynamic behavioral analysis of decision problems usually handled by the game-theory model. 6 pp.

A capsule summary of the Air Force project officer's view of Rand's Logistics Simulation Laboratory, circa 1959. It describes general rationales for gaming large-scale systems and gives a balanced view of LSI's possibilities. 4 pp.

The authors surveyed experimental studies and theoretical and methodological treatments of trust and suspicion and found them lacking in valid, consistent evidence to elucidate the meaning of these notions. They assert that in order to provide useful evidence, Prisoner's Dilemma and other non-zero-sum games must offer sequential choices, meaningful incentives (not just paper scribbled on at the start), and continuous psychological monitoring of the players' state of mind. Thus, this analysis does itself not shed much light on trust and suspicion, but its is useful in summarizing major work on the subject and in providing a bibliography. 10 pp.

The purpose of this study was to investigate conformity in a situation where it is detrimental to the success of the group. The hypothesis was that under these circumstances, members who feel themselves to be highly accepted by their colleagues will exhibit less conformity than members who feel less accepted. The comparison of subjects in two experiments intended to induce different feelings of acceptance failed to support the hypothesis. 10 pp.

A mixed-motive bargaining game involving division of a joint reward by two negotiators was used in three experiments. The implications of the mechanisms underlying the bargaining process are discussed. 37 pp.

This paper treats a situation where an ICBM plunges toward a target defended by one or more AICBM missiles. It is assumed that if the defender identifies the ICBM and scores a hit within the lethal radius of the AICBM before the ICBM detonates, the ICBM does no damage (no sympathetic antirefracting). If the ICBM detonates first, however, it does an amount of damage that depends on the height of the detonation. The defender has a dilemma. If he tries to knock out the ICBM at a great height, he is less likely to identify and kill it than if he waits until it is lower. On the other hand, if he waits until it is low, he may explode before he attacks it, at an altitude low enough to produce severe damage. The attacker must decide at what altitude he will detonate the ICBM. The defender does not pick the same altitude to detonate his AICBM every time, since then the attacker would detonate the ICBM always just a little above that altitude. Thus, the strategies involve random selection of altitudes for both the attacker and the defender. In this paper the best strategies for both the attacker and the defender are found, first for just one defense missile, and then for multiple defense missiles.

A thoughtful discussion of the various simulation modeling and programming systems in use. It covers the theories of simulation modeling and programming: the design aims of some 'second-generation' simulation programming languages and comments on the probable future development of simulation languages and programming. 22 pp.

Not abstracted: reviewed in R-732-ARPA.

An excellent discussion of the problems involved in the design of general simulation languages. It compares SIMSCRIPT, CSL, GPSS, SIMPAC, and DYNAMO with respect to flexibility and utility of output, time series, reports concerning the state of the system, summary statistics, efficiency, and ease of use. 32 pp.

As editor of a special issue of the Journal of Conflict Resolution, Harold Kuhn provides an excellent, balanced overview of the application of game theory to negotiation. Two familiaroutilisations about applied game theory are that (1) the theory abstracts out essential aspects of an empirical context and (2) assumptions made in the interest of theoretical tractability produce results that are insufficiently detailed. Responsibility for this state of affairs, according to Kuhn, must be shared jointly by both the game theorist and the behavioral scientist. Lack of success in the application of the theory of games 'is not the fault of the mathematicians whose proper concern is the abstract structure of the theory, but rather of the behavioral and social scientists who have not provided inputs in the form of more restrictive assumptions about the behavior of the players and the setting of the games.' However, 'this does not absolve mathematicians entirely from their responsibility because too often they have put forth game theoretical models in the guise of reality when these models were not supported by even plausible empirical assumptions' (p. 2). Little wonder, then, that 'solutions' to games describing negotiations have not been forthcoming, given the paucity of theory and experimental evidence on the subject. To be effective, a game-theory model of negotiations must include (1) an extensive form, i.e., a literal translation of the rules of a given situation into a formal descriptive system, to describe the temporal sequence of negotiations, (2) a theory of preferences to account dynamically for participator's objectives as they are modified through the negotiation process, and (3) solution concepts that are not static, to account for the dynamic aspects of preference formation and modification. This article is a succinct summary of the hunch of several key conceptual and technical challenges confronting game and behavioral scientists. 4 pp.

The results are sketched of a project carried out at the Canadian Peace Research Institute, Clarkson, Ontario, under a UNESCO and Canadian National Commission grant. The article is written in lyric style and conveys almost no information about the game. What are its purpose and underlying theoretical structure? What data were used to support it? What did it cost? Have attempts been made to validate it? Who uses it? By inference and intuition, it appears to be a man-machine game employing multiple moves, taking about 30 hours to play, and involving 30 to 40 players. A clue about the elements treated in the game is given in this comment: 'Information from decision forms' is fed into a computer to determine the consequences of decisions. These consequences are then fed back into the game by giving each team new figures at the start of the next period for its budget and military allocations, political losses and gains, return on previous investments, decision latitude, and the government's prospects for keeping power' (p. 15). Left unsaid is anything about the relationships that determine all...

Not abstracted; reviewed in R-732-ARPA.

The purpose of this paper is apparently to educate people engaged in urban and regional planning. After making the de rigueur differentiation of gaming, simulation, and modeling, it summarizes the current lore on the use of computers in planning. Two appendices are noteworthy. One discusses Richard Peiser's often-cited article, 'Exploration in the Realm of Organizational Theory IV: The Simulation of Social Organization,' Behavioral Science, Vol. 6 (July 1961), pp. 232-248, so fully as to obviate reading it. The other attempts with limited success to describe how disciplines other than planning are using simulation and gaming. Though slight, the paper is an adequate introduction for the novice or the undergraduate student. 17 pp.

Coded: not abstracted; not reviewed.

Not abstracted; reviewed in R-732-ARPA.

Using game theory, the authors examine the distribution of power in the Electoral College by means of a straightforward computational procedure. It is concluded that the larger states have a bias in their favor by as much as five percent, considering only the numerical properties of the College and maintaining the veto parity constraint for all other considerations. This is an interesting approximation in a creative characterization of a political institution. The techniques for precise explication ought to prove useful to those interested in voting games and experimentation. 15 pp.

Notes on the uses of war gaming prepared for a short course on military operations research. Included are an example of the design of a war gaming study and a discussion of the advantages and disadvantages of gaming. Trends in gaming are noted; and it is observed that gaming as a discipline virtually lacks a common theory and methodology. A good though not technically deep article. 41 pp.

Not abstracted; reviewed in R-732-ARPA.

This is a concise overview of war gaming. Designed to introduce Marines to the subject, it was prompted in part by results of a survey conducted by the Marines' Landing Force Games Panel in 1959. That survey indicated that the level of understanding and general knowledge of war gaming in the Corps was not high. The article is discursive and errs on several points, e.g., war gaming is not necessarily a low cost means of evaluating the validity of assumptions and determining the sensitive factors in a military plan. and the optimum level of player size per team in game context is not limited to a superior and two subordinate teams. 3 pp.

McRae draws on his considerable experience as a gamer both in and outside government in this broad survey of the evolution and uses of gaming as an acceptable methodology. Preceded by the standard explanation of terminology and syntax, the meat of the article is a description of how to design a game. Historical examples are well used to illustrate. While the sophisticated reader might fault the author on methodological details, the overall treatment is sound. 32 pp.

Not abstracted; reviewed in R-732-ARPA.

This is a competent yet unsatisfying bibliography. The publications listed are generally of good quality (though some are of poor quality or are irrelevant, but they are not classified by subject. Since care and effort are evident in this compilation, it is a pity that the author did not make a small additional effort to classify the entries into a five- or six-way index. In its current form, an unannotated listing, it is not very useful. 93 pp.

This paper describes how simulations serve to distill and reproduce a real-world situation. Simulations are classified by objective: heuristic games are used for education; Monte Carlo games are used to estimate the solutions of problems that can be specified mathematically but whose analysis yields very difficult or impossible; developmental/simulation gives insight into complex problems that can only be poorly specified at first. Another type of simulation provides a prototype or feasibility demonstration of some proposed innovation. L-P-II, a developmental simulation intended to suggest feasible support plans for a ballistic missile, is discussed. Training simulations are the last type mentioned. 15 pp.

This article gives a good overview of the state-of-the-art of organizational theory in 1962. Sections individually discuss the concepts of organizational goals, expectations, and learning, and suggest the implications of work in each. The author argues that neither classical theory, mathematics, nor verbal analysis has proved effective in dealing with the particular requirements of the study of organizational theory. He recommends, instead, approaching it through computer simulation and model-building (including the
construction of training games), and mentions the Carnegie Tech Management Game and work in Rand's System Research Laboratory in this regard. 18 pp.

This is virtually a reprise of the author's 'An Evaluation of a Business Game in an MBA Curriculum' (D-54012), which was more detailed and more informative.

As part of its first major experiment, Laboratory Problem 1 (LP-I), the Logistics Systems Laboratory of The Rand Corporation simulated the supply and maintenance activities of a logistics system supporting an Air Defense Command aircraft. These simulations required development of a model of an aircraft and its parts, and a model of the parts failures occurring as a result of flying and maintenance activity. This paper describes the models that were developed. 60 pp.

An experiment testing the learning of three concepts was used to compare the performances of MBA students taught by a game and those taught by standard methods. The concepts were: (a) Today's decisions create tomorrow's environments; (b) 'Goals and plans are carried out by a series of consistent decisions to vary in accordance with the environment;' and (c) 'Decisional functions of a firm are interrelated' (e.g., marketing decisions affect production decisions and vice versa). The tests, statistical procedure, and methods of grading are clearly described. Discussion and the conclusions indicate some evidence favoring the use of game over conventional methods. For example, gaming seemed better at showing concept (c). This endeavor seems a model of carefulness and rigor. 9 pp.

A thorough documentation and description of the Harvard Business School Management simulation, which was designed to provide experience in business decisionmaking under conditions of uncertainty. It is a straightforward and careful explanation, complete with virtually every decision form and piece of paper needed to play this large game. 153 pp.

Most people in marketing have had no contact with marketing games, and many are not even aware that they exist. This article provides an illustrative list of the games available to marketing executives and educators. 4 pp.

A handy list of checks on the validity of simulation models that stresses the nature of the model rather than statistical manipulation. 8 pp.

The authors report the results of a controlled experiment to test the effects of third-party intervention in a pacifist-adversary situation. Pacifist behavior, it is argued, is rarely observable without considerable contamination from the setting in which it occurs or without explicit extra-game interpretation of a pacifist's moral basis of behavior. Described is a simple, two-person, raised-motion, non-zero-sum game employing varying types and amounts of inter-subject information and communications. The voluntary application of a mild electric shock to the 'pacifics' provides the dynamics of the game. The experiment's outcomes are discussed. 7 pp.

This article has been influential in urban planning and urban simulation/gaming. It advocates gaming as a means of modeling the complexity of real-world situations. But gaming is not a panacea; the authors recount several instances of the failure of urban gaming. In suggesting a workable gaming approach to urban development, the authors describe their own game. METROPOLIS. 14 pp.

The authors describe the gaming facility, the Psychometric Laboratory at the University of North Carolina, by way of advocating more and more detailed computer-based experimentation in the behavioral sciences. Such experimentation is said to offer standardization of experimental variables, flexibility of means to handle generated data, economy of operation compared with conventional experimental methods, and control over unwanted complexity. The work of this laboratory is likened to computer-assisted instruction (CAI). Theoretical research avenues are suggested, but the reader is left in the dark as to how to proceed. The treatment is marred by its failure to deal with counter-arguments. 4 pp.

This is an example of careful writing of instructions that is worth emulating in the preparation of instructional material for a simple experimental game. Even so, there are omissions. For example, the players are not told how much time they may take or how many times they are to play the game. Undoubtedly such information was given orally. But it should be included in the documentation to enable other instructors to replicate the experiment. 69 pp.

Description of the Judged Utility Decision Generator (JUDGE), an advanced man-machine technique for use in allocating missions in response to requests for close air support. JUDGE is predicated on two notions: (1) value judgments (estimates of military worth associated with requests) can be made explicitly in real time by appropriately trained personnel, and (2) the system ought to maximize the aggregate expected utility of the dispatching decisions that it makes. Input to the system is a forecast, in probabilistic terms, of demand for close air support; constraints, derived from the number of aircraft to be used; and the distribution of turnaround times over one day. The day is divided into shorter periods, and sorties are allocated as available requests for use in each. At each request is received, JUDGE makes a dispatching decision based on the judged utility of the request, kill probability data, the number of sorties remaining in the period, and the times. The technique used in obtaining value judgments is described and the results of a field study using JUDGE are discussed. The study demonstrated the superiority of the JUDGE technique over the simulated current method as measured by an expected utility criterion and various indicators of consistency. It was also shown that the performance of JUDGE is not severely degraded by errors in forecasting. 65 pp.

The author divides military problems into 'tractable'—those that can be solved out of context or environment, and 'untractable'—those that cannot be dealt with outside their natural context. Gaming techniques are being used to solve the latter type. Games used as analytic aids should be readily playable as many times as necessary for the players to understand the game's structure, and should have a fixed set of rules so that experience gained in one play is valid in other plays. Since rules are time-consuming to write, general-purpose games are more common than special-purpose games. Three levels of resolution are identified: the divisional commander, the theater commander, and the commander-in-chief. Gaming, the author suggests, is useful in solving untractable problems because it offers a way of pushing expert knowledge to break such problems down into manageable parts. This is an older but quite durable article. 12 pp.
A sensible article on model-building in international relations as affected by work on the Inter-Nation Simulation (INS). It faults INS for (1) making the nation-state an independent, economically self-sufficient unit completely under governmental control, and (2) allowing no institutions other than the government to play a role. Alternative model-building schemes are discussed. Though this paper is well-documented and makes many useful observations on the state of the art, it fails to come to grips with the basic questions of what kinds of models should be built for what purposes, and what are the criteria by which a model's effectiveness can be judged. Broad, large-scale simulations and games not directed at answering fairly specific questions are generally of little use. 23 pp.

This paper's implied purpose, to aid policymakers, is not fulfilled. First, it seems to assume that socioeconomic and demographic goals can be foreseen with precision. In fact, the model that is presented optimizes a crude, ill-defined, collective objective function. Second, it fails to show how to estimate the real political and economic costs of any policy package that the model might study. However, for teaching or educational purposes, the game and model are more than adequate. The reader's interest is sustained in learning how the game has been used, how it is played, and what are some outcomes. Generally, the game is easy to understand, inexpensive to run, readily adaptable to changes in structure, well documented, and apparently built up from simple routines. Its reference system, though hypothetical, is plausible. The authors' claim that the game can be made context-specific with only 'several weeks of econometric work and sufficient reprogramming of the model' is questionable. Contexts vary greatly yet are difficult to specify precisely. The references to Taiwan and Korea, unsupported by any evidence, are inadequate justification. The confusion of purpose between education and policy assistance weakens what would otherwise be an excellent addition to the teaching literature on gaming. The concise presentation is noteworthy. 30 pp.

Not abstracted; reviewed in R-732-APRA.

Previous concepts of time-flow mechanisms are inadequate for categorizing or describing the algorithms for time flow that may prove most efficient for a particular systems application. The work of Kiviat provides a more meaningful categorization. The patrolling repairman problem serves as an example of the ambiguity and inconsistency in the use of fixed-time and next-event classification. Three algorithms for time flow in the patrolling model are discussed. Theoretical development is provided for the two more sophisticated algorithms—the variable increment (VIA) and the minimum increment comparison (MICA). Comparison of execution times for the three algorithms shows the constant increment (CI) to be generally more efficient. The concept of a continuum of algorithms for representing the passage of time is advanced. Fixed-time methods with change in time considered a 'clock tick' define one end of the continuum, and next-event methods utilizing strictly the push down/pop up stack approach define the other. Between
these two extremes lie other algorithms possessing characteristics of both but which may prove more advantageous for any specific application of discrete system simulation. 15 pp.

Some on-line, time-shared, multiple-console computer systems now allow the use of a common file system. One console can file a message that can be recalled by another console. By programming consoles to interrogate certain files periodically, a crude but highly serviceable store-and-forward communication system can be created. This paper describes the use of the Rand time-shared system, JOSS, in simulation and gaming, and discusses some of the advantages, limitations, and lessons learned. Three different applications are described in some detail. In the first, JOSS is message handler for a BLUE-RED game under the control of GREEN (the referee). A two-party battle between missile-firing submarines constitutes the second application. The third application is a simulation of some facets of the close-air-support role of a hypothetical automated tactical air control system. 59 pp.

This article describes the Polis network through which remote teletype terminals may be linked to each other for political-sciencesimulation and gaming exercises. The network is designed for user convenience, and is reported to have a low overhead operation. A simulation and gaming program library is also being developed. In 1968-69, a foreign policy exercise was held among several campuses. It was repeated in 1969-70 using students from UCSB, UC-Riverside, and Chico State College. In 1971, using a PDP 11, UCSB (the control team), Stanford University, Chico State, UCLA, and UC-Berkeley were successfully interlinked. 23 pp.

The Polis Laboratory is designed for social simulation and the use of gaming methodologies in instruction and research. The name is an acronym for Political Institutions Simulation. The control center has terminal boards with 48 positions throughout the laboratory. The laboratory permits observation of face-to-face interaction by a closed-circuit television system handling up to 10 simultaneously operated video cameras. The cameras may be connected with any of the 48 terminal boards. An internal telephone system is equipped with portable instruments. Future plans call for switching to interactive teleotypes. 6 pp.

The authors claim that this series of experiments demonstrates that under some conditions it is possible to obtain high mean levels of cooperation (as high as 70 percent or even 80 percent) in a true Prisoner's Dilemma game. The level of cooperation appears quite sensitive to rather subtle situational factors, such as the source and method of recruitment of experimental subjects and the amount of social interaction between the subjects at the beginning of the experiment. 16 pp.

The paper is an excellent, well-written, and informed survey of war gaming, with reference to the significant literature. Originally prepared as a chapter in Bernard O. Koopman, ed., Military Operations Research, the selection has more general appeal. The game classes discussed include Monte Carlo, man-machine, rigid-manual, semi-rigid, and free-form games. Each class is characterized and exemplified; weaknesses and potentially productive research avenues are noted where appropriate. Significant issues for debate among gamers are outlined. 35 pp.

This is a good and quite comprehensive review and synthesis of the literature on bargaining and bidding. The sections include 'Models of Negotiation,' 'Models Predicting Influence Behaviors: Cognitive Models,' 'Learning Models,' 'Reaction Process Models,' and models that share qualities of the foregoing types. A long and representative bibliography is appended. 19 pp.

Describes a general method for solving constrained matrix games of a type occurring frequently in military and industrial operations research. The usual context is the optimal allocation of constrained resources by two opposing sides among a series of independent cells such that the payoff overall is the sum of the payoffs at each cell. The cells themselves might represent separate invasion or supply routes, battlefields, individual targets, or marketing ventures. Generalized Lagrange multipliers (EVERETT multipliers) are used to effect the solution. It is shown that the basic properties of the games preclude the possibilities of nonconverging or extraneous solutions. 12 pp.

Not abstracted; reviewed in R-732-ARPA.

The authors use the phrase allocation plan to mean any feasible budget package of projects or expenditures considered by a committee. Each committee member is assumed to assess alternative allocation plans against his own department's interests. The experiment described in this article was designed to investigate how people vote, given certain voting rules, on fairly simple and clear-cut issues. The test was on the effects of unanimity, majority, and modified majority rule (under the last rule one specific person is given a blocking vote). Three subjects were used in each of 12 replications. The subjects were all members of the MBA class of the University of Pittsburgh. The 36 subjects constituted approximately 30 percent of the class. The subjects were instructed to vote for one of three plans on a series of ballots under the various voting rules. Each was instructed to maximize his own payoff. There was inequality of distribution for each ballot; however, over the set of 18 trials each subject had the opportunity to receive the same number of 2, 5, and 6 payoffs. There were two replications under each of six possible orders, in which the voting rules were tested to control for the effects of practice on performance. There appeared to be a significant effect. This is a worthwhile application of an experimental method to an extremely important decision problem. Though this does not represent enough experimentation to indicate the significance of differences in voting procedures, it is a start. The article also contains a useful bibliography.

A preliminary report on the data system built to run with the experimental and teaching game constructed by Shubik and Levitan. The authors describe how to use the program, which was designed to allow the user to store and manipulate data from a game immediately after the game has been played. (See also D-45006.)

Coded; not abstracted; not reviewed.

A description of IDEA, computer software that uses inductive algorithms to prune a data set into decision trees. The procedures are similar to Songquist and Morgan's better-known AID (Automatic Interaction Detector) package but differ in that IDEA is time-shared, allows other-than-binary branchings, and makes no rigid assumptions about the level of measurement. AID has received the publicity, but Press and company seem to have a better IDEA. 7 pp. (See also D-77916.)
The theorizing about coalition formation requires attention to processes through which coalitions are formed, attention absent from research reported to date. The coalition process is conceptualized as involving choices regarding offers and counter-offers predicated on definitions of the situation, these definitions shaped by perceptions held by participants in the process arising out of structural conditions underlying the process and by offers and counter-offers themselves. Three studies contributing to a delineation of coalition formation processes are reported. Results suggest that in relationships in which power is differentially distributed, the bargaining behavior of those who are strong is more oriented to and by power than is the behavior of those who are weak. In this light, the coalition process may be understood as one in which rival definitions vie for precedence. 21 pp.

D-69003 'On the Use of Game Models in Theories of International Relations,' World Politics, Vol. 14 (October 1961), pp. 69-76. R. E. Quandt. 1961. Summarizing some of Schelling's efforts to link game theory and international relations, particularly bargaining and negotiation behavior, this article adds little to either game theory or international relations. The author concludes with the somewhat vacuous observation that gaming models might be useful 'to test particular hypotheses about models and to elaborate the catalogues of possible outcomes and strategies' (p. 76). He fails, moreover, to take into account a large body of literature and practice on gaming as distinguished from game theory; in fact, he uses both terms to mean something like crude game theory. 8 pp.

D-69004 'A Taxonomy of 2 x 2 Games' (Ann Arbor: The University of Michigan, Mental Health Research Institute, 1968). A. Rapoport, M. Guyer. 1968. The authors observe that a 2 x 2 game has exactly four outcomes, representing the final pairs of strategy choices by the two players. They restrict themselves to an ordinal scale to express the value of the outcome to each player. Furthermore, they limit the ordering to a strict one. In other words, there are four outcomes: a < b = d < c. The research involved the calculation of how many different 2 x 2 games one can construct. The authors conclude that there are 78 such games, which they classify with respect to the different equilibrium points they may have. For example, there are six non-conflict games where each player has a dominating strategy, five where one player has a communicating strategy, and six where neither player has a dominating strategy. The Prisoner's Dilemma is a class of its own, with what the authors call a 'strongly stable equilibrium.' This is an extremely useful and straightforward piece of work which should be read by anyone who wishes to use 2 x 2 matrix games for experimental purposes. 12 pp.

D-69006 Simulated Wars in LP-I (Santa Monica: The Rand Corporation, RM-2117-PR, February 1958). R. M. Rauner. February 1958. Report of the preliminary results of two simulated wars conducted during the course of work on Logistics Problem 1 (LP-I) at Rand's Logistics Systems Laboratory. The purpose of LP-I was to compare two logistics systems for the Air Force, one currently in use and the other an experimental advanced system. The wars were made to occur after one and two years of simulated operation of each of the logistics systems being tested. 31 pp.

D-69007 'A History of War Games,' Reserve Officer, Vol. 15, No. 10 (October 1938), pp. 19-20. E. A. Raymond. H. W. Bect. Jr. 1938. A brief but competent survey of war gaming history. The importance of the map and map maneuvering is noted in describing the evolution of chess and chess-like games through the ages and the development of card games, lead soldier games, and Kriegsspiel with its many variants. With regard to the latter, the authors discuss its increasingly complicated rules and tables, dullness resulting from too formalized game rules, and the considerable dependence on the umpire's subjective rulings to make the game play. Despite its limitations, however, the authors see that Kriegsspiel 'the game of a war game which has actually been used has proved entertaining and can be constructed easily by any who wish to enjoy it' 2 pp.

D-69008 'A Comparison of Performances of Danish and American Students in a Threat Game,' Behavioral Science, Vol. 16, No. 5 (September-October 1971), pp. 456-466. A. Rapoport, M. Guyer, D. Gordon. 1971. Two experiments comparing the strategy choice behavior of American and Danish male college students were conducted. In the first experiment, pairs of American and Danish subjects played repeated trials of a variety of 2-by-2 non-zero-sum threat games. The results of this first study indicated a number of differences between the two populations in their use of and response to threats. The general pattern of results seemed to support the conjecture that, in the underdog role of the game, Danes are more submissive than Americans. In the top-dog role of the game Americans are somewhat more fair than Danes. In the second experiment, 60 American and 60 Danish subjects played repeated trials of a variety of threat games against a programmed stooge opponent. Several different stooge strategies were employed so as to systematically vary the behavior of the other. A number of systematic differences between the American and Danish players emerged in their responses to the different stooge strategies. These differences between Americans and Danes playing against the stooge player were consistent with those observed in the bona fide pairs. 11 pp.

D-70211 The Game Monopologs (Santa Monica: The Rand Corporation, RM-1971-1-PR, March 1960). J. R. Renshaw, A. Heuston. March 1960. An account of Monopologs, a game developed in Rand's Logistics Department in which a player or group of players manages a simplified, simulated Air Force supply system consisting of one depot and five two-wing bases that phase in during the game. The game allows players to 'practice' inventory management and gain insight into inventory-control problems. In particular, the player acts as the inventory manager for 'widget,' a high-value, depot-reparable spare part, making the major decisions of inventory control that a real-world manager has to make. The player is informed of the given costs and lead times for each of his actions, he initiates procurement, plans repair schedules, and sets inventory and distribution policies. In accord with actual Air Force experience, demand for the widget is made a random variable beyond the player's control. He is given certain limited information, on the basis of which he must predict demand and establish inventory levels. He makes decisions and eventually learns their consequences. The game runs through a simulated period of 31 months, at the end of which the player makes his moves to compute his score, i.e., the total costs his actions incurred. Scores from prior runs of the game are included in this report. 33 pp.
D-71131

This laboratory at the University of Louvain (Leaven), Belgium, covers about 400 square meters. It was designed to allow maximum manipulation and control of social factors: accurate measurement and registration of individual and group behavior: the possibility for advanced training in research: and adaptability to changing experimental needs. Rooms are provided for small groups, large groups, assistants' offices, and observation; and individual booths are available for subjects. 6 pp.

D-71781

Not abstracted; reviewed in R-732-ARPA.

D-71782

A useful survey of Soviet activity in game theory. It contains translations of four Soviet articles on game theory and politics, preceded by an analysis of Soviet game theory and an account of the development of the social sciences in the Soviet Union. The translations include articles by G. Gerasimov, N. Vorob'ev, and L. Petrovskaya. The author points out that Soviet scientists and social scientists have had to soft-pedal the political science aspects of game theory. They have circumvented this restriction to some extent by devoting attention to criticizing U.S. political science. Judging from this monograph and other recent articles on Soviet gaming, Soviet work in the field should advance considerably within the next few years. 127 pp.

D-71783

This report on a method devised and employed by the authors to test whether students learn certain facts and concepts better by examining case studies or by playing the Inter-Nation Simulation game. A group of 250 upper-division undergraduates at Northwestern and Rutgers universities took part in the "quasi-experiment" (the authors' own term). The students were divided into two groups of approximately equal sex, intelligence, etc. One group concentrated on study by simulation but was exposed to the case-study method: the other group followed the reverse procedure. General results are as follows. More simulation students preferred case studies than case-study students preferred simulation. Neither method increased interest in the use of supplementary facilities, such as the library reading room, or caused students to visit professors more often. Simulation students attended classes more regularly. Simulation and case-study students differed insignificantly on two performance measures, fact mastery and principle mastery, i.e., "no simple and direct associations between method and learning were found" (p. 62). The broad conclusion was that "simulation is not uniformly superior to the case study as a supplementary teaching activity" (p. 64). However, simulation students found the course more useful and participated in more extra class sessions than did case-study students. More analyses of this rigor are needed. 13 pp.

D-71784

This fascinating article focuses on the strategic mode of competition, not only as it appears in games of strategy but also as it occurs in folk tales with strategic outcomes. Games of strategy appear to be associated with high political integration, social stratification, animal husbandry, advanced agriculture and technology, large settlements, jurisdictional levels beyond the local community, high gods, and punishment of crimes by the government. It is suggested that complex societies can function only if a significant number of adults are socialized to live in a complex system. These adults who have learned when and how to obey and disobey and when and how to command and not to command. The authors' principal findings were: (a) the strategic mode of competition is modeled in both games and folk tales in a number of cultures; (b) where the strategic mode of competition is modeled more sharply in games than in tales and that, in general, game associations are stronger than tale associations. 15 pp.

D-74251

Using game theoretical concepts, the author examines the problem of determining effective solutions for general pursuit and evasion problems. It is maintained that such solutions are nearly impossible to attain except for a small class of problems characterized as being univalent, having optimal strategies defined for all initial conditions and continuous for all admissible motions. The author develops an 'theory of optimal control for which a solution exists and whose payoff function is defined as the amount of time it takes the pursuer and evader to reach a certain configuration from a given set of initial configurations. He devises ten theorems to describe how this problem might be modeled. The general, a highly sophisticated and narrow mathematical treatment of pursuit and evasion. 20 pp.

D-74501
Map Maneuvers (Fort Leavenworth, Kansas: U. S. Army Staff College: Pri'ss, 1908). F. Sayre. 1908.

If nothing else, this short book reveals the timeless strengths and weaknesses of gaming as an analytical methodology. It gives a brief but thorough history of map games along with a description of maps and game rules as developed first by the Prussians and later by Livemore in this country. The author's recitation of the 'problems of map and game play at Fort Leavenworth at the turn of the century could have come out of a contemporary Pentagon critique of almost any current game. Detailed rules tend to proliferate, causing a loss of interest in game play: play is too slow and interrupted by other demands on the players: there is constant tension between the simplification of the game and 'known' empirical detail from the real world: success of the game depends to a large extent upon the skill and charisma of the person in control: the format of the game reduces or eliminates innovative play: etc. This is a careful work that is worth reading even more for its good sense than for historical curiosity.

D-74602

Using the payoff matrix developed by Scedel, Minas, Ratoonish, and Lipetz (D-75876, below), the authors conducted an experiment with children of different ages, sex, social class, and race. Although the subjects differed considerably from the college-adult population used in the original experiment, they performed similarly, except for some interesting and significant differences in their nonpreferred pattern of choices. What seemed to be most important in the subjects' minds were concepts of 'risk,' "collaboration to equilibrate outcomes to both players,' "maximizing one's own outcome," and being polite and considerate by helping one's partner maximize his own outcome." 9 pp.

D-75871

The complex interactions of military, technical, geopolitical, and socioeconomic factors have posed a major problem in the devising of effective counter-infiltration programs. This report represents an effort to reduce that problem. The authors describe two versions of an on-line computer program for a previously developed model of border control that enables the user to analyze insurgency situations without mathematical manipulation (see RM-6250). The present computer program simulates the investigation of specific insurgent situations and permits, the testing of quantitative sensitivity analyses of proposed border-security systems. Thus it allows rapid judgment of the probable utility of counter-infiltration methods in different contingencies. Outputs include a detailed account, over time, of the changing number of guerrillas in a specified area as a result of infiltration, interdiction, recruitment, and attrition. For any future date chosen, the program can give the total numbers, geographical density, and rate of change of guerrillas in a certain area. 63 pp.

D-75972
This study develops deterministic forms of Lancaster-type equations modeling small-force guerrilla engagements, which are typical of the early stages of insurgency. Three types of appropriate military activity are identified and treated mathematically: skirmish, ambush, and siege. In addition to the usual treatment of casualty production, these models include the effects of troop morale, troop capture, and supporting weapons. Since the descriptive equations are not amenable to closed-form solution, numerical results for illustrative parameters are obtained. 56 pp.

Not abstracted; reviewed in R-732-ARPA.

A statement on the current status of urban gaming in West Germany. Despite the Germans' centuries-old interest in and practice of war gaming, they have pursued urban-planning gaming only since 1967. Nor have any distinctively German games been developed. Instead, American games have been transplanted, e.g., Duke's METRO and METROPOLIS, Feld's CLU, and Stone's STARPOWER. Centers of urban gaming activity include the Technische University of Berlin, DATUM (a public opinion survey organization) at Bad Godesberg near Bonn, and the universities of Stuttgart, Cologne, and Karlsruhe. According to the author, a professor of planning and architecture at the Technical University of Berlin, German experience with the transplanted games has been uneven at best. Difficulties include communication and translation problems, structural differences between German and American cities; unclear to inadequate theoretical structures in the games; lack of documentation; and a general overestimation of what the games could be expected to accomplish. More disconcerting are the author's assertions that the games have been played with little regard for research or operational questions or purposes. In fact, he characterizes current German activity in urban gaming as the 'hobby approach' to problem-solving. 21 pp.

Coded; not abstracted; not reviewed.

Coded; not abstracted; not reviewed.

A weak and nearly incomprehensible prolix article. The message, as well as one can decipher it, is the following: not many political scientists know much about gaming or simulation; the methods are intrinsically interesting, fascinating, compelling; if one elects to use the methods, he should be scientific. Being scientific includes considering the appropriateness of a game, the need for better gaming models, the necessity of adequately communicating a game model to the players, and the personalties of the role-players. Each topic warrants additional research. 17 pp.

This paper is one of a series of technical notes on topics in the mathematical theory of n-person games. Convex games are competitive situations in which there are strong incentives to form large coalitions; examples can be found in both commercial and diplomatic contexts. The core of an n-person game is characterized as the set of outcomes that cannot be blocked by any coalition of players. It is shown that the core of a convex game has a regular structure and that it is closely related to two other solution concepts: (1) the value solution is the center of gravity of the extreme points of the core; (2) the von Neumann-Morgenstern stable set solution is unique and coincides with the core. This is a rigorous and clear presentation of basic game theory. While the paper is not of central interest to gamers, the ideas of solution and solution space are important. 24 pp.

This paper consists of several loosely related essays on the theory of finite, two-person games. The topics covered are, in brief, (1) the block decomposition of symmetric games, (2) saddlepoints in matrices having submatrices with saddlepoints, (3) games with saddlepoints and order matrices, (4) the existence of values in games with almost-perfect information, and (5) the nonconvergence of fictitious play in non-zero-sum games. Throughout, there is an emphasis on features of the theory that do depend only on the ordering of the payoffs, as opposed to their numerical values. The value of this work to the gamer is in showing where two-person zero-sum game theory results will hold with weaker conditions on the payoffs. This gives more latitude in model-building. 42 pp.

A formal formulation from the marketplace is examined from three different theoretical viewpoints, and the three solutions are contrasted. When the number of participants is small the solutions are very different, both in their form and in their quantitative predictions. As the size of the market increases, however, they all converge to a common solution, despite wide disparity in the underlying assumptions. A relationship is thereby demonstrated between (1) the administered price stability (the competitive equilibrium), (2) non-collusive oligopolistic exploitation (the equilibrium point of a non-cooperative game), and (3) unrestricted bargaining between coalitions (the core of a cooperative game). The first model corresponds to the so-called Walras solution, the second to the Cournot solution, and the third to the Edgeworth solution. This is a rigorous, clear examination of classical market theory from a game theoretic perspective. The approach should be useful to those who are concerned with economic games. 34 pp.

Several models of exchange economies with many participants are discussed, including the classical Walrasian competitive equilibrium, the core concept, and the value or determination of situational equity. Although these various 'solutions' converge when the number of traders is large, there is striking contrast between the sets of economic assumptions underlying each. The core is based on the possibility of forming large, efficient coalitions to control distribution. The competitive equilibrium is based on the decentralized management of the exchange mechanisms, with a minimum of information exchange and complete absence of collusion. Value corresponds to the idea of 'fair division,' a concept explored in some detail. It is concluded that the superficial similarity of the core and value solutions should not be allowed to obscure the fundamental differences that exist. Theorems are provided in mathematical appendices. Relevant literature is listed in the references. 18 pp.

This note describes a stock market game derived from a 'regular' business game and played in a simulated stock market. The possibility of using a stock market game as an experimental device to study expectations and market
behavior is discussed, and the data from a run of this game together with some analysis are presented. There were about a hundred players in this game. 21 pp.

A discussion of the relationship between the theory of games and experimental gaming. It includes comments on games of indefinite length and lack of knowledge concerning the rules. Six simple games are constructed and examined in the light of four different solution concepts. These games were used in an experiment with a class of Yale seniors as the subjects. The results of these experiments appear to lend weight to the non-cooperative equilibrium concept of solution.

Description of a simple, highly amusing, and instructive parlor game that is based on the auction of a dollar. This game illustrates some of the difficulties of the non-cooperative concept of equilibrium. The game is usually highly profitable to its promoter. The auctioneer auctions off a dollar to the highest bidder, with the understanding that both the highest bidder and the second highest bidder will pay. For example, if A has bid 10 cents and B has bid 15 cents, then the auctioneer will obtain 25 cents, pay a dollar to B, and A will be out of pocket by 10 cents. The game provides a good analogy to the process of drug addiction. (Reprinted in Journal of Conflict Resolution, Vol. 15, No. 1 (1971), pp. 109-111.)

This paper describes the work of the computer-based laboratory for behavioral research at the System Development Corporation, one of the largest gaming laboratories. Several interesting studies were run on binary choice, leqipment-aidered instruction, bargaining and negotiation, machine-machine problem solving, organization and management, and international relations. The authors discuss problems of the pre-experimental assessment of individual differences among subjects: instruction and subject comprehension, preparation and presentation of experimental stimuli, experimental design, and control of social interaction through the simulation of subjects or artificial players. This is a useful introduction to some of the problems of laboratory design and how they influence experimentation in gaming. The authors make a convincing case for large-scale, high-computerized laboratory facilities. 8 pp.

This important article successfully bridges personality measurement, experimental gaming, and aspects of international relations. The authors devised their personality attitude schedule by combining, according to factor analysis, portions of 10 existing attitude and personality scales, each measuring pacifism and belligerence in some degree. The new summary scale was then tested on five experimental populations. Low intercorrelations were found among the six summary factors for each population, a promising finding. Since then, two validity checks have been run by other researchers, with similar promising results: (1) Some scores for 3 to 6 factors were related significantly with game behavior (joint payoffs in a two-person, non-zero-sum game); (2) Crow and Noel reported that in experiments with the International Simulation, players' personalities, as determined by the Shure & Meeker personality attitude schedule, significantly affected game behavior. The complete schedule is included. 20 pp.

In a series of finely focused experiments, Shure and Meeker report results that demonstrate empirically that subjects will adopt a strategy of persistent dominant choice in a Prisoner's Dilemma game, i.e. a nornatively rational strategy, if a condition of discontinuous relations is satisfied. The article is a rare example of conciseness and high density of information for a social science article. 2 pp.

Using the laboratory facilities of the System Development Corporation, the authors attempted to measure the effectiveness of pure pacifist strategies in controlled bargaining situations. Even allowing for the oversimplification and abstraction of the bargaining situation that result from devising a laboratory experiment, and allowing for the use of college-student, non-professional bargainers as subjects, the results were startling in their consistency. Pacifist tactics were shown to invite exploitation and aggression by those who did not share the pacifists' moral convictions. Furthermore, when the pacifist was identified and his intentions made known, he was still exploited. A tentative conclusion, appropriately qualified, was that pacifist strategies are inherently limited in a bargaining situation: weakness invites aggression. 12 pp.

This article describes an ambitious and promising attempt to devise routines for analysis, classification, and evaluation of data generated from games. Its brevity does not permit the reader to evaluate the power of the programs and the 'language' being developed. Nevertheless, the problem to which it is addressed is well stated and the discussion is straightforward and sensible. 5 pp.

A discussion of the difference between constructing an artificial player for a zero-sum game, such as chess, and for a non-constant-sum game, such as a business game. It is pointed out that in the former case, the social characteristics of the artificial player are of no importance, whereas in the latter case these characteristics may be more important than problem-solving ability. In some sense social artificial intelligence may be different from problem-solving artificial intelligence. An artificial player for a business game is then described. The heuristic equations are discussed. This player was matched against 22 live players in a duopoly game. The artificial player was regarded by the live competitors as challenging and not easy to predict. Most of the live players achieved a score higher than the artificial player; four had lower scores. 16 pp.

This report on a series of economic games run with markets of 2, 3, 5, and 10 teams competing against each other. The main purpose of the game was to study the effect of increasing the number of competitors upon price levels and advertising. 50 pp. (See also D-77915.)

This gives the theory behind the use of an oligopolistic market in an experimental business game (see D-77914). It analyses, in particular, the mechanics (including the joint maximum, non-cooperative equilibrium, and beat-the-average solutions) by which the effect of increasing the number of competitors is tested. 34 pp.

IDEA is a computer program for inductive data exploration and analysis. It was developed for on-line interaction in the Q-32 computer time-sharing system. It is designed for discovering and summarizing potentially interesting data models in the form of restricted tree structures for a multivariate data base. Two other tree structure programs are compared with IDEA. 2 pp. (See also D-68622.)
This is a Soviet review of Hans Speier's 1969 book *Force and Folly.* The reviewer shows his ideological stripes: he places Speier in "the right wing among those favoring a strict line in international affairs" and accuses him of producing "fantasies regarding the Soviet Union and its foreign policies." On balance, however, Shreber summarizes the book well and gives a good brief description of the free-form gaming done at Rand in the late 1950s. 2 pp.

The selection of strategic retaliatory systems is one of the most significant problems facing the United States today. This report develops and solves the mathematical model for a general mix of percentage-vulnerable and numerically vulnerable systems. Percentage-vulnerable systems consist of mobile weapons that are difficult to locate but relatively easy to destroy once located; numerically vulnerable systems contain easily located, fixed-base weapons that are difficult to destroy. This analysis is distinctive in incorporating into the model the value of both the attacker's and the retaliator's existing weapon systems. 54 pp.

In a study intended to point toward possible applications of game-theoretic reasoning to sociological problems, mathematical models are used initially to examine the results of two-person non-contest-sum games in which a single value, status, is maximized, and subsequently to examine the results of multi-person games. The two-person, single-value-maximizing game quickly demonstrates behavior to be purely competitive. The multi-person game illustrates possibilities of coalition behavior, as demonstrated elsewhere in game theory, which includes the possibility of combinations against individual players, but the outcomes are highly sensitive to the values assigned to status factors, as in pecking orders and potlatches. The relationship between games of status and simple games is also examined. 12 pp.

After making their choices, played a number of gambles (NK29), (NK184) made choices but did not actually play any of them. The subjects (Ss) in Group H (NK184) made choices but did not actually play any of them. The Ss in Group RP (NK29), after making their choices, played a number of gambles to determine their salary. When choices were hypothetical, Ss maximized gain and discounted the possibilities of loss. When Ss knew they would have to play their preferred gambles, they were more cautious, preferring better odds and smaller losses than did Ss under the hypothetical conditions. More information on the naivete of Ss and the interpretation of results would have improved this article. 4 pp.

The game of Go is a two-person game in which the players take turns marking off points on a grid. The player who connects four points in a straight line wins. The game is believed to have originated in China over 2,000 years ago. The rules of Go have evolved over time and are still being refined today. The game is played on a grid of 19x19 points, with each player occupying 175 points. The objective is to capture the most territory. The game is known for its deep strategic complexity, with the number of possible moves growing exponentially as the game progresses. The game has been influential in the development of artificial intelligence, as it is a good test case for algorithms that can learn from experience and make decisions in complex environments.

The invention of the game of Go is attributed to Wu, a vassal of the Chinese emperor who reigned 1818-1767 B.C. The oldest reference in Chinese works (about 1000 B.C.) is to a game easily recognizable as Go which is mentioned so casually that it must have been well known at the time. At the beginning of the 17th century Go was highly developed by a group of expert players in Japan. This book was originally published in 1908. It is a good manual for learning to play the game.
This examination of the deterrence concept zeroed in on the much-overlooked psychological factors in strategic gaming. It revealed that emotional factors—the balance of intentions—are central to deterrence theory and practice. Today, one can scarcely imagine a strategic war game that fails to take such factors explicitly into account. The author identifies the credibility of one’s threat and the rationality of one’s image or appearance as related psychological concerns that warrant more attention in research and actual gaming. Implicitly the article calls for much more rigorous experimentation on bargaining processes and behavior. The author’s rather simple game-theoretic illustrations belie the complexity and importance of his main substantive points. Any strategic gamer who chooses to ignore intangibles in the interest of quantification and rigor could profit from a careful reading of this article. 16 pp.

Several examples of war games are described and some comments made about problems and values of gaming. The examples include large and small, high level and low, detailed and aggregated games; some use human umpiring, others make their assessments mechanically. There is a brief account of the work of the Total War Research Institute (established in Japan in 1940) in preparation for the attack on Pearl Harbor. American Kriegspiel is also discussed. 19 pp.

This is a convincing case for the merits of using a laboratory exercise to evaluate logistic systems, though the critical reader will undoubtedly disagree on one or two points. For example, sensitivity testing is dismissed with ‘parameters that have little or no effect are eliminated from further research.’ In the first place, how does one know what parameters have little effect, and second, is not the value of the effect more important than its size? Apart from a few such weaknesses, the article is worthwhile for its straightforward treatment of the uses and limits of laboratory testing of aspects of complex organizations. 21 pp.

Though this is a book about the theater, it is recommended to the gamer for its insights into the construction of free-form, non-numeral games. Chapter 2, ‘Workshop Procedures,’ is especially useful for guidelines and for its comments on role-playing and direction, i.e., ‘referring,’ which have not been as cogently expressed in professional gaming treatises. Several examples will suggest Mrs. Spolin’s perceptivity. On the use of games: ‘Like dance or space exercises, games release spontaneity and create flow as they remove static body movements and bring the actors together physically. Games are especially valuable in cleaning up scenes requiring sharp timing’ (p. 350). She defines a game as being an accepted group activity that is limited by rules and group agreements; fun, spontaneity, enthusiasm, and joy accompany games; games parallel the theater experience, and improvisation is structured like a game—and vice versa (p. 382). The direct relationship between games and theater has been noted by Nera Boyd in Handbook of Games (Chicago: Fitzsimons, 1945), to whom Mrs. Spolin acknowledges an intellectual and professional debt.

A game theoretical analysis of the anti-submarine pursuit and evasion problem is developed for a mobile defense system against submarine-launched ballistic missiles. The payoff function for the attacker is the number of submarines that can successfully launch missiles. A game solution is developed for non-information contingency, and a partial solution is developed, for instance, of some information on the location of submarines. The solution is for only a limited number of parameters. This is a basically mathematical treatment of fundamental pursuit and evasion problems. A solid piece. 25 pp.

The title asks a good question, but the author never gets around to answering it. A bit of pap (‘games are good’) for the busy and not very intelligent businessman or personnel administrator. 4 pp.

Nine dyads played 20 trials of a duopoly price bidding game. On each trial the subjects submitted bids and received information about their own profits and the other’s bid. Both subjects had identical cost and revenue functions, and the payoff relation between them was symmetrical. Over 60 percent of the price bids in the game were at or below the zero profit point, and only 12 percent of the bids were at the cooperative maximally profitable price. Structurally and empirically, the game had characteristics similar to the mixed-motive Prisoner’s Dilemma. Although the subjects followed a strategy recommended by economic theory, the dilemma characteristics forced them to carry the strategy into the bid region below the lower limit suggested by economic considerations. Directions of bid shifts were strongly influenced by relative position (high or low bidder) on the previous trial and by both the player’s own previous bid and the other’s previous bid. Bids tended to shift gradually to the next higher or lower bid or to be maintained, and responses to the other’s previous bid showed a similar pattern. Dyad members who won more or lost less money than their partners chose lower bids and responded differently to bids than did their partners. Bidding was used as a signalling channel to the other subject to overcome the lack of overt communication between dyad members. 13 pp.

SYMVU is a three-dimensional surface-planning package developed at the Harvard Computer Graphics Laboratory. SYMVU documentation, program decks, and the related but less sophisticated SYMAP, a two-dimensional plotting package, are all available for a fee from the laboratory. Both plotting packages have been used for urban and transportation analyses, models, and games, and are heavily user-oriented and quite cheap. For example, the SYMVU tape reference-operator’s manual, and sample output are listed at $360 to nonprofit users and $575 to others. For the interested gamer, these packages provide a useful and dramatic way to represent various game outcomes or to visually portray the results of a sensitivity analysis of a computer model used in the course of game play. Both packages are known to work and to be of quite high quality. 8 pp.

A bibliography of 1600 references on gaming and simulation that touches on a host of subjects including accounting, aeronautics, artificial intelligence, bargaining, behavioral sciences, business, cards, cognition, communication, computers, cultural relations, decisionmaking, defense, driver training, economics, education, game theory, geography, human engineering, international relations, learning, interpersonal relations, management, marketing, medicine, military science, operations research, performance, politics and government, psychology, and school administration. The references are annotated, but only to describe, not to evaluate, the contents. This limits their utility. The bibliography is selective in the sense that older, more frequently cited articles are left out, and the references favor instructional over, for example, experimental games. 286 pp.

This article suggests that games of strategy are related to obedience training and to cultural complexity; that games of chance are associated with high responsibility training and belief in the benevolence of the gods; and that games of physical skill are related to an emphasis on achievement. The study behind these conclusions used the results of three polls taken in 1940 and 1948: (1) a 1940 Gallup poll, in which 3000 subjects were asked which games, of a list including tennis, golf, bridge, checkers, bingo, craps, and dice, they had played in the previous year; (2) the Minnesota poll of 1948, in which 600 respondents were asked which activities, including fish-
This monograph brings together the many threads of current international

price and product sales each period are determined by equating the aggre-

gan oligopolistic industry operating by a set of anticipatory decision rules and

who identify themselves with the welfare of their communities. The product

simulated society is studied by use of competitive business games. The

The behavior of consumers, labor, investors, and community members in a

years. It is not surprising that business gaming is finding advocates there.

This naive description of the PLATO system concludes merely that a gam-

This report considers the problem of determining the best behavior strate-

scheinet.

The behavior of consumers, labor, investors, and community members in a

The model of the simulation represents a cloned economic system with firms in

an oligopolistic industry operating by a set of anticipatory decision rules and

a number of house-hold communities whose decisions are made by players

who identify themselves with the welfare of their communities. The product

price and product sales each period are determined by equating the aggre-

gate supply function on the firms and the aggregate demand function of the

household communities. The wage rates and employment each period are
determined by matching offers of the firms with offers of the household

communities. 13 pp.

International System and Foreign Policy Approaches: Imple-

fications for Crisis Modelling and Management (Michigan: University of Michi-

This monograph brings together the many threads of current international

relations theory under the headings of stimulus-response, incremental, and

mixed stimulus-response/incremental models. The author proposes the crea-

tion of a Computer Aided Crisis Information System (CACIS), and he

illustrates how it might work by elaborating on the Berlin Crisis of 1961. The

footnotes could serve as a workable bibliography of current international

relations sources. 37 pp.

This article has stood the test of time because it is a first-rate general

assessment of the methodological and practical strengths and weaknesses of

gaming. The authors begin by comparing simulation, Monte Carlo gaming,

and operational gaming. The relationship of game theory to operational

gaming is clearly illustrated with a simple detection problem in anti-subma-

rime warfare. The importance of gaming to simplify problems is stressed,

and some qualitative differences between rigid and free-form games are noted

in this regard. The heart of the paper, a comparison of gaming and non-gaming

techniques in practice (pp. 19-25), is required reading for anyone interested

in gaming. In it the authors assess nine alleged advantages of gaming. They

are, in (for the authors) decreasing order of defensibility, (1) selling and

teaching the solution of games, (2) eliciting information from inarticulate

experts, (3) stimulating the imagination, (4) incorporating intelligence inter-

play, (5) solving nonfactorable problems where context is important, (6)

pooling the knowledge of experts, (7) determining balanced forces and

estimating marginal utilities, (8) testing sensitivity over a wide range, and

(9) incorporating actual probability distributions. 27 pp.

A useful and informative essay based on the copies of 100 gaming specialists
to a survey on the applications of gaming. It presents a balanced view of the

disadvantages and the virtues of the use of games. One of the authors

conducted a similar survey ten years earlier that suggested applications

limited mainly to the military. The present survey shows how the range of

applications has broadened. The authors expect the uses, number of players,

and number of professionals to increase. 22 pp.

'Stage Pattern Recognition for Resource Utilization Planning,' paper given at 1970 Association for Computing Machinery Meet-

This is another example of the ill-founded attempts to publicize Buckminster Fuller's 'World Game.' Were the salesmanship evidenced in this and other promotional activities convertible into the coin of the realm, Fuller would probably already have garnered more than the $16 million that he claims is needed to set the World Game in operation. As parent as the nonsense is, several responsible public officials have shown more than passing interest in the enterprise: HR 17467, 91st Congress, 2nd Session. May 21, 1970, called for several millions of dollars to support the endeavor, and the state legislature of Illinois has proffered $4 million in matching funds for it. 9 pp.

This naive description of the PLATO system concludes merely that a gam-

plag is a good thing. 21 pp.

On Behavior Strategy Solutions in Finite Extended Decision Processes (Lafayette, Ind.: Purdue University School of Electrical Engineer-

This report considers the problem of determining the best behavior strate-
gies for a decisionmaker in a two-person, zero-sum, finite extended decision

situation. 'Best' strategies are defined as those that maximize a player's

expected return against all possible strategies that can be employed by the

other player. The decision process is thus considered a two-person, zero-

sum, finite extended game. Techniques are developed for finding the best

behavior strategies using arbitrary information-collection schemes. These

techniques make it possible to search in any given game for strategies that

are minimally complex but acceptably effective. A doctor-patient medical

game is 'searched' using these techniques, and behavior strategies are found

for the doctor that are more than 90 percent as effective but less than 10

percent as complex as the best strategy that results when the doctor gathers
and retains all the information defined to be available to him. A pursuit and evasion game is also studied and best behavior strategies are determined for the pursuer and the evader when each gathers and retains all the information available to him. 178 pp.

The author suggests that simulation models are designed and used to learn about a process. Validation is the act of increasing to an acceptable level one's confidence that an inference about a simulated process is correct for the actual process. There is no single best validation test. One selects a subset of tests from all possible tests, and in so doing constructs a standard decision problem of balancing test costs against the costs of inferring incorrectly. There are purposes for constructing simulations: (1) criteria for judging the 'validity' of simulations other than those that Van Horn suggests. For example, a simulation could be constructed as a data-organizing device to be built-in parallel with a data bank, or it could be designed to teach the importance of consistency and thoroughness in model-building. Those purposes would require quite different validation criteria than the few specified in the article. In short, when adequate data are available, statistical tests are an essential part of validation, but only a part. Other possible validation tests are (in order of increasing value-cost ratio): (1) find models at high face validity; (2) make use of existing research experience, observation, and any other available knowledge to supplement models; (3) conduct simple empirical tests of means variance and distribution by using available data; (4) run 'Turing'-type tests; (5) apply complex statistical tests to available data; (6) engage in special data collection; (7) run prototype and field tests; and (8) implement the results with little or no validation. The real task of validation is selecting an appropriate subset of tests to be used given a specific simulation with a specific purpose. 10 pp.

This lengthy book review of three reports on INS (Internation Simulation) does little more than perpetuate popular cliches about simulation. The reviewer's negligible experience with the methodology perhaps accounts for the insubstantial criticism of the reviewed books. One tires of reading the nth ode to the beauty and promise of simulation. What is needed, rather, is informed and sharp appraisal. 25 pp.

This report describes a logistics game, Misslogs, developed in the Logistics Department of The Rand Corporation. The game demonstrates the interactions between logistics support and the operations of a ballistic missile squadron, with the player or group of players assuming the composite role of director of operations, supply, maintenance, and personnel at squadron level. Like its forerunners, Monopoly and Baseslogs, this game is designed as an educational device to further the understanding of logistic situations. Misslogs points out some of the areas in which bottlenecks are likely to occur and impede the smooth operation of a missile squadron, such as maintenance personnel and equipment, spares, and transportation. Each player receives the same fixed budget, which he may apportion as he sees fit among the resources in these areas. He thus becomes aware of the tradeoffs, both promising and unpromising, that are available. For example, he may find that he can add personnel to his squadron only at the cost of reducing his stock of spares. The object of the game is for the player to achieve a maximum state of readiness within the budget constraint. 14 pp.

A description of the PLANET model, which is a series of four computer simulation programs designed to examine the interaction between the hardware-configuration operations and logistics support of a variety of weapon systems in a single-base or multi-base environment. The author concisely describes the four simulators and the twelve output programs contained in the Reports and Analysis Library of the model and discusses the capabilities and limitations of the PLANET complex. 43 pp.

This experimental study concludes that people are willing to take higher risks as members of a group than as individuals. A shift in willingness to take risks was observed as a result of group interaction. The shift manifested itself under several controlled conditions and persisted in a group over time. Possible explanations are that (1) individual's may be emboldened by the belief that responsibility is diffused, not personalized, in corporate decisions; and that (2) individual high-risk-takers may exert personal influence over the more cautious members of the group so as to sway the entire group toward riskier choices. These conclusions have serious implications for certain kinds of gaming as well as for certain situations in the real world. 12 pp.

This study, a sequel to an earlier experiment (see D-90501), supports the latter's conclusion that people are willing to take higher risks as members of a group than as individuals. The most consistent explanation for this finding seemed to be the effect of verbal discussion, which led group members to sense diffused responsibility for a risk. Alternative explanations, provision of information about peer group preferences and the achievement of consensus, were not borne out when tested. The implications for bureaucratic decision-making are noteworthy. A list of the relevant literature is appended. 19 pp.

This paper discusses generally the concept of stability in international politics. Implicit in the discussion is the requirement for multiple, specialized models for various analytic and policy contingencies. The need is outlined in terms of distinct spatial, political, symbolic, economic, military and other specialized models. Differences between idealistic and instrumental perspectives on stability are sketched. This is a good, brief indicator of the pre- or non-theoretic status of much political science and international relations.

The limitations are serious and ought not to be overlooked by 'hard' gamers bent on formalizing and quantifying. 10 pp.

This is an excellent survey of war gaming from early times to the present. The author distinguishes two types of war games and analyzes their differences. This study remains timely today. It should be read with D-91613. 40 pp.

Not abstracted: reviewed in R-732-ARPA.

Coded; not abstracted; not reviewed.

Weiner discusses several aspects of gaming methodology with authority and common sense. The short sections on what games are and can do and what they are not and cannot do are concise gems of wisdom. A sample war game is 'walked through' to show the novice about the preparation, play, analysis, and follow-up phases of gaming. A single tactical game is shown in three separate applications to illustrate how the character of, and demands placed on, a game change dramatically with changes in the application or intended purpose of the game. We recommend this article highly. 14 pp.

Social interaction between two persons may be viewed as an information-processing continuum: each case of interaction involves the acquisition (perception and memory), evaluation (testing of the interpersonal relationship), and implementation (decisions affecting) of information by each person. This paper analyzes mainly the evaluation aspect and constructs a theory and method of information evaluation by integrating theories of one-way influence, two-way influence, and formal analyses from game theory. 14 pp.

Science Information Exchange of the Smithsonian Institution provides, for a reasonable fee, a literature search on one or more topics. We requested one on gaming and game theory. The search turned up a few interesting references, but for the professional gamer there is not much new information, and for the novice the references would not be very useful. This is a competent and well-organized library service; its deficiencies merely point up the hazard of having adequate technical search procedures without adequate selection and cataloging of publications. The value of such a service depends on having high-level professional participation. It will become even more important that publications be well scrutinized and evaluated before being made available for retrieval, if for no other reason than to reduce the volume of required reading.

Not abstracted; not reviewed.

This paper describes the first exercise, called PROLOG, of Rand’s LSL. The exercise was designed to educate the staff of the LSL in the laboratory technique and to study the adaptability of that technique to logistics problems. 35 pp.

Of historical interest, this article describes gaming activities at the National War College circa 1914. Painted comments are made about the small size of the U.S. armed forces at the time, for example, in stating that gaming was resorted to as a substitute for exercises of actual troops. Our army now numbers thousands—these gentlemen play the map game with hundreds of thousands, what we would require in time of war, and they know that such a number is necessary—and strive their mightiest to learn how to hold the enemy in check with our little handful until the volunteers may be trained, which takes months! May the day of sacrifice be deferred!” (p. 471). We see that gaming was used for advocacy, even in 1914. The game itself is summarized in sufficient detail for us to know that it used two teams plus control, and that play was manual, of sequential moves, in variable-time, and on a map-board. Levels of resolution extended fromimmer to small-unit-size map grids. Emphasis was placed more on maneuver than on ultimate winner-objectives. This article provides historical perspective on war gaming in the United States. 2 pp.

A concise yet comprehensive review of technology in education, including facilities, equipment, uses, and costs. ‘Education’s’ is described in terms of the work of several prominent educators, such as BCA Instructional Systems, Raytheon Learning Systems, and Encyclopedia Britannica Education Corporation. The prime enabling legislation is the Elementary and Secondary Education Act of 1965 (ESEA), whose Title IV is discussed extensively. It provides monies for R & D in education and has stimulated the development of educational laboratories in a number of demonstration projects, for example, Stanford in Palo Alto, California, and Encyclopedia Britannica in Lexington, North Carolina. For the gamer, this article is important in showing that, with existing legislation and technology, laboratory facilities can be constructed for educational gaming. To date, activity has centered on Computer Aided Instruction (CAI) in the more conventional sense. The ESEA’s express provision for the construction of ‘Regional Resource Centers’ has not been explored as it might have. Also of interest, several architectural firms are beginning to specialize in the construction of educational laboratories. The future for these activities seems promising, and educational gaming probably has an important role to play in that future. 12 pp.

This is a monthly magazine published for the war-gaming buff. The discussions of the possible financial rewards of entering tournaments and the detailed discussions of game play indicate that its readers, though few (circulation is less than 500), are serious and avid. One wishes that communications among operational war gamers were as good as those evident here among war gaming hobbyists. (See also D-97505.)

Not abstracted; reviewed in R-732-ARPA.

This is a less informative article than one would expect from the Encyclopedia Britannica. Nevertheless, it provides several useful insights and a useful bibliography. 4 pp.

This is a varied collection of articles that apply to the theory and practice of model-building. The professional gamer and modeler is particularly advised to read M. G. Keen's, ‘Introduction to Model Building and Its Problems’; R. D. Ball, ‘Econometric Models;’ J. R. N. Stone, ‘Economic and Social Modeling;’ and H. G. Wold, ‘Model Building and the Scientific Method.’ The tone of the articles is free from the pinchedness that one finds in similar works by predominantly American contributors. The book could serve nicely as the text for an introductory course in gaming and simulation methods at the advanced undergraduate or graduate level. The professional will be interested in such an applications oriented model building of an oil company, air traffic control, and automobile traffic in Rome. 165 pp.

A good bibliography surveying the literature on game theory, international relations games, and some work in business and management games for 1961-1963. 12 pp.

Description of a project worthy of interest but hopelessly huge in scope. If the authors concentrate on one or two questions of the many they claim the model can handle, they may be able to obtain some valuable information.
Appendix A

SAMPLE CODING SHEET

GAMING BIBLIOGRAPHY - LONG FORM

SEQUENCE NUMBER: []

AUTHOR: []

TEXT:

DESCRIPTION: W. O. Yardley, *The Education of a Poker Player*, Business, Entertainment, Excellent, 1957

ATTRIBUTES:

<table>
<thead>
<tr>
<th>PURPOSE</th>
<th>QUALITY ASSESSMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>OTHER</td>
<td>1. NOT EVALUATED</td>
</tr>
<tr>
<td>TECHNICAL</td>
<td>2. EXCELLENT</td>
</tr>
<tr>
<td>TRAINING</td>
<td>3. OF NOTE</td>
</tr>
<tr>
<td>OPERATIONAL</td>
<td>4. HEBE</td>
</tr>
<tr>
<td>ENTERTAINMENT</td>
<td>5. LIMITED</td>
</tr>
<tr>
<td>RESEARCH/THEORY</td>
<td>6. BAD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PURPOSE</th>
<th>CLASSIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>POPULARIZATION, ADVOCACY</td>
<td>NA: UNCLASSIFIED</td>
</tr>
<tr>
<td>BUSINESS/ORG/LOGISTICS</td>
<td>CONFIDENTIAL</td>
</tr>
<tr>
<td>POLITICAL-DIPLOMATIC- MILITARY</td>
<td>SECRET</td>
</tr>
<tr>
<td>SOCIAL PSYCHOLOGY/ PSYCHIATRY</td>
<td>TOP SECRET</td>
</tr>
<tr>
<td>ARTIFICIAL INTELLIGENCE</td>
<td>DATA CONFIDENTIAL</td>
</tr>
<tr>
<td>POLITICAL SCIENCE</td>
<td>NARROW</td>
</tr>
<tr>
<td>SOCIOLOGY/ORGANIZATION THEORY</td>
<td>RESEARCH</td>
</tr>
<tr>
<td>ECONOMICS</td>
<td>MEMORANDUM: REPORT</td>
</tr>
<tr>
<td>EDUCATION</td>
<td>NA</td>
</tr>
<tr>
<td>BANKING/FINANCE</td>
<td>NA</td>
</tr>
<tr>
<td>GAME THEORY</td>
<td>NA</td>
</tr>
<tr>
<td>GAMING THEORY, METHODOLOGY & TECHNOLOGY</td>
<td>NA</td>
</tr>
<tr>
<td>URBAN PLANNING/ECOLOGY</td>
<td>NA</td>
</tr>
<tr>
<td>KARAS</td>
<td>NA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ARTICLE TYPE</th>
<th>FUNDING SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISCUSSIVE</td>
<td>NA</td>
</tr>
<tr>
<td>ALLIED TOPIC</td>
<td>NA</td>
</tr>
<tr>
<td>CASE DESCRIPTION</td>
<td>NA</td>
</tr>
<tr>
<td>GAME DESCRIPTION</td>
<td>NA</td>
</tr>
<tr>
<td>GAME RESULTS</td>
<td>NA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MATH SOCIOPHICATION</th>
<th>YEAR PUBLISHED</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOW</td>
<td>1943 or before</td>
</tr>
<tr>
<td>MEDIUM</td>
<td>1944-1950</td>
</tr>
<tr>
<td>HIGH</td>
<td>1951-1955</td>
</tr>
<tr>
<td>LOW</td>
<td>1939-1940</td>
</tr>
<tr>
<td>MEDIUM</td>
<td>1941-1945</td>
</tr>
<tr>
<td>HIGH</td>
<td>1946-1950</td>
</tr>
<tr>
<td>LOW</td>
<td>1951-1955</td>
</tr>
<tr>
<td>MEDIUM</td>
<td>1956-1960</td>
</tr>
<tr>
<td>HIGH</td>
<td>1961-1965</td>
</tr>
<tr>
<td>LOW</td>
<td>1966-1970</td>
</tr>
<tr>
<td>MEDIUM</td>
<td>1971-1975</td>
</tr>
<tr>
<td>HIGH</td>
<td>1976-1980</td>
</tr>
</tbody>
</table>

* The order of the attributes on this form differs from that presented in Section II, but the information is the same.
H. O. Yardley, 1957.

This classic not only gives a sound discussion of the probabilistic aspects of poker, it also has a side benefit in presenting the author's delightful anecdotes of his vicissitudes in learning the game. The book can be read as literature, as an instruction manual, or to understand poker as a social activity. Excellent, well worth reading.
Appendix B

PRODUCTION

The various output formats shown in Sections III-V were produced from a single input format—the filled-in coding sheet (see Appendix A). That is one of the beauties of Rand's Text and Catalog System, the set of computer programs that was adapted for this literature survey. Originating in the parsing and grammar software developed by members of a Rand linguistics project in the early 1960s, this system is currently used to produce a variety of indexes and bibliographies of corporate publications.

As he read his quota of publications, each author marked the appropriate categories and drafted an abstract on a coding sheet. The authors met weekly to discuss and reach accord on the contents of the accumulated coding sheets. The sheets then passed to the production system, where their contents were typed on the IBM Magnetic Tape Selectric Typewriter (MT/ST), an office machine designed to speed the correction and editing of typewritten material. The hard copy was proofread by the authors and corrections made to the MT/ST tapes. The corrected tape was then put through an IBM 2495 Converter multiplexed to Rand's IBM 360/65 computer, and processed using the Text and Catalog routines mentioned above. Drafts of Sections III-V of this Report were obtained merely by calling for a printout of this tape in three different outputs. To obtain the more refined printing job needed for the final Report, the same tape was sent outside Rand to be run through an RCA Spectra 70/35 and RCA Videocomp. This process not only produces typeset galleys in a variety of type sizes and faces, but also justifies and hyphenates lines according to standard algorithms.

This system is not perfect. The reader may notice, for example, that alphabetization is correct only to the first two characters of an author's last name. But such faults are tolerable because in other respects the system is so convenient, reliable, and cost-effective.