SOLVING STAIRCASE LINEAR PROGRAMS BY A NESTED BLOCK-ANGULAR METHOD

George B. Dantzig
Stanford University

Prepared for:

Office of Naval Research
Atomic Energy Commission
National Science Foundation

January 1973
SOLVING STAIRCASE LINEAR PROGRAMS BY A NESTED BLOCK-ANGULAR METHOD

BY

GEORGE B. DANTZIG

TECHNICAL REPORT 73-1

JANUARY 1973
The objective is to have a compact inverse representation of the basis of a staircase structure. Every other step in the staircase is assigned to a subsystem partition and the remaining to a "master" partition. This permits an extension of the generalized upper-bounding technique to be applied. After a column elimination, the resulting working basis associated with the "master" partition turns out to also have a staircase formate but with half the number of steps. This permits reapplication of the same technique recursively until the number of steps of the pth working basis has only one step. An interesting aspect of the procedure is that a number of operations can be performed in parallel and are not affected by a change in basis.
SIMPLEX METHOD
LINEAR PROGRAMMING
STAIRCASE SYSTEMS
GENERALIZED UPPER BOUND
COMPACT INVERSE
LARGE-SCALE LINEAR PROGRAMS

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, Department of Defense activity or other organization (corporate author) issuing the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.

4. DESCRIPTIVE NOTICES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day, month, year or month, year. If more than one date appears on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b, c, & d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system number, task number, etc.

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number(s) by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report number(s), enter both the originator or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

(1) "Qualified requesters may obtain copies of this report from DDC."

(2) "Foreign announcement and dissemination of this report by DDC is not authorized."

(3) "U.S. Government agencies may obtain copies of this report directly from DDC. Other qualified users shall request through __________."

(4) "U.S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through __________."

(5) "All distribution of this report is controlled. Qualified DDC users shall request through __________."

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (SI), (C), or (O).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.
SOLVING STAIRCASE LINEAR PROGRAMS BY A
NESTED BLOCK-ANGULAR METHOD

by

George B. Dantzig

Block angular systems can be solved by the simplex method using a compact inverse representation of the basis. The method is a direct extension of the generalized upper-bound technique. We wish to apply this result to staircase systems. To do this, we assign every other "step" in a staircase basis structure (1) to a subsystem by rearranging the rows, the result is as in (2).

\[
\begin{array}{ccc|c}
I & II & III & b_1 \\
I' & II & III & b_2 \\
II' & III & IV & b_3 \\
III' & IV & V & b_4 \\
IV' & V & VI & b_5 \\
V' & VI & & b_6 \\
\end{array}
\]

(1) INITIAL STAIRCASE BASIS STRUCTURE R.H.S.

\[
\begin{array}{ccc|c}
I & II & III & b_1 \\
II' & III & IV & b_3 \\
III' & IV & V & b_5 \\
I' & II & & b_2 \\
III' & IV & V & b_4 \\
V' & VI & & b_6 \\
\end{array}
\]

(2) SAME BASIS AFTER REARRANGING ROWS R.H.S.
Note that the subsystem consists of independent sets of equations e.g., \([I, II]\), \([III, IV]\) and \([V, VI]\), so that it is in the proper form for applying block-angular techniques. In the extension of the generalized upper-bounding technique for this class of problems, a column operation is performed to reduce the columns of each set, like \([I', II]\) and its corresponding right handside (R.H.S.) to the form \([B_1, 0]\) where \(B_1\) is any non-singular subset of columns of \([I', II]\) which we will refer to as "key" columns. The same column operations are performed on the corresponding columns of the master. After the operations, the master part has a new format. For system (2) the result is

\[
\begin{array}{ccc|c|c|c|c|c|c|c}
A_1 & I & A_2 & II & A_3 & III & B_1 & 0 & B_2 & 0 & B_3 & 0 & 0 & 0 & 0
\end{array}
\]

BASIS AFTER COLUMN OPERATIONS

The important point to note that the inverse of matrix (3) can be obtained from the knowledge of \(B_1^{-1}, B_2^{-1}, B_3^{-1}\) and the inverse of
But (4) is again staircase form with half the number of rows. Thus one is now in a position to recursively re-apply the technique. A 32 time period model, for example, would require 5 recursions.

Effect of Change of Basis. Let us consider a $T = 8$ period staircase structure (5). Let p be defined by $2^p = T$, i.e., $p = \log_2 T$.

$$S^0_1$$
$$S^0_2$$
$$\vdots$$
$$S^0_7$$
$$S^0_8$$

We can associate with the various rearrangements and column operations a hierarchy of staircase systems:
Circles indicate that on the initial recursion we place \(S_2^0, S_4^0, S_6^0, S_8^0 \) in the subsystem and as a result of the column operations \(S_1^0, S_3^0, S_5^0, S_7^0 \) are modified to \(S_1^1, S_3^1, S_5^1, S_7^1 \). The directed arcs pointing to \(S_3^1 \), for example, indicate that \(S_3^1 \) only depends on \(S_2^0, S_3^0, S_4^0 \), i.e., only on those with adjacent subscripts in the previous recursion. Suppose now in a basis change only \(S_8^0 \) is modified. It will cause a change in \(S_7^1, S_5^2 \) and \(S_1^3 \) but the remaining \(S_t^0 \) will be unmodified. In general, if there are \(2^p \) steps a "local" change of basis can be shown to affect \(2(p+1) \) of the \(S_t^0 \). However, a non-local change of basis (such as the introduction into the basis of a column associated with an early period \(t_1 \) and dropping a column of a later period \(t_2 > t_1 \)) could effect less than \(4(p+1) \) of the \(S_t^0 \).

Information to be stored. This has not (at this writing) been completely analysed but is less than twice the number of elements in the arrays \(S_t^0 \) (assuming \(S_t^0 \) are composed of only non-zero coefficients) plus the storage of the inverses of \(T \) matrices of size \(m_t \times m_t \) where \(m_t \) is the number of equations corresponding to the \(t^{th} \) step of the staircase.
Storage-wise the method appears to be competitive with the best of alternative solution techniques that have been proposed so far.

A Comparison for Square-Block Staircase Systems: Suppose we have system (1) and the diagonal submatrices I, II, ..., VI are each square and non-singular. It is clear in this case we could efficiently solve the system by using I to eliminate I, use II to eliminate II, etc. In many applications of staircase systems it can be shown that non-singular square blocks hold along the diagonal for "almost all" periods. It is of interest therefore to see how our proposed partitioning of the rows into a subsystem and a master would fare as an alternative solution procedure. Note that in (2) we are assuming II, IV, VI are each non-singular, hence if we use these as key submatrices for the elimination of columns, the result corresponding to (4) in this case would be

\[
\begin{array}{c}
I \\
\{ \bar{I} \quad \text{III} \} \\
\{ \text{III} \quad V \} \\
\end{array}
\]

Rearrangement yields

\[
(7)
\]
Column Elimination using non-singular V yields finally

\[(9) \]

Thus there is no disadvantage using the proposed technique even for the case of square block systems. Indeed there is an advantage, because a change of basis generates only local changes affecting only $2(p+1)$ out of $2 \cdot 2^p$ of the submatrices generated by the process for the case where the number of steps in the staircase is $T = 2^p$.

Parallel Processing. Some of the recent designs for computers possess extensive parallel processing features. The proposed solution method could be efficiently handled on such machines because they could do parallel processing of every other step and then recursively in parallel for a system half the size etc. Updating would proceed in an analogous parallel manner except (as indicated in our analysis of (5) and (6)) many of the sub-matrices being processed in parallel would require no change in the updating. Thus a parallel process machine would be very efficient for obtaining the initial compact inverse representation or a subsequent complete update but would probably
have little advantage for the iterative updating of the inverse representation when there is only a simple one column change in the basis.