PRESSURE VESSELS

Defense Documentation Center
Alexandria, Virginia

March 1963
PRESSURE VESSELS

A DDC BIBLIOGRAPHY

DDC-TAS-73-17

MARCH 1973

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE
U.S. Department of Commerce
Springfield VA 22151

Approved for public release;
distribution unlimited.
PRESSURE VESSELS

This bibliography comprises citations of unclassified reports dealing with tests and applications of Pressure Vessels used for Tanks (containers), Submarine Hulls, Rocket Cases, Ramjet Engines and Guided Missiles.
KEY WORDS

<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Pressure Vessels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Bibliographies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Rocket Cases</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filament Wound Construction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laminates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tanks (Containers)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material Forming</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maraging Steels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deep Submergence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Welding</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Titanium Alloys</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arc Welding</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiation Damage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Submarine Hulls</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rolling (Metallurgy)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Underwater Vehicles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structural Shells</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elastic Shells</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrostatic Tests</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impact Tests</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Containment Vessels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diaphragms (Mechanics)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anechoic Chambers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuclear Reactors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical Properties</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structural Properties</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PRESSURE VESSELS

A DDC BIBLIOGRAPHY

January 1963-September 1972

MARCH 1973

Approved for public release; distribution unlimited.
FOREWORD

This bibliography consists of 148 unclassified and unlimited reports on Pressure Vessels. These references were selected from entries processed into the Defense Documentation Center's data bank during the period of January 1953 through December 1972. This bibliography supersedes AD-702 600, DDC-TAS-70-22-1, dated March 1970.

Entries are sequenced by AD number. Computer generated indexes of Corporate Author-Monitoring Agency, Subject, Title and Personal Author are provided.

BY ORDER OF THE DIRECTOR, DEFENSE SUPPLY AGENCY

OFFICIAL

ROBERT B. STEGMAIER, JR.
Administrator
Defense Documentation Center
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>iii</td>
</tr>
<tr>
<td>AD Bibliographic References</td>
<td>1</td>
</tr>
<tr>
<td>Indexes</td>
<td></td>
</tr>
<tr>
<td>Corporate Author-Monitoring Agency</td>
<td>0-1</td>
</tr>
<tr>
<td>Subject</td>
<td>D-1</td>
</tr>
<tr>
<td>Title</td>
<td>T-1</td>
</tr>
<tr>
<td>Personal Author</td>
<td>P-1</td>
</tr>
</tbody>
</table>
AD-295 424
AEROJET-GENERAL CORP AZUSA CALIF

STUDY OF THE EFFECTS OF THICKNESS ON THE PROPERTIES OF LAMINATED FOR UNDERWATER PRESSURE VESSELS* (U)

JAN 63 IV SAUNDERS, R.D.; SMITH, R.L.;
REPT. NO. 0623 01 3
CONTRACT: N08S86406

CONTINUING RESEARCH ON THE STUDY OF THE EFFECTS OF THICKNESS ON THE MECHANICAL AND PHYSICAL PROPERTIES OF FIBER-REINFORCED PLASTIC LAMINATES FOR CREEP SUBMERSIBLE EXTERNAL PRESSURE VESSELS.
UNCLASSIFIED

DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. ZOM07

AD-402 636
AVCO LYCOMING DIV STRATFORD CONN

METASTABLE AUSTENITIC FORMING OF HIGH STRENGTH PRESSURE VESSELS. (U)

DESCRIPTIVE NOTE: SEMIANNUAL INTERIM TECHNICAL PROGRESS REPT. NO. 2, 1 SEP 62-30 MAR 63, APR 63 IV RAYMER, J. M. I

CONTRACT: AF33 657 795S

UNCLASSIFIED REPORT

DESCRIPTORS: *ROCKET CASES, *PRESSURE VESSELS; *STEEL, STAINLESS STEEL, TOOL STEEL, HOT WORKING, AUSTENITE, HYDROSTATIC PRESSURE, TESTS, MECHANICAL PROPERTIES, MATERIALS, MATERIAL FORMING, METAL SPINNING. (U)

IDENTIFIERS: H-11 STEEL, AM355 STAINLESS STEEL, 18NICOMO (330) STEEL. (U)

THREE SELECTED ALLOYS: TYPE H-11 TOOL STEEL, AM 355 SEMIAUSTENITIC STAINLESS STEEL, AND 18NICOMO (300) MARAGING STEEL, WERE FABRICATED INTO BIAXIAL PRESSURE VESSEL TEST SPECIMENS. FOR THE FABRICATION OF THE BIAXIAL PRESSURE VESSEL TEST SPECIMENS, DESIGNED EXPERIMENTS WERE UTILIZED TO EVALUATE A VARIETY OF PROCESSING AND HEAT TREAT VARIABLES. THE FABRICATED PRESSURE VESSELS (I.E. TUBES) WERE TESTED TO FAILURE IN A HYDROSTATIC TEST FACILITY AND EVALUATED FOR SELECTION OF AN OPTIMUM MATERIAL AND ASSOCIATED FABRICATION PROCESS FOR A HIGH PERFORMANCE, INTEGRAL ROCKET MOTOR CASE. BASED ON THESE STUDIES THE 18NICOMO (300) MARAGING STEEL AND A SPECIFIC PROCESSING SCHEDULE WERE SELECTED FOR PHASE II AND III EVALUATION. AN INTERMEDIATE SIZE CYLINDRICAL TEST SPECIMEN AND AN INTEGRAL SUBSCALE ROCKET MOTOR CASE WERE DESIGNED FOR PHASE II INVESTIGATION OF OPTIMIZED FABRICATION TECHNIQUES FOR THE MANUFACTURE OF AN INTEGRAL MOTOR CASE FROM 18NICOMO (300) MATERIAL. (AUTHOR) (U)
ON THE STRENGTH DEGRADATION OF FILAMENT WOUND PRESSURE VESSELS SUBJECTED TO A HISTORY OF LOADING, (U)

APR 63 9P OUTWATER, JOHN O. SEIBERT
WILLARD J.
REPT. NO. TM196
CONTRACT: NONR321901
PROJ: 62RD5 19A

IF IT IS ASSUMED THAT THE RATE OF GROWTH OF A GRIFFITH CRACK THAT CONTROLS THE STRENGTH OF A FIBER IS PROPORTIONAL TO A POWER OF THE STRESS ON THAT FIBER WE CAN PREDICT THAT THE ULTIMATE STRENGTH OF A FILAMENT WOUND PRESSURE VESSEL DECREASES LINEARLY WITH THE TIME AT A GIVEN LOAD AND ALSO THAT THE TIME TO FAILURE WHEN THE VESSEL IS HELD AT A GIVEN LOAD WILL INCREASE LOGARITHMICALLY. BOTH THESE OBSERVATIONS ARE CONFIRMED EXPERIMENTALLY AND FORM THE BASIS FOR A SIMPLE METHOD OF PREDICTING THE LIFE OF A VESSEL AT ONE LOAD AFTER IT HAS BEEN HELD FOR A GIVEN TIME AT ANOTHER. (AUTHOR) (U)
CRYOGENIC STRETCH-FORMING OF SOLID-PROPELLANT ROCKETS".

DESCRIPTIVE NOTE: QUARTERLY TECHNICAL REPT. NO. 3, 1 DEC 62 1 MAR 63,
JAN 63 16P CLAFFY,GEORGE I
CONTRACT: DA30 069ORD3501

UNCLASSIFIED REPORT

DESCRIPTORS: "ROCKET CASES", "STRETCH FORMING",
"PRESSURE VESSELS", "MANUFACTURING METHODS", "COLD"
"WORKING", "CYLINDRICAL BODIES", "CONFIGURATION",
"WELDS", "HYDROFORMING (MECHANICAL)", "HIGH PRESSURE RESEARCH", "INDUSTRIAL EQUIPMENT", "PROGRAMMING", "DESIGN", "ANALYSIS".

FIVE VESSEL CONFIGURATIONS (TOTAL OF TEN VESSELS) WERE CRYOGENICALLY STRETCHED PRIOR TO THE OCCURRENCE OF A BREAKDOWN IN THE STRENGTH FACILITY.
TWO OF THE CONFIGURATIONS INCORPORATED DOG-BONE COMPONENTS AND WERE STRETCHED AS PART OF THE PROGRAM TO DEVELOP THE ELLIPTICAL HEAD. A SIMPLE VESSEL INCORPORATING A THRUST SKIRT, AND TWO CONFIGURATIONS FOR PRODUCING HIGH-STRENGTH DOMES, WERE ALSO STRETCHED. TESTING WAS INTERRUPTED DUE TO A GROSS FAILURE OF THE CRYOGENIC PUMP OF THE STRETCH FACILITY. THE COMPUTER PROGRAM, FOR ANALYTICALLY DETERMINING THE FINAL SHAPE TO BE ACHIEVED BY CRYOGENICALLY STRETCHING A GIVEN PRE FORM VESSEL, WAS CHECKED AGAINST ACTUAL DATA FROM A STRETCHED VESSEL. THE RESULTS INDICATE THAT THE PLASTICITY EQUATIONS AND THE COMPUTER PROGRAM ARE CAPABLE OF PREDICTING THE STRETCHED SHAPE WITH A HIGH DEGREE OF ACCURACY.
THE FIRST SIMPLE, FULL-SIZE VESSEL WAS ASSEMBLED DURING THIS REPORT PERIOD AND REJECTED FOR BAD WELDS. THE PROBLEM PROVED TO BE ONE OF DIMENSIONAL TOLERANCE ON THE HEAD DIAMETER. (AUTHOR)

UNCLASSIFIED
EVALUATION OF HIGH-STRENGTH LIGHTWEIGHT LAMINATED PRESSURE VESSELS OF LAP-JOINT CONSTRUCTION. (U)

DESCRIPTIVE NOTE: QUARTERLY PROGRESS REPORT NO. 4, 1 OCT TO 31 DEC 62 JAN 63 20P CITRIND. G.

THE PRODUCTION SHEET METAL MATERIAL WAS EVALUATED AGAINST SPECIFICATION REQUIREMENTS. RINGS WERE FABRICATED OF THE 0.021-IN. THICK MAR-AGING STEEL MATERIAL FOR THE FIRST 3 PRESSURE VESSELS. THE FIRST PRESSURE VESSEL WAS ASSEMBLED AND TESTED SUCCESSFULLY PRODUCING A BURST STRENGTH 7.9% GREATER THAN THAT INDICATED BY UNIAXIAL TENSILE TESTS OF THE PARENT SHEEL. (AUTHOR) (U)
THE DEPENDENCE OF DYNAMIC STRENGTH OF CYLINDRICAL PRESSURE VESSELS ON GEOMETRICAL PARAMETERS, (U)

MAY 63 10P MACKENZIE, A; DALRYMPLE, E.

REPT. NO. PA-TM-1206
PROJ: DA-502-05-021

UNCLASSIFIED REPORT

EXPERIMENTAL INFORMATION WAS OBTAINED BY DETONATING SPHERES OF C4 EXPLOSIVE CENTRALLY LOCATED IN CYLINDRICAL CONTAINERS. SLIGHTLY DIFFERENT RESULTS WOULD BE EXPECTED FOR OTHER EXPLOSIVES.

END CAPPING WAS ACCOMPLISHED BY PLACING THE PIPE IN A VERTICAL POSITION, STANDING ON A STEEL PLATE. ANOTHER THICK STEEL PLATE WAS PLACED OVER THE OPEN TOP END OF THE CYLINDER AND THE ASSEMBLY WAS LOADED DOWN WITH ABOUT 500 LBS OF LEAD. WITH THIS SYSTEM, EXPLOSIVE SPHERES OF DIFFERENT MASSES WERE DETONATED INSIDE THE CYLINDERS TO DETERMINE THE MAXIMUM AMOUNT OF EXPLOSIVE THAT COULD BE CONTAINED WITHOUT RUPTURE INSIDE VARIOUS CYLINDERS. ONLY ONE SHOT WAS FIRED IN EACH CYLINDER. THE TECHNIQUES OF END CAPPING IN THIS EXPERIMENT IS NOT CRITICAL IF THE CYLINDERS HAVE A LENGTH OF 5 OR 6 TIMES THE INSIDE DIAMETER. THE SIDE WALL OF THE CYLINDER RECEIVES THE FIRST IMPULSE BEFORE THE END PLATES EXPERIENCE ANY DISTURBANCE. HIGH-SPEED PHOTOGRAPHS WERE TAKEN OF AN EXPANDING ALUMINUM PIPE LOADED WITH 12 GMS OF EXPLOSIVE. THE OUTSIDE DIAMETER WAS 3 INCHES AND THE WALL THICKNESS 1/4 INCH. THE EXPANSION TOOK PLACE IN ABOUT 50 MICROSEC. (AUTHOR) (U)
UNCLASSIFIED

DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. /ZOM07

AD-407 432
WATERTOWN ARSENAL LABS MASS

TRANSITIONAL BEHAVIOR OF HIGH-STRENGTH STEEL PRESSURE VESSELS,

MAY 63 30P INGRAHAM JOHN M.
PROJ: 1HU 24401A111
MONITOR: WAL TR110 91

UNCLASSIFIED REPORT

SUPPLEMENTARY NOTE: REPORT ON MATERIALS FOR SOLID PROPELLANT ROCKET MOTORS.

DESCRIPTORS: *PRESSURE VESSELS, *STEEL, DENSITY, BRITTLENESS, TOUGHNESS, TENSILE PROPERTIES, MICROSTRUCTURE, LOW-TEMPERATURE RESEARCH, HARDNESS, CHROMIUM ALLOYS, MOLYBDENUM ALLOYS, TRANSITION TEMPERATURE, IMPACT SHOCK, THICKNESS, TESTS, FRACTOGRAPHY, SPHERES, HYDROSTATIC PRESSURE, FRACTURE (MECHANICS).

IDENTIFIERS: STRENGTH TO WEIGHT RATIO, AISI 4340, VISCOJET 1000 STEEL.

PRESSURE VESSELS OF NEARLY SPHERICAL GEOMETRY WERE HYDROSTATICALLY TESTED TO FAILURE AT VARIOUS TEMPERATURES TO DETERMINE THE FRACTURE TRANSITIONAL BEHAVIOR OF THE MATERIALS. A COMPARISON OF THE FRACTURE SURFACE MARKINGS WAS MADE WITH THOSE OF TENSILE TEST SPECIMENS FRACTURED AT SIMILAR TEST TEMPERATURES. NOTCH STRENGTH TO TENSILE STRENGTH RATIOS WERE DETERMINED USING BOTH ROUND AND FLAT TENSILE SPECIMENS FROM THE SAME ALLOYS. IT WAS CONCLUDED THAT THE FRACTURE TRANSITIONAL BEHAVIOR, IN PRESSURE VESSELS FABRICATED FROM HIGH-STRENGTH H11 STEEL AND LOWER STRENGTH AISI 4340 STEEL, COULD BE PREDICTED WITH REASONABLE CERTAINTY FROM FRACTURE SURFACE EVALUATIONS OF TENSILE SPECIMENS OF THE TYPE USED TO DETERMINE THE NOTCH STRENGTH TO TENSILE STRENGTH RATIOS. (AUTHOR)
EVALUATION OF HIGH-STRENGTH LIGHTWEIGHT LAMINATED PRESSURE VESSELS OF LAP-JOINT CONSTRUCTION, (U)

DESCRIPTIVE NOTE: QUARTERLY PROGRESS REPT. NO. 5, 1 JAN-31 MAR 63, APR 63 57P CITERNS;
MONITOR: VAL REPT. NO. TR766 2 3 4

SUPPLEMENTARY NOTE:

DESCRIPTORS: (*PRESSURE VESSELS, MATERIALS), STEEL, LAMINATES, BONDING, BRAZING, ADHESIVES, CERAMIC MATERIALS, SHEETS, CYLINDRICAL BODIES, WELDING, ROCKET CASES, BONDED JOINTS, WELDS, MANUFACTURING METHODS (U)
IDENTIFIERS: MAR-AGING STEEL, INCO 250 KSI NICOMO, INCO 300 KSI NICOMO, LAP-JOINT CONSTRUCTION, 1963 (U)

FIVE PRESSURE VESSELS WERE ASSEMBLED AND TESTED TO FAILURE. THEY WERE FABRICATED OF THREE NOMINAL THICKNESSES OF MATERIAL, 0.025-, 0.040-, AND 0.064-IN. THICK MAR-AGING STEEL. AN ANALYSIS OF THE RESULTS OF THESE TESTS INDICATED THE FEASIBILITY OF THE LIGHTWEIGHT LAMINATED PRESSURE VESSELS OF LAP-JOINT DESIGN AND SHOWED THE DIFFICULTY OF DEMONSTRATING A REPRODUCIBLE CONFIDENCE LEVEL WITH REUSABLE HEADER CLOSURES THAT HAD SUSTAINED SOME DEFORMATION DURING HYDROSTATIC TESTS TO HIGH-ENERGY LEVELS. (AUTHOR) (U)
A LINEARIZED ANALYSIS OF THE PRESSURE WAVES IN A TANK UNDERGOING AN ACCELERATION. (U)

JUL 63 9P EHLERS, F. EDWARD;
REPT. NO. MATHEMATICAL NOTE NO. 308

UNCLASSIFIED REPORT

SUPPLEMENTARY NOTE: ALSO AVAILABLE FROM THE AUTHOR.

DESCRIPTIONS: (*PRESSURE VESSELS, FLUID FLOW), (*TANKS (CONTAINERS), ANALYSIS), ACCELERATION, EQUATIONS, ROCKET MOTOR NOZZLES, PRESSURE, TIME, FUNCTIONS, SOUND, VELOCITY. (U)

IDENTIFIERS: 1963. (U)

THE RAPID ACCELERATION EXPERIENCED BY A ROCKET WITH A HIGH THRUST TO WEIGHT RATIO INFLUENCES THE RATE OF FLOW THROUGH THE NOZZLE, THEREBY ALTERING THE THRUST. TO OBTAIN SOME INSIGHT INTO THE EFFECTS OF ACCELERATION ON FLUID FLOWS, THE LINEARIZED EQUATIONS FOR THE ONE-DIMENSIONAL FLOW IN A CLOSED TANK ARE SOLVED FOR THE ACCELERATION PRESCRIBED AS A KNOWN FUNCTION OF TIME. THE WAVE PATTERN IS DESCRIBED IN DETAIL FOR THE FLOW INDUCED BY AN INSTANTANEOUS CONSTANT ACCELERATION BEGINNING AT TIME. (AUTHOR) (U)
ANALYTICAL EQUATIONS RELATING SPECIMEN PRESSURE TO RISE TIME WERE DEVELOPED FOR SPECIMENS SUBJECTED TO INTERNAL PRESSURE BY A HYDRODYNAMIC LOADING SYSTEM. RISE TIME MEASUREMENTS WERE MADE DURING DYNAMIC PRESSURIZATION OF A PRESSURE VESSEL, AND THE EXPERIMENTAL AND ANALYTICAL RESULTS COMPARED. THE EFFECTS OF VARIOUS SYSTEM PARAMETERS ON RISE TIME WERE ESTABLISHED FROM THE ANALYTICAL EQUATIONS. DESIGN GUIDE LINES ARE OUTLINED FOR THE CONSTRUCTION OF SIMILAR HYDRODYNAMIC SYSTEMS. (AUTHOR)
STUDY OF THE EFFECTS OF MECHANICAL DAMAGE ON THE PERFORMANCE OF FILAMENT-WOUND MOTOR CASES. (U)

DESCRIPTIVE NOTE: PROGRESS REPT. NO. 3, 1 AUG-30 SEP 63.

BURKLEY, R. A.; BOLLERT, T. J.; BUTCHER, R. R.

REPT. NO. GER-11154B

CONTRACT: NOW-63-0449

UNCLASSIFIED REPORT

SUPPLEMENTARY NOTE:

DESCRIPTORS: (*ROCKET CASES, FAILURE, (MECHANICS)), (*FILAMENT WOUND CONSTRUCTION, FAILURE (MECHANICS)), (*FAILURE (MECHANICS), PRESSURE VESSELS), (*PRESSURE VESSELS, FAILURE (MECHANICS)), WIRE-WINDING MACHINES, MANUFACTURING METHODS, GUIDED MISSILES (UNDERWATER-TO-SURFACE), GUIDED MISSILES (SURFACE TO SURFACE), NAVY, GLASS TEXTILES, MECHANICAL PROPERTIES, HIGH PRESSURE RESEARCH, TEST EQUIPMENT, TEST METHODS

IDENTIFIERS: 1963, POLARIS

THIS REPORT DISCUSSES THE CONCLUSION OF THE FABRICATION, MACHINE FLAWING, AND TESTING OF SIX-INCH DIAMETER FILAMENT-WOUND BOTTLES. IT WAS FOUND THAT THE BURST PRESSURE IS REDUCED BY A FLAW; HOWEVER, IT APPEARED THAT THE INTERSPERSED WINDING METHOD IMPROVED THE ABILITY OF THE CASE TO RESIST THESE FLAWS. (AUTHOR)
THE EFFECT OF REPEATED LOADING ON FILAMENT WOUND INTERNAL PRESSURE VESSELS.

DESCRIPTIVE NOTE: TECHNICAL MEMO.
SEP 63 18P OUTWATER, JOHN O. I
REPT. NO. NOLC-TM-43-14
CONTRACT: NONR321901
PROJ: 62ROS 19A

UNCLASSIFIED REPORT

DESCRIPTORS: (*PRESSURE VESSELS, FILAMENT WOUND CONSTRUCTION), (*LOADING (MECHANICS), PRESSURE VESSELS), FATIGUE (MECHANICS), ACOUSTIC PROPERTIES, FAILURE (MECHANICS), LAMINATES, GLASS TEXTILES, TEST METHODS, STRESSES, TENSILE PROPERTIES, HYDROSTATIC PRESSURE

IDENTIFIERS: 1963

BY SUBJECTING THIN FILAMENT WOUND INTERNAL PRESSURE VESSELS TO REPEATED LOADS WITH DIFFERENT RATES OF LOADING, LOAD RANGES, AND DURATION OF PEAK LOADS; WE CONCLUDE THAT THE PRINCIPLE FACTOR INVOLVED IN THE FATIGUING OF THE VESSELS IS THE TOTAL DURATION UNDER LOAD. THE LIFE OF A VESSEL UNDER CYCLIC LOADING IS ABOUT THE SAME AS MIGHT BE EXPECTED WERE THE VESSEL TO BE HELD AT THE MAXIMUM LOAD UNTIL FAILURE THROUGH STATIC FATIGUE. AN EXPLANATION FOR THIS BEHAVIOR IS MADE QUALITATIVELY BY EXAMINING THE ACCOUSTICAL BEHAVIOR OF A VESSEL UNDER REPEATED LOADING.

(AUTHOR)
A description is given of the fabrication and evaluation of an electrodeposited pressure bottle. The type of mandrel, surface preparation, electrodepositing solution, and current are discussed pertaining to fabrication. Pressure proof tests to establish structural capability and thermodynamic tests to determine heat transfer coefficients are also discussed in the report. Associated problems and recommendations for future improvement are included. (author)
This report presents the status of observations at the U. S. Naval Research Laboratory on the embrittlement of steels which are commonly used for the primary pressure containment vessels of nuclear power plants. The demonstrated criterion of nil ductility transition (NDT) temperature provides the basis for meaningful analysis of neutron-induced embrittlement in reactor steels. Results to date indicate that the degree of embrittlement depends upon the material, the neutron exposure, and the temperature during irradiation. These same variables also affect the degree of notch ductility recovery effected by postirradiation heat treatment. In addition, the time and temperature of heat treatment have been shown to play an important role in establishing the recovery pattern. The validity of these experimental observations are being tested through correlations with data from reactor surveillance programs and from specimens of the SL-1 reactor pressure vessel. Preliminary data from dosimetry in the SH-1A reactor permit the extension of experimental data to predict the increase in NDT of the reactor pressure vessel.
UNCLASSIFIED

DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. /ZOM07

AD-926 162
NAVAL ORDNANCE LAB WHITE OAK MD

REVERSE YIELDING OF A FULLY AUTOFRETTAGED TUBE OF LARGE WALL RATIO,

AUG 63 27P DAWSON, VICTOR C. D. ; SEIGEL, ARNOLD E.
REPT. NO. NOLTR-63-123
UNCLASSIFIED REPORT

SUPPLEMENTARY NOTE:

DESCRIPTORS: (*CYLINDRICAL BODIES, MECHANICAL PROPERTIES), (*PRESSURE VESSELS, STRESSES), CREEP, HYDROSTATIC PRESSURE, MATHEMATICAL ANALYSIS, STRAIN (MECHANICS), ELASTICITY, PLASTICITY, EQUATIONS (U)
IDENTIFIERS: 1963, AUTOFRETTAGE (U)

THE EQUATIONS ARE DEVELOPED FOR THE CASE OF A REVERSE YIELDED THICK-WALLED CYLINDER. IT IS ASSUMED THAT A CYLINDER IS SUBJECTED TO AN INTERNAL PRESSURE WHICH CAUSES PLASTIC FLOW THROUGHOUT THE WALL; THE SIZE OF THE CYLINDER IS SUCH THAT THE RESIDUAL STRESSES DEVELOPED DURING PRESSURE RELEASE CAUSE THE CYLINDER TO REYIELD IN COMPRESSION. THE STRESS EQUATIONS FOR THE SUBSEQUENT REAPPLICATION OF PRESSURE TO THE REYIELDED CYLINDER ARE ALSO DEVELOPED. (AUTHOR) (U)
Research and Development in Support of the Polaris Program. Task I. Investigation of Filament Winding Patterns.

Report No: AGC-062713

Contract No: NO-63-0627

UNCLASSIFIED REPORT

Supplementary Note:

Descriptors: (*Pressure Vessels, Filament Wound Construction), (*Filament Wound Construction, Configuration), Structural Properties, Reliability, Guided Missiles (Underwater-To-Surface), Guided Missiles (Surface-To-Surface), Navy, Rocket Cases, Hydrostatic Pressure, Stresses, Deflection, Design, Analysis (U)

Identifiers: 1963, Polaris (U)

This is the third of a series of bi-monthly reports describing progress in a program conducted to increase the understanding of the interrelation between chamber winding patterns and chamber behavior. All six of the Isotensoid units required for this program have been fabricated. Three of the four units tested hydrostatically ruptured at pressures exceeding the design burst pressure. The data are being analyzed. An analysis that takes into consideration the strength of the resin in designing Isotensoid filament-wound pressure vessels has been developed and programmed. (Author) (U)
RESULTS ARE PRESENTED OF A STUDY OF SMALL, SEAMLESS, THIN-WALL PRESSURE VESSELS OF SEVERAL ULTRAHIGH STRENGTH STEELS TESTED UNDER BIAXIAL STRESS CONDITIONS AND ALSO IN THE PRESENCE OF SURFACE FATIGUE CRACKS OF PREDETERMINED SIZES INSERTED ON THE EXTERIOR SIDEWALL OF THE VESSELS, PERPENDICULAR TO THE HOOP DIRECTION. BEHAVIOR OF THE TEST VESSELS UNDER BIAXIAL STRESS CONDITIONS IS CORRELATED TO THAT OF FLAT SHEET SPECIMENS, CONTAINING APPROXIMATELY SAME SIZE FATIGUE CRACKS, BUT TESTED UNDER UNIAXIAL STRESS. FLAWS APPEARED TO AFFECT THE PERFORMANCE OF THE MEDIUM CARBON (0.30 TO 0.35%) CONSTRUCTIONAL STEELS, AISI 4130, AMS 6434, HX-2, TO A LESSER DEGREE THAN HIGHER CARBON (0.40% AND HIGHER) AND HIGHER ALLOY CONSTRUCTIONAL STEELS. UNDER BIAXIAL STRESS CONDITIONS, CRACKS HAVE A MORE POTENT INFLUENCE IN REDUCING THE STRESS CAPABILITY THAN UNDER UNIAXIAL STRESS FOR ALL MATERIALS, EXCEPT THE MARAGING 18NI STEELS WHICH EXHIBITED LOW CRACK SENSITIVITY, FRACTURE CONTROL MODE IN THE PRESENCE OF FLAWS IN ALL EXCEPT THE MARAGING 18NI STEEL PRESSURE VESSELS WAS K SUB IC INITIATED. (AUTHOR)
TRENDS IN PRESSURE VESSEL APPLICATIONS INVOLVING HIGHER PRESSURES, LOWER SERVICE TEMPERATURES, Thicker Walls, New Materials, and Cyclic Loading Require the Development of New Bases in the Supporting Scientific and Technological Areas. This report presents a "broad look" analysis of the opportunities to apply new scientific approaches to fracture-safe design in pressure vessels and of the new problems that have arisen in connection with the utilization of higher strength steels. These opportunities follow from the development of the fracture analysis diagram which depicts the relationships of flaw size and stress level for fracture in the transition range of steels which have well-defined transition temperature features. The reference criteria for the use of the fracture analysis diagram is the nil-ductility transition temperature of the steel, as determined directly by the drop-weight test or indirectly by correlation with the Charpy V test. Potential difficulties in the correlation use of the Charpy V test are deduced to require engineering interpretation of Charpy V test data rather than to involve basic barriers to the use of the test. The rapid extension of pressure vessel fabrication to quenched and tempered steels is expected to provide new problems of fracture-safe design.
BY PURSUING THE ANALOGY WHICH EXISTS BETWEEN THE
REINFORCED PRESSURE VESSEL AND THE BEAM ON AN ELASTIC
FOUNDATION, AND BY SYSTEMATIC APPLICATION OF THE
PRINCIPLE OF BALANCED DESIGN, A SET OF EQUATIONS IS
DERIVED BY WHICH OPTIMUM VALUES FOR WALL THICKNESS,
REINFORCEMENT SIZE AND SPACING CAN BE CALCULATED
DIRECTLY FROM THE SHELL RADIUS, THE DESIGN PRESSURE,
AND THE MECHANICAL PROPERTIES OF THE MATERIAL. THE
ELEMENT OF TRIAL AND ERROR IS VIRTUALLY ELIMINATED
AND THE USE OF ITERATIVE METHODS IS RESTRICTED TO A
FEW CASES IN WHICH CONVERGENCE IS QUITE RAPID. THE
EFFECT OF RIGID END BULKHEADS IS DISCUSSED AND A
MEANS OF MINIMIZING SECONDARY STRESSES FROM THAT
SOURCE IS PROPOSED. A SAMPLE CALCULATION IS GIVEN
AND A COMPARISON MADE WITH DESIGNS PRODUCED BY OTHER
METHODS. (AUTHOR) (U)
SOLID GLASS AND CERAMIC EXTERNAL-PRESSURE VESSELS

SOLID GLASS OR CERAMIC HULLS PROVIDE THE MAXIMUM BUOYANCY AND INTERNAL USEFUL VOLUME FOR UNDERWATER VEHICLES. THIS MATERIAL DISPLAYS LOW CREEP CHARACTERISTICS AND WITHSTANDS EXTERNAL PRESSURE CYCLING AND MILD UNDERWATER DYNAMIC PRESSURES. SCRATCHES ON THE EXTERIOR SURFACES DO NOT DECREASE APPRECIABLY THE COMPRESSIVE AND ELASTIC STRENGTH OF SUCH VESSELS WHEN EXPOSED TO EITHER STATIC OR CYCLING PRESSURE. CONNECTORS HAVE BEEN DEVISED THAT ENABLE GLASS CYLINDERS TO BE JOINED INTO A MONOLITHIC STRUCTURE THAT IS RESISTANT TO BOTH PRESSURE AND FLEXURE. (AUTHOR)
Design, fabrication and hydrotesting of a 120-inch diameter pressure vessel using 18 percent nickel maraging steel. (U)

Descriptive note: Research contract status rept. No. 8, 10 Oct 12 Nov 63, Jun 63-67 P. Colbert, L. R.

Rept. No. 609 PB

Contract: AF04 611 8525

Unclassified report

Supplementary note:

Descriptors: (*Pressure vessels, Steel), (*Steel, Pressure vessels), Hydrostatic pressure, Fracture (Mechanics), Nickel Alloy, Martensite, Aging (Materials), Austenite, Design, Failure (Mechanics), Stresses, Fractography, Microstructure, Corrosion, Tensile properties, Microscopy, Electron Microscopy (U)

Identifiers: 1963, Maraging Steel (U)

The detailed metallurgical analysis work performed in order to determine the cause of closure plate fracture during hydroburst testing of the Lockheed-Excelco 120-in. diameter, maraging 18% nickel steel prototype booster case is described. The metallographic and mechanical strength data presented has led to the belief that delamination of the plate welded to the ring forging is largely responsible for the failure of the closure plate at around half the designed membrane stress. The delamination itself seems to have been triggered by the yielding of the retained austenite and cracking of carbides and nitrides in the banded areas of the plate, leading to the formation of a chain of small cracks followed by interplanar separation in the plate. (Author) (U)
ELASTIC STRESSES ARE PRESENTED FOR THIN SHELLS OF REVOLUTION UNDER THE ACTION OF INTERNAL PRESSURE. THE FORMULAS GIVEN ARE DEVELOPED ON THE BASIS OF LOVE'S CLASSICAL SHELL THEORY. THE PRESSURE VESSEL CONFIGURATIONS UNDER CONSIDERATION CONSIST OF VARIOUS COMMONLY ENCOUNTERED HEAD CLOSURE DESIGNS INTEGRALLY JOINED TO CIRCULAR CYLINDRICAL SHELL SECTIONS. IN ADDITION TO THE MEMBRANE STRESSES, THE BENDING STRESSES RESULTING FROM FORCES AND MOMENTS AT THE JUNCTURES OF THE HEADS AND CYLINDERS ARE ALSO PRESENTED. THE CONCEPT OF EDGE INFLUENCE NUMBERS IS USED WHERE CONVENIENT TO EXPRESS THE DISCONTINUITY FORCES AND MOMENTS AT THE JUNCTION. MANY IMPORTANT PARAMETERS ARE EXPRESSED IN GRAPHICAL FORMS TO FACILITATE ANALYSIS. (AUTHOR)
UNCLASSIFIED REPORT

BIBLIOGRAPHY SEARCH CONTROL NO. /Z0M07

AD-438 009
AVCO LYCOMING DIV STRATFORD CONN

METASTABLE AUSTENITIC FORMING OF HIGH STRENGTH PRESSURE VESSELS. (U)

DESCRIPTIVE NOTE: SEMIANNUAL REP'T NO. 3, APR-SEP 63, OCT 63 54P RAYMER, J. M. I

CONTRACT: AF33 657 7955

UNCLASSIFIED REPORT

SUPPLEMENTARY NOTE:

DESCRIPTORS: (*PRESSURE VESSELS, MATERIAL FORMING), (*MATERIAL FORMING, METAL SPINNING), MARAGING STEEL, STAINLESS STEEL, TOOL STEEL, PROCESSING, METALLOGRAPHY, HEAT TREATMENT, DEFORMATION, HYDROSTATIC PRESSURE, STATISTICAL ANALYSIS, MECHANICAL PROPERTIES, CYLINDRICAL BODIES, ROCKET CASES, AUSTENITE, MARTENSITE, MICROSTRUCTURE, AGING (MATERIALS), TEMPERATURE, TIME (U)
IDENTIFIERS: FACTORIAL DESIGN (U)

DETAILED ANALYSIS OF THE EFFECTS OF THE VARIOUS PROCESSING PARAMETERS EMPLOYED DURING PHASE I EFFORT WAS COMPLETED. MOST INFORMATION WAS OBTAINED FROM THE FULL FACTORIAL EXPERIMENT OF THE 18NCOMO (300) MARAGING STEEL, WHERE PARAMETRIC AND NON-PARAMETRIC ANALYSES WERE CARRIED OUT. FROM THESE ANALYSES, AN OPTIMUM COMBINATION OF PROCESSING PARAMETERS WAS DERIVED, AND INCORPORATED IN THE PROCESSING SCHEDULE OF THE INTERMEDIATE SIZE CYLINDRICAL TEST SPECIMEN. ALL NECESSARY FORGINGS IN 18 NCOMO (300) MARAGING STEEL AND TOOLING FOR FABRICATION WERE OBTAINED AND TWO 14.5 IN. DIAMETER CYLINDRICAL TEST BOTTLES WERE SPUN TO VERIFY THE RESULTS OBTAINED DURING PHASE I. EFFORT WAS MADE IN EVALUATING THE BACKUP APPROACH TO EFFECT CLOSURE OF THE AFT END BY A SHRINKING OPERATION. (AUTHOR) (U)
UNCLASSIFIED

DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. ZOM07

AO-443 851
GENERAL DYNAMICS/ASTRONAUTICS SAN DIEGO CALIF

PHYSICAL AND MECHANICAL PROPERTIES OF PRESSURE VESSEL MATERIAL FOR APPLICATION IN A CRYOGENIC ENVIRONMENT. (U)

DESCRIPTIVE NOTE: YEARLY SUMMARY REPT., 15 MAY 63-15 MAY 64.
MAY 64 126P CHRISTIAN, J. L.; YANG, C. T.; WITZELL, W. E.;
REPT. NO. 63 0818 3
CONTRACT: AF33 657 11289

UNCLASSIFIED REPORT

SUPPLEMENTARY NOTE:

DESCRIPTORS: (*PRESSURE VESSELS, MATERIALS), (*WELDS, TOUGHNESS), (*ALLOYS, MECHANICAL PROPERTIES), LOW-TEMPERATURE RESEARCH, CRYOGENICS, FATIGUE (MECHANICS), ALUMINUM ALLOYS, NICKEL ALLOYS, MARAGING STEELS, STAINLESS STEEL, TITANIUM ALLOYS, SPACE VEHICLES, ROCKET CASES, SHEETS, FRACTURE (MECHANICS), EXPERIMENTAL DATA, TABLES, STATISTICAL ANALYSIS, CHEMICAL ANALYSIS (U)
IDENTIFIERS: ALUMINUM ALLOY 7039-T6, STEEL 18NIs, HASTELLOY (ALLOYS), INCONEL (ALLOYS), FRACTURE TOUGHNESS, STAINLESS STEEL 304, RENE 41 (ALLOY), TITANIUM ALLOY 6AI 4V, STAINLESS STEEL 310, ALUMINUM ALLOY 2219-T81 (U)

THE OBJECTIVES OF THIS INVESTIGATION ARE A DISCUSSION OF THE TEST PROGRAM AND SELECTION OF TEST MATERIALS; A BRIEF DESCRIPTION OF TEST SPECIMENS AND APPARATUS IS GIVEN. TEST RESULTS ARE DISCUSSED. TEST DATA INCLUDE TENSILE, NOTCHED TENSILE, WELD TENSILE, AXIAL FATIGUE, AND CRACK PROPAGATION PROPERTIES OF 7039-T6 ALUMINUM ALLOY, 18% NICKEL MARAGING STEEL, HASTELLOY B, AND 718 NICKEL BASE ALLOY FROM 75 TO -423 F. PLANS FOR FUTURE WORK ARE GIVEN. (AUTHOR) (U)
INVESTIGATION OF ADVANCED DESIGN CONCEPTS FOR DEEP SUBMERSIBLES. (U)

DESCRIPTIVE NOTE: FINAL REPT., 8 JAN 64-8 FEB 65, FEB 65 1V ABDILSKOV, D., DAINE, J.

CONTRACT: NOBS90180
PROJ: RD07 03 04 HITCOPROJ. 231292
TASK: 1008

UNCLASSIFIED REPORT

SUPPLEMENTARY NOTE:

DESCRIPTORS: '(*SUBMARINE HULLS, DESIGN), (**PRESSURE VESSELS, FILAMENT WOUND CONSTRUCTION), (**FILAMENT WOUND CONSTRUCTION, MECHANICAL PROPERTIES), STIFFENED CYLINDERS, SANDWICH CONSTRUCTION, GLASS TEXTILES, COMPOSITE MATERIALS, LAMINATES, EPOXY PLASTICS, EXPEDE PLASTICS, BUCKLING, BONDING, BONDED JOINTS, MODEL TESTS, HYDROSTATIC PRESSURE, CYLINDRICAL BODIES, STRUCTURAL SHELLS, STRESSES, MATHEMATICAL ANALYSIS, MATERIAL FORMING, STRUCTURES (U)

THIS PROGRAM INVESTIGATED DESIGN CONCEPTS OF FILAMENT-WOUND DEEP-DIVING SUBMERSIBLE VEHICLES. SMALL SCALE CYLINDRICAL SHELL MODELS WERE DESIGNED, FABRICATED AND TESTED UNDER HYDROSTATIC EXTERNAL PRESSURE. MODEL CONFIGURATIONS EVALUATED INCLUDE RING-STIFFENED CYLINDERS WITH BOTH CONSTANT AND VARIABLE WALL THICKNESS BETWEEN RING STIFFENERS, SANDWICH-WALL AND BILAYER DESIGNS. THE TARGET COLLAPSE PRESSURE WAS 13,333 PSI. PROBLEMS OF MAJOR CONCERN WERE DEVELOPMENT OF ANALYTICAL TECHNIQUES TO PREDICT STRESS LEVELS AND BUCKLING Pressures, DISCONTINUITY LOADS AT THE MODEL ENDS, ADHESIVE BONDS IN THE SANDWICH-WALL MODELS, OBTAINING HOLLOW GLASS WITH THE DESIRED HOLLOWNESS RATIO AND DEFINING MATERIAL PROPERTIES. (AUTHOR) (U)
FACTORS WHICH MUST BE CONSIDERED IN DESIGNING PRESSURE VESSELS TO WITHSTAND, IN A RADIATION ENVIRONMENT, HIGH, RAPIDLY APPLIED DYNAMIC IMPULSES (SUCH AS EXPLOSIONS) ARE DEFINED AND DISCUSSED. OF VARIOUS METALS TESTED FOR USE IN THE WALLS OF SUCH VESSELS, SEVERAL ALUMINUM ALLOYS WERE FOUND MOST PROMISING. SMALL AMOUNTS OF EXPLOSIVE WERE INITIATED INSIDE CYLINDERS MADE OF VARIOUS METALS (ALUMINUM ALLOYS, STAINLESS STEEL, AND LEAD). THE CYLINDERS BEING CLOSED AT THE ENDS BY BEING PLACED VERTICALLY ON A STEEL PLATE AND TOPPED WITH A SECOND STEEL PLATE HELD IN PLACE WITH A 500-POUND LEAD WEIGHT. CYLINDER LENGTH WAS VARIED FROM 18 TO 24 INCHES, DIAMETER FROM 3 TO 12 INCHES, AND WALL THICKNESS FROM 1/8 TO 1 INCH. AS AN EXPLOSIVE, SPHERICAL CHARGES OF C4 WERE USED. THE WALL MATERIALS TESTED WERE 6061-T6, 2024-T4, 5086-H32, 5456-H323, AND 7075-T6 ALUMINUM ALLOYS; 304 STAINLESS STEEL; AND LEAD. THE REPORT CONTAINS SPECIAL SECTIONS ON THE DESIGN OF END CLOSURES, SHOCK ATTENUATION, PROVIDING FOR ELECTRICAL LEAD-THROUGHS NEEDED FOR INSTRUMENTATION, AND THE USE OF A THIN WINDOW IN THE VESSEL (NEEDED FOR IRRADIATION EXPERIMENTS). FROM THIS INFORMATION A PRESSURE VESSEL FOR A PARTICULAR APPLICATION CAN BE DESIGNED.
AIR PRESSURE STORAGE VESSELS ARE REQUIRED IN HIGH-PERFORMANCE AIRCRAFT TO PERFORM VARIOUS EMERGENCY FUNCTIONS. GLASS FILAMENT-WOUND BOTTLES AFFORD A SUBSTANTIAL WEIGHT SAVINGS OVER STEEL, AND ARE LESS SUBJECT TO CORROSION PROBLEMS. HOWEVER, THEY HAVE BEEN SUBJECT TO FATIGUE FAILURES BECAUSE OF THE STRESSES IMPOSED ON THE RELATIVELY WEAK RESIN BINDER SYSTEM. BY REDESIGNING THE SPHERICAL BOTTLE TO A CYLINDRICAL SHAPE HAVING ISOTENSOID DOME ENDS, AND BY USING THE MULTISHELL METHOD OF FABRICATION, A WEIGHT SAVINGS OF 10% TO 15% COUPLED WITH AN INCREASE IN ULTIMATE BURST PRESSURES OF 15% TO 30% HAS RESULTED. THIS REDESIGNING TAKES ADVANTAGE OF THE UNIDIRECTIONAL STRENGTH CHARACTERISTICS OF THE GLASS FILAMENT AND REDUCES THE STRESS ON THE RESIN BINDER SYSTEM TO AN ACCEPTABLE LEVEL. RESULTS OF COMPARATIVE TESTING ON THE REDESIGNED VESSELS AND ON GOVERNMENT FURNISHED VESSELS INDICATE THAT THE SPECIFICATIONS FOR VESSEL PERFORMANCE SHOULD BE MATERIALLY UPGRADED. CHANGES IN MIL-T-25363B TO REDUCE COSTS AND INCREASE RELIABILITY ARE RECOMMENDED. (AUTHOR)
AN EXPERIMENTAL INVESTIGATION WAS MADE OF CLOSURES AND PENETRATIONS FOR PRESSURE VESSELS OF COMPOSITE CONSTRUCTION DESIGNED FOR DEEP DEPTHS. A METHOD IS PRESENTED FOR DESIGNING REINFORCEMENT FOR PENETRATIONS THROUGH HEMISPHERICAL CLOSURES TO PROVIDE Membrane boundaries. TEST RESULTS INDICATE THAT NO SERIOUS DIFFICULTY IS INVOLVED IN CLOSING AS WELL AS PENETRATING CYLINDRICAL HULLS OF COMPOSITE CONSTRUCTION. (AUTHOR)
THE OBJECTIVE OF THE PLASMA ARC HEATER PROGRAM WAS BASICALLY TO DESIGN, FABRICATE, AND TEST PLASMA HEATERS CAPABLE OF OPERATING AT PRESSURE LEVELS BEYOND THE CURRENT STATE-OF-THE-ART. ONE PARTICULARLY OUTSTANDING TEST RUN WITH AIR AT 2800 PSIA PRODUCED A GAS ENTHALPY LEVEL OF 3150 BTU/LB AT A 0.135 LB/SEC FLOW RATE WITH AN ARC POWER OF 1.12 MW. ANOTHER EXPERIMENTAL ARC HEATER WAS SUCCESSFULLY OPERATED AT 7600 PSIA OR APPROXIMATELY 200 ATMOSPHERES. THIS PLASMA HEATER DEMONSTRATED THE FEASIBILITY OF ARC HEATERS AT EXTREMELY HIGH PRESSURES. THE PURPOSE OF THE HIGH PRESSURE AIR GENERATION PROGRAM WAS TO DEMONSTRATE THE PRACTICABILITY OF CREATING EXTREMELY HIGH PRESSURES UTILIZING THE PRINCIPLE OF HEATING A CRYOGENIC FLUID IN A CONSTANT VOLUME VESSEL. THE NUMERICAL GOAL OF PRESSURE LEVELS IN EXCESS OF 50,000 PSIA WAS SUCCESSFULLY MET WHEN ONE TEST RUN ATTAINED A PRESSURE LEVEL OF 62,800 PSIA, AT A FLUID TEMPERATURE OF 790°. IN ADDITION, A METHOD FOR OBTAINING AND DOCUMENTING PRESSURE, VOLUME, AND TEMPERATURE DATA AT PRESSURES IN EXCESS OF CURRENTLY AVAILABLE INFORMATION WAS SUCCESSFULLY DEMONSTRATED. (AUTHOR)
DESIGN, PERFORMANCE, FABRICATION, AND MATERIAL
CONSIDERATIONS FOR HIGH-PRESSURE VESSELS, (U)

MILLS, E. J.; IATTERTURY, T. J.; CASSIDY, L. M.; IEIBER, R. J.; IDUFFY, A. R.;

CONTRACT: DA01 021AMC203Z

MONITOR: RSIC, 173

UNCLASSIFIED REPORT

SUPPLEMENTARY NOTE:

DESCRIPTORS: (*PRESSURE VESSELS, MANUFACTURING METHODS),
(*WELDING, PRESSURE VESSELS), STRUCTURES, DESIGN,
PERFORMANCE (ENGINEERING), LOADING (MECHANICS), CARBON
ALLOYS, STEEL, STAINLESS STEEL, MARAGING STEELS,
MATHEMATICAL ANALYSIS, TITANIUM ALLOYS, ALUMINUM ALLOYS,
NICKEL ALLOYS, CLADDING, WELDS, AIRBORNE, MECHANICAL
PROPERTIES, STRESSES, RADIOGRAPHY, BIOBIBLIOGRAPHIES, NON-
DESTRUCTIVE TESTING

BOTTLES AND TANKS FOR HIGH PRESSURES OF 5000 POUNDS
PER SQUARE INCH AND ABOVE ARE DISCUSSED UNDER THE
CLASSIFICATIONS OF DESIGN, PERFORMANCE, FABRICATION,
AND MATERIAL CONSIDERATIONS. SINGLE-WALLED,
MULTILAYERED, AND BANDED PRESSURE VESSELS ARE
CONSIDERED TOGETHER WITH MANUFACTURING METHODS.
TEST PROCEDURES AND FRACTURE INITIATION AND
PROPAGATION ARE DISCUSSED AND ANALYZED.
CONSIDERATION IS ALSO GIVEN TO MATERIALS AND
SPECIFICATIONS. (AUTHOR)

BECAUSE OF THE SELF SHIELDING AND ATTENUATION PROPERTIES OF THE VESSEL MATERIAL, A NUCLEAR REACTOR PRESSURE VESSEL WILL HAVE A NEUTRON FLUX AND SPECTRUM VARIATION ACROSS ITS THICKNESS. AS A RESULT OF THIS VARIATION, A PRESSURE VESSEL SHOULD SHOW VARIOUS DEGREES OF NEUTRON-INDUCED EMBRITTLEMENT THROUGHOUT ITS THICKNESS, AND THAT IT IS POSTULATED THAT THE EMBRITTLEMENT WILL BE GREATEST AT THE INNER WALL AND LEAST AT THE OUTER WALL. THIS PHENOMENON HAS BEEN INVESTIGATED BY THE IRRADIATION OF A LARGE BLOCK OF A302-B STEEL AT THE CORE FACE OF A POOL REACTOR IN A POSITION SIMULATING THE LOCATION OF AN ACTUAL PRESSURE VESSEL. THE STEEL BLOCK, 6 IN. THICK, WAS MADE TO ACCOMMODATE FIVE EQUALLY SPACED ASSEMBLIES OF CHARPY V-NOTCH SPECIMENS WHICH, IN TURN, REPRESENTED THE VESSEL MATERIAL AT COMPARABLE POSITIONS. THE NOTCH DUCTILITY TEST RESULTS OF THE IRRADIATED SPECIMENS DEMONSTRATE A SIGNIFICANT DEGREE OF EMBRITTLEMENT AS WELL AS A SIGNIFICANT DECREASE IN THE DEGREE OF EMBRITTLEMENT THROUGH THE SIMULATED PRESSURE VESSEL WALL. HOWEVER, THE OBSERVED DECREASE IS SMALL WHEN RELATED TO THE RESPECTIVE VARIATION IN NEUTRON DOSAGE.
IN-REACTOR STUDIES OF LOW CYCLE FATIGUE PROPERTIES OF
A NUCLEAR PRESSURE VESSEL STEEL. (U)

DESCRIPTIVE NOTE: FINAL REPT. JUL 64 3UP HAWTHORNE, J. R.; STEELE, D. E.

REPT. NO. NRL-6127
CONTRACT: AT 49 5 2110
PROJ: RR007 01 46 5409, SR007 01 01
TASK: 0858

UNCLASSIFIED REPORT

SUPPLEMENTARY NOTE: PREPARED IN COOPERATION WITH THE
NAVY BUREAU OF SHIPS AND THE U. S. STEEL CORP.
LEGIBILITY OF THIS DOCUMENT IS IN PART UNSATISFACTORY.
REPRODUCTION HAS BEEN MADE FROM BEST AVAILABLE COPY.

DESCRIPTORS: (*PRESSURE VESSELS, REACTOR SYSTEM
COMPONENTS), (*REACTOR MATERIALS, STEEL), (*STEEL,
REACTOR MATERIALS), (*RADIATION DAMAGE, STEEL),
(*FATIGUE (MECHANICS), REACTOR MATERIALS), HEAT
TREATMENT, MANGANESE ALLOYS, NICKEL ALLOYS, CHROMIUM
ALLOYS, MOLYBDENUM ALLOYS, METAL PLATES, POWER REACTORS,
TEST EQUIPMENT (U)
IDENTIFIERS: STEEL A 302-B (U)

AN EXPERIMENTAL IRRADIATION ASSEMBLY AND ASSOCIATED
INSTRUMENTATION WHICH HAVE BEEN DEVELOPED AND
SUCCESSFULLY UTILIZED FOR THE PERFORMANCE OF DYNAMIC.
IN-REACTOR LOW CYCLE FATIGUE TESTS OF REACTOR
PRESSURE VESSEL STEELS ARE DESCRIBED. THE
EQUIPMENT PROVIDES FOR THE SIMULTANEOUS REVERSE BEND
TESTING OF AS MANY AS FIFTEEN SHEET TYPE SPECIMENS
REPRESENTING A RANGE OF STRAIN AMPLITUDES AT
CONTROLLED TEMPERATURES IN THE RANGE 300 TO 700°F.
THE RESULTS OF AN EXPLORATORY INVESTIGATION ON THE
FATIGUE RESISTANCE OF ASYM TYPE A302-B STEEL
DURING IRRADIATION AT 500°F ARE PRESENTED AND
COMPARED WITH DATA FROM OUT-OF-REACTOR CONTROL TESTS.
THESE PRELIMINARY DATA DO NOT INDICATE ANY
PRONOUNCED DIFFERENCE IN THE FATIGUE STRENGTH OF
IRRADIATED VERSUS UNIRRADIATED STEEL. EXPLORATORY
INVESTIGATIONS ARE CONTINUING. (AUTHOR) (U)
Pressur vessel surveillance specimens from four capsules in accelerated irradiation positions of the Yankee atomic power reactor have been tested. In spite of the fact that the four capsules were located in physically identical positions about the fuel core, they were subject to widely different neutron exposures (>1 MeV). The Charpy-V transition temperature increase of the Yankee pressur vessel steel, which was irradiated together with a reference steel of the same nominal composition in the same capsules, was somewhat larger than the increase of the reference steel. The data from the reference steel followed closely the trend line of transition temperature increase versus total neutron exposure previously established by NRL for 540F irradiations, but that for the Yankee vessel steel was displaced almost 100F higher than the reference steel. Postirradiation annealing was beneficial for the three heat treatment conditions studied, and, in one case, essentially complete recovery of initial properties was observed. The study demonstrated the usefulness of accurate dosimetry data for each surveillance specimen and the importance of measurements of the neutron dosage to which the monitored reactor component is exposed.
A NAVY ANALYSIS OF GLASS REINFORCED PLASTICS FOR HYDROSPACE APPLICATIONS (U)

RECENT ADVANCES AND REMAINING PROBLEMS IN THE STUDY OF FILAMENT-WOUND GLASS REINFORCING PLASTICS ARE REVIEWED. AREAS CONSIDERED ARE FATIGUE STUDIES, SHEAR AND TENSILE CRACKING, EQUAL TENSIONING OF FIBERS, PORT REINFORCEMENT, LAY-UP PATTERNS, MOISTURE EFFECTS, FIBER PROPERTIES, MECHANICAL DAMAGE, AND EFFECTS OF POROSITY OR BUBBLES IN THE RESIN. EMPHASIS IS GIVEN TO APPLICATION TO SHELLS FOR MANNED DEEP SUBMERSION VEHICLES.
Manufacture and Hydrotest of Three 20 Inch Diameter Mar-Aging Steel Pressure Vessels. (U)

Descriptive Note: Final Technical Rep't. for 16 May 63-16 Oct 64, Oct 64 52P Hauck, W. J. I
Contract: DA36 034RD3296
Proj: 0MS5010 1180800 51 03

Unclassified Report

Supplementary Note:

Identifiers: Maraging Steels 18Ni (U)

The fabrication of three pressure vessels and the hydrotest of two confirms the validity of the design concept and the material selected. The use of 18% nickel mar aging steel strip at a yield strength approaching 300,000 psi is possible in a rocket case. Test results indicate that the processing techniques are practical and that consistency can be obtained. Simplicity of fabrication and heat treatment should be a favorable economic result even though the basic material cost of the mar-aging steel is somewhat higher than the lower alloy steels currently used in rocket motors. It is believed that utilizing the full properties available in the mar-aging steel and the processing techniques developed, that tensile strengths substantially in excess of 300,000 psi are feasible for metal rocket cases. (Author) (U)

35

Unclassified /ZOM07
THE DESIGN OF RESEARCH APPARATUS FOR CONSTANT-VOLUME COMBUSTION PROCESSES. (U)

DESCRIPTIVE NOTE: MASTER'S THESIS, 64 66P ANDERSON, EVERETT E.; CONTRACT: AF33 606 1038

UNCLASSIFIED REPORT

SUPPLEMENTARY NOTE:

DESCRIPTORS: (*COMBUSTION CHAMBERS, DESIGN), (*LABORATORY EQUIPMENT, COMBUSTION), (*PRESSURE VESSELS, COMBUSTION CHAMBERS), CONTROL, TEMPERATURE, PRESSURE, IGNITION, WATER VAPOR, FLAME PROPAGATION, SAFETY, STEEL, GLASS, IGNITERS, PHOTOGRAPHIC RECORDING SYSTEMS, MATHEMATICAL ANALYSIS, STRESSES, SPHERES (U)

A DESIGN FOR THE CONSTRUCTION AND SELECTION OF APPARATUS FOR CONSTANT-VOLUME COMBUSTION PROCESSES RESEARCH IS PRESENTED. A DISCUSSION OF THE DESIGN CRITERIA AND CALCULATIONS WITH REGARD TO TEMPERATURE, PRESSURE, MATERIAL, ETC., IS MADE. COMPLETE ENGINEERING DRAWINGS AND MATERIAL LISTINGS ARE INCLUDED IN ORDER THAT THIS PAPER MAY BE USED IN THE ACTUAL CONSTRUCTION OF A CONSTANT-VOLUME SPHERICAL BOMB AND SELECTION OF THE ASSOCIATED EQUIPMENT. (AUTHOR) (U)
AN EXPERIMENTAL STRESS ANALYSIS WAS MADE TO CONFIRM THE DESIGN FEASIBILITY OF A DOUBLE WALL 40-FOOT DIAMETER SPHERICAL PRESSURE VESSEL TO BE USED AS AN ANECHOIC CHAMBER. ELECTRICAL RESISTANCE STRAIN GAGES WERE USED TO MEASURE STRAINS ON THE SURFACE OF THE TEST ARTICLE, A ONE-SIXTH SCALE MODEL OF THE ANECHOIC VESSEL, FOR SEVERAL POSSIBLE COMBINATIONS OF INTERNAL PRESSURE, ANNULUS PRESSURE AND DEAD WEIGHT LOADS.
TENSILE STRESSES ON THE SURFACE OF AN ELLIPSOIDAL CAVITY IN COMPRESSIVE LOADING SITUATIONS, (U)

DESCRIPTIVE NOTE: INTERIM REPT., MAR 65 13P MULVILLE, D. R. IKIES, J. A. I
REPT. NO. NRL-6210
PROJ: WW041

UNCLASSIFIED REPORT

SUPPLEMENTARY NOTE:

DESCRIPTORS: (*PRESSURE VESSELS, COMPRESSIVE PROPERTIES), BRITTLENESS, SOLIDS, BUBBLES, ELLIPSOIDS, TENSILE PROPERTIES, STRESSES, HYDROSTATIC PRESSURE, FAILURE (MECHANICS), SUBMARINE HULLS (U)

THE STRESSES ON THE WALLS OF EMBEDDED CAVITIES HAVE BEEN INVESTIGATED, PARTICULARLY FOR COMPRESSIVE LOADING SITUATIONS CORRESPONDING TO THOSE FOR SHELLS FOR DEEP SUBMERSION. THE DISCREPANCY BETWEEN THEORETICAL AND MEASURED COMPRESSIVE STRENGTH OF BRITTLE SOLIDS IS ONE MOTIVATING FACTOR FOR EXTENDING THIS INVESTIGATION. THE MAXIMUM TENSILE STRESS COMPONENTS ARE EQUAL NUMERICALLY TO THE APPLIED COMPRESSIVE STRESS. THE MAXIMUM TENSILE STRESSES DEPEND ON THE SHAPE OF THE CAVITY, POISSON'S RATIO, AND THE ORIENTATION OF THE CAVITY IN THE SHELL. IT IS RECOMMENDED THAT THE WORK CONTINUE WITH THE AIM OF SHOWING THE EFFECTS OF CAVITIES ON STRENGTH. ONE APPROACH RECOMMENDED IS TO CALCULATE THE EFFECTS OF CRACKS IN THE WALLS OF THE CAVITIES. (AUTHOR) (U)
CASCADE ARRANGEMENT IN SPHERICAL PRESSURE VESSEL DESIGN FOR NUCLEAR POWER REACTORS, (U)

JAN 65 29P HU, L. W.; SCHUTZLER, J. C. I

CONTRACT: AF AFOSR127 64
MONITOR: AFOSR, 65-0315

SUPPLEMENTARY NOTE:

DESCRIPTORS: (PRESSURE VESSELS, CASCADE STRUCTURES), (PRESSURIZED WATER REACTORS, PRESSURE VESSELS), STRESSES, SPHERES, REACTOR COOLANTS, NUMERICAL ANALYSIS (U)

A CASCADE ARRANGEMENT OF PRESSURE VESSELS IS SUGGESTED FOR NUCLEAR POWER REACTOR DESIGN. THE STRESS ANALYSIS AND A PROCEDURE FOR THE MINIMUM WEIGHT DESIGN OF CASCADE SPHERICAL SHELLS ARE PRESENTED. A NUMERICAL EXAMPLE OF TWO STAGE SPHERICAL SHELLS IS GIVEN TO DEMONSTRATE THE PROCEDURES DEVELOPED AS WELL AS THE NEED OF SUCH PRESSURE VESSELS IN NUCLEAR POWER REACTOR DESIGN. (AUTHOR) (U)
UNCLASSIFIED

ODC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. /ZOM07

AD-615 022
FRANKFORD ARSENAL PHILADELPHIA PA

FRACTURE TOUGHNESS AND PRESSURE VESSEL PERFORMANCE, (U)

AUG 63 12P CARMAN, CARL M.; IARMIENTO,
DOMENIC F.; MARKUS, HAROLD I.
REPT. NO. A63-24
PROJ: 1H024901A111

UNCLASSIFIED REPORT

SUPPLEMENTARY NOTE: REPT. PREPARED FOR PRESENTATION AT THE
WINTER ANNUAL MEETING OF THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERING, PHILADELPHIA, PA., 17-22
NOV 63, ASME PAPER NO. 63-WA-138 PUB. IN JOURNAL
OF BASIC ENGINEERING PI-7 1963 (COPIES NOT AVAILABLE
TO DOD OR CLEARINGHOUSE CUSTOMERS).

DESCRIPTORS: (*PRESSURE VESSELS, FRACTURE (MECHANICS)),
(*FRACTURE (MECHANICS), PRESSURE VESSELS),
METALLOGRAPHY, IRON ALLOYS, TOUGHNESS, FATIGUE
(MECHANICS), FAILURE (MECHANICS), STRESSES, STRAIN
(MECHANICS), FRACTOGRAPHY (U)

CRITERIA FOR PREDICTING PRESSURE VESSEL PERFORMANCE
BASED ON FRACTURE TOUGHNESS ARE REVIEWED IN GENERAL
TERMS. EXPERIMENTAL STUDIES OF SMALL PRESSURE
VESSELS FABRICATED OF HIGH TOUGHNESS, HIGH STRENGTH
STEEL 4330V (MOD + SI) ARE DESCRIBED. DATA
PRESENTED INCLUDE FATIGUE LIFE IN PRESENCE OF A SMALL
PART-THROUGH-CRACK AND BURST PROPERTIES OF THE
FATIGUE CRACKED CYLINDERS. INTERPRETATION OF THE
FATIGUE DATA IS BASED ON PARIS' RELATIONSHIP DA/
DN = K TO 4TH POWER/M. THE FAILURE STRESSES
ARE DISCUSSED IN RELATION TO THE STRESS ELEVATING
EFFECT OF LOCAL BULGING ON THE APPARENT FRACTURE
TOUGHNESS. THE BEHAVIOR OBSERVED IN TESTING FULL
SCALE HIGH STRENGTH PRESSURE VESSELS FABRICATED FROM
MATERIALS HAVING INTERMEDIATE FRACTURE TOUGHNESS,
NAMELY, D6A STEEL AT 200,000-PSI YIELD STRENGTH
AND 300M STEEL AT 230,000-PSI YIELD STRENGTH AND
MATERIALS HAVING LIMITED FRACTURE TOUGHNESS, NAMELY,
TWENTY PERCENT NICKEL MARAGING STEEL AT 280,000-PSI
YIELD STRENGTH, ARE DISCUSSED IN RELATION TO THE
RATIO OF FRACTURE TOUGHNESS TO PLANE-STRAIN FRACTURE
TOUGHNESS BASED ON THE PART-THROUGH-CRACK MODEL.
PRECAUTIONS NECESSARY FOR FABRICATION AND
INSPECTION TO INSURE RELIABLE PERFORMANCE ARE
DISCUSSED. (AUTHOR) (U)

40

UNCLASSIFIED /ZOM07
A photoelastic study was made to determine the influence of seat conditions on the stress distribution in a representative plastic window of a bathyscaphe pressure vessel. Friction measurements were made for comparison of materials and surface finishes. Two-dimensional tests established the general character of the stress distributions in the window, and three-dimensional tests revealed the stresses in a scale model of the prototype. It was found that the three-dimensional stress distribution in the region of the inner face of a plastic window, when tested in a steel sphere and loaded under external pressure, was similar to stresses in the two-dimensional models in that same region. The ratio of maximum stress to applied pressure was found to be 0.85 in the three-dimensional window model, which would also pertain to the prototype. This report includes a recapitulation of the data obtained on previous studies of the structural behavior of externally pressurized spherical vessels with window and hatch penetrations. The remaining window problems are identified and discussed, and recommendations are made for future projects.
PHOTOELASTIC STUDY OF THE STRESSES NEAR OPENINGS IN PRESSURE VESSELS

MAR 65 101P TAYLOR, C. E., ILLINOIS URBANA DEPT OF THEORETICAL AND APPLIED MECHANICS

CONTRACT: N08572069, N08586112

UNCLASSIFIED REPORT

SUPPLEMENTARY NOTE:

THE REPORT DESCRIBES THE EXPERIMENTAL TECHNIQUES USED IN THE STUDY, PRESENTS THE RESULTS, AND DISCUSSES THE PROBABLE ACCURACY.
SUITABLE OUT-OF-CHAMBER, MANUAL AND SEMI-AUTOMATIC WELDING TECHNIQUES HAVE BEEN DEVELOPED FOR THE FABRICATION OF A TITANIUM ALLOY PRESSURE BOX OF THE TYPE REQUIRED FOR LOW CYCLE FATIGUE STUDIES AT THE MARINE ENGINEERING LABORATORY. THESE TECHNIQUES MAY ALSO BE USED FOR FABRICATING COMPLEX STRUCTURAL ELEMENTS OF HEAVY PLATE TITANIUM. (AUTHOR)
PRESSURE CHAMBER FOR MICROELECTROPHYSIOLOGICAL TECHNIQUES (CAISSON DE COMPRESSION POUR TECHNIQUES MICROELECTROPHYSIOLOGIQUES),

OCT 64 13P CHAGNEUX, ROGER

CONTRACT: AF-EOAR-114-63, PHS-NB-03337

PROJECT: AF-9777

TASK: 977707

MONITOR: AFOSR, 65-1294

UNCLASSIFIED REPORT

SUPPLEMENTARY NOTE: PUB. IN BULL INST OCEANOGR MONACO V61 N1287 P1-8 1964 (COPIES AVAILABLE ONLY TO DDC USERS). TEXT IN FRENCH WITH SUMMARY IN ENGLISH.

DESCRIPTORS: (PRESSURE VESSELS, LABORATORY EQUIPMENT), (BIOLOGICAL LABORATORIES, PRESSURE VESSELS), PRESSURE, REMOTE CONTROL SYSTEMS, HIGH-PRESSURE RESEARCH, GASES, NERVE CELLS, NERVOUS SYSTEM, PHYSIOLOGY, MARINE BIOLOGY

IDENTIFIERS: ELECTROPHYSIOLOGY

THIS RESEARCH PROGRAM ON THE EFFECT OF HYPERBAR GASES ON ISOLATED NERVE CELLS OF 'APLYSIA' HAS INVOLVED THE STUDY AND CONSTRUCTION OF A PRESSURE CHAMBER. THE CHAMBER IS MAINLY COMPOSED OF A CYLINDRICAL TUBE, WITH 2 GLASS PORTHoles ALLOWING THE ILLUMINATION AND OBSERVATION OF THE BIOLOGICAL PREPARATIONS, AND 2 MOVEABLE DOORS WITH A QUICKCLOSING SYSTEM WHICH PERMIT MICROMANIPULATION. ELECTRICAL CONNECTIONS ASSURE ALL THE VARIOUS REMOTE CONTROLS. TWO TAPS, PURGE AND STOP, A MANOMETER AND A SAFETY VALVE COMPLETE THE EQUIPMENT OF THE CHAMBER. THE EQUIPMENT MEETS THE REQUIREMENTS OF MICROELECTROPHYSIOLOGICAL TECHNIQUES AND CAN SUBMIT THE PREPARATIONS TO CONSTANT PRESSURES OF AS MUCH AS 6 BARS. (AUTHOR)
REPAIRING THICK-WALLED HIGH-PRESSURE VESSELS BY ELECTRIC ARC WELDING, (U)

DEC 64 7P FARBER, G. KH.; NIKITIN, D. G.

REPORT NO. T-418-R

MONITOR: TT; 65-40732

UNCLASSIFIED REPORT

DESCRIPTORS: (*ARC WELDING, PRESSURE VESSELS), (*PRESSURE VESSELS, ARC WELDING), (*STEEL, ARC WELDING), USSR, MAINTENANCE, THICKNESS, CHROMIUM ALLOYS, NICKEL ALLOYS, MOLYBDENUM ALLOYS, HEAT EXCHANGERS, WELDING RODS (U)

UNCLASSIFIED

PRESSURE VESSEL FOR CALIBRATING SONAR TRANSDUCERS. ACOUSTICALLY TRANSPARENT FIBER GLASS CAPSULE PERMITS TESTING AT PRESSURES TO 800 PSIG. (U)

ACOUSTICALLY TRANSPARENT VESSEL HOUSES A SINGLE TRANSDUCER FOR TESTING UNDER PRESSURE TO 800 PSIG. TESTS OF B24FA TRANSDUCER INDICATE MARKED DIFFERENCE IN TRANSMITTING RESPONSE AT DEPTH. (AUTHOR) (U)
THE CONVERSION OF 16-INCH PROJECTILES TO PRESSURE VESSELS.

DESCRIPTIVE NOTE: TECHNICAL NOTE,
JUN 65 67P GRAY, K. O., ISTACHIW, J. D.
REPT. NO. NCEL-TN-755
PROJ: Y-F-01S-01-07-001

UNCLASSIFIED REPORT

DESCRIPTORS: (*PROJECTILES, PRESSURE VESSELS),
(*PRESSURE VESSELS, UNDERWATER EQUIPMENT), DESIGN,
MANUFACTURING METHODS, PROCESSING, TESTING,
OCEANOGRAPHIC EQUIPMENT, SEALS (STOPPERS),
MECHANICAL DRAWING, DEEP SUBMERGENCE

PRESSURE VESSELS FOR USE WITH FRESH WATER AND SEA WATER AT PRESSURES UP TO 20,000 PSI HAVE BEEN FABRICATED FROM MODIFIED 16-INCH HIGH CAPACITY NAVAL PROJECTILES. DETAILS FOR MODIFICATION OF PROJECTILES AND THE FABRICATION OF SUPPORTING EQUIPMENT ARE PRESENTED. PROOF TESTING PROCEDURE AND DATA ARE DESCRIBED AND DISCUSSED. (AUTHOR)
TECHNIQUE FOR FORMING PRESSURE WINDOWS FROM THIN METAL SHEETS. (U)

DESCRIPTIVE NOTE: REVISED ED., SEP 65 2P CLELAND, W. E. IREPOST, R. I

UNCLASSIFIED REPORT

AVAILABILITY: PUBLISHED IN REVIEW OF SCIENTIFIC INSTRUMENTS V36 N12 P1881-3 1965. COPIES TO DDC USERS ONLY.

SUPPLEMENTARY NOTE: REVISION OF MANUSCRIPT RECEIVED 15 MAR 65. PREPARED IN COOPERATION WITH HIGH ENERGY PHYSICS LAB., STANFORD UNIV., CALIF. REPT. NO. HEPL-427. RESEARCH SUPPORTED IN PART BY AFOSR, ARPA AND NONR.

DESCRIPTORS: (*PRESSURE VESSELS), (DIAPHRAMS(MECHANICS)), (*DIAPHRAM(MECHANICS), SHEETS), (*MATERIAL FORMING, DIAPHRAMS(MECHANICAL)), ALUMINUM ALLOYS, STAINLESS STEEL, THICKNESS. FRACTURE(MECHANICS) (U)

REPRINT: TECHNIQUE FOR FORMING PRESSURE WINDOWS FROM THIN METAL SHEETS.

A REVIEW AND AN ANALYSIS OF SEVERAL INSTANCES OF SHORTCOMINGS IN SURVEILLANCE PROGRAMS ARE PRESENTED ALONG WITH A SET OF RECOMMENDATIONS FOR CONSIDERATION IN PLANNING NEW SURVEILLANCE PROGRAMS. IN UTILIZING THESE RECOMMENDATIONS, PRESSURE VESSEL SURVEILLANCE PROGRAMS CAN BE MADE TO PROVIDE VALUABLE INFORMATION FOR USE IN DETERMINING PLANT OPERATIONS; AT THE SAME TIME RESULTS FROM THESE PROGRAMS MAY ADD TO THE GENERAL KNOWLEDGE OF RADIATION EFFECTS IN PRESSURE VESSEL STEELS OR OTHER MATERIALS SUBJECT TO RADIATION. RECOGNITION OF THE VALUE OF SURVEILLANCE PROGRAMS AND THEIR CONSCIENTIOUS APPLICATION SHOULD FURTHER THE PUBLIC ACCEPTANCE OF NUCLEAR REACTORS AS SAFE ALTERNATIVE POWER SYSTEMS.

(U)
THE REPORT DESCRIBES A METHOD USED TO PROVIDE A 2150 PSI NITROGEN STORAGE SYSTEM THAT RETAINS OPERATIONAL PRESSURE FOR A MINIMUM PERIOD OF THREE YEARS WITHOUT INTERIM SERVICING. A HERMETIC TANK SEAL AND A SQUIB OPERATED RELEASE MECHANISM WERE DEVELOPED FOR THIS PURPOSE. THE RELEASE MECHANISM UTILIZES A NOTCHED RELEASE TUBE THAT, WHEN IMPACTED BY A SQUIB OPERATED PISTON, RUPTURES PROVIDING A CONTAMINATION FREE PATH TO A PRESSURE REGULATOR. EMPHASIS WAS GIVEN TO METHODS THAT WOULD PERMIT RETRetrofit OF AN EXISTING STORAGE SYSTEM. (AUTHOR)
UNCLASSIFIED

DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. /Z0M07

AD-632 092 13/4
UNITED STATES RUBBER CO MISHAWAKA IND

LINERS FOR HIGH PRESSURE AIR STORAGE VESSELS. (U)

DESCRIPTIVE NOTE: QUARTERLY PROGRESS REPT. NO. 5, 1 JAN-
1 APR 66, APR 66 37P UHLIG,E. C. ;FALKENAU,V. A.
;KOHRN,R. C. ;
CONTRACT: NOBS-92150,
PROJ: SR-007-03-04,
TASK: 1008.

UNCLASSIFIED REPORT

SUPPLEMENTARY NOTE:

DESCRIPTORS: (*FILAMENT WOUND CONSTRUCTION, *STORAGE
TANKS), (*PRESSURE VESSELS, STORAGE TANKS), AIR,
LAMINATES, FEASIBILITY STUDIES (U)
UNCLASSIFIED

DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. /ZOM07

AD-636 385 13/8 13/5 13/1
INTERNATIONAL INST OF WELDING

COMMISSION XII: PRESSURE VESSELS, BOILERS AND PIPE LINES.

DESCRIPTIVE NOTE: ANNUAL REPT.
JUL 65 10P

UNCLASSIFIED REPORT

SUPPLEMENTARY NOTE:

DESCRIPTORS: (*WELDING, SYMPOSIA), (*PRESSURE VESSELS, WELDING), (*BOILERS, WELDING), (*PIPES, WELDING), WELDS, STRESSES, STEEL, HEAT TREATMENT, NON-DESTRUCTIVE TESTING

ANNUAL REPORT OF COMMISSION XI CONCERNING WELDING OF PRESSURE VESSELS, BOILERS, AND PIPE LINES.

52
A HYDRAULIC SYSTEM WAS DESIGNED AND CONSTRUCTED FOR THE PURPOSE OF INTRODUCING SURFACE OR PART-THROUGH-THE-THICKNESS CRACKS TO THIN-WALL (0.065-IN.) SCALE-MODEL PRESSURE VESSELS. THE HOOP STRESSES RESULTING FROM INTERNAL PRESSURE, IN THE RANGE 4000 TO 5000 PSI, WILL BE APPLIED AS PRESSURE PULSES AT FREQUENCIES UP TO 160 CYCLES PER MINUTE FOR NUMBERS OF CYCLES REQUIRED TO GROW CRACKS OF PREDETERMINED LENGTHS. THE SYSTEM CONSISTS ESSENTIALLY OF A MOTOR-DRIVEN HYDRAULIC PUMP, VALVES, FITTINGS, TUBING AND APPROPRIATE INSTRUMENTATION. A COMPONENT OF THE SYSTEM, A MANUALLY-OPERATED HYDRAULIC PUMP, WILL AFFORD BURST PRESSURES UP TO 30,000 PSI TO TEST VESSELS CONTAINING INDUCED CRACKS. SEVERAL VESSELS WERE FABRICATED FROM 18 PER CENT NICKEL (250 GRADE) MARAGING STEEL. (AUTHOR)
DISTRIBUTION OF STRESSES IN A PRESSURIZED HOLLOW CYLINDER WITH A CIRCULAR HOLE.

DESCRIPTIVE NOTE: FINAL REPT., APR 65-JUL 66.
JUL 66 37P DURELLI, A. J. IDEL RIO, C. J.; PARKS, V. J.; IFENG, H.;
CONTRACT: NONR-4886(00),
PROJ: S-F013-03-02, CUA-4-142-04
TASK: 19-54,

UNCLASSIFIED REPORT

SUPPLEMENTARY NOTE:

DESCRIPTORS: (*STRESSES, *PRESSURE VESSELS),
CYLINDRICAL BODIES, STRUCTURAL SHELLS,
PHOTOELASTICITY, COATINGS

THIS PAPER DEALS WITH AN EXPERIMENTAL DETERMINATION OF STRESSES IN A PRESSURIZED THIN HOLLOW CYLINDER WITH A CIRCULAR HOLE. BRITTLE COATING, MECHANICAL AND ELECTRICAL STRAIN GAGES AND PHOTOELASTICITY WERE USED FOR THE ANALYSIS. A COMPARISON WITH A THEORETICAL DEVELOPMENT APPLIED TO A SIMILAR CASE IS MADE. COMMENTS ON THE BEST EXPERIMENTAL PROCEDURES TO BE FOLLOWED IN THE SOLUTION OF THIS KIND OF PROBLEMS ARE MADE. (AUTHOR)
STRESSES IN SHALLOW GLASS DOMES WITH CONSTRAINED EDGES. (U)

JUN 66 65P PROCTOR, JAMES F. I
REPT. NO. NOLTR-66-46
PROJ. NOL-889,

UNCLASSIFIED REPORT

SUPPLEMENTARY NOTE:

DESCRIPTORS: (*PRESSURE VESSELS, DEEP SUBMERGENCE), (*GLASS, STRESSES), STRUCTURAL SHELLS, HATCHES, LOADING(MECHANICS), STRAIN(MECHANICS) (U)

STRESS-STRAIN RELATIONS DEVELOPED FOR ROTATIONALLY SYMMETRIC BENDING AND STRETCHING OF SHALLOW SEGMENTS OF THIN SPHERICAL SHELLS ARE EXTENDED TO EVALUATE THE RESPONSE OF A GLASS DOME WITH EDGE CONSTRAINT TO A UNIFORMLY APPLIED LOAD OVER A SMALL CIRCULAR AREA AT THE APEX. THEORETICALLY DERIVED STRESS-STRAIN CURVES FOR THE CONSTRAINED-EDGE CASE ARE COMPARED WITH SIMILAR CURVES WITH EXPERIMENTAL RESULTS FROM SEVERAL STATIC TESTS. ALSO THE EFFECTS OF DEGREE OF EDGE CONSTRAINT AND LOCAD CONCENTRATION ARE DEMONSTRATED AND DISCUSSED. (AUTHOR) (U)
STRESS ANALYSIS OF A 4-INCH DIAMETER PRESSURE VESSEL DURING A 1:1 BIAXIAL BURST TEST. (U)

JUN 66 65P MCIVER, R. W.
REPT. NO. DAC-59500

UNCLASSIFIED REPORT

SUPPLEMENTARY NOTE:

THE INVESTIGATION WAS MADE TO DETERMINE THE VARIATION OF STRESS RATIO IN THE TEST SECTION OF A 4-INCH DIAMETER PRESSURE VESSEL. A 1:1 BIAXIAL TEST WAS CONDUCTED BY APPLYING A COMBINATION OF PRESSURE AND AXIAL LOAD AT AN ESSENTIALLY CONSTANT RATIO TO THE TEST CYLINDER UNTIL FAILURE. THE STRESS RATIO WAS DETERMINED AT EACH OF TWENTY-ONE LOCATIONS FROM MEASURED PRINCIPAL STRAINS. THE MAXIMUM VARIATION IN YIELD STRENGTH AT ANY OF THE NINE CENTERMOST LOCATIONS IN THE TEST SECTION WAS LESS THAN PLUS OR MINUS 1.5 PERCENT OF THEIR AVERAGE. THIS SPECIMEN CONFIGURATION IS CONSIDERED ACCEPTABLE FOR 1:1 BIAXIAL TESTS, PROVIDED THAT THE THINNEST AREA OF THE SPECIMEN IS LOCATED CLOSE TO THE AXIAL CENTER-LINE OF THE TEST SECTION. (AUTHOR) (U)
ON THE METHOD OF TESTING METALS AT HIGH TEMPERATURE AND PRESSURE VALUES.

JUN 66 12P GORB, M. L.

REPT. NO. FTD-TT-65-1887,
MONITOR: TT 66-62286

THE CONSTRUCTION IS DESCRIBED OF A NEW VARIANT OF CONICAL CYLINDRICAL HIGH PRESSURE CHAMBER. A METHOD IS PROPOSED FOR MEASURING TEMPERATURES IN THE HIGH PRESSURE CHAMBER, BASED ON THE PRINCIPLE OF A NATURAL THERMOCOUPLE. (AUTHOR)
CASCADE ARRANGEMENT IN SPHERICAL VESSEL DESIGN FOR NUCLEAR POWER REACTORS,

DEC 65 HU. L. W. ISCHUTZLER, J. C.

PROJECT: AF-9782,

TASK: 978202,

MONITOR: 66-1674

UNCLASSIFIED REPORT

SUPPLEMENTARY NOTE: PREPARED IN COOPERATION WITH DOUGLAS AIRCRAFT CO., INC., SANTA MONICA, CALIF., MISSILE AND SPACE SYSTEMS DIV.

DESCRIPTIONS: (PRESSURE VESSELS, CASCADE STRUCTURES), (POWER REACTORS, PRESSURE VESSELS), PRESSURIZED WATER REACTORS, DESIGN

THE USE OF PRESSURE VESSELS IN CASCADE ARRANGEMENT INSTEAD OF THE CONVENTIONAL SINGLE SHELL VESSELS IS PROPOSED FOR NUCLEAR POWER REACTOR DESIGN, PARTICULARLY IN VIEW OF MEETING THE DEMAND OF INCREASING PRESSURES AND TEMPERATURES FOR PRESSURIZED-WATER REACTORS. THE STRESS ANALYSIS AND A PROCEDURE FOR THE MINIMUM WEIGHT DESIGN OF IRRADIATED CASCADE SPHERICAL SHELLS ARE PRESENTED. A NUMERICAL EXAMPLE OF TWO STAGE SPHERICAL SHELLS IS GIVEN TO DEMONSTRATE THE PROCEDURES DEVELOPED AS WELL AS THE NEED FOR SUCH TYPE OF PRESSURE VESSELS IN NUCLEAR REACTOR DESIGN. (AUTHOR)
AN EXPLORATORY STUDY WAS CONDUCTED TO DETERMINE THE FEASIBILITY OF USING GLASS AND CERAMIC MATERIALS FOR DEEP-SUBMERGENCE PRESSURE HULLS. IN GENERAL, THE STUDY CONFIRMED THE POTENTIAL USE OF THESE MATERIALS IN PRESSURE HULLS CAPABLE OF WITHSTANDING PRESSURES AT THE DEEPEST PART OF THE OCEAN WITH VERY LITTLE STRUCTURAL WEIGHT. HOWEVER, THE STUDY ALSO SHOWED THAT VERY LITTLE IS KNOWN ABOUT THE BEHAVIOR OF GLASS AND CERAMIC STRUCTURES UNDER HIGH-COMPRESSIVE LOADING AND THAT A GREAT DEAL OF BASIC DATA MUST BE GENERATED BEFORE THIS POTENTIAL CAN BE ACHIEVED. THE USE OF SIMPLE SPHERES OF GLASS AND CERAMIC MATERIALS FOR PROVIDING BUOYANCY IS CONSIDERED TO BE THE MOST PROMISING NEAR-FUTURE APPLICATION. (AUTHOR)
A study of the flammability of fabrics and other solids under unusual atmospheric conditions was initiated. The most profound effect on both ease of ignition and linear burning rate was caused by oxygen enrichment. For example, many materials which did not ignite in 21% oxygen ignited and burned readily at 31% or 41% oxygen. With a given atmosphere, increase in pressure was often effective in causing ignition where no ignition occurred at lower pressures. Substitution of helium for nitrogen in mixtures with oxygen had two generally significant effects: helium decreased the tendency of a material to ignite. This effect was shown to be due largely to the high thermal conductivity of helium. Once ignited, burning rates were often much faster in helium than in nitrogen.
TOROIDAL-TYPE SHELLS FREE OF BENDING UNDER UNIFORM NORMAL PRESSURE,

66 11P MURTHY, M. V. V. IKIUSALAAS, J.

UNCLASSIFIED REPORT

DESCRIPTORS: (*HYDROSTATIC PRESSURE, STRUCTURAL SHELLS), (*PRESSURE VESSELS, HYDROSTATIC PRESSURE), ELASTIC SHELLS, BENDING, STRESSES, HEMISPHERICAL SHELLS, GEOMETRIC FORMS, INTEGRALS.

THE LINEAR MEMBRANE SOLUTION IS KNOWN TO BE INADMISSIBLE IN THE CASE OF A TOROIDAL SHELL OF CIRCULAR CROSS-SECTION UNDER UNIFORM HYDROSTATIC PRESSURE, AS IT LEADS TO A SERIOUS VIOLATION OF THE COMPATIBILITY CONDITION. THIS PAPER SHOWS THAT THE COMPATIBILITY CAN BE RESTORED BY A SLIGHT CHANGE IN THE MERIDIAN OF THE SHELL, RATHER THAN BY RESORTING TO BENDING OR NON-LINEAR MEMBRANE THEORIES. EXACT SOLUTIONS, WITHIN THE LINEAR SHELL THEORY, ARE GIVEN FOR THE SHAPE OF THE MERIDIAN, STRESSES AND DISPLACEMENTS.
UNCLASSIFIED

FOREIGN TECHNOLOGY DIV WRIGHT-PATTERSON AFB OHIO

NEW METHOD OF PRODUCTION OF CLAD PLATE ROLLED PRODUCTS FOR PRESSURE VESSELS. (U)

JUL 66 54P LUTSYUK-KHUDIN, V. A.
REPT. NO. FTD-MT-65-468
MONITOR: TT 67-60484

UNCLASSIFIED REPORT

SUPPLEMENTARY NOTE: EDITED MACHINE TRANS. OF MONO.
NOVYI SPOSOB PROIZVODSTVA TOLSTOLISTOVOGO DVUKHSLOINOGO PROKATA DLYA SOSUDOV VYSOKOGO DAVLENIYA, KIEV, 1965 61P.

DESCRIPTIONS: (*ROLLING(METALLURGY), CLADDING), (*PRESSURE VESSELS, WELDING), (*STEEL, *CLADDING), USSR, METAL PLATES, HEAT TREATMENT, MANUFACTURING METHODS (U)

CONTENTS: MANUFACTURE OF CLAD STEELS BY METHOD OF LINING WITH SUBSEQUENT ROLLING; MANUFACTURE OF CLAD STEELS BY PACK METHOD; MANUFACTURE OF PLATE ROLLED STOCK WITH APPLICATION OF ELECTROSLAG WELDING; TECHNOLOGY OF ELECTROSLAG WELDING OF CLAD BILLETS; DIMENSIONS OF CLAD BILLETS UNDER ROLLING; HEATING UNDER ROLLING AND ROLLING OF CLAD BILLETS; ADDITION MATERIALS FOR WELDING OF CLAD BILLETS AND CONDITIONS OF HEAT TREATMENT; PRODUCTION OF THICK-WALLED WELDED PRESSURE VESSELS FROM CLAD STEELS; TECHNOLOGY OF WELDING CLAD VESSELS; CONCERNING THE QUESTION ON REJECTION OF HIGH-TEMPERATURE TREATMENT OF WELDED VESSELS AND IMPROVEMENT OF QUALITY OF METAL OF DURABLE CASING. (U)

64
UNCLASSIFIED

WINDOWS FOR EXTERNAL OF INTERNAL HYDROSTATIC PRESSURE VESSELS. PART I. CONICAL ACRYLIC WINDOWS UNDER SHORT-TERM PRESSURE APPLICATION. (U)

DESCRIPTIVE NOTE: TECHNICAL REPT.
JAN 67 104P SYACHI W J. D. IGRAY R. D.
REPT. NO. NCEL-TR-512
PROJ: Y-FO15-01-07-001

CONICAL ACRYLIC WINDOWS FOR FIXED OCEAN-FLOOR STRUCTURES WERE PLACED UNDER SHORT-TERM LOADING (PRESSURIZATION FROM ZERO TO FAILURE AT A FIXED RATE). THE WINDOWS, OF DIFFERENT THICKNESSES AND DIFFERENT INCLUDED CONICAL ANGLES, WERE SUBJECTED TO VARIOUS APPLIED PRESSURES, AND THEIR SUBSEQUENT BEHAVIOR WAS STUDIED. ACRYLIC WINDOWS, IN THE FORM OF TRUNCATED CONES WITH INCLUDED ANGLES OF 30?, 60?, 90?, 120?, AND 150?, WERE TESTED TO DESTRUCTION AT AMBIENT ROOM TEMPERATURE BY APPLYING HYDROSTATIC PRESSURE TO THE BASE OF THE TRUNCATED CONE AT A CONTINUOUS RATE OF 650 PSI/Min. THE PRESSURE AT WHICH THE WINDOWS FAILED AND THE MAGNITUDE OF DISPLACEMENT THROUGH THE WINDOW MOUNTING AT DIFFERENT PRESSURE LEVELS WERE RECORDED. THE ULTIMATE STRENGTH OF THE CONICAL WINDOWS (DENOTED BY THE CRITICAL PRESSURE AT WHICH ACTUAL FAILURE OCCURRED) WAS FOUND TO BE RELATED BOTH TO THICKNESS AND INCLUDED CONICAL ANGLE. GRAPHS ARE PRESENTED DEFINING THE RELATIONSHIP OF CRITICAL PRESSURE VERSUS THICKNESS-TO-DIAMETER RATIO, AND PRESSURE VERSUS MAGNITUDE OF DISPLACEMENT FOR THE WINDOWS. NONDIMENSIONAL SCALING FACTORS FOR CRITICAL PRESSURE AND DISPLACEMENT APPLICABLE TO LARGE-DIAMETER WINDOWS ARE DISCUSSED AND PRESENTED IN GRAPHIC FORM. (AUTHOR)
FLAT DISK-SHAPED ACRYLIC WINDOWS OF DIFFERENT THICKNESS-TO-DIAMETER RATIOS HAVE BEEN TESTED TO DESTRUCTION UNDER SHORT-TERM HYDROSTATIC LOADING AT ROOM TEMPERATURES, WHERE SHORT-TERM LOADING IS DEFINED AS PRESSURIZING THE WINDOW HYDROSTATICALLY ON ITS HIGH-PRESSURE FACE AT A 650-PSI/MINUTE RATE TILL FAILURE OF THE WINDOW TAKES PLACE. CRITICAL PRESSURES AND DISPLACEMENTS OF WINDOWS WITH THICKNESS TO EFFECTIVE DIAMETER RATIOS LESS THAN 1.0 HAVE BEEN RECORDED AND PLOTTED. THE CRITICAL PRESSURES DERIVED FROM TESTING FLAT WINDOWS IN FLANGES WITH 1.5-INCH, 3.3-INCH, AND 4.0-INCH OPENINGS HAVE BEEN FOUND APPLICABLE ALSO TO FLANGES WITH LARGER OPENINGS, SO LONG AS THE LARGER WINDOWS ARE OF THE SAME T/D SUB 1 AND D SUB 0/D SUB 1 RATIOS, WHERE T IS THICKNESS OF THE WINDOW, D SUB 1 IS THE CLEAR OPENING IN THE FLANGE AND THEREFORE THE EFFECTIVE DIAMETER OF THE WINDOW EXPOSED TO AMBIENT ATMOSPHERIC PRESSURE AND D SUB 0 IS OVERALL DIAMETER OF THE WINDOW FACE EXPOSED TO HYDROSTATIC PRESSURE. THE PERFORMANCE OF FLAT WINDOWS UNDER SHORT-TERM HYDROSTATIC PRESSURE HAS BEEN FOUND TO BE COMPARABLE TO THAT OF CONICAL WINDOWS WITH INCLUDED ANGLE EQUAL TO, OR LARGER THAN 90 DEGREES. (AUTHOR)
THE PRESENT REPORT DEALS WITH TESTS INVOLVING OPENINGS IN SPHERICAL VESSELS AND A TEST INVOLVING A DOUBLE TAPER EXTERNALLY REINFORCED OPENING IN A THIN-WALLED CYLINDRICAL VESSEL. THE DIMENSIONAL PARAMETERS AND MAXIMUM STRESSES FOR THE TESTS ARE LISTED. THE STRESS PATTERNS AND STRESS DISTRIBUTIONS FOR THE TESTS ARE PRESENTED.
PHOTOELASTIC INVESTIGATION OF STRESSES AT WINDOWS AND HATCHES IN SPHERICAL PRESSURE VESSELS,

DEC 63 25P HAMILTON, HAROLD; BECKER, HERBERT;
REPT. NO. ARA-F-9250-3
CONTRACT: NOBS-88648

UNCLASSIFIED REPORT

THROUGH THREE-DIMENSIONAL PHOTOELASTICITY, STRESSES WERE DETERMINED IN EXTERNALLY PRESSURIZED SPHERES WITH SIMULATED HATCHES AND WINDOWS REPRESENTATIVE OF BATHYSCAPH PRESSURE VESSEL CONSTRUCTION. STRESSES WERE DETERMINED FOR VARIOUS SEAT CHAMFER ANGLES AND MATERIAL COMBINATIONS. IN ADDITION, AN EXPLORATORY STUDY WAS MADE OF THE EFFECT OF FRICTION UPON THE STRESSES IN WINDOWS. A MAJOR RESULT OF THE STUDY IS THE INDICATION THAT FOR HATCH CHAMFER ANGLES OF 15 DEGREES OR LESS NO LOCAL REINFORCEMENT IS REQUIRED EITHER IN THE SPHERE OR IN THE HATCH. NO CONCLUSIONS WERE REACHED CONCERNING SPHERE DESIGN NEAR A WINDOW SINCE ADDITIONAL DATA ON EFFECTS OF FRICTION ARE REQUIRED BEFORE THIS PROBLEM CAN BE RESOLVED. (AUTHOR)
AN ANALYSIS IS PRESENTED FOR TWO NEW THICKNESS TRANSITION CONFIGURATIONS FOR CYLINDRICAL PRESSURE VESSELS WITH HEMISPHERICAL HEADS. THESE CONFIGURATIONS, WHICH EXTEND ON BOTH SIDES OF THE JUNCTURE BETWEEN THE SHELLS, ARE THE VERSINE VARIATION AND THE BILINEAR VARIATION. THE BILINEAR TRANSITION IS SHOWN TO RESULT IN LIGHTER DESIGNS WHILE HOLDING OVERSTRESS TO A NEGLIGIBLE AMOUNT. NONDIMENSIONAL CURVES ARE PRESENTED WHICH SHOW THE OVER-ALL VESSEL WEIGHT FOR BOTH TYPES OF TRANSITION. RESULTS ARE OBTAINED BY SOLVING NUMERICALLY A SYSTEM OF SECOND-ORDER DIFFERENTIAL EQUATIONS APPLICABLE TO THIN ELASTIC ISOTROPIC SHELLS OF VARIABLE THICKNESS, USING AN ESTABLISHED DECOUPLING CRITERION FOR SPHERICAL AND CYLINDRICAL SHELLS UNDER EDGE LOADS. (AUTHOR)
THE PRESSURE CONTAINMENT CAPABILITY OF A MONOBLOC CYLINDRICAL CHAMBER THAT REMAINS ELASTIC IS LIMITED BY THE MECHANICAL STRENGTH OF THE CHAMBER MATERIAL TO VALUES OF ABOUT 100,000 POUNDS PER SQUARE INCH. HIGHER PRESSURES CAN BE CONTAINED BY USING A SHRINK-FIT CONSTRUCTION OR AUTOFRETTAGE AND THESE TECHNIQUES PROVIDE APPROXIMATELY TWICE THE PRESSURE CONTAINMENT CAPABILITY THAT CAN BE OBTAINED WITH THE MONOBLOC CONSTRUCTION. THIS REPORT DESCRIBES AND ANALYZES A SEGMENTED CHAMBER THAT GREATLY EXTENDS THE HIGH PRESSURE CAPABILITY OF A CYLINDRICAL CHAMBER IN THE ELASTIC RANGE.
A characterization of materials was conducted in relation to the terminal, burst-type, failure of a PVRC pressure vessel in A212A steel at 110°F. Materials were characterized with respect to chemical composition, tensile properties, fracture toughness including Charpy-V and tear energies, drop-weight NDT, micrography and electron fractography. The initiation and growth of a 34-in. long fatigue crack was shown to be caused by mechanical aspects rather than material deficiencies and the plastic instability burst, brittle run, and crack arrest were in complete accord with the fracture analysis diagram.

(Author)
AVAILABILITY OF DATA ON IRRADIATED MATERIALS AS RELATED TO DESIGN REQUIREMENTS FOR WATER COOLED REACTOR PRESSURE VESSELS. (U)

UNCLASSIFIED REPORT

NRL HAS COMPLETED A SURVEY OF KNOWN EXPERIMENTAL PROGAMS WHICH HAVE CONTRIBUTED TO AND ARE ATTEMPTING TO SATISFY THE DATA REQUIREMENTS NECESSARY FOR THE DEVELOPMENT OF NUCLEAR REACTOR PRESSURE VESSEL SPECIFICATIONS AND OPERATIONS. DESIGNER REQUIREMENTS HAVE BEEN SET FORTH IN THE REPORT. PROPERTIES OF IRRADIATED MATERIALS NEEDED FOR THE DESIGN OF REACTOR VESSELS, BY D. W. MCLAUGHLIN WHICH WAS PRESENTED AS AN ASME RESEARCH COMMITTEE REPORT TO THE 1966 ASTM SYMPOSIUM ON EFFECTS OF RADIATION ON STRUCTURAL METALS. THIS REPORT WAS THE PRIMARY REFERENCE USED IN WEIGHING THE PRESENTATION OF DATA AVAILABILITY AGAINST DESIGNER REQUIREMENTS. AN ANALYSIS OF INDIVIDUAL MATERIAL PROPERTIES AND PROBLEM AREAS IS PRESENTED RATHER THAN AN EXTENSIVE DATA COMPILATION. THE AREAS CONSIDERED ARE LOW-CYCLE AND HIGH-CYCLE FATIGUE, BRITTLE FRACTURE RESISTANCE (TRANSITION TEMPERATURE CHARACTERISTICS AND FRACTURE MECHANICS), STATIC LOAD STRENGTH, AND RECOVERY OF ORIGINAL PROPERTIES. (AUTHOR) (U)
UNCLASSIFIED

DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. /Z0M07

AD-663 882 18/13 20/11
NAVAL RESEARCH LAB WASHINGTON D C

BASIC ASPECTS OF CRACK GROWTH AND FRACTURE, (U)

NOV 67 82P IRWIN, G. R. ; KRAFFT, J.
M. ; PARIS, P. C. ; WELLS, A. A.
REPT. NO. NRL-6598

UNCLASSIFIED REPORT

DESCRIPTORS: (NUCLEAR REACTORS, PRESSURE VESSELS); (PRESSURE VESSELS;
FRACTURE(MECHANICS)); CRACK PROPAGATION;
DESIGN, CONTROL, SAFETY, TOUGHNESS;
PLASTICITY, STRESS CORROSION, TEMPERATURE;
STRESSES, MATHEMATICAL ANALYSIS, BRITTLENESS;
FATIGUE(MECHANICS), METALS, DUCTILITY;
MEASUREMENT, CRACKS
IDENTIFIERS: CRACK GROWTH

A NEAR APPROACH TO ABSOLUTE FRACTURE SAFETY IN
BOILING WATER (BW) AND PRESSURIZED WATER (PW)
NUCLEAR REACTOR PRESSURE VESSELS REQUIRES A VERY
CONSERVATIVE FRACTURE CONTROL PLAN. SUCH A PLAN
MUST ASSUME THAT ANY PLAUSIBLE CRACKLIKE DEFECT,
WHICH HAS NOT BEEN PROVED ABSENT BY INSPECTION, MAY
EXIST IN THE VESSEL. REQUIREMENTS FOR DESIGN,
MATERIALS, AND INSPECTION MAY THEN BE ESTABLISHED IN
A CONSERVATIVE WAY RELATIVE TO ESTIMATES OF
PROGRESSIVE CRACK EXTENSION BEHAVIOR. THESE
ESTIMATES ARE ASSISTED BY ELASTIC AND PLASTIC METHODS
OF ANALYSIS OF CRACKS IN TENSION. APPROXIMATE
METHODS OF ASSIGNING K SUB LC VALUES TO
MEASUREMENTS OF CRACK TOUGHNESS IN TERMS OF A
BRITTLE-DUCTILE TRANSITION TEMPERATURE ARE VALUABLE
IN REVIEWING METHODS OF FRACTURE CONTROL WHICH HAVE
RECEIVED TRIAL IN THE PAST, SUCH AS THE NRL
FRACTURE ANALYSIS DIAGRAM AND THE LEAK-BEFORE-BREAK
TOUGHNESS CRITERION. (AUTHOR)

73

UNCLASSIFIED /Z0M07
THE TENSILE PROPERTIES OF SELECTED STEELS FOR USE IN NUCLEAR REACTOR PRESSURE VESSELS.

DESCRIPTIVE NOTE: PHASE I OF FINAL REPT.

DEC 67 59P KLIBER, EUGENE P.; MAWTHORNE, J. R.; STEELE, LENDELL E.

REPT. NO. NRL-6649

PROJ. NO. RR-007-01-46-5409, SF-020-01-05-0858

UNCLASSIFIED REPORT

DESCRIPTORS: (STEEL, TENSILE PROPERTIES), (NUCLEAR REACTORS, STEEL), (PRESSURE VESSELS, NUCLEAR REACTORS), (SHEAR STRESSES, FRACTURE), (MECHANICS), (STRAIN, MECHANICS), (NEUTRONS, METALLOGRAPHY, BRITTLINESS), (MICROSTRUCTURE, RADIATION DAMAGE, TRANSITION TEMPERATURE, FRACTOGRAPHY, DUCTILITY)

(AUTHOR)
THE EFFECTS OF COUPLING NUCLEAR RADIATION WITH STATIC AND CYCLIC SERVICE STRESSES AND OF PERIODIC PROOF TESTING ON PRESSURE VESSEL MATERIAL BEHAVIOR. (U)

DESCRIPTIVE NOTE: PHASE I OF FINAL REPT.
AUG 67 45P HAWTHORNE, J. R.; LOSS, F.

REPT. NO. NRL-6620
PROJ. RR-007-01-46-5409, SF-020-01-05-0858

UNCLASSIFIED REPORT

DESCRIPTORS: (REACTOR MATERIALS, STEEL);
PRESSURE VESSELS, RADIATION DAMAGE;
STRUCTURAL PARTS, NUCLEAR RADIATION, STRESSES;
TEST METHODS, AGING(MATERIALS);
FATIGUE(MECHANICS), TRANSITION TEMPERATURE,
EMBRITTLEMENT, DUCTILITY, NEUTRON REACTIONS
IDENTIFIERS: HYDRO-TESTING, STEEL A-302, STEEL A-350

THE NUCLEAR SERVICE PERFORMANCE OF STRUCTURAL STEELS AS INFLUENCED BY STATIC AND CYCLIC STRESS APPLICATIONS DURING RADIATION EXPOSURE WAS EXAMINED AND DOCUMENTED WITH EXPERIMENTAL RESULTS. THE SIGNIFICANCE AND MERITS OF INITIAL AND SUBSEQUENT PROOF TESTS OF LARGE STRUCTURAL COMPONENTS SUCH AS THE HYDRO-TESTING OF NUCLEAR REACTOR PRESSURE VESSELS WERE ALSO REVIEWED AND EVALUATED. PERFORMANCE FOLLOWING PRELOAD IN THE FORM OF WARM PRESTRESSING AS WELL AS AGING EMBRITTLEMENT WERE AMONG THOSE FACTORS CONSIDERED. (AUTHOR)
PHOTOELASTIC INVESTIGATION OF STRESS CONCENTRATIONS IN SPHERE-CYLINDER TRANSITION REGIONS: INCLUDING A COMPARISON OF RESULTS FROM PHOTOELASTIC AND FINITE ELEMENT ANALYSES.

THE STUDY INVESTIGATES STRESS DISTRIBUTIONS IN SPHERE-CYLINDER TRANSITION REGIONS OF EXTERNALLY PRESSURIZED THICK-WALLED VESSELS; IT COMPARES DATA DETERMINED BY TWO DIFFERENT APPROACHES: PHOTOELASTIC ANALYSIS AND FINITE ELEMENT COMPUTER PROGRAMS. THESE APPROACHES AFFORD A CAPABILITY FOR ANALYZING COMPLICATED DEEP OCEAN STRUCTURES THAT ARE OF CONSIDERABLE INTEREST TO THE U.S. NAVY.

NOTCH DUCTILITY PROPERTIES OF SM-1A REACTOR PRESSURE VESSEL FOLLOWING THE IN-PLACE ANNEALING OPERATION.

DESCRIPTIVE NOTE: FINAL REPT.
MAY 68 31P
RUSSELL ISERPAN, CHARLES Z., JR.
REPT. NO. NRL-6721
PROJ: USA-ERG-3-67, USA-ERG-19-66
TASK: M01-14

THE EMBRITTLEMENT CONDITION OF THE ARMY SM-1A REACTOR PRESSURE VESSEL, AS MODIFIED BY THE RECENTLY COMPLETED IN-PLACE ANNEAL, WAS ASSESSED AND AN ANALYSIS WAS MADE OF THE REEMBRITTLEMENT BEHAVIOR OF THE VESSEL STEEL WITH SUBSEQUENT RADIATION SERVICE EXPERIMENTAL RESULTS FROM THE REACTOR SURVEILLANCE PROGRAM DEVELOPED THROUGH ONE COMPLETE IRRADIATION AND ANNEALING CYCLE ARE PRESENTED, TOGETHER WITH A SUMMARY OF EXPERIMENTAL INFORMATION ON THE ANNEALING RESPONSE OF THE VESSEL STEEL (A350-LF1, MOD). FROM ACCELERATED IRRADIATION PROGRAMS, THESE DATA INDICATE A 0 DEG F MAXIMUM PRESSURE VESSEL WALL CHARPY-V 30 FT-LB TRANSITION TEMPERATURE AFTER THE IN-PLACE ANNEAL VERSUS A -80 DEG F PRESERVICE TRANSITION TEMPERATURE (BASED ON THE NOTCH-DUCTILITY PROPERTIES OF A DUPLICATE RING FORGING). THE MAXIMUM CHARPY-V 30 FT-LB TRANSITION TEMPERATURE OF THE PRESSURE VESSEL BEFORE THE ANNEALING OPERATION WAS ESTIMATED AT 190 DEG F. A PROJECTION OF POSTANNEAL PRESSURE VESSEL LIFETIME IN TERMS OF NEUTRON FLUENCE >0.5 MEV WAS DERIVED FROM SPECTRA CALCULATIONS AND THE EXPERIMENTALLY PREDICTED REIRRADIATION RESPONSE OF THE PRESSURE VESSEL STEEL. THE MAXIMUM PERMISSIBLE VESSEL WALL FLUENCE IS ESTIMATED AT 5.5X10 TO THE 19TH POWER N/SQ CM > 0.5 MEV. THIS IS COMPAREABLE TO 124.7 MEGAWATT YEARS OF REACTOR OPERATION.
NOTCH DUCTILITY AND TENSILE PROPERTY EVALUATION OF THE PM-2A REACTOR PRESSURE VESSEL. (U)

DESCRIPTIVE NOTE: INTERIM REPT., JUN 68 23P SERPAN, CHARLES Z., JR1

REPT. NO. NRL-6739

P0J: RR-007-01-46-5409

UNCLASSIFIED REPORT

DESCRIPTORS: (*NUCLEAR REACTORS, PRESSURE VESSELS), (*PRESSURE VESSELS, MECHANICAL PROPERTIES), NOTCH SENSITIVITY, REACTOR OPERATION, TENSILE PROPERTIES, NEUTRONS, DOSIMETERS, LIGHT WATER REACTORS, RADIATION DAMAGE, EMBRITTLEMENT, THICKNESS, BRITTLENESS, NON-DESTRUCTIVE TESTING, TRANSITION TEMPERATURE, STEEL, DEFECTS (MATERIALS), FRACTURE (MECHANICS), PRESSURIZATION (U)

IDENTIFIERS: *FRACTURE TOUGHNESS (U)

THE EFFECT OF VARIABLE RESIDUAL ELEMENT CONTENTS ON 550°F RADIATION EMBRITTLEMENT SENSITIVITY OF PRESSURE VESSEL STEELS HAS BEEN EXAMINED. RESULTS INDICATE THAT PHOSPHORUS AND COPPER CAN CONTRIBUTE SIGNIFICANTLY TO THE 550°F RADIATION EMBRITTLEMENT SENSITIVITY OF TYPE A302-B STEEL. THE RESULTS ALSO SHOW THAT VANADIUM MAY HAVE A SLIGHT ADVERSE EFFECT AND THAT SULFUR IS NEUTRAL, ALTHOUGH IT SERVES TO DECREASE THE FULL SHEAR ENERGY ABSORPTION LEVEL OF THE STEEL. NITROGEN VARIATIONS FROM APPROXIMATELY 0.008% TO 0.015% IN ALUMINUM DEOXIDIZED STEEL HAVE NO SIGNIFICANT EFFECT, WHILE THE ADDITION OF ALUMINUM TO NI-CR-MO STEEL WITH A GIVEN NITROGEN CONTENT MAY SLIGHTLY PROMOTE IRRADIATION EMBRITTLEMENT. THE PROGRAM RESULTS DEMONSTRATE THAT APPARENT INSENSITIVITY TO 550°F IRRADIATION EMBRITTLEMENT CAN BE CONSISTENTLY ACHIEVED WITH LABORATORY HEATS OF A NOMINAL A302-B STEEL COMPOSITION BY MAINTAINING THE TOTAL RESIDUAL ELEMENT CONTENTS AT A LOW LEVEL.

RADIATION EMBRITTLEMENT SENSITIVITY OF WELDMENTS WAS INVESTIGATED IN A PROGRAM AIMED AT THE DEVELOPMENT OF LOW SENSITIVITY WELD FILLERS FOR JOINING NI-CR-MO STEEL. DATA FROM THIS NEW PROGRAM AGAIN POINT TO COPPER AS A DOMINATING FACTOR IN DETERMINING RADIATION EMBRITTLEMENT SENSITIVITY, FURTHER VERIFYING THE RESULTS OBTAINED IN THE NRL- USS A302-B STEEL INVESTIGATION.
THE REPORT PRESENTS A SURVEY ON THE USE OF DIGITAL COMPUTERS FOR ELASTIC-PLASTIC ANALYSIS OF PRESSURE VESSEL COMPONENTS. INCLUDED IS A REVIEW OF LINEAR INCREMENTAL STRESS STRAIN RELATIONS FOR A STRAIN HARDENING PRANDTL-REUSS MATERIAL WITH A VON MISES YIELD CRITERION AND THE FORMATION OF GENERALIZED STRESS STRAIN RELATIONS. CASE STUDIES ARE GIVEN OF AXISYMMETRIC ELASTIC-PLASTIC ANALYSIS OF A TORISPHERICAL PRESSURE VESSEL, A FLUSH CYLINDRICAL NOZZLE IN A SPHERE AND A THICK-WALLED CYLINDER UNDER INTERNAL PRESSURE. (AUTHOR)
USA STUDIES ON IRRADIATION EFFECTS TO ADVANCED PRESSURE VESSEL MATERIALS

DESCRIPTIVE NOTE: INTERIM REPT. 1967-1968, DEC 68 51P STEELE, LENDELL E. I

REPT. NO. NRL-MR-1947

PROJ: RR-007-1-46-5409, SF-020-01-05-0858

UNCLASSIFIED REPORT

DESCRIPTORS: (*PRESSURE VESSELS, REACTOR MATERIALS), (*ALLOYS, RADIATION DAMAGE), STEEL, HYDROGEN EMBRITTLEMENT, FATIGUE (MECHANICS), HEAT TREATMENT, QUENCHING (COOLING), TENSILE PROPERTIES, THERMAL STABILITY, PHASE STUDIES, NICKEL ALLOYS, STAINLESS STEEL

IDENTIFIERS: NICKEL ALLOY INCONEL 718, STEEL PH 13CR 8MO, STEEL 12N 5CR 3MO, STEEL 7.5N CR MO, NEUTRON EMBRITTLEMENT

RESEARCH PROGRAMS DISCUSSED INCLUDE THE PREIRRADIATION EXAMINATION OF HIGH STRENGTH CANDIDATE PRESSURE VESSEL MATERIALS, STUDIES OF IRRADIATION EFFECTS ON THE PROPERTIES OF ADVANCED PRESSURE VESSEL MATERIALS, AND FATIGUE AND HYDROGEN EMBRITTLEMENT EFFECTS IN IRRADIATED HIGHER STRENGTH STEELS. HIGH POINTS OF EXPERIMENTAL ACCOMPLISHMENT ARE OUTLINED IN BRIEF. (AUTHOR)
CONTROLLED DESTRUCTIVE TESTING OF PRESSURE VESSELS*

DESCRIPTIVE NOTE: FINAL REPT., APR 69, 14P, GENNARI, JERVIS J. ICZUL.
REPT. NO. NRL-6855
PROJ. RF-101-03-46-5254, SF-194-03-01-1463

CONTROLLED DESTRUCTIVE TESTING OF SHELLS OR PRESSURE VESSELS BY THE HYDROSTATIC METHOD DISCUSSED IN THIS REPORT PROVIDES A GOOD MEANS OF ANALYZING THE FAILURE MODES OF THESE STRUCTURES. THE TECHNIQUE DESCRIBED ALLOWS A TEST TO BE HALTED AT ANY POINT - EVEN BEFORE PERMANENT DEFORMATION HAS OCCURRED. THIS TECHNIQUE ALSO HAS MERIT FOR TESTING PRESSURE VESSELS MADE OF CERAMIC OR OTHER BRITTLE MATERIAL, WHERE RUPTURE NORMALLY REDUCES THE VESSEL TO A POWDER OR TO NUMEROUS SMALL FRAGMENTS. (AUTHOR)
WINDOWS FOR EXTERNAL OR INTERNAL HYDROSTATIC PRESSURE VESSELS, PART III. CRITICAL PRESSURE OF ACRYLIC SPHERICAL SHELL WINDOWS UNDER SHORT-TERM PRESSURE APPLICATIONS. (U)

DESCRIPTIVE NOTE: FINAL REPT. JUL 66-AUG 68, JUN 69 166P STACHIN, J. D. IBIER, F. W. 1.
REPT. NO. NCEL-TR-631
PHOJ: Y-F38-535-005-01-001

SUPPLEMENTARY NOTE: SEE ALSO PART 1, AD-646 882, AND PART 2, AD-652 343.

DESCRIPTORS: (*PRESSURE VESSELS, TRANSPARENT PANELS), (*TRANSPARENT PANELS, *ACRYLIC RESINS), UNDERWATER, STRUCTURAL PARTS, FAILURE(MECHANICS), LOADING(MECHANICS), HYDROSTATIC PRESSURE, MODELS(SIMULATIONS), DESIGN, STRESSES, UNDERWATER VEHICLES IDENTIFIERS: *WINDOWS, UNDERWATER HABITATS (U)

MODEL AND FULL-SCALE ACRYLIC WINDOWS IN THE FORM OF SPHERICAL SHELL LENSES WITH PARALLEL CONVEX AND CONCAVE SURFACES HAVE BEEN IMPOLED BY LOADING THEIR CONVEX SURFACE HYDROSTATICALLY AT A 650-PSI/MIN RATE WHILE THEIR CONCAVE SURFACE WAS EXPOSED TO ATMOSPHERIC PRESSURE. THE THICKNESS OF THE MODEL WINDOWS VARIED FROM 0.250 TO 1.200 INCHES AND OF THE FULL-SCALE WINDOWS FROM 0.564 TO 4.000 INCHES, WHILE THE INCLUDED SPHERICAL SECTOR ANGLE OF THE LENS AND THE BEVEL ANGLE OF ITS EDGE VARIED FROM 30 TO 180 DEGREES IN 30-DEGREE INCREMENTS. THE LOW-PRESSURE FACE DIAMETERS OF THE MODEL WINDOWS VARIED FROM 1.423 TO 5.800 INCHES, WHILE THOSE OF THE FULL-SCALE WINDOWS VARIED FROM 6.200 TO 35.868 INCHES. IN ADDITION TO CRITICAL PRESSURES, DISPLACEMENTS OF THE LENS UNDER HYDROSTATIC PRESSURE WERE RECORDED AND PLOTTED AS FUNCTIONS OF PRESSURE. (AUTHOR) (U)
THE DESIGN OF PRESSURE VESSELS FOR VERY HIGH PRESSURE OPERATION. (U)

DESCRIPTIVE NOTE: TECHNICAL REPT., MAY 69 137P DAVIDSON, THOMAS E.; KENDALL, DAVID P.;

PROJECT: DA-1-T-061102-B=32-A

MONITOR: WVT 6917

UNCLASSIFIED REPORT

DESCRIPTIONS: (*PRESSURE VESSELS, STIFFENED CYLINDERS), (*ELASTIC SHELLS, HYDROSTATIC PRESSURE), STRUCTURAL PARTS, ELASTICITY, STRUCTURAL PROPERTIES, DESIGN, SEALS, MATHEMATICAL ANALYSIS, STRESSES, STRAIN (MECHANICS), HARDBRERING, YIELD POINT, FAILURE (MECHANICS) (U)

IDENTIFIERS: AUTOFRRETTAGE (U)

THE REPORT IS A REVIEW OF THE THEORY AND PRACTICE OF PRESSURE VESSEL DESIGN FOR VESSELS OPERATING IN THE RANGE OF INTERNAL PRESURES FROM 1 TO 55 KILOBARS (APPROXIMATELY 15,000 TO 800,000 PSI) AND UTILIZING FLUID PRESSURE MEDIA. THE FUNDAMENTALS OF THICK WALLED CYLINDER THEORY ARE REVIEWED, INCLUDING ELASTIC AND ELASTIC-PLASTIC THEORY, MULTI-LAYER CYLINDERS AND AUTOFRRETTAGE. THE VARIOUS METHODS OF USING SEGMENTED CYLINDERS IN PRESSURE VESSEL DESIGN ARE REVIEWED IN DETAIL. THE FACTORS TO BE CONSIDERED IN THE SELECTION OF SUITABLE MATERIALS FOR PRESSURE VESSEL FABRICATION ARE DISCUSSED. THESE FACTORS INCLUDE STRENGTH, TOUGHNESS AND ENVIRONMENTAL FACTORS. A BRIEF REVIEW OF THE MATERIALS CURRENTLY AVAILABLE IS ALSO INCLUDED. THE REPORT ALSO INCLUDES A DISCUSSION OF PRESSURE SEALS AND CLOSURES SUITABLE FOR USE IN THIS PRESSURE RANGE AND OF METHODS OF SUPPORTING THE END CLOSURES OF THE VESSEL. (AUTHOR) (U)
UNCLASSIFIED

WINDOWS FOR EXTERNAL OR INTERNAL HYDROSTATIC PRESSURE VESSELS. PART IV: CONICAL ACRYLIC WINDOWS UNDER LONG-TERM PRESSURE APPLICATION AT 20,000 PSI.

DESCRIPTIVE NOTE: TECHNICAL REPT. 1 JUL 67-30 JUN 68, OCT 69 133P STACHWIJ'DO 1
REPT. NO. NCEL-TR-645
PROJ. Y-F38-535-005-01-005

UNCLASSIFIED REPORT

SUPPLEMENTARY NOTE: SEE ALSO PART 3, AD-689 789.

DESCRIPTORS: (PRESSURE VESSELS, TRANSPARENT PANELS), (TRANSPARENT PANELS, ACRYLIC RESINS), UNDERWATER VEHICLES, HYDROSTATIC PRESSURE, TEMPERATURE, CONICAL BODIES, LOADING (MECHANICS), FAILURE (MECHANICS) (U)

IDENTIFIERS: WINDOWS (U)

CONICAL ACRYLIC WINDOWS OF 30-, 60-, 90-, 120-, AND 150-DEGREE INCLUDED ANGLES HAVE BEEN SURJECTED IN THEIR MOUNTING FLANGES TO 20,000 PSI OF HYDROSTATIC PRESSURE FOR UP TO 1000 HOURS IN THE 37F-TO-75F TEMPERATURE RANGE. THE DISPLACEMENTS OF THE WINDOWS THROUGH THE FLANGE MOUNTING HAVE BEEN RECORDED AND ARE GRAPHICALLY PRESENTED AS A FUNCTION OF TIME, TEMPERATURE, CONICAL ANGLE, AND THICKNESS-TO-DIAMETER RATIO FOR THE READY REFERENCE OF THE DESIGNER. A DETAILED STUDY HAS ALSO BEEN MADE OF THE TYPES OF FAILURE AND OF THE DIMENSIONAL AND STRUCTURAL PARAMETERS THAT MUST BE CONSIDERED IN THE DESIGN OF SAFE OPERATIONALLY ACCEPTABLE WINDOWS FOR LONG-TERM SERVICE UNDER HYDROSTATIC PRESSURE OF 20,000 PSI. THE TEST RESULTS INDICATE THAT A MINIMUM THICKNESS TO MINOR DIAMETER RATIO OF 2 AND AN INCLUDED CONICAL ANGLE OF 90 DEGREES OR LARGER IS REQUIRED TO PROVIDE SAFE AND OPTICALLY ACCEPTABLE WINDOWS FOR LONG-TERM SUSTAINED PRESSURE LOADINGS OF 20,000 PSI. (AUTHOR) (U)
A SURVEY ON FRACTURE OF PRESSURIZED VESSELS.

DESCRIPTIVE NOTE: FINAL REPT., AUG 69 82P FOLIAS,Eo S. I
REPT. NO. UTEC-DO-69-063
CONTRACT: F04611-67-C-0043
MONITOR AFRPL TR-69-223

UNCLASSIFIED REPORT

A SURVEY OF EXISTING SOLUTIONS DESCRIBING THE STRESS DISTRIBUTION AROUND THE CRACK TIP OF AN INITIALLY CURVED SHEET IS MADE AND A METHOD FOR ESTIMATING APPROXIMATE STRESS INTENSITY FACTORS OF OTHER MORE COMPLICATED SHELL GEOMETRIES IS DISCUSSED. IN ADDITION, A FRACTURE CRITERION INCORPORATING A GEOMETRY AND PLASTICITY CORRECTION IS DERIVED FOR THE PREDICTION OF FAILURE IN FLAWED PRESSURIZED VESSELS OF ARBITRARY SHAPE. A COMPARISON WITH SOME OF THE EXISTING EXPERIMENTAL DATA IN THE LITERATURE SUBSTANTIATES ITS POTENTIAL USE. (AUTHOR)
UNCLASSIFIED

ACOUSTIC CHARACTERISTICS OF A GLASS-FILAMENT-WOUND PRESSURE VESSEL. (U)

DESCRIPTIVE NOTE: FINAL REPT.,
NOV 69 19P YOUNG, MARK I; PRANDONI, JOSEPH F. .
REPT. NO. NRL=7013
PROJ. RF-05-111-401-4470, NRL=K03-30

ACOUSTIC INSERTION LOSS OF A GLASS-FILAMENT-WOUND PRESSURE VESSEL INTENDED FOR TRANSDUCER CALIBRATION VARIES SIGNIFICANTLY AS A FUNCTION OF FREQUENCY, POSITION, AND HYDROSTATIC PRESSURE. THE VARIATIONS ARE BELIEVED TO BE DUE TO VOIDS IN THE GLASS-RESIN AND IN THE GLASS-RESIN/RUBBER LINER INTERFACE, WHICH GIVE RISE TO LARGE CHANGES IN THE CHARACTERISTIC IMPEDANCE OF THE COMPOSITE WALLS AS A FUNCTION OF THE SAME VARIABLES. (AUTHOR)
TRENDS IN CHARPY-V SHELF ENERGY DEGRADATION AND YIELD STRENGTH INCREASE OF NEUTRON-EMBRITTLED PRESSURE VESSEL STEELS.

THE EFFECTS OF NEUTRON IRRADIATION ON CHARPY-V SHELF ENERGY AND YIELD STRENGTH WAS EXAMINED FOR THREE PRESSURE VESSEL STEEL COMPOSITIONS: A302-B, A533, AND A543. THE EFFECTS OF RADIATION EXPOSURE AT LOW TEMPERATURE (<300F (149C)) AND AT ELEVATED TEMPERATURE (550F (288 C) TO 740F (393C)) ON THE OVERALL NOTCH DUCTILITY ARE DOCUMENTED AND COMPARED. SUMMARY PLOTS SHOWING THE SIMULTANEOUS DEGRADATION IN SHELF ENERGY AND THE INCREASE OF YIELD STRENGTH LEVELS BROADLY ILLUSTRATE THE PROGRESSIVE CHANGE FROM DUCTILE FRACTURE PERFORMANCE TO RELATIVELY BRITTLE CHARACTERISTICS.
UNCLASSIFIED

DOC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. /ZOMO7

AD-702 600 13/4
DEFENSE DOCUMENTATION CENTER ALEXANDRIA VA

PRESSURE VESSELS, VOLUME 1. (U)

DESCRIPTIVE NOTE: REPORT BIBLIOGRAPHY JAN 63-JUN 69. MAR 70 114P
REPT. NO. DDC-TAS-70-22-1

UNCLASSIFIED REPORT

SUPPLEMENTARY NOTE: SEE ALSO VOLUME 2, AD-866 750.

DESCRIPTORS: (PRESSURE VESSELS, BIBLIOGRAPHIES), STRUCTURES, MATERIALS, MECHANICAL PROPERTIES, FILAMENT WOUND CONSTRUCTION, TANKS (CONTAINERS), RAMJET ENGINES, PLASMA JETS, REACTOR MATERIALS, POWER REACTORS, SUBMARINE HULLS, MECHANICAL WORKING, ROCKET CASES, METALLURGY (U)
IDENTIFIERS: CONTAINMENT VESSELS, FRACTOGRAPHIC DATA, ELECTRON FRACTOGRAPHY (U)

THE ANNOTATED BIBLIOGRAPHY COM PR ISES CITATIONS OF UNCLASSIFIED REPORTS DEALING WITH TESTS AND APPLICATIONS OF PRESSURE VESSELS USED FOR TANKS (CONTAINERS), SUBMARINE HULLS, ROCKET CASES, RAMJET ENGINES AND GUIDED MISSILES (AUTHOR) (U)

91
DESCRIPTORS: (*UNDERWATER VEHICLES, STRUCTURAL PROPERTIES), (*TEST FACILITIES, PRESSURE VESSELS), (*PRESSURE VESSELS, STRESSES), SAFETY, SHOCK WAVES, PRESSURE, PREDICTIONS, RESPONSE, O-RINGS, DAMAGE ASSESSMENT

PRESSURE VESSELS WERE SUBJECTED TO IMPLOSION-GENERATED HYDRODYNAMIC PRESSURES/IMPULSES. THE EXPERIMENTAL RESULTS INDICATE THE HYDRODYNAMIC PRESSURE AND THE DYNAMIC RESPONSE OF THE PRESSURE VESSEL VARY, DEPENDING UPON (1) MODEL SIZE, (2) IMPLOSION PRESSURE, AND/OR (3) DISTANCE FROM IMPLOSION! GRAPHS SHOWING THESE RELATIONSHIPS ARE PRESENTED. IMPLOSION PRESSURES UP TO 19,000-PSI WERE OBTAINED. THE HIGHER IMPLOSION PRESSURES OCCURRED IN THE 20,000 PSI PRESSURE VESSEL AND CAUSED DAMAGE TO O-RINGS AND MOUNTING FACILITIES INSIDE THE PRESSURE VESSEL, AND LOOSENED PIPE CONNECTIONS FROM THE TOP COVER PLUG. HIGH-SPEED MOTION PICTURES SHOWED THAT THE COLLAPSE OF AIR CAVITIES WAS GENERALLY ASYMMETRIC AND INCONSISTENT. THE CRITICAL MODEL SIZES FOR MAXIMUM PRESSURE DROP OR ENERGY RELEASE IN PRESSURE VESSELS WERE DETERMINED; THE EFFECTS OF IMPLOSION ON PRESSURE VESSELS CAN BE REDUCED GREATLY BY FILLING THE TEST SPHERE WITH WATER. (AUTHOR)
THE PURPOSE OF THIS REPORT IS TO MAKE AVAILABLE A COMPACT SUMMARY OF THE FORMULAS AND METHODS USED IN THE STRESS ANALYSIS OF THIN PRESSURE VESSELS. THE FIRST PART DEALS ONLY WITH MEMBRANE FORCES AND DEFORMATIONS RESULTING FROM PRESSURE LOADING IN SHELLS OF REVOLUTION. THE FORMULAS ASSOCIATED WITH AXISYMMETRIC EDGE LOADINGS ARISING FROM DISCONTINUITIES IN THE STRUCTURE HAVE BEEN TREATED IN THE SECOND PART. THE LAST PART OF THE REPORT IS CONCERNED WITH METHODS TO PREDICT UNKNOWN EDGE (DISCONTINUITY) FORCES AND MOMENTS AT JUNCTURES OF SHELLS. THE ENTIRE FORMULATION IS RESTRICTED TO PRESSURE VESSELS WHERE SHELL COMPONENTS FALL INTO THE CATEGORY OF 'THIN,' 'STEEP,' AND CONSTANT THICKNESS SHELLS OF REVOLUTION. FURTHERMORE, NO COUPLING OF EDGE EFFECTS IS ALLOWED. (AUTHOR)
THE PURPOSE OF THE REPORT IS TO DESCRIBE AND CHARACTERIZE THE CARBON AND LOW-ALLOY STEELS WHICH HAVE BEEN USED OR ARE ANTICIPATED FOR USE IN NUCLEAR REACTOR PRESSURE VESSELS. THE SCOPE IS PURPOSELY LIMITED TO MATERIALS AND ENVIRONMENTAL INFLUENCES UPON THE PROPERTIES OF THESE MATERIALS. THROUGH THE DATA ARE ORIENTED TOWARD THE REACTOR PRESSURE VESSEL, MUCH OF THE INFORMATION IS APPLICABLE TO AUXILIARY COMPONENTS SUCH AS STEAM GENERATORS AND PRESSURIZERS. ENGINEERING CONSIDERATIONS ARE REFERENCED ONLY IN THE INTEREST OF FURTHERING THE BASIC AIM OF MATERIALS CHARACTERIZATION.
UNCLASSIFIED

DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. /Z0M07

AD-704 787 13/4 20/11 9/2
NAVAL ORDNANCE LAB WHITE OAK MD

COMPUTER PROGRAM FOR A MONOBLOC, HOLLOW, CLOSED-END CYLINDER SUBJECTED TO INTERNAL PRESSURE, (U)

FEB 70 43P DAWSON, VICTOR C. D. I
REPT. NO. NOLTR-70-41

UNCLASSIFIED REPORT

DESCRIPTORS: (*PRESSURE VESSELS, STRUCTURAL PROPERTIES), (*STRESSES, MATHEMATICAL MODELS), COMPUTER PROGRAMS, STRAIN(MECHANICS), PLASTICITY, YIELD POINT, CYLINDRICAL BODIES (U)
IDENTIFIERS: COMPUTER ANALYSIS, COMPUTERIZED SIMULATION, AUTOFRETTAGE (U)

THIS REPORT DESCRIBES A COMPUTER PROGRAM WRITTEN IN BASIC LANGUAGE WHICH CALCULATES THE STRESSES AND STRAINS IN A MONOBLOC, HOLLOW, CLOSED-END CYLINDER SUBJECTED TO INTERNAL PRESSURE. EXAMPLES OF TYPICAL CALCULATIONS ARE GIVEN, INCLUDING, AMONG OTHERS, CONDITIONS THAT CAUSE AUTOFRETTAGE AND REVERSE YIELDING. (AUTHOR) (U)

(AUTHOR)
HEAT TRANSFER CONSIDERATIONS IN A PRESSURE VESSEL
BEING CHARGED.

DESCRIPTIVE NOTE: MASTER'S THESIS,
JUN 69 102 P LYONS, JOHN THOMAS, III

UNCLASSIFIED REPORT

DESCRIPTORS: (*PRESSURE VESSELS, PRESSURIZATION),
(*PRESSURIZATION, *HEAT TRANSFER), GAS
CYLINDERS, CONVECTION(HEAT TRANSFER), ADIABATIC
GAS FLOW, NUMERICAL ANALYSIS, SPECIFIC HEAT,
DIFFERENTIAL EQUATIONS, EXPERIMENTAL DATA,
THESES

EXPERIMENTAL DATA FOR THE CHARGING OF AN AIR
RECEIVER IS PRESENTED AND INTERPRETED IN DETAIL.
THE DATA INDICATES A SUBSTANTIAL DEPARTURE FROM THE
ADIABATIC BEHAVIOR, THE EXPERIMENTAL RESULTS ARE
USED TO EVALUATE EXISTING CLOSED FORM EXPRESSIONS FOR
THE THERMODYNAMIC STATE OF A GAS IN A RECEIVER. A
METHOD FOR EXPERIMENTALLY DETERMINING THE CONVECTIVE
HEAT TRANSFER COEFFICIENT IS DEVELOPED, EVALUATED AND
USED IN CONJUNCTION WITH THESE EXPRESSIONS.

(AUTHOR)
IRRADIATION EFFECTS ON REACTOR STRUCTURAL MATERIALS.

DESCRIPTIVE NOTE: QUARTERLY PROGRESS REPT. 1 FEB-30 APR 70, MAY 70 54P STEELE, L. E. ISERPANY, C. Z., JR.; HAWTHORNE, J. R.; KRAFFT, J. M. JR;
GRAY, R. A. JR;
REPT NO. NRL-MR-2126
PROJ: NRL-MO1-14, RR007-11-41-5409 TASK: AT(49-5)-2110

UNCLASSIFIED REPORT

SUPPLEMENTARY NOTE: SEE ALSO QUARTERLY PROGRESS REPT., AD-703 617.

DESCRIPTORS: (REACTOR MATERIALS, RADIATION DAMAGE), (STEEL, REACTOR MATERIALS), EMBRITTLEMENT, POWER REACTORS, PRESSURE VESSELS, REACTOR FUEL CLADDING, FAST REACTORS, FRACTURE (MECHANICS), NEUTRON REACTIONS, VANADIUM

THE REPORT INCLUDES: (1) RESULTS OF A DAMAGE FUNCTION APPROACH TO SPECTRUM ANALYSIS FOR ARMY REACTOR SM-1, (2) ANALYSIS FOR FRACTURE RESISTANCE IN HEAVY THICKNESS AS33-B STEEL PLATE AND WELD METAL, (3) THE ROLE OF IRON IN THE FRACTURE OF AN IRRADIATED PRESSURE VESSEL STEEL, (4) THE NATURE OF OBSERVED RADIATION DAMAGE IN VANADIUM, AND (5) THE EFFECTS OF THE FAST REACTOR ENVIRONMENT ON THE TENSILE PROPERTIES OF SELECTED STRUCTURAL AND CLADDING ALLOYS. (AUTHOR)
A SPHERICAL ACRYLIC PLASTIC CAPSULE HAS BEEN DESIGNED FOR PROTECTION OF MAN AGAINST THE EXTERNAL HYDROSTATIC PRESSURE PRESENT AT CONTINENTAL SHELF DEPTHS. EXPERIMENTAL AND ANALYTICAL STUDIES HAVE BEEN CONDUCTED TO EVALUATE THE PERFORMANCE OF BOTH THE SPHERICAL CAPSULE DESIGN AND THE ACRYLIC PLASTIC CONSTRUCTION MATERIAL AT CONTINENTAL SHELF DEPTHS. RESULTS FROM TESTING TWENTY-TWO 15-INCH-OUTSIDE DIAMETER MODELS AND A LARGE-SCALE PROTOTYPE UNDER SHORT-TERM, CYCLIC, AND LONG-TERM HYDROSTATIC PRESSURE INDICATE THAT THE DESIGN AND MATERIAL CHOSEN MEET THE REQUIREMENTS FOR SAFE OPERATION AT CONTINENTAL SHELF DEPTHS. A PROTOTYPE 64-INCH-OD CAPSULE OF 2.5-INCH WALL THICKNESS, AND 4,000-POUND POSITIVE BUOYANCY IN SEAWATER HAS BEEN SPECIFICALLY DEVELOPED FOR THE NEMO (NAVAL EXPERIMENTAL MANNED OBSERVATORY) SYSTEM. THE NEMO PROTOTYPE CAPSULE SUCCESSFULLY WITHTOOED 105 SIMULATED DIVES RANGING FROM 250 TO 2,400 FEET PRIOR TO BEING TESTED TO IMPLOSION AT A SIMULATED DEPTH OF 4,150 FEET. UNTIL MORE EXPERIMENTAL DATA ARE GENERATED ON THE FATIGUE LIFE OF THE FULL SCALE NEMO CAPSULE UNDER DIFFERENT PRESSURE LOADINGS.
A COMPLIANCE K CALIBRATION FOR A PRESSURIZED THICK-WALL CYLINDER WITH A RADIAL CRACK* (U)

DESCRIPTIVE NOTE: TECHNICAL REPORT, MAY 70 34P UNDERWOOD, JOHN H.; LASSELLE, RALPH R.; SCANLON, RAYMOND D.; HUSSAIN, MOAYYED A. I.
REPT. NO. WVT-7026
PROJ. DA-1-T-061102-B-32-A

UNCLASSIFIED REPORT

DESCRIPTORS: (*PRESSURE VESSELS, STRESSES), CYLINDRICAL BODIES, CRACKS, PRESSURE, NUMERICAL ANALYSIS, LOADING (MECHANICS), NOTCH TOUGHNESS, TEST METHODS
IDENTIFIERS: K CALIBRATIONS, STEEL 4340, FRACTURE MECHANICS

THE K CALIBRATION FOR AN INTERNALLY PRESSURIZED, THICK-WALL CYLINDER WITH A STRAIGHT, RADIAL NOTCH HAS BEEN DETERMINED FROM A COMPLIANCE TEST. THE METHOD SUGGESTED BY IRWIN IS USED WITH COMPLIANCE DEFINED AS THE CHANGE IN INTERNAL VOLUME OF A CYLINDER DIVIDED BY APPLIED HYDROSTATIC PRESSURE RATHER THAN THE USUAL LOAD-ELONGATION DEFINITION. THE DERIVATIVE OF INTERNAL VOLUME CHANGE WITH RESPECT TO NOTCH DEPTH, 'A', IS OBTAINED BY NUMERICAL ANALYSIS OF TANGENTIAL STRAIN MEASUREMENTS ON THE OD OF THE TEST CYLINDER. THIS DERIVATIVE LEADS DIRECTLY TO THE K CALIBRATION FOR THE CYLINDER. CUBIC SPLINE FUNCTIONS ARE USED TO APPROXIMATE BOTH THE STRAIN AS A FUNCTION OF POSITION ON THE CYLINDER AND THE RESULTING VOLUME CHANGE AS A FUNCTION OF 'A'. ALSO INCLUDED IN THE DETERMINATION OF K IS A PROOF, USING THE DIVERGENCE THEOREM IN THE THEORY OF ELASTICITY, THAT THE DERIVATIVES WITH RESPECT TO 'A' OF INTERNAL AND EXTERNAL VOLUME CHANGE ARE IDENTICAL. THIS ALLOWS THE USE OF EXTERNAL STRAIN MEASUREMENTS TO DETERMINE K BASED ON INTERNAL VOLUME CHANGE. (AUTHOR)
A STRESS ANALYSIS IS PRESENTED OF THIN SHELLS, HAVING LARGE DEFLECTIONS AND BEING LOADED INTO THE STRAIN-HARDENING RANGE. PLASTIC STRAIN INCOMPRESSIBILITY IS ASSUMED. THE TWO GOVERNING DIFFERENTIAL EQUATIONS IN TERMS OF THE STRESS FUNCTION AND THE NORMAL DISPLACEMENT ARE PRESENTED IN TWO ALTERNATE FORMS. IN THE FIRST FORM CORRESPONDING EQUATIONS OF THE ELASTIC PROBLEM ARE MODIFIED ONLY BY ADDING THE INTEGRALS OF THE PLASTIC STRAINS; THE ALTERNATE FORM REQUIRES THAT THE COEFFICIENTS OF THE DIFFERENTIAL EQUATION OPERATORS BECOME DEPENDENT ON THE LOAD, AND AN ITERATIVE PROCESS IS PRESENTED BY WHICH THE SOLUTION CAN BE OBTAINED, STARTING FROM THE KNOWN ELASTIC SOLUTION. UTILIZING THE FIRST FORM, THE ANALYSIS IS APPLIED TO THE PROBLEM OF STRESS CONCENTRATION AROUND A CIRCULAR OPENING, WITH AND WITHOUT A REINFORCED RING IN A PRESSURIZED SPHERICAL SHELL. NUMERICAL SOLUTION IS OBTAINED BY AN ITERATIVE PROCEDURE, USING THE FINITE DIFFERENCE TECHNIQUE FOR THE SPECIAL CASE OF LINEARIZED DISPLACEMENTS AND DEFORMATION THEORY OF PLASTICITY. THE SPEED OF CONVERGENCE DECREASES WITH INCREASE IN PRESSURE AND DECREASE OF STRAIN-HARDENING COEFFICIENT. THE PROCEDURE REQUIRED TO APPLY THE INCREMENTAL THEORY AND TO INCLUDE FINITE DISPLACEMENTS IS ALSO DISCUSSED IN DETAIL. (AUTHOR)
THE INFLUENCE OF COMPOSITION ON THE FRACTURE TOUGHNESS OF COMMERCIAL NUCLEAR VESSEL WELDS.

DESCRIPTIVE NOTE: INTERIM REPT., JUN 70 22P STEELE, LENDELL E. I
REPT. NO. NRL-7095
CONTRACT: AT(49-5)-2110
PROJ: RR007-11-41

UNCLASSIFIED REPORT

DESCRIPTORS: (*NUCLEAR POWER PLANTS, PRESSURE VESSELS), (**PRESSURE VESSELS, EMBRITTLEMENT), METAL JOINTS, WELDS, FRACTURE(MECHANICS), TOUGHNESS, RADIATION DAMAGE, STATISTICAL DATA
IDENTIFIERS: FRACTURE MECHANICS, RADIATION EMBRITTLEMENT, STEEL A302-B, STEEL A533-A, ELECTROSLAG WELDING

IRRADIATION STUDIES OF WELDS OF THE ASTM TYPE A302-B AND A533-B STEELS, MOST COMMONLY USED FOR COMMERCIAL WATER REACTOR VESSELS, DEMONSTRATED SEVERAL INSTANCES IN WHICH THE WELD METAL EXHIBITED LOWER FRACTURE TOUGHNESS OR GREATER ELEVATION OF THE BRITTLE-TO-DUCTILE TRANSITION TEMPERATURE THAN THAT OBSERVED FOR THE COMPANION BASE-PLATE AND WELD HEAT-AFFECTED-ZONE MATERIAL. EXAMINATION OF THE STRUCTURE AND COMPOSITION LED TO THE CONCLUSION THAT COMPOSITION IS CRITICAL TO THE LEVEL OF RADIATION-INDUCED EMBRITTLEMENT. THE LEVEL OF COPPER AND PHOSPHORUS CONTENTS HAS BEEN SHOWN TO BE ESPECIALLY CRITICAL TO THE LEVEL OF EMBRITTLEMENT WITH WELDS HAVING HIGH COPPER (>0.20%) AND PHOSPHORUS (>0.015%) SHOWING GREATER EMBRITTLEMENT THAN THOSE CONTAINING LESSER AMOUNTS. THESE EXPERIMENTAL OBSERVATIONS WERE VERIFIED THROUGH LABORATORY TESTS IN WHICH THESE CONSTITUENTS AND OTHER RESIDUAL ELEMENTS WERE CONTROLLED IN WELDMENTS SIMULATING THOSE FOR REACTOR SERVICE. (AUTHOR)
THE ARMY SM-1 REACTOR HAS BEEN EVALUATED WITH RESPECT TO THE INCREASE IN TRANSITION TEMPERATURE OF THE A212-B STEEL PRESSURE VESSEL. ALTHOUGH STEEL FROM THE HEAT FORMING THE VESSEL IS NOT AVAILABLE FOR IRRADIATION-RESPONSE BEHAVIOR TESTING, THE INITIAL TRANSITION TEMPERATURE OF 40 DEG F (4 DEG C) WAS DETERMINED FROM VESSEL STEEL. A RELATIONSHIP BETWEEN INCREASING EMBRITTLEMENT FOR A 4-IN. THICK PLATE OF A212-B STEEL, REPRESENTING THE ASTM REFERENCE HEAT FOR THIS COMPOSITION, AND INCREASING NEUTRON FLUENCE WAS ESTABLISHED FOR THE IRRADIATION TEMPERATURE CONDITIONS OF THE SM-1 REACTOR. COMBINING WITH THIS THE ARMY-IMPOSED TRANSITION TEMPERATURE LIMIT FOR THE SM-1 REACTOR VESSEL OF 295 DEG F (146 DEG C) RESULTS IN A FLUENCE VALUE OF 2.65 X 10 TO THE 19TH POWER N/SQ. CM. > 0.5 MEV FOR A LIFETIME VESSEL EXPOSURE. THE NEUTRON FLUX LEVEL FOR THE VESSEL WAS ESTABLISHED BY EXTRAPOLATING A CORE-REGION FLUX MEASUREMENT USING THE RESULTS OF A CALCULATED NEUTRON SPECTRUM AT THE REACTOR VESSEL. (AUTHOR)
IRRADIATION EFFECTS ON REACTOR STRUCTURAL MATERIALS.

DESCRIPTIVE NOTE: QUARTERLY PROGRESS REPT, I MAY-31
JUL 70,
AUG 70 36P STEELE, L. W., HAWTHORNE, J. R., ISERPAN, C. Z., JR., SMIDT, F. A., JR.
REPT. NO. NRL-MR-2153
CONTRACT: AT(49-5)-2110
PROJ: RR007-11-41-5409, NRL-MM-14

THE REPORT INCLUDES: (1) ASSESSMENTS OF RADIATION RESISTANT A533-B PLATE FROM A CONTROLLED COMPOSITION 30-TON DEMONSTRATION MELT, (2) A STUDY OF THROUGH-THICKNESS DUCTILITY IN AN IRRADIATED REACTOR VESSEL WALL, (3) NEUTRON EMBRITTLEMENT IN A SIMULATED REACTOR PRESSURE VESSEL WALL, AND (4) FUNDAMENTAL EXPLORATION OF RADIATION DAMAGE IN VANADIUM. (AUTHOR)
A REASSESSMENT OF FRACTURE-SAFE OPERATING CRITERIA FOR REACTOR VESSEL STEELS BASED ON CHARPY-V PERFORMANCE. (U)

UNCLASSIFIED REPORT

DESCRIPTORS: (STEEL, FRACTURE(MECHANICS)), (PRESSURE VESSELS, NUCLEAR REACTORS), SAFETY, TESTS, TRANSITION TEMPERATURE, DESIGN (U)

IDENTIFIERS: STEEL A-533B, TEAR TESTS (U)

FRACTURE-SAFE OPERATING CRITERIA FOR COMMERCIAL NUCLEAR PRESSURE VESSELS BASED ON FRACTURE ANALYSIS DIAGRAM PROCEDURES AND CHARPY-V ENERGY TRENDS ARE REAPPRAISED WITH RESPECT TO THE EFFECTS OF THICK-SECTION MECHANICAL CONSTRAINT AND LOW CHARPY-V SHELF ENERGIES RESULTING FROM NEUTRON IRRADIATION. COMPARISONS OF THE CHARPY-V TEST WITH THE MORE DEFINITIVE DYNAMIC TEAR TEST PROCEDURES INDICATE THE FORMER TO BE AN ACCEPTABLE MEANS OF ASSESSING THE FRACTURE TOUGHNESS OF A533-B STEEL. THE MECHANICAL CONSTRAINT ASSOCIATED WITH 12-IN. THICKNESSES OF THIS STEEL SUGGESTS THE ADDITION OF 70F (39C) TO THE EXISTING CRITERION REQUIRING VESSEL OPERATION ABOVE NOT + 60F (33C). RATIO ANALYSIS DIAGRAM PROCEDURES ARE SHOWN TO BE USEFUL IN INTERPRETING CHARPY-V SHELF LEVEL DATA OBTAINED FROM VESSEL SURVEILLANCE PROGRAMS IN TERMS OF CRITICAL TOUGHNESS LEVELS RELATING TO BRITTLE FRACTURE. (AUTHOR) (U)
THE ROLE OF FRACTURE TOUGHNESS AND RESIDUAL STRESSES IN THE FATIGUE AND FRACTURE BEHAVIOR OF LARGE THICK-WALLED PRESSURE VESSELS, (U)

70 15P DAVIDSON, THOMAS F. ITHOOP, JOSEPH F. IREINER, ALBERT N. I

UNCLASSIFIED REPORT

DESCRIPTORS: (GUN BARRELS, FRACTURE(MECHANICS)), PRESSURE VESSELS, STRESSES, FATIGUE(MECHANICS), CRACKS, CRACK PROPAGATION, PRESSURE, HYDRAULIC SYSTEMS, TEST METHODS (U)

IDENTIFIERS: AUTOFRETTAGE (U)

SUMMARIZED ARE THE RESULTS OF AN INVESTIGATION INTO THE FATIGUE AND FRACTURE BEHAVIOR OF LARGE THICK-WALLED CYLINDERS IDENTICAL IN CONFIGURATION TO A 175MM CANNON TUBE. CRACK GROWTH RATES AND FATIGUE LIFE DATA ARE PRESENTED FOR MATERIALS OF THREE STRENGTH LEVELS AND DIFFERENT FRACTURE TOUGHNESS LEVELS. THE EFFECTS OF AUTOFRETTAGE WERE EXAMINED AND FOUND TO IMPROVE THE FATIGUE LIFE SIGNIFICANTLY. THIS IMPROVEMENT IN LIFE IS SHOWN TO BE THE RESULT OF RETARDATION OF THE FATIGUE CRACK GROWTH RATE AT SMALL CRACK DEPTHS. THIS OBSERVATION, ALONG WITH THE RELATIONSHIP BETWEEN FRACTURE TOUGHNESS, CRITICAL CRACK DEPTH AND FRACTURE MODE, IS INTERPRETED IN TERMS OF RECENT ADVANCEMENTS IN THE APPLICATION OF FRACTURE MECHANICS TO THE CASE OF A CYLINDER UNDER INTERNAL PRESSURE. (AUTHOR) (U)
ANALYSIS OF A CIRCULAR CYLINDRICAL PERFORATED SHELL.

NOV 69 88P MAHONEY, J. B. IRUNG, R. I
REPT. NO. ATA-129-E-11-69
CONTRACT: N00024-68-C-5151

UNCLASSIFIED REPORT

THE REPORT CONTAINS A SUMMARY OF THE WORK DONE UNDER A CONTINUING RESEARCH CONTRACT GIVEN TO APPLIED TECHNOLOGY ASSOCIATES IN THE FIELD OF PRESSURE VESSEL DESIGN. IN PARTICULAR IS DEVELOPED THE THEORETICAL SOLUTION FOR THE DISTRIBUTION OF STRESSES IN A PERFORATED CYLINDRICAL SHELL. THESE CALCULATIONS HAVE BEEN REDUCED TO COMPUTER CODES AND ARE GIVEN IN THE APPENDIX OF THE REPORT. IN ADDITION TO THE COMPUTER CODES DEVELOPED FOR THE EFFECTIVE ELASTIC CONSTANTS, THE REPORT CONTAINS A CODE FOR THE ANALYSIS OF A CIRCULAR CYLINDRICAL SHELL WHOSE SURFACE IS PENETRATED ONLY OVER A PORTION. THUS THE 'EQUIVALENT' ELASTIC CONSTANTS OBTAINED CAN BE USED WITHIN THE SHELL THEORY DEVELOPED IN THE REPORT TO DESCRIBE THE DEFLECTIONS AND STRESSES IN A PARTIALLY PERFORATED SHELL. (AUTHOR)
THE EFFECT OF PROCESSING ON PLASTIC STRAIN ANISOTROPY OF Ti-6Al-4V;

SEP 70 25P AHEAT, MAURICE F. DULL; DENNIS L. IRAYMOND, LOUIS I

REPT. NO. TR-0059(6250-10)-5

CONTRACT: F04701-70-C-0059

MONITOR: SAMSG TR-70-380

UNCLASSIFIED REPORT

DESCRIPTORS: (*TITANIUM ALLOYS, PLASTICITY), (*PRESSURE VESSELS, MANUFACTURING METHODS), ELASTICITY, ANISOTROPY, STRAIN HARDENING, LOADING (MECHANICS)

IDENTIFIERS: TITANIUM ALLOY 6AL 4V

THE PLASTIC STRAIN ANISOTROPY OF Ti-6Al-4V WAS EXAMINED AFTER VARIOUS THERMO-MECHANICAL TREATMENTS, INCLUDING HEAT TREATING, ROLLING, AND FORGING. THE PROCESSING TEMPERATURES WERE VARIED FROM ROOM TEMPERATURE TO 1950F. THE ANISOTROPY, IN TERMS OF THE STRAIN RATIO \(R \), WAS MEASURED BY POST-YIELD STRAIN GAGES IN THE THREE PRINCIPAL DIRECTIONS. THE RESULTS WERE CORRELATED WITH THE (0002) POLE FIGURES FOR EACH THERMO-MECHANICAL TREATMENT. THE PLASTIC STRAIN ANISOTROPY, WHICH WAS CONSISTENT WITH THE BASAL POLE TEXTURE, WAS FOUND TO DEPEND UPON BOTH THE METHOD AND THE TEMPERATURE OF MECHANICAL WORKING. THE GREATEST \(R \) VALUES OCCURRED FOR THE COLD-ROLLED MATERIAL WHERE THE SHEET NORMAL ROTATES TO WITHIN 15 DEG FROM THE BASAL POLE. IN ADDITION, \(R \) IS NOT CONSTANT UNDER UNIAXIAL TENSION BUT GENERALLY INCREASES WITH THE AMOUNT OF PLASTIC STRAIN. THE VARIATION OF \(R \) WITH UNIAXIAL STRAIN Depends UPON THE FORMING TEMPERATURE, WITH THE LARGEST CHANGES OCCURRING IN SAMPLES THAT WERE ROLLED AT ROOM TEMPERATURE. (AUTHOR)
THE REPORT CONTAINS THE RESULTS OF A STUDY TO DEVELOP A THEORETICAL APPROACH WHEREBY UNIAXIAL FATIGUE DATA CAN BE USED TO PREDICT THE PERMISSIBLE NUMBER OF CYCLES OF A THICK-WALLED CYLINDER. EXPERIMENTAL DATA FROM THE LITERATURE WERE EXAMINED ON OPEN END AND CLOSED END CYLINDERS IN AN AUTOFRETTAGED AND NON-AUTOFRETTAGED CONDITION WITH WALL RATIOS FROM 1.2 TO 2.0. DISTORTION ENERGY WAS USED TO REDUCE THE TRIAXIAL STRESS STATE TO AN EQUIVALENT UNIAXIAL STRESS. A NEW METHOD WAS THEN DEVELOPED WHEREBY THE NUMBER OF CYCLES COULD BE PREDICTED AS A FUNCTION OF THE MEAN AND ALTERNATING PRESSURE. (AUTHOR)
THE BOOK DISCUSSES CALCULATION CONCERNING SHELLS OF REVOLUTION AND ELEMENTS OF THIN-WALLED CONSTRUCTIONS FOR STRENGTH, RIGIDITY AND STABILITY UNDER VARIOUS FORMS OF FORCE ACTION. SUCH PROBLEMS INCLUDE, FOR EXAMPLE, CALCULATIONS OF DOUGHNUT-SHAPED SHELLS, LOADED BY INTERNAL PRESSURE, SPHERICAL SHELLS, LOADED BY LOCAL LOADS, ETC. PROBLEMS OF STABILITY OF SHELLS ARE GIVEN IN THE BOOK IN A NEW FORMULATION. THE CONDITIONS ON THE CONTOUR OF HALF-WAVES ARE DETERMINED BY LOADING CONDITIONS AND THE PROPOSED FORM OF LOSS OF STABILITY. THE NEW APPROACH TO THESE PROBLEMS REFINES AND EXPANDS THE CONCEPT OF STABILITY OF SHELLS AND GIVES THE POSSIBILITY OF SOLVING PRACTICALLY IMPORTANT PROBLEMS.
NEW YORK UNIV BRONX DEPT OF AERONAUTICS AND ASTRONAUTICS

BUCKLING OF A CIRCULAR ELASTIC RING
CONFINED TO A UNIFORMLY CONTRACTING CIRCULAR BOUNDARY.

SEP 70 49P EL-BAYOUMY, LOTFI
REPT. NO. NYU-AA-70-18
CONTRACT: AF-AFOSR-813-67
PROJ: AF-9768, AF-9782
TASK: 976802, 978201
MONITOR: AFOSR 70-2337TR

UNCLASSIFIED REPORT

The present paper contains a detailed analysis of the title problem, also included is a review of related buckling problems available in the literature. The buckled configuration is assumed to consist of two regions, viz., the detached region, where shallow arch approximations are adopted, and an attached region, where the ring assumes a constant curvature. The problem is treated as a variational problem with variable end points for which the variational formulation yields, in addition to the differential equations and boundary conditions, a transversality condition, determining the extend of the detached region. The results indicate that the ring will not buckle unless external disturbances are present. A discussion of energy barriers shows that the ring's ability to sustain external disturbances diminishes as the contraction increases.

(AUTHOR)

112
A K-CALIBRATION FOR PART-THROUGH WALL CRACKS OF SEMI-ELLiptICAL SHAPE IN A PRESSURIZED THICK WALLED CYLINDER IS OBTAINED IN TWO PARTS WHICH INCLUDE THE STRESS GRADIENT IN THE TUBE WALL AND THE EFFECT OF THE PRESSURE ACTING WITHIN THE CRACK CAVITY. USING K IN A LIMITING CONDITION, THE CALIBRATION PROVIDES A FAILURE CRITERION FOR ESTIMATION OF CRITICAL CRACK DEPTHS FOR BRITTLE FRACTURE. THE DISPERSION IN CRACK TOLERANCE MAY BE ESTIMATED FROM THE DISTRIBUTION IN TEMPERING TEMPERATURE AMONG THE FORGINGS. THIS EMPLOYS THE RELATIONSHIPS OF THE MECHANICAL PROPERTIES TO TEMPERING TEMPERATURE. (AUTHOR)
SM-IA REACTOR PRESSURE VESSEL
SURVEILLANCE: IRRADIATION OF FOLLOW-ON
CAPSULES IN THE SM-1 REACTOR,

DEC 70 15P SERPAN, CHARLES Z. , JR.
REPT NO. NRL-7211
CONTRACT: AT(49-5)-2110
PROJ: NRL-MO1-14, RR007-11-41-5409

THREE CAPSULES CONTAINING CHARPY V-NOTCH
SPECIMENS OF A DUPLICATE RING-FORGING OF SM-IA
REACTOR PRESSURE-VESSEL STEEL WERE PREPARED FOR
PLACEMENT INTO THE SM-1A REACTOR AS PART OF THE
CONTINUING VESSEL SURVEILLANCE PROGRAM OF THAT
REACTOR. THESE CAPSULES PLUS TWO MORE CONTROL
CAPSULES WERE IRRADIATED IN THE SM-1 REACTOR AT 440
DEGREES F (227 DEGREES C) TO MATCH THE SM-1A
REACTOR PRESSURE-VESSEL TRANSITION TEMPERATURE AND
fluence conditions prior to the SM-1A annealing.
The capsules were then furnace annealed under the
SM-1A reactor annealing conditions and were
reirradiated in the SM-1 to the fluence and
transition-temperature conditions of the SM-1A at
the end of the core 3. Control points were
established after each step. Significant
differences in flux levels at a point in the SM-1
reactor were noted between an earlier flux-monitor
irradiation and the subsequent surveillance-capsule
irradiations. These differences were found to be
directly related to the two different fuel cores in
place at those times. Higher fluxes were generated
at the core edge during the flux-monitor irradiation
since the core was old and the center was
considerably burned out. Lower fluxes were measured
at the same core-edge location during the
surveillance-capsule irradiations since a new,
smaller diameter core peaked in flux toward the
center.
ARMY ENGINEER REACTORS GROUP FORT BELVOIR VA ENGINEERING DIV

SM-IA VAPOR CONTAINER LEAK TEST: 3-5 AUGUST 1970

DESCRIPTIVE NOTE: FINAL REPT., FEB 71 26P JOHNSON, GEORGE
REPT. NO. ED-7101

UNCLASSIFIED REPORT

DESCRIPTORS: (*PRESSURIZED WATER REACTORS, PRESSURE VESSELS), (*PRESSURE VESSELS, LEAKAGE (FLUID)), POWER REACTORS, VAPOR PRESSURE, LEAK DETECTORS, TESTS, DATA PROCESSING SYSTEMS
IDENTIFIERS: SM-IA REACTOR

THE REPORT PRESENTS THE RESULTS OBTAINED DURING THE LEAK RATE TESTS ON THE SM-IA VAPOR CONTAINER.

(AUTHOR)
Windows for external or internal hydrostatic pressure vessels, part V: Conical acrylic windows under long-term pressure application of 10,000 psi. (U)

Descriptive Note: Final rept. Jul 69-Jun 70, Jan 71 79. STACHIW, J. D. IMOODY, W. A. I.
Rept. no. NCEL-TR-708
Proj. YF38-535-005-01-005

UNCLASSIFIED REPORT

Supplementary Note: See also part 4, AD-A97 272.

Descriptors: (Pressure vessels, transparent panels), (Transparent panels, acrylic resins), underwater vehicles, conical bodies, hydrostatic pressure, failure (mechanics) (U)
Identifiers: *Windows (U)

Conical acrylic windows of 30°, 60°, 90°, 120° and 150-degree included angle and 0.50 to 1.25 thickness to minor diameter ratio have been subjected in their mounting flanges to 10,000 psi of hydrostatic pressure for 500 and 1,000 hours at ambient room temperature. The displacement of the windows through the flange mounting has been recorded as a function of time and plotted for the ready reference of the designer. The magnitude of the window displacement has been found to be a function of time, angle, temperature, T/D ratio and pressure. It is recommended that for safe single sustained operation of 1,000 hour duration at 10,000 psi hydrostatic loading at ambient temperature the windows should have an included conical angle > or = 90 degrees and a minimum T/D ratio of 0.750. For sustained loadings in excess of 1,000 hours the minimum T/D ratio of 1.000. (Author) (U)
A method is outlined for multi-region pressure vessels design calculations using the maximum shear theory. This treatment is employed due to the simplicity of the method and because the results are quite conservative for both ductile and brittle materials. A procedure for obtaining an optimum design is given for a desired percentage of autofrettage on the inner wall of the pressure vessel. A computer program was written in FORTRAN II language and the various design possibilities were executed by IBM-1620 computer. (Author)
WHEN VIEWED FROM THE STANDPOINT OF STRESS-STRENGTH INTERFERENCE THEORY, CONVENTIONAL PROOF TESTING PRACTICE YIELDS A COMPONENT POPULATION WITH AN INITIAL RELIABILITY OF 1.0. SUCH MAY NOT BE THE CASE, HOWEVER, IF THE COMPONENTS ARE DEGRADED BY THE PROOF TEST. THE PROOF TEST IS THEREFORE REVIEWED FOR THE CASE OF TEST-DEGRADABLE COMPONENTS. METHODOLOGY IS DEVELOPED WHICH ALLOWS THE DETERMINATION OF AN OPTIMUM TEST LEVEL. FINALLY, THIS THEORY IS APPLIED TO FILAMENT-WOUND PRESSURE VESSELS, AND IT IS FOUND THAT TEST-DEGRADABLE COMPONENTS REQUIRE A PROOF TEST USAGE ENTIRELY DIFFERENT FROM THAT FOLLOWED WITH COMPONENTS NOT SUBJECT TO THIS DEGRADATION. (AUTHOR)
THE FRACTURE BEHAVIOR OF THICK-WALLED NUCLEAR VESSELS IS CONSIDERED FOR THE CASE OF A RADIATION-INDUCED TOUGHNESS GRADIENT THROUGH THE WALL WHICH CHARACTERISTICALLY RESULTS FROM NEUTRON ATTENUATION BY THE WALL MATERIAL ITSELF. FRACTURE-SAFE DESIGN ANALYSES BASED ON LINEAR ELASTIC FORMULATIONS OR EXTRAPOLATIONS OF THESE FORMULATIONS TO THE ELASTIC-PLASTIC REGIME ARE NOT SUFFICIENTLY DEVELOPED TO CHARACTERIZE THE INTEGRATED BEHAVIOR OF A WALL WHOSE TOUGHNESS CAN RANGE FROM BRITTLE AT THE INNER SURFACE TO HIGHLY DUCTILE AT THE OUTER SURFACE. SOLUTIONS TO THE PROBLEM IN THE FORESEEABLE FUTURE WILL BE OBTAINED ONLY BY EXPERIMENTAL MEANS. THE PRESENT APPROACH USES THE FRACTURE ANALYSIS DIAGRAM (FAD) TOGETHER WITH A NEW INTERPRETATIVE METHOD FOR FRACTURE EXTENSION RESISTANCE BASED ON MODIFIED DYNAMIC TEAR SPECIMENS AS THE TOOLS FOR GRADIENT ASSESSMENTS. WITH THESE TECHNIQUES THE SIGNIFICANCE OF THE TOUGHNESS GRADIENT THROUGH THE WALL IS ASSESSED IN TERMS OF THICK SECTION MECHANICAL CONSTRAINT, AND FRACTURE CHARACTERISTIC OF THE COMPLETE WALL ARE PREDICTED. (AUTHOR)
THE MAJOR ASPECTS OF NEUTRON IRRADIATION EMBRITTLEMENT IN STEEL PRESSURE VESSELS OF LARGE COMMERCIAL NUCLEAR-POWER REACTORS ARE REVIEWED, DRAWING ON THE RESULTS OF AEC-SPONSORED PROGRAMS WHICH HAVE EMPHASIZED RESEARCH RELATED TO REACTOR VESSEL RELIABILITY. (AUTHOR)
THE EFFECTS OF THE SURFACE LAYER ON PLASTIC DEFORMATION AND CRACK PROPAGATION. (U)

DESCRIPTIVE NOTE: SEMI-ANNUAL REPT., MAR 71 ISP KRAMER, IRVIN R.,
REPT. NO. CR-71-2
CONTRACT: DAAG46-70-C-0102, ARPA ORDER-180
MONITOR: AMMRC CR-71-2/1

THE REPORT DESCRIBES THE EFFECT OF A SURFACE LAYER ON THE RATE OF CRACK PROPAGATION AND, BASED ON THIS KNOWLEDGE, THE AUTHOR PROPOSES TO IMPROVE THE CRACK PROPAGATION RESISTANCE OF METALS USED IN PRESSURE VESSELS. THE QUALIFICATION OF PRESSURE VESSEL HARDWARE IS USUALLY ACHIEVED BY THE PROOF TEST METHOD. THE MAXIMUM SIZE OF THE FLAW THAT IS PRESENT CAN BE PREDICTED FROM FRACTURE MECHANICS. HOWEVER, CRACKS CAN GROW BELOW THE CRITICAL STRESS INTENSITY KIC AND CAN CAUSE LEAK FAILURE. THEREFORE, THE SUBCRITICAL CRACK GROWTH CHARACTERISTICS OF METALS ARE IMPORTANT IN PRESSURE VESSEL MATERIAL SELECTION. AN EVALUATION OF THE CRACK GROWTH RATE UNDER SUSTAINED OR CYCLIC LOADING UNDER THE SERVICE STRESS GIVES A MEASURE OF RELIABILITY OF THE HARDWARE. (AUTHOR) (U)
SELEcTED STRESS INTENSITY FACTOR SOLUTIONS FROM THE LITERATURE ARE RELATED TO THE PROBLEM OF INTERNALLY PRESSURIZED THICK-WALL CYLINDERS WITH STRAIGHT-FRONT AND CURVED-FRONT CRACKS. THE RECENT K SOLUTIONS OF DOWIE + FREESE AND RICE + LEVY ARE COMBINED IN AN ESTIMATE OF THE K SOLUTION FOR A PRESSURIZED CYLINDER WITH A SEMIELIPTICAL CRACK ORIGINATING ALONG THE INNER WALL. THE ESTIMATE OF K IS COMPARED WITH THE AVAILABLE EXPERIMENTAL AND ANALYTICAL K DATA FOR SHALLOW CRACKS. THE ESTIMATED K SOLUTION IS MODIFIED TO ACCOUNT FOR VARIOUS COMPLEX LOADINGS IN PRESSURIZED CYLINDERS. INCLUDED ARE MODIFICATIONS TO DESCRIBE LACK OF PRESSURE ON THE CRACK SURFACES IN PRESSURIZED CYLINDERS, RESIDUAL STRESS IN THE WALL OF PRESSURIZED CYLINDERS, A COMBINATION OF AN UNPRESSURIZED CRACK AND RESIDUAL STRESS IN THE WALL. THE EFFECT OF CYLIC PRESSURE LOADING ON K IS ALSO DISCUSSED IN RELATION TO THROOP'S WORK ON FATIGUE OF PRESSURIZED CYLINDERS. (AUTHOR)
STRUCTURE AND COMPOSITION EFFECTS ON IRRADIATION SENSITIVITY OF PRESSURE VESSEL STEELS.

71 12P STEELE, L. E. I

UNCLASSIFIED REPORT

AVAILABILITY: PUB* IN AMERICAN SOCIETY FOR TESTING AND MATERIALS, SPEC. TECH. PUB. N484, P164-175 1970.

DESCRIPTORS: (STEEL, RADIATION DAMAGE), (REACTOR SYSTEM COMPONENTS, PRESSURE VESSELS), MICROSTRUCTURE, METALLOGRAPHY, GRAIN STRUCTURES (METALLURGY), GRAIN SIZE, IMPURITIES, MECHANICAL PROPERTIES

THE PAPER EMPHASIZES ENGINEERING IMPLICATIONS OF THE EFFECTS OF STRUCTURE AND COMPOSITION ON THE IRRADIATION SENSITIVITY OF STEELS. THEORETICAL CONSIDERATIONS ARE DISCUSSED AND REVIEWED AS THEY RELATE TO POSSIBLE EXPLANATIONS FOR OBSERVATIONS ON THE SUBJECT. (AUTHOR)
UNCLASSIFIED

JDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. /ZOM07

AD-725 796 13/4 21/4

DEUTSCHE FORSCHUNGS- UND VERSUCHSANSTALT FUR LUFT- UND RAUMFAHRT E V BRUNSWICK (WEST GERMANY)

BERECHNUNG OBERIRDISCHER FLuessigkeitSLu4ERTanks (CALCULATION REGARDING ABOVE GROUND LIQUID STORAGE TANKS),

(70' 9' NIEDERSTADT, G. ;
REPT. NO. DFVLR-SONDERDRUCK-93

UNCLASSIFIED REPORT AVAILABILITY: PUB. IN ZEITSCHRIFT KUNSTstoffe, V60 N12 P1071-1073 1970. NO COPIES FURNISHED BY DDC OR NTI.

SUPPLEMENTARY NOTE: TEXT IN GERMAN.

DESCRIPTORS: (*PRESSURE VESSELS, STRESSES), (*FUELS, STORAGE TANKS), FLEXURAL STRENGTH, CORROSION, SAFETY, MATERIALS, MATHEMATICAL ANALYSIS, "EST GERMANY"

AUSGEHEND VON DEN ,"RICHTLINIEN FUR ORTSFESTE OBERIRDISCHE TANKS AUS GFK ZUR LAGERUNG VON HEIZOL UND DIESELKRAFTSTOFFEN, WURDE UNTERSUCHT, OB ES ZULASSIG IST, LAGERBEHALTER IN ANLEHNUNG AN DIE VORSCHRIFTEN FUR DRUCKBEHALTER (VORIAUFiges AD-MERKBLATT N 1) ZU BERECHNEN.

(AUTHOR)
THE ROLE OF PLASTICITY THEORY IN THE DESIGN OR ANALYSIS OF PRESSURE VESSELS IS CONSIDERED. IT IS SHOWN THAT THE THEORY IS HELPFUL IN PREDICTING SOME BUT NOT ALL OF THE POSSIBLE CAUSES OF PRESSURE-VESSEL FAILURE. VARIOUS MODELS FOR PLASTICITY THEORY ARE DISCUSSED. THE CURRENT STATE OF TECHNOLOGY IN THIS FIELD IS SURVEYED AND SOME INDICATIONS ARE GIVEN FOR FUTURE LINES OF RESEARCH* (AUTHOR)
CRACK TOLERATING ABILITY OF A HIGH-STRENGTH BIAXIALLY STRESSED CYLINDRICAL PRESSURE VESSEL CONTAINING A SURFACE CRACK* (U)

DESCRIPTIVE NOTE: REPT. NO. 9 (FINAL) 29 JUN 70-31 DEC 71, 3UP MAYNOR, HAL W.; WALDROP, RICHARD S.

CONTRACT: DAAH01-70-C-1424

UNCLASSIFIED REPORT

DESCRIPTORS: (*PRESSURE VESSELS, FRACTURE (MECHANICS)), STEEL, CRACKS, CYLINDRICAL BODIES, STRESSES, CRACK PROPAGATION

IDENTIFIERS: STEEL 4130

TEST SPECIMENS IN THE FORM OF CYLINDRICAL PRESSURE VESSELS WERE DEEP DRAWN FROM AISI 4130 STEEL AND HEAT TREATED TO AN AVERAGE UNIAXIAL YIELD STRENGTH (0.2 PER CENT OFFSET) OF 207 KSI. EACH VESSEL WAS PROVIDED WITH AN INITIAL SURFACE CRACK CONSISTING OF A MECHANICALLY-PRODUCED SLOT, TERMINATING AT EACH END IN A FATIGUE-INDUCED, HAIRLINE-TYPE CRACK. STRAIN GAGES MOUNTED AT BOTH ENDS OF THE CRACK PROVIDED A MEASURE OF THE DISPLACEMENT AT THESE LOCATIONS DURING THE DEVELOPMENT OF INTERNAL PRESSURES CULMINATING IN BURSTING. (AUTHOR) (U)
AN EVALUATION OF FINITE ELEMENT METHODS FOR THE COMPUTATION OF ELASTIC STRESS INTENSITY FACTORS.

DESCRIPTIVE NOTE: FINAL REPT., DEC 71. SUP O'GLESBY, JOHN J. ILOMACKY.

REPT. NO. NSRDC-3751
PROJ. SF35-422-210
TASK: 1505S

UNCLASSIFIED REPORT

Conical acrylic windows with five included angles (\(\alpha \)) from 30 to 150 degrees and thickness-to-minor-diameter (T/D) ratios from 0.375 to 1.00 have been subjected to 5,000 psi of sustained hydrostatic loading for up to 1,000 hours in the temperature range from 65F to 75F while the axial displacement of the windows through the flange has been monitored. The magnitude of axial displacement was found to be a function of \(\alpha \), T/D ratio, temperature, and duration of loading. Only windows with T/D ratios greater than or equal to 1,000, 0.625, 0.500, 0.500, and 0.500 for 30-, 60-, 90-, 120-, and 150-degree conical angles, respectively, were found to be free of cracks. (Author)
PROCEDURES FOR INTERPRETING THE STRUCTURAL IMPLICATIONS OF RADIATION-DAMAGE SURVEILLANCE RESULTS ON NUCLEAR PRESSURE VESSELS.

DESCRIPTIVE NOTE: FINAL REPT.,
DEC 71 21P STEELE, L. E. ISERPAN, C.

THE STRUCTURAL IMPLICATIONS OF RADIATION EFFECTS TO NUCLEAR REACTOR PRESSURE VESSELS ARE ASSESSED PRIMARILY THROUGH SURVEILLANCE PROGRAMS IN WHICH THE PROPERTIES OF THE VESSEL ARE PROJECTED FROM AN EVALUATION OF SMALL SPECIMENS OF THE VESSEL STEEL.

IN THE USA, THE CURRENT FRACTURE-SAFE CRITERION REQUIRES THAT THE VESSEL OPERATING TEMPERATURE, AT CERTAIN STRESS LEVELS, BE AT THE FTE (FRACTURE TRANSITION ELASTIC) TEMPERATURE, DEFINED AS NDT+60°F(33°C), DERIVED FROM SURVEILLANCE MEASUREMENTS. REVIEW OF AVAILABLE DATA FROM FIVE REACTOR SURVEILLANCE PROGRAMS INDICATES THAT THIS CRITERION IS ADEQUATE FOR THE VESSELS CONCERNED.

COMPLETE ASSURANCE OF FRACTURE-SAFE OPERATING CONDITIONS CAN BE ATTAINED THROUGH A LIMIT-ANALYSIS PROCEDURE THAT CONSIDERS AND INTEGRATES THE EFFECTS OF FIVE FACTORS: (A) THE RADIATION-INDUCED SHIFT IN TRANSITION TEMPERATURE, (B) THE INITIAL SHELF ENERGY, (C) THE RADIATION-REDUCED DUCTILE SHELF ENERGY, (D) THE EFFECTS OF THE FLUENCE (AND TOUGHNESS) GRADIENT THROUGH A THICK VESSEL WALL, AND (E) THE EFFECTS OF THICKNESS-INDUCED MECHANICAL CONSTRAINT. (AUTHOR)
ELASTIC-PLASTIC ANALYSIS OF THICK-WALLED PRESSURE VESSELS WITH SHARP DISCONTINUITIES,

FEB 71 6P LARSEN, K., POPOV, P.

CONTRACT: DAHC04-69-C-0037
MONITOR: AROD 828414-A

UNCLASSIFIED REPORT
AVAILABILITY: PUB. IN THE JNL. OF ENGINEERING FOR INDUSTRY, P1016-1020 NOV 71.

DESCRIPTORS: (PRESSURE VESSELS, STRUCTURAL PROPERTIES), STRUCTURAL SHELLS, BODIES OF REVOLUTION, PLASTICITY, ELASTICITY, NUMERICAL METHODS AND PROCEDURES
IDENTIFIERS: *ELASTIC-PLASTIC ANALYSIS, FINITE ELEMENT ANALYSIS

APPLICATION OF SPECIAL ISOPARAMETRIC FINITE ELEMENTS IS PRESENTED FOR THE ELASTIC-PLASTIC ANALYSIS OF SHELLS OF REVOLUTION. GENERAL ISOPARAMETRIC ELEMENTS ARE SELECTED WHICH, IN THE FORM OF A LAYERED SYSTEM, ARE CAPABLE OF REPRESENTING A SOLID OF REVOLUTION. THE CUSTOMARY KIRCHHOFF-LOVE HYPOTHESIS IS NOT INVOKED AND SOLUTIONS THEREFORE APPLY BOTH TO THIN AND THICK SHELLS OF REVOLUTION. SHARP DISCONTINUITIES IN GEOMETRY, CIRCUMFERENTIAL RIBS AND/OR GROOVES, AS WELL AS CELLULAR WALLS MAY BE STUDIED. A SPECIAL FEATURE IS THE DEVELOPMENT OF AN ELEMENT PERMITTING SLIDING AT THE ELEMENT INTERFACES WITH OR WITHOUT FRICTION. THE ILLUSTRATIVE EXAMPLES INCLUDE A PRESSURE VESSEL WITH A CIRCUMFERENTIAL CRACK IN THE WALL THICKNESS, AND A CIRCULAR PLATE CONSISTING OF TWO DISKS WHICH CAN SLIDE ALONG THEIR INTERFACE. THE SOLUTIONS ARE LIMITED TO AXIALLY SYMMETRIC PROBLEMS. FLOW THEORY OF PLASTICITY IS USED IN THE INELASTIC REGIONS.

(AUTHOR)
DESCRIPTIVE NOTE: QUARTERLY PROGRESS REPT. 1 FEB-30
APR 72.
MAY 72 46P
STEEL, L. E. ISMIDT, F. A.
JR. ISPRAGUE, J. A. ISHAINIAN, P. IWatson,
H. E. :
REPT. NO. NRL-MR-2441
PROJ: RR022-1141-5409, RR022-11-41-5425

SUPPLEMENTARY NOTE: SEE ALSO AD-739 312.

DESCRIPTORS: (• REACTOR MATERIALS, *RADIATION DAMAGE), (• STEEL, RADIATION DAMAGE), PRESSURE VESSELS, WELDS, FATIGUE (MECHANICS), FRACTURE (MECHANICS), CRACK PROPAGATION, ELECTRON MICROSCOPY, NEUTRON BEAMS, IRON ALLOYS, NOTCH TOUGHNESS, LIQUID METAL COOLED REACTORS, ION BOMBARDMENT, STAINLESS STEEL.

IDENTIFIERS: STEEL 316, NEUTRON IRRADIATION, ION IMPLANTATION.

THE RESEARCH PROGRAM INVOLVES A BROAD STUDY OF THE EFFECTS OF NUCLEAR RADIATION UPON MATERIALS. THE REPORT, COVERING RESEARCH FOR THE PERIOD 1 FEBRUARY - 30 APRIL 1972, INCLUDES: (1) ELECTRON MICROSCOPY OBSERVATIONS OF RADIATION DAMAGE IN PRESSURE VESSEL STEELS AND IRON ALLOYS, (2) THE EFFECT OF NEUTRON IRRADIATION ON FATIGUE CRACK PROPAGATION IN AUSTENITIC STAINLESS STEEL AT HIGH TEMPERATURE, (3) A STUDY OF RADIATION REDUCTION IN NOTCH TOUGHNESS OF STAINLESS STEEL SUBMERGED ARC WELDS, (4) THE EFFECT OF CYCLOTRON-INJECTED HELIUM ON THE FATIGUE PROPERTIES OF 316 STAINLESS STEEL, AND (5) PRELIMINARY RESULTS FROM AN ENVIRONMENTAL EXPOSURE OF CANDIDATE CTR FIRST-WALL STRUCTURAL ALLOYS. (AUTHOR)
NEUTRON-INDUCED INCREASES IN THE BRITTLE-DUCTILE TRANSITION TEMPERATURE (DELTA TT) OF A302-B PRESSURE VESSEL STEEL HAVE BEEN MEASURED FROM IRRADIATIONS IN A NUMBER OF REACTOR ENVIRONMENTS FOR NEUTRON FLUENCES REPRESENTATIVE OF PRESSURE VESSEL DESIGN LIFETIMES. WHILE THESE MEASUREMENTS HAVE PERMITTED FORMULATION OF THE TRENDS NECESSARY FOR DELTA TT PROJECTIONS IN OPERATING REACTORS, CERTAIN ANOMALOUS RESULTS HAVE BEEN OBSERVED WHEN MEASUREMENTS FELL OUTSIDE THE NOMINAL LIMITS OF THE TRENDS. AS A SUMMATION OF RESEARCH ON THIS STEEL AND TO RESOLVE THE ANOMALOUS RESULTS, A DAMAGE FUNCTION WAS DERIVED FOR THE NEUTRON-INDUCED DELTA TT RESPONSE OF A302-B STEEL AT REACTOR OPERATING TEMPERATURES. THE DAMAGE FUNCTION IS A SERIES OF WEIGHTING FACTORS FOR THE DAMAGING CAPACITY OF NEUTRONS OF ALL ENERGY GROUPS IN A REACTOR SPECTRUM; THESE FACTORS THUS INDICATE THE RELATIVE IMPORTANCE OF SPECIFIC ENERGY-GROUP NEUTRONS TO THE DAMAGING PROCESS. TECHNIQUES FOR DERIVATION OF THE DAMAGE FUNCTION AND THE COMPLEMENTING CORRELATION-EVALUATION METHOD ARE DIRECTLY APPLICABLE TO MORE ADVANCED REACTOR SYSTEMS.
THE STUDY OF IONI-8CO-2CR-IMO STEEL INCLUDES EVALUATIONS OF TENSILE, IMPACT, HARDNESS, FRACTURE TOUGHNESS PROPERTIES, AND METALLOGRAPHIC FEATURES. BASE PLATE AND THREE WELDMENTS IN ONE-INCH THICKNESSES ARE EXAMINED TO COMPARE AS-WELDED PROPERTIES WITH THOSE OBTAINED AFTER REAGING, AND RESULTS OF WELDING THE IONI ALLOY WITH 9-4-20 WIRE AS OPPOSED TO A MATCHING WELD WIRE COMPOSITION. CRITICAL CRACK SIZES ARE CALCULATED FOR THE MATERIAL. THE MOST DESIRABLE WELD PROPERTIES ARE OBTAINED USING THE MATCHING WELD WIRE AND A REAGING CYCLE. HOWEVER, THE IMPROVEMENT GAINED THROUGH REAGING IS PROBABLY NOT SUFFICIENT TO JUSTIFY THE ADDITIONAL COST FOR MOST PRACTICAL APPLICATIONS. (AUTHOR)
A report on glass pressure vessels for deep submergence is presented. Emphasis is on the structural response of spherical and hemispherical glass shells under external hydrostatic and cyclic pressure. Results of earlier programs are reviewed. A computerized analysis trading off the variables in the joint problem is presented. Final joint geometries are discussed and data on chemically strengthened glass hemispherical shells with equatorial joint rings under fatigue conditions are presented. The results indicate relatively efficient (W/D = 0.5), small pressure vessels of chemically strengthened glass are practical for unmanned noncritical applications to 20,000 ft. Nine 10-inch diameter chemically strengthened glass hemispherical shells of PPG 1080 glass with overall weight to displacement ratios of 0.5 survived at least 3000 cycles to 20,000 ft. Each hemisphere was then subjected to a proof test to 3n,000 ft. (Author)
NEED FOR LOW-WEIGHT, CRYOGENIC PRESSURE VESSELS FOR SPACECRAFT RESULTED IN AN INVESTIGATION TO MEASURE GRAPHITE FIBER COMPOSITE PROPERTIES AT CRYOGENIC TEMPERATURES. UNDERTAKEN WAS AN INVESTIGATION OF MECHANICAL PROPERTIES OF SEVERAL FIBERS AND RESINS AS COMPOSITE STRANDS, BARS, AND NOL Rings. IT SHOWED THAT COMPOSITE MODULI INCREASED BY 0 TO 20% AT -195°C, AND COMPOSITE TENSILE STRENGTHS DECREASED BY 0 TO 30%. ALSO STUDIED WAS THE DESIGN, FABRICATION, AND TESTING OF GRAPHITE FILAMENT WOUND PRESSURE VESSELS. THE PRESSURE VESSEL PERFORMANCE FACTOR OF PV/W SHOWED THE GRAPHITE VESSELS TO BE COMPETITIVE WITH BORON AND TWO-THIRDS AS HIGH AS FIBERGLASS.
THE PURPOSE OF THIS STUDY WAS TO DEVELOP END-CLOSURE SYSTEMS FOR UNDERSEA CONCRETE PRESSURE RESISTANT HULLS. THESE END-CLOSURES MUST SEAL AND LOCK CONCRETE CYLINDERS RANGING FROM 20 TO 60 FT. IN DIAMETER. THEY MUST BE REMOVABLE PERMITTING FULL ACCESS WHEN THE CYLINDERS ARE LOCATED ON THE OCEAN FLOOR IN 1000 FT. OF WATER AND WHEN THE CYLINDERS ARE LOCATED ON LAND. THE STUDY CONSIDERS END-CLOSURE CONFIGURATION INCLUDING GEOMETRY AND MATERIAL, ACTUATION OR HANDLING METHODS AND SEALING AND LOCKING ALTERNATES. AREAS REQUIRING ADDITIONAL RESEARCH AND DEVELOPMENT ARE IDENTIFIED. (AUTHOR)
INTERPRETING THE STRUCTURAL SIGNIFICANCE OF TIME DEPENDENT EMBRITTLEMENT PHENOMENA TO NUCLEAR REACTOR PRESSURE VESSEL INTEGRITY.

DURING FABRICATION AND IN SUBSEQUENT SERVICE, A NUCLEAR REACTOR PRESSURE VESSEL IS SUBJECTED TO FACTORS, SUCH AS THERMAL AGING, STRAIN AGING, NEUTRON RADIATION, WHICH MAY CAUSE EMBRITTLEMENT. LIMITED AVAILABLE DATA SUGGEST THAT COMBINED EFFECTS OF THESE FACTORS ARE USUALLY NO MORE SEVERE THAN RADIATION EMBRITTLEMENT ALONE FOR THE STEELS OF CURRENT VESSEL CONSTRUCTION; HOWEVER, LOW CYCLE FATIGUE MAY COMPlicate THE IRRADIATED CONDITION BY EXTENDING FLAWS. THE CURRENT STATE OF KNOWLEDGE OF SUCH COMBINED ENVIRONMENTAL EFFECTS AND OF TECHNIQUES FOR FAILURE PREVENTION requires a LIMIT APPROACH WHICH WILL ASSURE A DUCTILE CONDITION AT ALL TIMES WHILE THE VESSEL IS IN SERVICE. THE ANALYSIS MUST INTEGRATE IRRADIATED TRANSITION TEMPERATURE, FRACTURE ENERGY LEVEL, RADIATION INDUCED GRADIENT, AND THICKNESS CONSTRAINT EFFECTS. (AUTHOR)
CONICAL ACRYLIC WINDOWS OF 90-DEGREE INCLUDED ANGLE AND 0.083 TO 0.775 THICKNESS-TO-MINOR-DIAMETER (T/D) RATIOS HAVE BEEN TESTED TO ULTIMATE FAILURE UNDER SHORT-TERM HYDROSTATIC LOADING. THE AMBIENT TEMPERATURE WAS VARIED FROM 32°F TO 90°F AND THE RELATIONSHIP BETWEEN MINOR WINDOW DIAMETER (D) AND MINOR WINDOW CAVITY DIAMETER IN THE FLANGE (OF) VARIED FROM 0.970 TO 1.500. THE TEST RESULTS SHOW THAT THE CRITICAL PRESSURE OF IDENTICAL WINDOWS AT 90°F IS APPROXIMATELY 10% TO 20% LESS THAN AT 70°F, AND AT 32°F IT IS APPROXIMATELY 15% TO 25% MORE THAN AT 70°F. TO IMPROVE THE CRITICAL PRESSURE OF 90-DEGREE CONICAL ACRYLIC WINDOWS, IT IS RECOMMENDED THAT SUCH WINDOWS BE DESIGNED WITH A WINDOW/FLANGE MISMATCH RATIO OF D/D GREATER THAN 1.00, THE EXACT MAGNITUDE DEPENDING ON THE WINDOW'S T/D RATIO, SERVICE, AND DESIGN CONSIDERATIONS.

(AUTHOR)
FREE-FORMED, FLANGED, ACRYLIC HEMISPHERICAL SHELLS WITH A NOMINAL 27-IN. MEDIAN RADIUS HAVE BEEN EXPERIMENTALLY EVALUATED FOR SERVICE AS EXTERNAL PRESSURE HULLS WITH A NOMINAL 56-FT DEPTH. BECAUSE THE FREE-FORMING FABRICATION TECHNIQUE PRODUCES HEMISPHERES WITH SIGNIFICANT VARIATION IN THICKNESS AND SPHERICITY, UNEVEN STRESS DISTRIBUTION RESULTS DURING EXTERNAL HYDROSTATIC LOADING. AS A RESULT, EXTREME CARE MUST BE EXERCISED WHEN UTILIZING FREE-FORMED ACRYLIC HEMISPHERES BECAUSE THEIR ELASTIC INSTABILITY PRESSURE AND MAGNITUDE OF STRESSES CANNOT BE PREDICTED ON THE BASIS OF EQUATIONS FOR IDEAL ACRYLIC SPHERES. USING AN EXPERIMENTAL APPROACH TO THE EVALUATION OF 54-IN.-MEDIAN-DIAMETER HEMISPHERES, IT WAS FOUND THAT NOMINALLY 1-IN.-THICK ACRYLIC PLATE STOCK IS ADEQUATELY THICK FOR FREE-FORMING OF SHELLS THAT WILL BE UTILIZED AS PRESSURE HULLS FOR AN OPERATIONAL DEPTH OF 56 FT. (AUTHOR)
APPARATUS USED FOR THE EXPERIMENTAL STUDY OF THE THERMODYNAMIC PROPERTIES OF GASES AT PRESSURES OF UP TO 10^-12 KILOBARS AND AT TEMPERATURES UP TO 3000 K,

AUG 72 IIP ANANTOVICH, A. A.; PLOTNIKOV, M. A.;
REPT. NO. FTD-HT-23-1266-72

SUPPLEMENTARY NOTE: EDITED TRANS. OF MONO.
TEPLOFIZICHESKIE SVOISTVA GAZOV (THERMOPHYSICAL PROPERTIES OF GASES) MOSCOW, 1970 P156-159, BY PAUL J. HEIFF, JR.

IDENTIFIERS: TRANSLATIONS

SPECIAL APPARATUS HAS BEEN DEVELOPED FOR THE STUDY OF THE THERMODYNAMIC PROPERTIES OF GASES AT HIGH TEMPERATURES. THE APPARATUS CONSISTS OF A THICK WALLED POWER CYLINDER WITH INTERNAL PRESSURE AMOUNTING TO 10^-12 KILOBARS. CHANNELS OF A WATER COOLING SYSTEM ARE LOCATED IN THE POWER CYLINDER WALL. THE INTERNAL SPACE OF THE THERMAL CHAMBER IS HEATED BY AN ELECTRIC COIL ON WHICH SHORT CERAMIC TUBES HAVE BEEN PLACED. A PYROLITIC GRAPHITE BUSHING IS USED. (AUTHOR)
A rapid and accurate formulation of the compatibility equations at the junction of the cylinder and spherical cap is more convenient when using dimensionless coefficients. It is the object of this study to relieve some of the tedious and time-consuming calculations involved in computing the discontinuity stresses at the junction. The coefficients as tabulated were programmed on a computer. (Author)
DEVELOPMENT OF IMPROVED BIAXIAL STRENGTH IN TITANIUM ALLOY ROCKET MOTOR CASES THROUGH TEXTURE HARDENING.

CONTRACT: F04611-67-C-0074

MONITOR: AFRPL TR-69-69

DESCRIPTORS: (ROCKET CASES, STRUCTURAL PROPERTIES), (TITANIUM ALLOYS, HARDENING), DRAWING (MACHINE PROCESSING), PRESSURE VESSELS, HYDROSTATIC TESTS, RUPTURE, LOADING (MECHANICS), ANISOTROPY, STRESSES, ROLLING (METALLURGY), ELECTRON BEAM WELDING, INERT GAS WELDING, METALLOGRAPHY, MEMBRANES, TENSILE PROPERTIES, FRACTURE (MECHANICS) (U)

IDENTIFIERS: TITANIUM ALLOY 6AL 4V, TITANIUM ALLOY 7AL 2SMO, TEXTURE HARDENING (U)

(AUTHOR) (U)
The objective of work reported in this volume was to evaluate plasma arc welding torches for fabricating rocket motor cases and weight-critical unfired pressure vessels. Welding studies were accomplished utilizing 6 AL-4V titanium, Inconel 718, and Rene 41. (Author)
A STATE-OF-TECHNOLOGY SURVEY WAS CONDUCTED ON NONDESTRUCTIVE TESTING TECHNIQUES FOR PRESSURE VESSELS. THE PURPOSE OF THE INVESTIGATION WAS TO PROVIDE INFORMATION FOR THE DESIGN, CONSTRUCTION, AND CERTIFICATION OF HIGH-PRESSURE TANKS. THE SURVEY SHOWED THAT CONSIDERABLE RESEARCH IS ATTEMPTING TO EXTEND THE USEFULNESS OF NONDESTRUCTIVE TESTING TO MEET MORE DEMANDING CRITERIA OF CERTIFICATION AND TO EXPAND THE CAPABILITY TO NEARLY ALL ASPECTS OF ASSURING MATERIAL ADEQUACY. (AUTHOR)
REVIEW OF RECENT DEVELOPMENTS, ALUMINUM AND MAGNESIUM. (U)

MAY 70

HALLOWELL, J. B.

UNCLASSIFIED REPORT

SUPPLEMENTARY NOTE: SEE ALSO REPORT DATED 17 OCT 69, AD-860 405.

DESCRIPTORS: (ALUMINUM ALLOYS, REVIEWS), (MAGNESIUM ALLOYS, REVIEWS), EXTRUSION, CYLINDRICAL BODIES, LANDING GEAR, PRESSURE VESSELS, ELECTRON BEAM WELDING, HEAT TREATMENT, CORROSION RESISTANCE, LITHIUM ALLOYS, HONEYCOMB CORES, AGING (MATERIALS) (U)

IDENTIFIERS: ANNOUNCEMENT BULLETINS (U)

CONTENTS: LANDING-GEAR CYLINDER BACK EXTRUDED; PRESSURE VESSELS FABRICATED BY EB WELDING OF 2219 ALLOY; EFFECTS OF COMPOSITION AND HEAT TREATMENT ON STRENGTH AND CORROSION RESISTANCE; CHARACTERISTICS OF X7080, 7178 AND 7075 ALLOYS; EVALUATION OF 7049-T73 ALUMINUM; AGING OF MAGNESIUM-LITHIUM-ALUMINUM ALLOYS; AND MG-LI ALLOY HONEYCOMB CORES. (U)
THE CONJUGATE STRUCTURE CONSISTED OF A FORWARD SKIRT, FORWARD DOME, FORWARD BARREL, COMMON DOME, AFT BARREL, AFT CONE AND AFT SKIRT. THE FORWARD AND AFT BARREL SECTIONS WERE MADE OF TITANIUM ROLL DIFFUSION BONDED TRUSS CORE PANELS. THE CONJUGATE STRUCTURE WAS DELIVERED TO THE MARTIN MARIETTA CORPORATION, DENVER DIVISION FOR STRUCTURAL TESTING TO DEMONSTRATE ITS ABILITY TO WITHSTAND DESIGN CONDITIONS BY A SUBJECTION TO LIMIT LOADS AND LIMIT INTERNAL TANK PRESSURES. MARTIN MARIETTA CORPORATION RECEIVING INSPECTION IDENTIFIED STRUCTURAL DISCREPANCIES WHICH BROUGHT ABOUT A CHANGE IN THE TEST CONTRACT. INSTEAD OF THE ORIGINALLY PLANNED THREE TEST CONDITIONS, THE CONJUGATE STRUCTURE WAS SUBJECTED TO A DETAILED INSPECTION AND A STRUCTURAL REPAIR OPERATION, AND THE TEST PORTION WAS MODIFIED TO INCLUDE FIVE TEST CONDITIONS. THE FIRST TWO OF THESE TEST CONDITIONS WERE COMPLETED. A VISUAL AND RADIOGRAPHIC INSPECTION, MADE AFTER THE COMPLETION OF THE SECOND TEST, IDENTIFIED SEVEN AREAS OF STRUCTURAL FAILURES. ONE FAILURE, A 42.5 IN. LONG CRACK IN THE INNER WELD OF THE AFT TANK BARREL TO THE LOWER Y-RING CIRCUMFERENTIAL WELD JOINT, WAS SEVERE ENOUGH TO PROHIBIT CONTINUED TESTING. THE TANK BARREL SECTIONS, MADE UP OF ROLL-DIFFUSION-BONDED-TRUSS-CORE, SUCCESSFULLY CARRIED THE DESIGN LIMIT LOADS AND INTERNAL TANK PRESSURES ASSOCIATED WITH THE TWO TEST CONDITIONS.
REVIEW OF RECENT DEVELOPMENTS, LOW-TEMPERATURE PROPERTIES OF METALS,

JUN 70 6P CAMPBELL, J. E.;

SUPPLEMENTARY NOTE: SEE ALSO REPORT DATED 27 FEB 70, AD-866 215.

CONTENTS: DUCTILITY OF AUSTENITIC STAINLESS STEEL AT -320F; TOUGHNESS OF PRECRACKED TITANIUM SHEET AT -423F; CRYOGENIC PROPERTIES OF TITANIUM ALLOYS IN THE RUSSIAN LITERATURE; PROPERTIES OF ALUMINUM ALLOYS TO -423F; PRESSURE VESSEL TESTS AT CRYOGENIC TEMPERATURES; AND THERMAL CONDUCTIVITY AND ELECTRICAL RESISTIVITY OF FOUR ALLOYS AT CRYOGENIC TEMPERATURES.
A SATE-OF-TECHNOLOGY SURVEY WAS CONDUCTED ON STRESS ANALYSIS AND MEASUREMENT TECHNIQUES FOR PRESSURE VESSELS. THE PURPOSE OF THE INVESTIGATION WAS TO PROVIDE CURRENT INFORMATION FOR THE DESIGN, CONSTRUCTION AND CERTIFICATION OF HIGH PRESSURE CHAMBERS. THE SURVEY SHOWED CURRENT LIMITATIONS OF THESE TECHNIQUES, AND ONGOING RESEARCH ATTEMPTING TO ADVANCE THE STRESS ANALYSIS/MEASUREMENT TECHNIQUES.

(AUTHOR)
UNCLASSIFIED
CORPORATE AUTHOR - MONITORING AGENCY

*ADVANCED RESEARCH PROJECTS AGENCY
ARLINGTON VA
• • •
ARPA-E42
ELASTIC-PLASTIC ANALYSIS OF PRESSURE VESSEL COMPONENTS,
AD-682 482

*AERONET-GENERAL CORP AZUSA CALIF
** *
0623 01 3
STUDY OF THE EFFECTS OF THICKNESS ON THE PROPERTIES OF LAMINATED FOR UNDERWATER PRESSURE VESSELS,
AD-296 424

*AERONET-GENERAL CORP FULLERTON CALIF
ORDNANCE DIV
• • •
AGC-1070-0101 FF-VOL-I
PLASMA ARC WELDING PROCESS DEPLOYMENT PROGRAM, VOLUME I
(AFML-TR-68-379-VOL-I)
AD-855 520

*AERONET-GENERAL CORP SACRAMENTO CALIF
• • •
AGC-062713
RESEARCH AND DEVELOPMENT IN SUPPORT OF THE POLARIS PROGRAM TASK 1 INVESTIGATION OF FILENT MUSCING PATTERNS.
AD-425 196

*AEROSPACE CORP EL SEGUNDO CALIF
• • •
TRR269 4305 5
STRESSES IN THIN VESSELS UNDER INTERNAL PRESSURE,
(SSO-TR63 367)
AD-312 706

*AEROSPACE CORP EL SEGUNDO CALIF LAB OPERATIONS
• • •
TR-0091(6250-101)-S
THE EFFECT OF PROCESSING ON PLASTIC STRAIN ANISOTROPY OF Ti-6Al-4V.
0-1

UNCLASSIFIED
• ALLIED RESEARCH ASSOCIATES INC
CONCORD MASS
ARA-F-271-S
PHOTOELASTIC INVESTIGATION OF
STRESSES IN A PENETRATED
HEMISPHERE.
AD-615 416

• ALLIED RESEARCH ASSOCIATES INC
CONCORD MASS
ARA-F-9260-3
PHOTOELASTIC INVESTIGATION OF
STRESSES AT WINDOWS AND MACHINES IN
SPHERICAL PRESSURE VESSELS.
AD-653 749

• APPLIED TECHNOLOGY ASSOCIATES INC
EMERSON N J
ATA-120-E-11-49
ANALYSIS OF A CIRCULAR
CYLINDRICAL PERFORATED SHELL.
AD-714 171

• ADE-PORTLAND INC PARAMUS N J
CRITICAL STRETCH-FORMING OF
SOLID-PROPPELLANT ROCKET CASES.
AD-403 749

• ARIZONA UNIV TUCSON
THE DESIGN OF RESEARCH
APPARATUS FOR CONSTANT-VOLUME
COMBUSTION PROCESSES.
AD-811 782

• ARMY ENGINEER REACTORS GROUP FORT
BELVOIR VA ENGINEERING DIV
ED-692
SN-1A PRESSURE VESSEL LIFETIME
AS RESULT OF IN-PLACE ANNEALING.
AD-699 330

• ARMY ENGINEER REACTORS GROUP FORT
BELVOIR VA ENGINEERING DIV
ED-710
SN-1A VAPOR CONTAINER LEAK
TEST: 3-5 AUGUST 1970.
AD-718 026

• ARMY MATERIALS AND MECHANICS RESEARCH
CENTER WATERTOWN MASS
AMMC-CA-71-2/1
THE EFFECTS OF THE SURFACE
LAYER ON PLASTIC DEFORMATION AND
CRACK PROPAGATION.
AD-721 292

• ARMY MATERIALS RESEARCH AGENCY
WATERTOWN MASS
AMRA-TR-61-12
ANALYTICAL STUDY FOR A
HYDRODYNAMIC TEST SYSTEM.
AD-419 356

• ARMY MISSILE COMMAND REDSTONE
ARMENAL ALA ARMY PROPULSION LAB
AND CENTER
RK-TR-70-19
DETERMINATION OF PROOF TEST
LEVEL FOR TEST-DEGRADABLE
COMPONENTS.
AD-820 576

• ARMY RESEARCH OFFICE DURHAM N C
AROD-61021
THERMOPHYSICAL SHELLS FREE OF
BENDING UNDER UNIFORM NORMAL
PRESSURE.
AD-644 751

• ARMY RESEARCH OFFICE DURHAM N C
AROD-62841-A
ELASTIC-PLASTIC ANALYSIS OF
SOME PRESSURE VESSEL HEADS.
AD-713 258

• AUBURN RESEARCH FOUNDATION ALA
SM-1A VAPOR CONTAINER LEAK
TEST: 3-5 AUGUST 1970.
AD-718 026

• AUBURN RESEARCH FOUNDATION ALA
5
MECHANISMS OF METALLIC FAILURE:
FLAW INITIATION TECHNIQUES AND
UNCLASSIFIED

MEASUREMENTS IN THIN-WALL PRESSURE VESSELS.
AU-634 963

*AUBURN UNIV ALA ENGINEERING EXPERIMENT STATION
* * *
CRACK TOLERATING ABILITY OF A HIGH-STRENGTH AXIALLY STRESSES CYLINDRICAL PRESSURE VESSEL CONTAINING A SURFACE CRACK.
AD-734 926

*AVCO LYCOMING DIV STRATFORDCONN
* * *
METASTABLE AUSTENITIC FORMING OF HIGH STRENGTH PRESSURE VESSELS.
AU-402 635
METASTABLE AUSTENITIC FORMING OF HIGH STRENGTH PRESSURE VESSELS.
AD-438 U09

*BATTELLE MEMORIAL INST COLUMBUS OHIO
* * *
DESIGN, PERFORMANCE, FABRICATION, AND MATERIAL CONSIDERATIONS FOR HIGH-PRESSURE VESSELS.
(R31C-173)
AD-603 694

*BATTELLE MEMORIAL INST COLUMBUS OHIO DEFENSE METALS INFORMATION CENTER
* * *
REVIEW OF RECENT DEVELOPMENTS, ALUMINUM AND MAGNESIUM.
AD-869 U53
REVIEW OF RECENT DEVELOPMENTS, LOW-TEMPERATURE PROPERTIES OF METALS.
AU-370 J9U

*BECHTEL CORP, SAN FRANCISCO CALIF
* * *
DEVELOPMENT OF END-CLOSURE SYSTEMS FOR UNDERSEA CONCRETE PRESSURE RESISTANT CYLINDRICAL HULLS.
(ICEL-CR-72-017)

*BENDIX MISHAWAKA DIV BENDIX CORP IND
* * *
BAM-5930
DEVELOPMENT OF A HERMETIC SEALED NITROGEN STORAGE SYSTEM FOR THE TALOS RIM-8E FUEL PRESSURIZATION SYSTEM.
AD-631 443

*BOEING SCIENTIFIC RESEARCH LABS
SEATTLE WASH
* * *
MATHEMATICAL NOTE NO. 309
A LINEARIZED ANALYSIS OF THE PRESSURE WAVES IN A TANK UNDERGOING AN ACCELERATION.
AD-412 933

*BROWN UNIV PROVIDENCE R I DIV OF ENGINEERING
* * *
ELASTIC-PLASTIC ANALYSIS OF PRESSURE VESSEL COMPONENTS,
(AROD-E62)
AD-682 482

*BUD CO PHILADELPHIA PA
* * *
MANUFACTURE AND HYDROTEST OF THREE 20 INCH DIAMETER HAR-AGING STEEL PRESSURE VESSELS.
AD-610 081

*CALIFORNIA UNIV BERKELEY
* * *
ELASTIC-PLASTIC ANALYSIS OF SOME PRESSURE VESSEL HEADS,
(AROD-B288:4-A)
AD-713 259
ELASTIC-PLASTIC ANALYSIS OF THICK-WALLED PRESSURE VESSELS WITH SHARP DISCONTINUITIES,
(AROD-B289:4-A)
AD-743 630

*CATHOLIC UNIV OF AMERICA WASHINGTON D C STRESS ANALYSIS LABS
* * *

UNCLASSIFIED
DISTRIBUTION OF STRESSES IN A PRESSURIZED HOLLOW CYLINDER WITH A CIRCULAR HOLE.

AD-237 013

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE MARSEILLE (FRANCE)
PRESSURE CHAMBER FOR MICROELECTROPHYSIOLOGICAL TECHNIQUES (CAISSON DE COMPRESSION POUR TECHNIQUES MICROELECTROPHYSIOLOGIQUES),
(APAR-65-1294)
AD-621 281

DAVID TAYLOR MODEL BASIN WASHINGTON D.C.
OTMB-1732
AN EXPERIMENTAL INVESTIGATION OF CLOSURES AND PENETRATIONS FOR PRESSURE VESSELS OF COMPOSITE CONSTRUCTION,
AD-600 336

DAVID TAYLOR MODEL BASIN WASHINGTON D.C. STRUCTURAL MECHANICS LAB
OTMB-2243
AN EXPLORATORY STUDY OF THE FEASIBILITY OF GLASS AND CERAMIC PRESSURE VESSELS FOR NAVAL APPLICATIONS,
AD-641 875

DEFENSE DOCUMENTATION CENTER ALEXANDRIA VA
ODC-TR-67-22-1
PRESSURE VESSELS, VOLUME I,
AD-702 600

DEUTSCHE FORSCHUNGS- UND VERSUCHSANSTALT FUER LUFT- UND RAUMFAHRT E.V. BRUNSWICK (WEST GERMANY)
DFVL=SONDERDRUCK 93
RECHNUNG OBERRIDISCHER FLUSSIGKEITSLAGERTANKS

FTD-HT-65-968
HEA METHOD OF PRODUCTION OF CLAD PLATE ROLLED PRODUCTS FOR PRESSURE VESSELS,
ITT-67-60484)
AD-645 787

FTD-TT-65-1887
ON THE METHOD OF TESTING METALS AT HIGH TEMPERATURE AND PRESSURE
VALUES
ITT-66-62286
AD-639 160

FRA-LUC

*ILLINOIS INST OF TECH CHICAGO DEPT OF MECHANICS
* * *
DOMIT-1-45
PLASTIC ANALYSIS AND PRESSURE VESSEL SAFETY,
AD-725 847

*ILLINOIS UNIV URBANA DEPT OF THEORETICAL AND APPLIED MECHANICS
* * *
T-AM-270
PHOTUELASTIC STUDY OF THE STRESSES NEAR OPENINGS IN PRESSURE VESSELS,
AD-617 890

*INTERNATIONAL INST OF WELDING
* * *
COMMISSION XII: PRESSURE VESSELS, BOILERS AND PIPE LINES
AD-636 385

*LOCKHEED MISSILES AND SPACE CO PALO ALTO CALIF LOCKHEED PALO ALTO
RESEARCH LAB
* * *
OPTIMUM THICKNESS TRANSITIONS FOR CYLINDRICAL PRESSURE VESSELS
WITH HEMISPHERICAL HEADS
AD-657 080

*LOCKHEED MISSILES AND SPACE CO PALO ALTO CALIF LOCKHEED RESEARCH LAB
* * *
DEVELOPMENT OF IMPROVED BIAxIAL STRENGTH IN TITANIUM ALLOY ROCKET
MOTOR CASES THROUGH TEXTURE HARDENING
AERPL-TK-69-59
AD-851 95d

*GOODYEAR AEROSPACE CORP AKRON OHIO
* * *
GER-111548
STUDY OF THE EFFECTS OF MECHANICAL DAMAGE ON THE PERFORMANCE OF FILAMENT-WOUNDED MOTOR
CASES

0-5
UNCLASSIFIED
DESIGN, FABRICATION AND HYDROTESTING OF A 120INCH DIAMETER PRESSURE VESSEL USING 18 PERCENT NICKEL MARAGING STEEL.
AD-429 031

MARGUARDT CORP VAN NUYS CALIF

25 116
RAFET TECHNOLOGY PROGRAM
1903
SECTION XIV AEROTHERMAL CAPABILITY OF PLASMA HEATERS.
SECTION XV HIGH PRESSURE AIR GENERATION
AD-602 048

MARTIN MARIETTA CORP DENVER COLO

CR-71-2
THE EFFECTS OF THE SURFACE LAYER ON PLASTIC DEFORMATION AND CRACK PROPAGATION
(AHHC-CR-71-2/1)
AD-721 292

CR-70-42
VERIFICATION TESTING OF CONJUGATE STRUCTURE
(AFPL-Tr-70-47)
AD-669 476

MASSACHUSETTS INST OF TECH LEXINGTON LINCOLN LAB

TN-19715
DESIGN OF MULTI-REGION PRESSURE VESSELS USING MAXIMUM SHEAR THEORY
(E50-Tr-71-9)
AD-716 770

MELLON INST PITTSBURGH PA

TM-492
A STUDY OF THE BEHAVIOR OF SMALL PRESSURE VESSELS UNDER BIAXIAL STRESS CONDITIONS AND IN THE PRESENCE OF SURFACE CRACKS
AD-425 729

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON D C

NASA-CR-72652
PROPERTIES OF GRAPHITE FIBER COMPOSITES AT CRYOGENIC TEMPERATURES
AD-746 885

NAVAL APPLIED SCIENCE LAB BROOKLYN N Y

6377-4
DEVELOPMENT OF WELDING TECHNIQUES FOR FABRICATING A THICK PLATE TITANIUM PRESSURE BOX
AD-617 902

TM-7
DEVELOPMENT OF WELDING TECHNIQUES FOR FABRICATING A THICK PLATE TITANIUM PRESSURE BOX
AD-617 902

NAVAL CIVIL ENGINEERING LAB PORT HUENEME CALIF

NCEL-CR-72-017
DEVELOPMENT OF END-CLOSURE SYSTEMS FOR UNDERSEA CONCRETE PRESSURE RESISTANT CYLINDRICAL HULLS
AD-747 217

NCEL-TN-1059
IMPLOSIONS IN PRESSURE VESSELS, EXPERIMENTAL RESULTS
AD-702 731

NCEL-TR-512
WINDOWS FOR EXTERNAL OF INTERNAL HYDROSTATIC PRESSURE VESSELS PART I. CONICAL ACRYLIC WINDOWS UNDER SHORT-TERM PRESSURE APPLICATION
AD-696 882

NCEL-TR-527
WINDOWS FOR EXTERNAL OR INTERNAL HYDROSTATIC PRESSURE VESSELS PART II FLAT ACRYLIC
Windows under short-term pressure application.
NCEL-TR-572
Photoplastic investigation of stress concentrations in spherical-cylinder transition regions; including a comparison of results from photoelastic and finite element analyses.
AD-667 834

NCEL-TR-631
Windows for external or internal hydrostatic pressure vessels, part III, critical pressure of acrylic spherical shell windows under short-term pressure applications.
AD-669 784

NCEL-TR-645
Windows for external or internal hydrostatic pressure vessels, part IV, conical acrylic windows under long-term pressure application at 20,000 psi.
AD-677 272

NCEL-TR-666
Pressure vessel concepts: exploratory evaluation of stacked ring and segmented wall designs with tie-rod end-closure restraints.
AD-705 125

NCEL-TR-676
Development of a spherical acrylic plastic pressure hull for hypersonic application.
AD-737 363

NCEL-TR-706
Windows for external or internal hydrostatic pressure vessels, part V, conical acrylic windows under long-term pressure application of 10,000 psi.
AD-718 812

NAVAL CIVIL ENGINEERING LAB PORT HUENEME CALIF

NCEL-TR-747
Windows for external or internal hydrostatic pressure vessels, part VI, conical acrylic windows under long-term pressure application at 5,000 psi.
AD-736 594

NCEL-TR-773
Windows for external or internal hydrostatic pressure vessels, part VII, effect of temperature and flange configurations on critical pressure of 90-degree conical acrylic windows under short-term loading.
AD-748 583

NAVAL CIVIL ENGINEERING LAB PORT WHITE OAK MD

NOLTR-63-123
The conversion of 16-inch projectiles to pressure vessels.
AD-625 950

NAVAL ORDNANCE LAB WHITE OAK MD

NOLTR-63-249
Design method for double-walled external pressure vessels.
AD-420 656

NOLTR-66-46
Stresses in shallow glass domes with constrained edges.
AD-638 136

NOLTR-67-121
High pressure chamber design.
AD-661 229

NOLTR-69-183
Properties of graphite fiber.
COMPOSITES AT CRYOGENIC TEMPERATURES:
(NASA-CR-72652)
AD-746 085

NOLTR-70-41
COMPUTER PROGRAM FOR A MONOBLOC, HOLLOW, CLOSED-END CYLINDER SUBJECTED TO INTERNAL PRESSURE.
AD-704 787

NOLTR-70-135
FATIGUE OF THICK-WALLED, HIGH-PRESSURE CYLINDERS.
AD-716 032

NAVAL POSTGRADUATE SCHOOL MONTEREY CALIF

NOLTR-70-136
MEAN TRANSFER CONSIDERATIONS IN A PRESSURE VESSEL BEING CHARGED.
AD-706 713

NAVAL RESEARCH LAB ORLANDO Fla
UNDERWATER SOUND REFERENCE DIV

NRL-7013
ACOUSTIC CHARACTERISTICS OF A GLASS-FILAMENT-WOUND PRESSURE VESSEL.
AD-698 282

NAVAL RESEARCH LAB WASHINGTON D C

NRL-7024
A NAVY ANALYSIS OF GLASS REINFORCED PLASTICS FOR HYDROSPACE APPLICATIONS.
AD-609 798

NRL-703 963
STEELS FOR COMMERCIAL NUCLEAR POWER REACTOR PRESSURE VESSELS.
AD-703 963

NRL-704 463
STRUCTURE AND COMPOSITION EFFECTS ON IRRADIATION SENSITIVITY OF PRESSURE VESSEL STEELS.
AD-728 463

NRL-705 482
INTERPRETING THE STRUCTURAL SIGNIFICANCE OF TIME DEPENDENT NEUTRON EMBRITTLEMENT OF REACTOR PRESSURE VESSEL STEELS,
AD-423 526

NRL-706 491
NEUTRON EMBRITTLEMENT OF REACTOR PRESSURE VESSEL STEELS,
AD-423 526

NRL-707 500
PRACTICAL CONSIDERATIONS IN APPLYING LABORATORY FRACTURE TEST CRITERIA TO THE FRACTURESAFE DESIGN OF PRESSURE VESSELS,
AD-426 431

NRL-708 501
IN-REACTOR STUDIES OF LOW CYCLE FATIGUE PROPERTIES OF A NUCLEAR PRESSURE VESSEL STEEL.
AD-606 773

NRL-709 502
YANKEE REACTOR PRESSURE VESSEL SURVEILLANCE: EVALUATION OF SPECIMENS EXPOSED DURING THE SECOND CORE,
AD-609 565

NRL-710 503
TENSILE STRESSES ON THE SURFACE OF A NUCLEAR ELLIPSOIDAL CAVITY IN COMPRESSIVE LOADING SITUATIONS,
AD-613 552

NRL-711 504
RADIATION DAMAGE SURVEILLANCE OF NUCLEAR PRESSURE VESSELS,
AD-629 881

NRL-712 505
FLAMMABILITY IN UNUSUAL ATMOSPHERES, PART I: PRELIMINARY STUDIES OF MATERIALS IN HYPERBARIC ATMOSPHERES CONTAINING OXYGEN,

UNCLASSIFIED
NITROGEN, AND/OR HELIUM.
AD-644 556

NRL-6474

NEUTRON SPECTRAL CONSIDERATIONS AFFECTING PROJECTED ESTIMATES OF IRRADIATION EMBRITTLEMENT OF THE ARMY SM-1A REACTOR PRESSURE VESSEL.
AD-641 283

NRL-6598

BASIC ASPECTS OF CRACK GROWTH AND FRACTURE.
AD-663 882

NRL-6620

THE EFFECTS OF COUPLING NUCLEAR IRRADIATION WITH STATIC AND CYCLIC SERVICE STRESSES AND OF PERIODIC PROOF TESTING ON PRESSURE VESSEL MATERIAL BEHAVIOR.
AD-664 646

NRL-6625

AVAILABILITY OF DATA ON IRRADIATED MATERIALS IS RELATED TO DESIGN REQUIREMENTS FOR WATER COOLED REACTOR PRESSURE VESSELS.
AD-663 879

NRL-6703

THE EFFECT OF RESIDUAL ELEMENTS ON 550F IRRADIATION RESPONSE OF SELECTED PRESSURE VESSEL STEELS AND WELDMENTS.
AD-660 602

NRL-6855

CONTROLLED DESTRUCTIVE TESTING OF PRESSURE VESSELS.
AD-686 660

NRL-7011

TRENDS IN CHARPY-V SHELF ENERGY DEGRADATION AND YIELD STRENGTH INCREASE OF NEUTRON-EMBRIITLLED PRESSURE VESSEL STEELS.
AD-700 233

NRL-7095

THE INFLUENCE OF COMPOSITION ON THE FRACTURE TOUGHNESS OF COMMERCIAL NUCLEAR VESSEL STEELS.
AD-709 594

NRL-7101

ANALYSIS OF NEUTRON-EMBRIITLMENT AND FLUX-DENSITY CONSIDERATIONS OF THE ARMY SM-1 REACTOR PRESSURE VESSEL.
AD-709 898

NRL-7152

A REASSESSMENT OF FRACTURE-SAFE OPERATING CRITERIA FOR REACTOR VESSEL STEELS BASED ON CHARPY-V PERFORMANCE.
AD-711 845

NRL-7176

MAJOR FACTORS AFFECTING NEUTRON IRRADIATION EMBRITTLEMENT OF PRESSURE-VESSEL STEELS AND WELDMENTS.
AD-720 678

NRL-7209

ANALYSIS OF IRRADIATION-INDUCED EMBRITTLEMENT GRADIENTS ON FRACUTRE CHARACTERISTICS OF THICK-WALLED PRESSURE VESSEL STEELS.
AD-720 676

UNCLASSIFIED
UNCLASSIFIED

NAV-NAV

NRL-7211
SH-IA REACTOR PRESSURE VESSEL
SURVEILLANCE: IRRADIATION OF
FOLLOW-ON CAPSULES IN THE SH-1
REACTION.
AD=717 616

NRL-7358
PROCEDURES FOR INTERPRETING THE
STRUCTURAL IMPLICATIONS OF
IRRADIATION-INDUCED SURVIVABILITY
RESULTS ON NUCLEAR PRESSURE
VESSELS.
AD=737 190

NRL-7405
IRRADIATION-FUNCTION ANALYSIS OF
NEUTRON ENHANCED MATERIATL IN STEEL AT
REACTION SERVICE TEMPERATURES.
AD=745 299

NRL-7427
FAILURE DEVELOPMENT AND
MATERIAL PROPERTIES IN PVR-PENN
STATE PRESSURE VESSEL.
AD=763 203

NRL-7472
IRRADIATION EFFECTS ON REACTOR
STRUCTURAL MATERIALS.
AD=771 094

NRL-7497
USA STUDIES ON IRRADIATION
EFFECTS TO ADVANCED PRESSURE VESSEL
MATERIALS.
AD=784 046

NRL-HR-2126
IRRADIATION EFFECTS ON REACTOR
STRUCTURAL MATERIALS.
AD=797 336

NRL-HR-2153
IRRADIATION EFFECTS ON REACTOR
STRUCTURAL MATERIALS.
AD=811 321

NRL-4H-2441
IRRADIATION EFFECTS ON REACTOR
STRUCTURAL MATERIALS.

0-10
UNCLASSIFIED
SIMPLIFIED SHELL ANALYSIS (EDGE AND INTERIOR INFLUENCE COEFFICIENTS FOR PRESSURE VESSELS WITH SPHERICAL CAP).
AD-849 039

PICA TINNY ARSENAL DOVER N J FELTMAN RESEARCH LABS
PA-TR-1206
THE DEPENDENCE OF DYNAMIC STRENGTH OF CYLINDRICAL PRESSURE VESSELS ON GEOMETRICAL PARAMETERS.
AD-406 622
PA-TR-1643
DESIGN OF PRESSURE VESSELS FOR CONFINING EXPLOSIVES.
AD-467 73U

REDSTONE SCIENTIFIC INFORMATION CENTER REDSTONE ARSENAL ALA
RSIC-173
DESIGN, PERFORMANCE, FABRICATION, AND MATERIAL CONSIDERATIONS FOR HIGH-PRESSURE VESSELS.
AD-603 694

REPUBLIC AVIATION CORP FARMINGDALE N Y
EVALUATION OF HIGH-STRENGTH LIGHTWEIGHT LAMINATED PRESSURE VESSELS OF LAP-JOINT CONSTRUCTION.
AD-408 278

REPUBLIC AVIATION CORP MINEOLA N Y
EVALUATION OF HIGH-STRENGTH LIGHTWEIGHT LAMINATED PRESSURE VESSELS OF LAP-JOINT CONSTRUCTION.
AD-404 182

SOUTHWEST RESEARCH INST SAN ANTONIO TEX
EXPERIMENTAL STRESS ANALYSIS OF A ONE-SIATTH SCALE MODEL OF AN ANECHOIC PRESSURE VESSEL.
ON THE STRENGTH DEGRADATION OF
SPACE AND MISSILE SYSTEMS FILAMENT WOUND PRESSURE VESSELS
SUBJECTED TO A HISTORY OF LOADING,
AD-903 122

WATERTOWN ARSENAL LABS MASS
WAL-TR-70 91
TRANSITIONAL BEHAVIOR OF HIGH-STRENGTH STEEL PRESSURE VESSELS,
AD-407 432

WATERVLIET ARSENAL N Y
THE ROLE OF FRACTURE TOUGHNESS
AND RESIDUAL STRESSES IN THE
FATIGUE AND FRACTURE BEHAVIOR OF
LARGE THICK-WALLED PRESSURE VESSELS,
AD-713 319

WVT-7026
A COMPLIANCE K CALIBRATION FOR
A PRESSURIZED THICK-WALL CYLINDER
WITH A RADIAL CRACK,
AD-708 868

WVT-7035
FATIGUE CRACK TOLERANCE IN
THICK-WALLED CYLINDERS,
AD-717 301

WVT-7124
STRESS INTENSITY FACTORS FOR
INTERNALLY PRESSURIZED THICK-WALL
CYLINDERS,
AD-724 641

WATERVLIET ARSENAL N Y BENET R AND E
LABS
WVT-6917
THE DESIGN OF PRESSURE VESSELS
FOR VERY HIGH PRESSURE OPERATION,
AD-690 183

WESTINGHOUSE RESEARCH LABS
PITTSBURGH PA
66-907-520-R1
DETERMINATION OF STRESSES AT NON-RADIAL OPENINGS IN SPHERICAL PRESSURE VESSELS.
AD-638 994

PHOTOELASTIC ANALYSIS OF OPENINGS IN SPHERICAL AND CYLINDRICAL VESSELS SUBJECT TO INTERNAL PRESSURE.
AD-632 411

WHITTAKER CORP. SAN DIEGO, CALIF.
NAMCO RESEARCH AND DEVELOPMENT DIV.

FILAMENT-WOUND PRESSURE VESSELS.
AD-600 215
UNCLASSIFIED

SUBJECT INDEX

*ACRYLIC RESINS
HYDROSTATIC PRESSURE
WINDOES FOR EXTERNAL OR INTERNAL
HYDROSTATIC PRESSURE VESSELS, PART
VI. CONICAL ACRYLIC WINDOWS UNDER
LONG-TERM PRESSURE APPLICATION AT
5,000 PSIG
AD-736 594

WINDOES FOR EXTERNAL OR INTERNAL
HYDROSTATIC PRESSURE VESSELS, PART
VII. EFFECT OF TEMPERATURE AND
LARGE CONFIGURATIONS ON CRITICAL
PRESSURE OF 90-DEGREE CONICAL
ACRYLIC WINDOWS UNDER SHORT-TERM
LOADING
AD-748 593

TRANSPARENT PANELS
WINDOES FOR EXTERNAL OR INTERNAL
HYDROSTATIC PRESSURE VESSELS, PART
II. FLAT ACRYLIC WINDOWS UNDER
SHORT-TERM PRESSURE APPLICATION
AD-652 443

WINDOES FOR EXTERNAL OR INTERNAL
HYDROSTATIC PRESSURE VESSELS, PART
III. CRITICAL PRESSURE OF ACRYLIC
SPHERICAL SHELL WINDOWS UNDER SHORT-
TERM PRESSURE APPLICATIONS
AD-689 769

WINDOES FOR EXTERNAL OR INTERNAL
HYDROSTATIC PRESSURE VESSELS, PART
IV. CONICAL ACRYLIC WINDOWS UNDER
LONG-TERM PRESSURE APPLICATION AT
20,000 PSI
AD-697 272

WINDOES FOR EXTERNAL OR INTERNAL
HYDROSTATIC PRESSURE VESSELS, PART
V. CONICAL ACRYLIC WINDOWS UNDER
LONG-TERM PRESSURE APPLICATION OF
10,000 PSI
AD-718 612

*ALLOYS
MECHANICAL PROPERTIES
PHYSICAL AND MECHANICAL
PROPERTIES OF PRESSURE VESSEL
MATERIAL FOR APPLICATION IN A
CRYOGENIC ENVIRONMENT
AD-443 851

RADIATION DAMAGE

USA STUDIES ON IRADIATION
EFFECTS TO ADVANCED PRESSURE VESSEL
MATERIALS
AD-684 067

*ALUMINUM ALLOYS
CRACK PROPAGATION
THE EFFECTS OF THE SURFACE LAYER
ON PLASTIC DEFORMATION AND CRACK
PROPAGATION
AD-721 292

REVIEWS
REVIEW OF RECENT DEVELOPMENTS,
ALUMINUM AND MAGNESIUM
AD-869 053

*ANECHOIC CHAMBERS
MODEL TESTS
EXPERIMENTAL STRESS ANALYSIS OF
A ONE-SIXTH SCALE MODEL OF AN
ANECHOIC PRESSURE VESSEL
AD-612 872

*ARC WELDING
PRESSURE VESSELS
TRANSLATION OF RUSSIAN RESEARCH:
REPAIRING THICK-WALLED HIGH-
PRESSURE VESSELS BY ELECTRIC ARC
WELDING
AD-621 911

ROCKET CASES
PLASMA ARC WELDING PROCESS
DEVELOPMENT PROGRAM, VOLUME I
AD-855 520

*BIBLIOGRAPHIES
PRESSURE VESSELS
PRESSURE VESSELS, VOLUME I
AD-702 600

*BOILERS
WELDING

*BOILERS
RADIATION DAMAGE

D-1
UNCLASSIFIED
CAR-ELA COMMISSION AI: PRESSURE VESSELS, BOILERS AND PIPE LINES*
AD-346 385

- CARBON FIBERS
 FILAMENT WOUND CONSTRUCTION
 PROPERTIES OF GRAPHITE FIBER
 COMPOSITES AT CRYOGENIC
 TEMPERATURES*
 AD-746 885

- CERAMIC MATERIALS
 PRESSURE VESSELS
 SOLID GLASS AND CERAMIC EXTERNAL
 PRESSURE VESSELS: MODEL TESTS;
 STRENGTH-TO-WEIGHT CHARACTERISTICS.
 AD-426 905

- CLADDING
 STEEL
 TRANSLATION OF RUSSIAN RESEARCH:
 NEW METHOD OF PRODUCTION OF CLAD
 PLATE ROLLED PRODUCTS FOR PRESSURE
 VESSELS
 AD-645 787

- COMBUSTION CHAMBERS
 DESIGN
 DESIGN OF RESEARCH APPARATUS FOR
 CONSTANT-VOLUME COMBUSTION
 PROCESSES.
 AD-611 782

- COMPOSITE MATERIALS
 FILAMENT WOUND CONSTRUCTION
 PROPERTIES OF GRAPHITE FIBER
 COMPOSITES AT CRYOGENIC
 TEMPERATURES*
 AD-746 885

- PRESSURE VESSELS
 ANALYSIS OF GLASS REINFORCED
 PLASTICS FOR HYDROSPACE
 APPLICATIONS
 AD-509 708

- CONTROLLED ATMOSPHERES
 FLAMMABILITY
 FLAMMABILITY IN UNUSUAL
 ATMOSPHERES, PART I, PRELIMINARY
 STUDIES OF MATERIALS IN HYPERBARIC
 AD-628 877

- DIAPHRAMS (MECHANICS)
 SHEETS
 REPRINT: TECHNIQUE FOR FORMING
 PRESSURE WINDOWS FROM THIN METAL
 SHEETS
 AD-441 706

- ELASTIC SHELLS
 BUCKLING (MECHANICS)
 BUCKLING OF A CIRCULAR ELASTIC
 RING CONFINED TO A UNIFORMLY
CONTRACTING CIRCULAR BOUNDARY
AD-716 862

HYDROSTATIC PRESSURE
THE DESIGN OF PRESSURE VESSELS
FOR VERY HIGH PRESSURE OPERATION
AD-690 183

*ELECTROACOUSTIC TRANSUDERS
CALIBRATION
ACOUSTIC CHARACTERISTICS OF A
GLASS-FILAMENT-WOUND PRESSURE
VESSEL
AD-698 262

*ELECTRODEPOSITION
PRESSURE VESSELS
PRELIMINARY REPORT ON
FABRICATION AND TESTS OF AN
ELECTRODEPOSITED PRESSURE BOTTLE
AD-423 216

*EMBRITTLEMENT
STEEL
NEUTRON SPECTRAL CONSIDERATIONS
AFFECTING PROJECTED ESTIMATES OF
RADIATION EMBRITTLEMENT OF THE ARMY
SM-11A REACTOR PRESSURE VESSEL
AD-491 283

*FAILURE (MECHANICS)
PRESSURE VESSELS
STUDY OF THE EFFECTS OF
MECHANICAL DAMAGE ON THE
PERFORMANCE OF FILAMENT-WOUND MOTOR
CASES
AD-420 977

*FAILURE (MECHANICS)
PRESSURE VESSELS
A STUDY OF THE BEHAVIOR OF SMALL
PRESSURE VESSELS UNDER BIAXIAL
STRESS CONDITIONS AND IN THE
PRESENCE OF SURFACE CRACKS
AD-425 729

*FATIGUE (MECHANICS)
REACTOR MATERIALS
IN-REACTOR STUDIES OF LOW CYCLE
FATIGUE PROPERTIES OF A NUCLEAR
PRESSURE VESSEL STEEL
AD-606 773

*FILAMENT WOUND CONSTRUCTION
D-3

CONFIGURATION
RESEARCH AND DEVELOPMENT IN
SUPPORT OF THE POLARIS PROGRAM
TASK I: INVESTIGATION OF FILAMENT
WINDING PATTERNS
AD-425 196

CRYOGENICS
PROPERTIES OF GRAPHITE FIBER
COMPOSITES AT CRYOGENIC
TEMPERATURES
AD-746 885

FAILURE (MECHANICS)
STUDY OF THE EFFECTS OF
MECHANICAL DAMAGE ON THE
PERFORMANCE OF FILAMENT-WOUND MOTOR
CASES
AD-420 977

MECHANICAL PROPERTIES
INVESTIGATION OF ADVANCED DESIGN
CONCEPTS FOR DEEP SUBMERSIBLES
AD-460 251

PRESSURE VESSELS
FILAMENT-WOUND EMERGENCY AIR
PRESSURE STORAGE VESSELS FOR HIGH-
PERFORMANCE AIRCRAFT
AD-600 215

ANALYSIS OF GLASS REINFORCED
PLASTICS FOR HYDROSPACE
APPLICATIONS
AD-609 708

STORAGE TANKS
LINERS FOR HIGH PRESSURE AIR
STOREAGE VESSELS
AD-632 092

*FIRE SAFETY
PRESSURE VESSELS
FLAMMABILITY IN UNUSUAL
ATMOSPHERES: PART I: PRELIMINARY
STUDIES OF MATERIALS IN HYPERBARIC
ATMOSPHERES CONTAINING OXYGEN,
NITROGEN, AND/OR HELIUM
AD-644 556

*FLAMMABILITY
CONTROLLED ATMOSPHERES

Reproduced from best available copy.
FLAMMABILITY IN UNUSUAL ATMOSPHERES: PART I. PRELIMINARY STUDIES OF MATERIALS IN HYPERBARIC ATMOSPHERES CONTAINING OXYGEN, NITROGEN, AND/OR HElIUM.
AD-444 656

• FRACrURE (MECHANICS)
 PRESSURE VESSELS
 REPRINT: FRACTURE TOUGHNESS AND PRESSURE VESSEL PERFORMANCE.
 AD-616 022
 TESTS
 PRACTICAL CONSIDERATIONS IN APPLYING LABORATORY FRACTURE TEST CRITERIA TO THE FRACTURE-SAFE DESIGN OF PRESSURE VESSELS.
 AD-426 431

• FRACTURE (MECHANICS)
 PRESSURE VESSELS
 MECHANISMS OF METALLIC FAILURE: FLAME INITIATION TECHNIQUES AND MEASUREMENTS IN THIN-WALL PRESSURE VESSELS.
 AD-636 963

• FUEL SYSTEMS
 PRESSURE VESSELS
 DEVELOPMENT OF A HERMETIC SEALED NITROGEN STORAGE SYSTEM FOR THE TALOS RM-68 FUEL PRESSURIZATION SYSTEM.
 AD-631 443

• FUELS
 STORAGE TANKS
 REPRINT: CALCULATION REGARDING ABOVE GROUND LIQUID STORAGE TANKS.
 AD-725 796

• GASES
 THERMODYNAMICS
 APPARATUS USED FOR THE EXPERIMENTAL STUDY OF THE THERMODYNAMIC PROPERTIES OF GASES AT PRESSURES OF UP TO 10-12 KILOBARS AND AT TEMPERATURES UP TO 3000K. TRANSLATION.
 AD-749 653

• GLASS
 PRESSURE VESSELS
 SOLID GLASS AND CERAMIC EXTERNAL PRESSURE VESSELS: MODEL TESTS:
 STRENGTH-TO-WEIGHT CHARACTERISTICS.
 AD-428 905
 STRESSES
 STRESSES IN SHALLOW GLASS DOMES WITH CONSTRAINED EDGES.
 AD-638 138

• SUBMARINE HULLS
 THE STRUCTURAL BEHAVIOR OF GLASS PRESSURE HULLS.
 AD-746 876

• GLASS TEXTILES
 PRESSURE VESSELS
 PRESSURE VESSEL FOR CALIBRATING SONAR TRANSDUCERS: ACOUSTICALLY TRANSPARENT FIBER GLASS CAPSULE PERMITS TESTING AT PRESSURES TO 800 PSIG.
 AD-623 166

• REINFORCING MATERIALS
 ANALYSIS OF GLASS REINFORCED PLASTICS FOR HYDROSPACE APPLICATIONS.
 AD-609 708

• GUIDED MISSILE COMPONENTS
 PRESSURE VESSELS
 DEVELOPMENT OF A HERMETIC SEALED NITROGEN STORAGE SYSTEM FOR THE TALOS RM-68 FUEL PRESSURIZATION SYSTEM.
 AD-631 443

• GUN BARRELS
 FRACTURE (MECHANICS)
 THE ROLE OF FRACTURE TOUGHNESS AND RESIDUAL STRESSES IN THE FATIGUE AND FRACTURE BEHAVIOR OF LARGE THICK-WALLED PRESSURE VESSELS.
 AD-713 519

• HEAT TRANSFER
 PRESSURIZATION

D-4
UNCLASSIFIED
HEAT TRANSFER CONSIDERATIONS IN A PRESSURE VESSEL BEING CHARGED
AD-706 713

*HOMISPHERICAL SHELLS
DESIGN
ACRYLIC PLASTIC HEMISPHERICAL SHELLS FOR NUC UNDERSEA ELEVATOR
AD-749 029

*HULLS (MARINE)
ACRYLIC RESINS
DEVELOPMENT OF A SPHERICAL ACRYLIC PLASTIC PRESSURE HULL FOR HYDROSPACE APPLICATION
AD-707 363

*HYDRAULIC SYSTEMS
TEST EQUIPMENT
MECHANISMS OF METALLIC FAILURE: FLAX INITIATION TECHNIQUES AND MEASUREMENTS IN THIN-WALL PRESSURE VESSELS
AD-636 963

*HYDRODYNAMICS
TESTS
ANALYTICAL STUDY FOR A HYDRODYNAMIC TEST SYSTEM
AD-749 356

*HYDROSTATIC PRESSURE
STRUCTURAL SHELLS
REPRINT: TOROIDAL-TYPE SHELLS FREE OF BENDING UNDER UNIFORM NORMAL PRESSURE
AD-644 751

*LABORATORY EQUIPMENT
COMBUSTION
DESIGN OF RESEARCH APPARATUS FOR CONSTANT-VOLUME COMBUSTION PROCESSES
AD-611 782

PRESSURE VESSELS
APPARATUS USED FOR THE EXPERIMENTAL STUDY OF THE THERMODYNAMIC PROPERTIES OF CASES AT PressURES OF UP TO 10-12 KILOBARS AND AT TEMPERATURES UP TO 3000K—TRANSLATION
AD-749 653

*LAMINATES
CONTINUING RESEARCH ON THE STUDY OF THE EFFECTS OF THICKNESS ON THE MECHANICAL AND PHYSICAL PROPERTIES OF FIBER-REINFORCED PLASTIC LAMINATES FOR CREEP SUBMERGED EXTERNAL PRESSURE VESSELS
AD-295 424

*LOADING (MECHANICS)
PRESSURE VESSELS
THE EFFECT OF REPEATED LOADING ON FILAMENT WOUND INTERNAL PRESSURE VESSELS
AD-422 866

*MAGNESIUM ALLOYS
REVIEWS
REVIEW OF RECENT DEVELOPMENTS ALUMINUM AND MAGNESIUM
AD-869 053

*MARAGING STEELS
PRESSURE VESSELS
MANUFACTURE AND HYDROTEST OF THREE 20 INCH DIAMETER MARAGING STEEL PRESSURE VESSELS
AD-610 081

*MATERIAL FORMING
DIAPHRAGMS (MECHANICAL)
REPRINT: TECHNIQUE FOR FORMING PRESSURE WINDOWS FROM THIN METAL SHEETS
AD-620 877

METAL SPINNING
METASTABLE AUSTENITIC FORMING OF HIGH STRENGTH PRESSURE VESSELS
AD-638 009

*METALS
LOW-TEMPERATURE RESEARCH
REVIEW OF RECENT DEVELOPMENTS LOW-TEMPERATURE PROPERTIES OF METALS
AD-870 39U
TEST METHODS
TRANSLATION OF RUSSIAN RESEARCH ON THE METHOD OF TESTING METALS AT HIGH TEMPERATURE AND PRESSURE VALUES.
AD-639 160

*NEUTRON FLUX MEASUREMENT
SN-I REACTOR PRESSURE VESSEL SURVEILLANCE: IRADIATION OF FOLLOW-ON CAPSULES IN THE SN-I REACTOR.*
AD-717 618

*NICKEL ALLOYS WELDING
CHARACTERIZATION OF GTA WELDMENTS IN 1UNI-8CO-2Cr-1Mo STEEL.*
AD-746 111

*NUCLEAR POWER PLANTS PRESSURE VESSELS
THE INFLUENCE OF COMPOSITION ON THE FRACTURE TOUGHNESS OF COMMERCIAL NUCLEAR VESSEL STEELS.*
AD-709 554

*NUCLEAR REACTORS MATERIALS
TRENDS IN CHARPY V SHELVE ENERGY DEGRADATION AND YIELD STRENGTH INCREASE OF NEUTRON-EMBRITTED PRESSURE VESSEL STEELS.*
AD-700 233

PRESSURE VESSELS
BASIC ASPECTS OF CRACK GROWTH AND FRACTURE,*
AD-633 882
NOTCH DUCTILITY AND TENSILE PROPERTY EVALUATION OF THE PH-2A REACTOR PRESSURE VESSEL.*
AD-672 890
REPRINT: INTERPRETING THE STRUCTURAL SIGNIFICANCE OF THE DEPENDENT EMBRITTLEMENT PHENOMENA TO NUCLEAR REACTOR PRESSURE VESSEL INTEGRITY.*
AD-748 147

STEEL
THE TENSILE PROPERTIES OF SELECTED STEELS FOR USE IN NUCLEAR REACTOR PRESSURE VESSELS.*
AD-664 460

STRUCTURAL PARTS
IRRADIATION EFFECTS ON REACTOR STRUCTURAL MATERIALS.*
AD-671 094

*ORIFICES STRESSES
ANALYSIS OF A CIRCULAR CYLINDRICAL PERFORATED SHELL.*
AD-714 178

*PHOTOELASTICITY CYLINDRICAL BODIES
PHOTOELASTIC INVESTIGATION OF STRESS CONCENTRATIONS IN SPHERE-CYLINDER TRANSITION REGIONS; INCLUDING A COMPARISON OF RESULTS FROM PHOTOELASTIC AND FINITE ELEMENT ANALYSES.*
AD-667 834

PRESSURE VESSELS
PHOTOELASTIC INVESTIGATION OF STRESSES IN A PENETRATED HEMISPHERE.*
AD-615 415
PHOTOELASTIC STUDY OF THE STRESSES NEAR OPENINGS IN PRESSURE VESSELS.*
AD-617 890

*PIPS WELDING
COMMISSION XII; PRESSURE VESSELS, BOILERS AND PIPE LINES.*
AD-636 385

*PLASMA JETS HIGH-PRESSURE RESEARCH
RAMJET TECHNOLOGY: AERO THERMAL CAPABILITY OF HIGH-PRESSURE PLASMA HEATERS; HIGH-PRESSURE AIR GENERATION.*
AD-602 048
PLASTICITY
STRUCTURAL PROPERTIES
PLASTIC ANALYSIS AND PRESSURE-VESSEL SAFETY,*
AD-725 847

PLASTICS
FILAMENT WOUND CONSTRUCTION
ANALYSIS OF GLASS REINFORCED PLASTICS FOR HYDROSPACE APPLICATIONS,*
AD-609 708

POWER REACTORS
PRESSURE VESSELS
RADIATION DAMAGE SURVEILLANCE OF POWER REACTOR PRESSURE VESSELS,*
AD-629 661
REPRINT: CASCADE ARRANGEMENT IN SPHERICAL VESSEL DESIGN FOR NUCLEAR POWER REACTORS,*
AD-640 919
REPRINT: STEELS FOR COMMERCIAL POWER REACTOR PRESSURE VESSELS,*
AD-703 963
SH-1A REACTOR PRESSURE VESSEL SURVEILLANCE: IRRADIATION OF FOLLOW-ON CAPSULES IN THE SH-1 REACTOR,*
AD-717 618

PRESSURE VESSELS
DESIGN
ANALYTICAL STUDY FOR A HYDRODYNAMIC TEST SYSTEM,*
AD-419 356

PRESSURE VESSELS
CONTINUING RESEARCH ON THE STUDY OF THE EFFECTS OF THICKNESS ON THE MECHANICAL AND PHYSICAL PROPERTIES OF FIBER-REINFORCED PLASTIC LAMINATES FOR CREEP SUBMERSIBLE EXTERNAL PRESSURE VESSELS,*
AD-295 424
THE STRENGTH DEGRADATION OF FILAMENT-WOUND PRESSURE VESSELS SUBJECTED TO A HISTORY OF LOADING,*
AD-403 122
EVALUATION OF HIGH-STRENGTH, LIGHTWEIGHT, LAMINATED, PRESSURE VESSELS OF LAP-JOINT CONSTRUCTION, WELDING AND METALLURGICAL EVALUATION, FORMABILITY EVALUATION, MECHANICAL PROPERTIES, SURFACE PREPARATION/BONDING EVALUATION, LAP SHEAR TEST, DESIGN AND TEST, TOOLING AND MANUFACTURING RESULTS,*
AD-404 182
THE DEPENDENCE OF DYNAMIC STRENGTH OF CYLINDRICAL PRESSURE VESSELS ON GEOMETRICAL PARAMETERS,*
AD-406 622
SPHERICAL PRESSURE VESSELS FABRICATED FROM HIGH-STRENGTH H11 STEEL AND LOWER STRENGTH AISI 4340 STEEL WERE HYDROSTATICALLY TESTED TO FAILURE AT VARIOUS TEMPERATURES TO DETERMINE THE FRACTURE TRANSITIONAL BEHAVIOR OF THE MATERIALS,*
AD-407 432
ACOUSTIC PROPERTIES
ACOUSTIC CHARACTERISTICS OF A GLASS-FILAMENT-WOUND PRESSURE VESSEL,*
AD-498 282
ANECHOIC CHAMBERS
EXPERIMENTAL STRESS ANALYSIS OF A ONE-SIXTH SCALE MODEL OF AN ANECHOIC PRESSURE VESSEL,*
AD-612 872
ARC WELDING
TRANSLATION OF RUSSIAN RESEARCH: REPAIRING THICK-WALLED HIGH-PRESSURE VESSELS BY ELECTRIC ARC WELDING,*
AD-621 911
BIBLIOGRAPHIES
PRESSURE VESSELS, VOLUME 1,*
AD-702 600
BULKHEADS
DEVELOPMENT OF END-CLOSURE SYSTEMS FOR UNDERSEA CONCRETE PRESSURE RESISTANT CYLINDRICAL HULLS,*
AD-795 424
CASCADE STRUCTURES
CASCADE ARRANGEMENT IN SPHERICAL PRESSURE VESSEL DESIGN FOR NUCLEAR POWER REACTORS.
AD-614 591
REPRINT: CASCADE ARRANGEMENT IN SPHERICAL VESSEL DESIGN FOR NUCLEAR POWER REACTORS.
AD-640 919

CERAMIC MATERIALS
AN EXPLORATORY STUDY OF THE FEASIBILITY OF GLASS AND CERAMIC PRESSURE VESSELS FOR NAVAL APPLICATIONS.
AD-691 875

COMBUSTION CHAMBERS
DESIGN OF RESEARCH APPARATUS FOR CONSTANT-VOLUME COMBUSTION PROCESSES.
AD-611 782

COMPOSITE MATERIALS
EXPERIMENTAL INVESTIGATION OF CLOSURES AND PENETRATIONS FOR PRESSURE VESSELS OF COMPOSITE CONSTRUCTION.
AD-600 336
ANALYSIS OF GLASS REINFORCED PLASTICS FOR HYDROSPACE APPLICATIONS.
AD-669 70b

COMPRESSIVE PROPERTIES
TENSILE STRESSES ON THE SURFACE OF AN ELLIPSOIDAL CAVITY IN COMPRESSIVE LOADING SITUATIONS.
AD-613 552

CORROSION-RESISTANT ALLOYS
CHARACTERIZATION OF GTA ELECTROPLATED CIRCULAR AND V-SHAPED PRESSURE VESSELS.
AD-614 111

DEEP SUBLIMATION
STRESS RELIEF BY MEANS OF A RETRACTABLE CΌVE.
AD-622 877

ELECTRODEPOSITION
PRELIMINARY REPORT ON FABRICATION AND TESTING OF AN ELECTRODEPOSITED PRESSURE VESSEL.
AD-613 256

ELECTROPLATING
THE INFLUENCE OF COMPOSITION ON THE FRACTURE TOUGHNESS OF ALLOY METAL VESSELS.
AD-719 970

EMBRYONIC DEVELOPMENT
THE INFLUENCE OF MATERIALS ON THE FRACTURE TOUGHNESS OF PRESSURE VESSELS.
AD-512 226

EMBRYONIC DEVELOPMENT
THE INFLUENCE OF MATERIALS ON THE FRACTURE TOUGHNESS OF PRESSURE VESSELS.
AD-638 138

DESIGN
PRACTICAL CONSIDERATIONS IN APPLYING LABORATORY FRACTURE TEST CRITERIA TO THE FRACTURE-SAFE DESIGN OF PRESSURE VESSELS.
AD-426 431
DESIGN METHOD FOR DOUBLE-WALLED EXTERNAL PRESSURE VESSELS.
AD-429 856
DESIGN OF PRESSURE VESSELS FOR CONFINING explosives.
AD-467 730
PRESSURE VESSEL CONCEPTS: EXPLORATORY EVALUATION OF STACKED-RING AND SEGMENTED-WALL DESIGNS WITH TIE-ROD END-RESTRAINTS.
AD-705 125
ANALYSIS OF A CIRCULAR CYLINDRICAL PERFORATED SHELL.
AD-714 170
DESIGN OF MULTI-REGION PRESSURE VESSELS USING MAXIMUM SHEAR THEORY.
AD-718 970

DIAPHRAGMS (MECHANICS)
REPRINT: TECHNIQUE FOR FORMING PRESSURE WINDOWS FROM THIN METAL SHEETS.
AD-628 877

ELASTICITY
REPRINT: ELASTIC-PLASTIC ANALYSIS OF SOME PRESSURE VESSEL HEADS.
AD-713 256

ELECTRODEPOSITION
PRELIMINARY REPORT ON FABRICATION AND TESTING OF AN ELECTRODEPOSITED PRESSURE VESSEL.
AD-423 216

EMBRYONIC DEVELOPMENT
THE INFLUENCE OF COMPOSITION ON THE FRACTURE TOUGHNESS OF ALLOY METAL VESSELS.
AD-709 554
REPRINT: INTERPRETING THE STRUCTURAL SIGNIFICANCE OF TIME DEPENDENT EMBRITTLEMENT PHENOMENA TO NUCLEAR REACTOR PRESSURE VESSEL INTEGRITY.
AD-74h 147

ENGINE AIR SYSTEMS COMPONENTS
RAMJET TECHNOLOGY: AEROTHERMAL CAPABILITY OF HIGH-PRESSURE PLASMA HEATERS: HIGH-PRESSURE AIR GENERATION.
AD-602 048

FAILURE (MECHANICS)
STUDY OF THE EFFECTS OF MECHANICAL DAMAGE ON THE PERFORMANCE OF FILAMNT-WOUND MOTOR CASES.
AD-420 977
A STUDY OF THE BEHAVIOR OF SMALL PRESSURE VESSELS UNDER RIAIY STRESS CONDITIONS AND IN THE PRESENCE OF SURFACE CRACKS.
AD-125 729

FATIGUE (MECHANICS)
FATIGUE OF THICK-WALLED HIGH-PRESSURE CYLINDERS.
AD-716 032
FATIGUE CRACK TOLERANCE IN THICK-WALLED CYLINDERS.
AD-717 301

FILAMENT WOUND CONSTRUCTION
THE EFFECT OF REPEATED LOADING ON FILAMENT WOUND INTERNAL PRESSURE VESSELS.
AD-722 866
RESEARCH AND DEVELOPMENT IN SUPPORT OF THE POLARIS PROGRAM.
TASK 1: INVESTIGATION OF FILAMENT WINDING PATTERNS.
AD-424 196
INVESTIGATION OF ADVANCED DESIGN CONCEPTS FOR DEEP SUBMERGIBLES.
AD-75a 251
FILAMENT WOUND EMERGENCY AIR PRESSURE STORAGE VESSELS FOR HIGH-PERFORMANCE AIRCRAFT.
AD-800 215
D-9

UNCLASSIFIED

FIRE SAFETY
FLAMMABILITY IN UNUSUAL ATMOSPHERES, PART I: PRELIMINARY STUDIES OF MATERIALS IN HYPERBARIC ATMOSPHERES CONTAINING OXYGEN, NITROGEN, AND/OR HELIUM.
AD-644 556

FLUID FLOW
LINEAR ANALYSIS OF PRESSURE WAVES IN A TANK.
AD-412 933

FRACTURE (MECHANICS)
REPRINT: FRACTURE TOUGHNESS AND PRESSURE VESSEL PERFORMANCE.
AD-615 022

FRACTURE (MECHANICS)
MECHANISMS OF METALLIC FAILURE: FLAW INITIATION TECHNIQUES AND MEASUREMENTS IN THIN-WALL PRESSURE VESSELS.
AD-636 963
BASIC ASPECTS OF CRACK GROWTH AND FRACTURE.
AD-663 882
A SURVEY ON FRACTURE OF PRESSURIZED VESSELS.
AD-697 764
THE EFFECTS OF THE SURFACE LAYER ON PLASTIC DEFORMATION AND CRACK PROPAGATION.
AD-721 292
CRACK TOLERATING ABILITY OF A HIGH-STRENGTH BIAXIALLY STRESSED CYLINDRICAL PRESSURE VESSEL CONTAINING A SURFACE CRACK.
AD-734 926

FUEL SYSTEMS
DEVELOPMENT OF A HERMETIC SEALED NITROGEN STORAGE SYSTEM FOR THE TALOS RIM-8E FUEL PRESSURIZATION SYSTEM.
AD-631 443

HIGH-PRESSURE RESEARCH
HIGH PRESSURE CHAMBER DESIGN.
AD-661 225
HYDROSTATIC PRESSURE
REPRINT: TOROIDAL-TYPE SHELLS
FREE OF BENDING UNDER UNIFORM
NORMAL PRESSURE.
AD-694 751

LABORATORY EQUIPMENT
REPRINT: PRESSURE CHAMBER FOR
MICROELECTROPHYSIOLOGICAL
TECHNIQUES.
AD-621 281

APPARATUS USED FOR THE
EXPERIMENTAL STUDY OF THE
THERMODYNAMIC PROPERTIES OF GASES
AT PressURES OF UP TO 10=12
KiloBars AND AT TEMPERATURES UP TO
3000K=TRANSLATION.
AD-749 653

LEAKAGE (FLUID)
SH-11A VAPOR CONTAINER LEAK TEST;
3-5 AUGUST 1970.
AD-718 026

MANUFACTURING METHODS
DESIGN, PERFORMANCE,
FABRICATION, AND MATERIAL
CONSIDERATIONS FOR HIGH-PRESSURE
VESSELS.
AD-603 694

THE EFFECT OF PROCESSING ON
PLASTIC STRAIN ANISOTROPY OF Ti-6Al-
4V.
AD-714 562

MARAGING STEELS
MANUFACTURE AND HYDROTEST OF
THREE 20 INCH DIAMETER MARAGING
STEEL PRESSURE VESSELS
AD-610 081

MATERIAL FORMING
METASTABLE AUSTENITIC FORMING OF
HIGH STRENGTH PRESSURE VESSELS.
AD-438 009

MATERIALS
HIGH-STRENGTH, LIGHTWEIGHT
LAMINATED PRESSURE VESSELS OF LAP-
JOINT CONSTRUCTION.
AD-408 278

D-10
UNCLASSIFIED

SOLID GLASS AND CERAMIC EXTERNAL
PRESSURE VESSELS: MODEL TESTS;
STRENGTH-TO-WEIGHT CHARACTERISTICS,
AD-428 905

PHYSICAL AND MECHANICAL
PROPERTIES OF PRESSURE VESSEL
MATERIAL FOR APPLICATION IN A
CRYOGENIC ENVIRONMENT.
AD-443 851

MECHANICAL PROPERTIES
NOTCH DUCTILITY AND TENSILE
PROPERTY EVALUATION OF THE PH-2A
REACTOR PRESSURE VESSELS.
AD-672 890

ELASTIC-PLASTIC ANALYSIS OF
PRESSURE VESSEL COMPONENTS.
AD-682 482

NONDESTRUCTIVE TESTING
NONDESTRUCTIVE TESTING FOR
PRESSURE VESSELS.
AD-667 493

VERIFICATION TESTING OF
CONJUGATE STRUCTURE.
AD-686 476

NUCLEAR REACTORS
THE TENSILE PROPERTIES OF
SELECTED STEELS FOR USE IN NUCLEAR
REACTOR PRESSURE VESSELS.
AD-664 480

A REASSESSMENT OF FRACTURE-SAFE
OPERATING CRITERIA FOR REACTOR
VESSEL STEELS BASED ON CHARPY-V
PERFORMANCE.
AD-711 045

PENETRATION
EXPERIMENTAL INVESTIGATION OF
CLOSURES AND PENETRATIONS FOR
PRESSURE VESSELS OF COMPOSITE
CONSTRUCTION.
AD-600 336

PHOTOELASTICITY
PHOTOELASTIC ANALYSIS OF
OPENINGS IN SPHERICAL AND
CYLINDRICAL VESSELS SUBJECTED TO
INTERNAL PRESSURE.
AD-652 411
UNCLASSIFIED

PRESSURIZATION
HEAT TRANSFER CONSIDERATIONS IN A PRESSURE VESSEL DURING CHARGING
AD-706 713

PRESSURIZED WATER REACTORS
NEUTRON SPECTRAL CONSIDERATIONS AFFECTING PROJECTED ESTIMATES OF RADIATION EMBRITTLEMENT OF THE ARMY SN-14 REACTOR PRESSURE VESSEL
AD-691 283
SN-14 PRESSURE VESSEL LIFETIME AS A RESULT OF IN-PLACE ANNEALING
AD-699 336

RADIATION DAMAGE
RADIATION DAMAGE SURVEILLANCE OF POWER REACTOR PRESSURE VESSELS
AD-629 881
THE EFFECTS OF COUPLING NUCLEAR RADIATION WITH STATIC AND CYCLIC SERVICE STRESSES AND OF PERIODIC PROOF TESTING ON PRESSURE VESSEL MATERIAL BEHAVIOR
AD-664 646
IRRADIATION EFFECTS ON REACTOR STRUCTURAL MATERIALS
AD-671 094
NOTCH DUCTILITY PROPERTIES OF SN-14 REACTOR PRESSURE VESSEL FOLLOWING THE IN-PLACE ANNEALING OPERATION
AD-671 827
THE EFFECT OF RESIDUAL ELEMENTS ON 550F IRRADIATION RESPONSE OF SELECTED PRESSURE VESSEL STEELS AND ELEMENTS
AD-680 062
PROCEDURES FOR INTERPRETING THE STRUCTURAL IMPLICATIONS OF RADIATION-DAMAGE SURVEILLANCE RESULTS ON NUCLEAR PRESSURE VESSELS
AD-737 190

REACTOR MATERIALS
USA STUDIES ON IRRADIATION EFFECTS ON ADVANCED PRESSURE VESSEL MATERIALS
AD-684 667
DAMAGE-FUNCTION ANALYSIS OF
D-11

NEUTRON EMBRITTLEMENT IN STEEL AT REACTOR SERVICE TEMPERATURES
AD-745 299

REACTOR SYSTEM COMPONENTS
IN-DEPTH EMBRITTLEMENT TO A SIMULATED PRESSURE VESSEL WALL OF AD-606 896
JNI-REACTOR STUDIES OF LOW CYCLE FATIGUE PROPERTIES OF A NUCLEAR PRESSURE VESSEL STEEL
AD-606 773
AVAILABILITY OF DATA ON IRRADIATED MATERIALS AS RELATED TO DESIGN REQUIREMENTS FOR NATURE COOLED REACTOR PRESSURE VESSELS
AD-663 879

REINFORCING MATERIALS
BUCKLING OF A CIRCULAR ELASTIC RING CONFINED TO A UNIFORMLY CONTRACTING CIRCULAR BOUNDARY
AD-716 862

RELIABILITY
DETERMINATION OF PROOF TEST LEVEL FOR TEST-DEGRADABLE COMPONENTS
AD-720 576

STANDARDS
PLASTIC ANALYSIS AND PRESSURE--VESSEL SAFETY
AD-725 847

STEEL
NEUTRON EMBRITTLEMENT OF REACTOR PRESSURE VESSEL STEELS
AD-423 526
METALLURGICAL ANALYSIS OF FRACTURED CLOSURE PLATE OF THE 120-IN. DIAMETER MARAGING STEEL PROTOTYPE PRESSURE VESSEL
AD-429 031
YANKIE REACTOR PRESSURE VESSEL SURVEILLANCE: EVALUATION OF SPECIMENS EXPOSED DURING THE SECOND CORE
AD-607 565
FRACURE DEVELOPMENT AND
MATERIAL PROPERTIES IN PVRC-PENN STATE PRESSURE VESSEL.*
AD-863 203
REPRINT: STEELS FOR COMMERCIAL POWER REACTOR PRESSURE VESSELS,
AD-703 963

STIFFENED CYLINDERS
THE DESIGN OF PRESSURE VESSELS FOR VERY HIGH PRESSURE OPERATION.*
AD-970 163

STORAGE TANKS
LINERS FOR HIGH PRESSURE AIR STORAGE VESSELS.*
AD-832 U92

STRESSES
REVERSE YIELDING OF A FULLY AUTOFRETTAGED TUBE OF LARGE WALL
RATIO.*
AD-426 162
STRESSES IN THICK VESSELS UNDER INTERNAL PRESSURE.*
AD-831 706
PHOTOELASTIC INVESTIGATION OF STRESSES IN A PENETrATED HEMISPHERE.*
AD-615 416
PHOTOELASTIC STUDY OF THE STRESSES NEAR OPENINGS IN PRESSURE
VESSELS.*
AD-617 590
DISTRIBUTION OF STRESSES IN A PRESSURIZED HOLLOW CYLINDER WITH A
CIRCULAR HOLE.*
AD-837 013
STRESS ANALYSIS OF A 4-INCH DIAMETER PRESSURE VESSEL DURING A
111 BIAxIAL BURST TEST.*
AD-33 925
DETERMINATION OF STRESSES AT NON-MERIDIONAL OPENINGS IN SPHERICAL
PRESSURE VESSELS.*
AD-38 994
PHOTOELASTIC INVESTIGATION OF STRESSES AT WINDOWS AND HATCHES IN
SPHERICAL PRESSURE VESSELS.*
AD-833 749
PHOTOELASTIC INVESTIGATION OF STRESS CONCENTRATIONS IN SPHERICAL
PRESSURE VESSELS.*
AD-707 834

CYLINDER TRANSITION REGIONS:
INCLUDING A COMPARISON OF RESULTS FROM PHOTOELASTIC AND FINITE
ELEMENT ANALYSES.*
AD-667 834
IMPLOSIONS IN PRESSURE VESSELS,
EXPERIMENTAL RESULTS.*
AD-702 731
FORMULAS AND METHODS USED IN THE ANALYSIS OF PRESSURE VESSELS,*
AD-703 834
A COMPLIANCE K CALIBRATION FOR A PRESSURIZED THICK-WALL CYLINDER
WITH A RADIAL CRACK.*
AD-708 848
STRESS INTENSITY FACTORS FOR INTERNALLY PRESSURIZED THICK-WALL
CYLINDERS.*
AD-729 694
REPRINT: CALCULATION REGARDING ABOVE GROUND LIQUID STORAGE TANKS,
AD-726 786
AN EVALUATION OF FINITE ELEMENT METHODS FOR THE COMPUTATION OF
ELASTIC STRESS INTENSITY FACTORS.*
AD-735 874
STRESS ANALYSIS/MEASUREMENT TECHNIQUES FOR PRESSURE VESSELS.*
AD-873 130

STRUCTURAL PROPERTIES
COMPUTER PROGRAM FOR A MONOBLOC, HOLLOW, CLOSED-END CYLINDER
SUBJECTED TO INTERNAL PRESSURE,*
AD-704 747
REPRINT: ELASTIC-PLASTIC ANALYSIS OF THICK-WALLED PRESSURE
VESSELS WITH SHARP DISCONTINuITIES,
AD-743 630

STRUCTURAL SHELLS
CONTROLLED DESTRUCTIVE TESTING OF PRESSURE VESSELS.*
AD-686 660
STRESS ANALYSIS OF THIN ELASTOPLASTIC SHELLS.*
AD-709 446

TEST EQUIPMENT
TRANSLATION OF RUSSIAN RESEARCH, ON THE METHOD OF TESTING METALS AT
HIGH TEMPERATURE AND PRESSURE VALUES.
AD-639 160

TEST FACILITIES
PRESSURE VESSEL FOR CALIBRATING SONAR TRANSDUCERS, ACOUSTICALLY TRANSPARENT FIBER GLASS CAPSULE PERMITS TESTING AT PRESSURES TO 800 PSI.
AD-623 160

THICKNESS
REPRINT: OPTIMUM THICKNESS TRANSITIONS FOR CYLINDRICAL PRESSURE VESSELS WITH HEMISPHERICAL HEADS.
AD-637 380

TITANIUM ALLOYS
DEVELOPMENT OF WELDING TECHNIQUES FOR FABRICATING A THICK PLATE TITANIUM PRESSURE BOX.
AD-617 902

TRANSPARENT PANELS
"WINDOS FOR EXTERNAL OR INTERNAL HYDROSTATIC PRESSURE VESSELS, PART I, CONICAL ACRYLIC WINDOWS UNDER SHORT-TERM PRESSURE APPLICATION.
AD-644 682
"WINDOS FOR EXTERNAL OR INTERNAL HYDROSTATIC PRESSURE VESSELS, PART II, FLAT ACRYLIC WINDOWS UNDER SHORT-TERM PRESSURE APPLICATION.
AD-642 843
"WINDOS FOR EXTERNAL OR INTERNAL HYDROSTATIC PRESSURE VESSELS, PART III, CRITICAL PRESSURE OF ACRYLIC SPHERICAL SHELL "WINDOS UNDER SHORT-TERM PRESSURE APPLICATIONS.
AD-639 789
"WINDOS FOR EXTERNAL OR INTERNAL HYDROSTATIC PRESSURE VESSELS, PART IV, CONICAL ACRYLIC WINDOWS UNDER LONG-TERM PRESSURE APPLICATION AT 20,000 PSI.
AD-697 272
"WINDOS FOR EXTERNAL OR INTERNAL HYDROSTATIC PRESSURE VESSELS, PART V, CONICAL ACRYLIC WINDOWS UNDER LONG-TERM PRESSURE APPLICATION OF 10,000 PSI.
AD-718 812

UNDERWATER
ACRYLIC PLASTIC HEMISPHERICAL SHELLS FOR NUC UNDERSEA ELEVATOR.
AD-749 029

UNDERWATER EQUIPMENT
CONVERSION OF 16-INCH PROJECTILES TO PRESSURE VESSELS.
AD-625 950

WELDING
COMMISSION XII; PRESSURE VESSELS, BOILERS AND PIPE LINES.
AD-636 385

TRANSLATION OF RUSSIAN RESEARCH: NEW METHOD OF PRODUCTION OF CLAD PLATE ROLLED PRODUCTS FOR PRESSURE VESSELS.
AD-645 787

PRESSURIZATION
HEAT TRANSFER
HEAT TRANSFER CONSIDERATIONS IN A PRESSURE VESSEL BEING CHARGED.
AD-706 713

PRESSURIZED WATER REACTORS
PRESSURE VESSELS
CASCADE ARRANGEMENT IN SPHERICAL PRESSURE VESSEL DESIGN FOR NUCLEAR POWER REACTORS.
AD-614 591

NEUTRON SPECTRAL CONSIDERATIONS AFFECTING PROJECTED ESTIMATES OF RADIATION EMBRITTLEMENT OF THE ARMY SH-1A REACTOR PRESSURE VESSEL.
AD-641 283

SM-1A PRESSURE VESSEL LIFETIME AS RESULT OF IN-PLACE ANNEALING.
AD-699 330

ANALYSIS OF NEUTRON-EMBRITTLEMENT AND FLUX-DENSITY CONSIDERATIONS OF THE ARMY SH-1 REACTOR PRESSURE VESSEL.
AD-709 897

SM-1A VAPOR CONTAINER LEAK TEST:
3-5 AUGUST 1970.
REACTOR MATERIALS

IN-DEPTH EMBRITTLEMENT TO A SIMULATED PRESSURE VESSEL OF ALL OF AD-28 STEEL.
AD-606 696

IRRADIATION EFFECTS ON REACTOR MATERIALS.
AD-744 941

STEEL

IN-REACTOR STUDIES OF LOW CYCLE FATIGUE PROPERTIES OF A NUCLEAR PRESSURE VESSEL STEEL.
AD-606 773

YANKEE REACTOR PRESSURE VESSEL SURVEILLANCE: EVALUATION OF SPECIMENS EXPOSED DURING THE SECOND CORE.
AD-609 565

NEUTRON SPECTRAL CONSIDERATIONS AFFECTING PROJECTED ESTIMATES OF RADIATION EMBRITTLEMENT OF THE ARMY SM-1A REACTOR PRESSURE VESSEL.
AD-641 283

TRENDS IN CHARPY-V SHELF ENERGY DEGRADATION AND YIELD STRENGTH INCREASE OF NEUTRON-EMBRITTLED PRESSURE VESSEL STEELS.
AD-700 233

DAMAGE-FUNCTION ANALYSIS OF NEUTRON EMBRITTLEMENT IN STEEL AT REACTOR SERVICE TEMPERATURES.
AD-745 299

RAMJET ENGINES

ENGINE AIR SYSTEMS COMPONENTS

RAMJET TECHNOLOGY: AEROTHERMAL CAPABILITY OF HIGH-PRESSURE PLASMA HEATERS: HIGH-PRESSURE AIR GENERATION.
AD-602 048

REACTOR MATERIALS

EMBRITTLEMENT ANALYSIS OF RADIATION-INDUCED EMBRITTLEMENT GRADIENTS ON FRACUTRE CHARACTERISTICS OF THICK-WALLED PRESSURE VESSEL STEELS.
AD-720 670

RADIATION DAMAGE

PRO-REA

AD-718 U26

PROJECTILES

PRESSURE VESSELS

CONVERSION OF 16-INCH PROJECTILES TO PRESSURE VESSELS.
AD-625 950

STRESSES

SIMPLIFIED SHELL ANALYSIS (EDGE AND INTERIOR INFLUENCE COEFFICIENTS FOR PRESSURE VESSELS WITH SPHERICAL CAP).
AD-649 039

PROPELLANT TANKS

DESIGN FORMULAS AND METHODS USED IN THE ANALYSIS OF PRESSURE VESSELS.
AD-703 694

RADIATION DAMAGE

ALLOYS

USA STUDIES ON IRRADIATION EFFECTS TO ADVANCED PRESSURE VESSEL MATERIALS.
AD-604 067

PRESSURE VESSELS

RADIATION DAMAGE SURVEILLANCE OF POWER REACTOR PRESSURE VESSELS.
AD-629 601

THE EFFECTS OF COUPLING NUCLEAR RADIATION WITH STATIC AND CYCLIC SERVICE STRESSES AND OF PERIODIC PROOF TESTING ON PRESSURE VESSEL MATERIAL BEHAVIOR.
AD-649 646

IRRADIATION EFFECTS ON REACTOR MATERIALS.
AD-671 094

NOTCH DUCTILITY PROPERTIES OF SM-1A REACTOR PRESSURE VESSEL FOLLOWING THE IN-PLACE ANNEALING OPERATION.
AD-671 807

THE EFFECT OF RESIDUAL ELEMENTS ON 560F IRRADIATION RESPONSE OF SELECTED PRESSURE VESSEL STEELS AND ALLOYS.
AD-680 602

D-14
UNCLASSIFIED
IRRADIATION EFFECTS ON REACTOR STRUCTURAL MATERIALS*.
AD-707 336

IRRADIATION EFFECTS ON REACTOR STRUCTURAL MATERIALS*.
AD-711 321

IRRADIATION EFFECTS ON REACTOR STRUCTURAL MATERIALS*.
AD-749 941

STEEL NEUTRON EMBRITTLEMENT OF REACTOR PRESSURE VESSEL STEELS.*
AD-423 526

IN-DEPTH EMBRITTLEMENT TO A SIMULATED PRESSURE VESSEL WALL OF 302-B STEEL.
AD-606 099

IN-REACTION STUDIES OF LOAD CYCLE FATIGUE PROPERTIES OF A NUCLEAR PRESSURE VESSEL STEEL.
AD-606 773

AVAILABILITY OF DATA ON IRRADIATED MATERIALS AS RELATED TO DESIGN REQUIREMENTS FOR WATER COOLED REACTOR PRESSURE VESSELS.*
AD-663 879

THE EFFECTS OF COUPLING NUCLEAR IRRADIATION WITH STATIC AND CYCLIC SERVICE STRESSES AND OF PERIODIC PROOF TESTING ON PRESSURE VESSEL MATERIAL BEHAVIOR.*
AD-664 646

DAMAGE-FUNCTION ANALYSIS OF NEUTRON EMBRITTLEMENT IN STEEL AT REACTOR SERVICE TEMPERATURES.*
AD-745 299

*REACTOR SYSTEM COMPONENTS PRESSURE VESSELS

SN-IA PRESSURE VESSEL LIFETIME AS RESULT OF IN-PLACE ANNEALING.*
AD-699 330

REPRINT: STRUCTURE AND COMPOSITION EFFECTS ON IRRADIATION SENSITIVITY OF PRESSURE VESSEL STEELS.
AD-725 463

PROCEEDURES FOR INTERPRETING THE STRUCTURAL IMPLICATIONS OF IRRADIATION-DAMAGE SURVEILLANCE
D-15

RESULTS ON NUCLEAR PRESSURE VESSELS.*
AD-737 190

RELIABILITY TEST METHODS DETERMINATION OF PROOF TEST LEVEL FOR TEST-DEGRADABLE COMPONENTS.
AD-720 576

ROCKET CASES MATERIALS AND PROCESSES FOR PRODUCING LARGE DIAMETER THIN-WALL MISSILE AND ROCKET MOTOR CASES WITH IMPROVED MECHANICAL AND DESIGN PROPERTIES.
AD-402 636

CRYOGENIC STRETCH-FORMING OF SOLID-PROPELLANT ROCKET CASES.*
AD-403 459

ARC WELDING PLASMA ARC WELDING PROCESS DEVELOPMENT PROGRAM, VOLUME 1.*
AD-855 32U

FAILURE, (MECHANICS) LEVEL FOR THE EFFECTS OF MECHANICAL DAMAGE ON THE PERFORMANCE OF FILAMENT-BOUND MOTOR CASES.*
AD-420 977

STRUCTURAL PROPERTIES DEVELOPMENT OF IMPROVED BIAXIAL STRENGTH IN TITANIUM ALLOY ROCKET MOTOR CASES THROUGH TEXTURE HARDENING.*
AD-851 958

*ROLLING (METALLURGY) CLADDING TRANSLATION OF RUSSIAN RESEARCH: NEW METHOD OF PRODUCTION OF CLAD PLATE ROLLED PRODUCTS FOR PRESSURE VESSELS.
AD-649 787

*SONAR EQUIPMENT CALIBRATION
PRESSURE VESSEL FOR CALIBRATING SONAR TRANSDUCERS. ACOUSTICALLY TRANSPARENT FIBER GLASS CAPSULE PERMITS TESTING AT PressURES TO 800 PSIG.
AD-623 166

STEEL
ARC WELDING
TRANSLATION OF RUSSIAN RESEARCH; REPAIRING THICK-WALLED HIGH-PRESSURE VESSELS BY ELECTRIC ARC WELDING.
AD-621 911

BRITTLENESS
IN-DEPTH EMBRITTLEMENT TO A SIMULATED PRESSURE VESSEL WALL OF 3002-B STEEL.
AD-606 69A

CLADDING
TRANSLATION OF RUSSIAN RESEARCH; NEW METHOD OF PRODUCTION OF CLAD PLATE ROLLED PRODUCTS FOR PRESSURE VESSELS.
AD-645 787

EMBRITTLEMENT
ANALYSIS OF NEUTRON-EMBRITTLEMENT AND FLUX-DENSITY CONSIDERATIONS OF THE ARMY SM-1 REACTOR PRESSURE VESSEL.
AD-709 690

FRACTURE (MECHANICS)
A REASSESSMENT OF FRACTURE-SAFE OPERATING CRITERIA FOR REACTOR VESSEL STEELS BASED ON CHARPY-V PERFORMANCE.
AD-711 845

PROCEDURES FOR INTERPRETING THE STRUCTURAL IMPLICATIONS OF RADIATION-DAMAGE SURVEILLANCE RESULTS ON NUCLEAR PRESSURE VESSELS.
AD-737 190

MECHANICAL PROPERTIES
FRACTURE DEVELOPMENT AND MATERIAL PROPERTIES IN PVRC-PENN
AD-616

UNCLASSIFIED
UNCLASSIFIED

*STRESSES

MATHEMATICAL ANALYSIS

EXPERIMENTAL STRESS ANALYSIS OF
A ONE-SIXTH SCALE MODEL OF AN
ANECHOIC PRESSURE VESSEL.
AD-731 679

PHOTOELASTIC INVESTIGATION OF
STRESSES IN A PENETRATED
HEMISPHERE.
AD-615 415

MATHEMATICAL MODELS

COMPUTER PROGRAM FOR A MONOBLOC,
HOLLOW, CLOSED-END CYLINDER
SUBJECTED TO INTERNAL PRESSURE.
AD-704 787

PRESSURE VESSELS

A STUDY OF THE BEHAVIOR OF SMALL
PRESSURE VESSELS UNDER BIAXIAL
STRESS CONDITIONS AND IN THE
PRESENCE OF SURFACE CRACKS.
AD-625 720

PHOTOELASTIC STUDY OF THE
STRESSES NEAR OPENINGS IN PRESSURE
VESSELS.
AD-617 890

DISTRIBUTION OF STRESSES IN A
PRESSURIZED HOLLOW CYLINDER WITH A
CIRCULAR HOLE.
AD-637 013

DETERMINATION OF STRESSES AT NON-
RADIAL OPENINGS IN SPHERICAL
PRESSURE VESSELS.
AD-638 994

*STRUCTURAL PARTS

NUCLEAR REACTORS

IRRADIATION EFFECTS ON REACTOR
STRUCTURAL MATERIALS.
AD-671 094

*STRUCTURAL PROPERTIES

PLASTICITY

PLASTIC ANALYSIS AND PRESSURE-
VESSEL SAFETY.
AD-725 847

*STRUCTURAL SHELLS

ELASTICS

REPRINT: ELASTIC-PLASTIC

0-17

Unclassified

AU-720 678

REPRINT: STRUCTURE AND
COMPOSITION EFFECTS ON IRRADIATION
SENSITIVITY OF PRESSURE VESSEL
STEELS.
AD-725 963

IRRADIATION EFFECTS ON REACTOR
STRUCTURAL MATERIALS.
AD-744 981

DAMAGE-FUNCTION ANALYSIS OF
NEUTRON EMBRITTLEMENT IN STEEL AT
REACTOR SERVICE TEMPERATURES.
AD-745 929

RADIATION DAMAGES
NEUTRON EMBRITTLEMENT OF REACTOR
PRESSURE VESSEL STEELS.
AD-623 528

REACTOR MATERIALS

IN-REACTOR STUDIES OF LOW CYCLE
FATIGUE PROPERTIES OF A NUCLEAR
PRESSURE VESSEL STEEL.
AD-500 773

AVAILABILITY OF DATA ON
IRRADIATED MATERIALS AS RELATED TO
DESIGN REQUIREMENTS FOR WATER
COOLED REACTOR PRESSURE VESSELS.
AD-663 879

THE EFFECTS OF COUPLING NUCLEAR
RADIATION WITH STATIC AND CYCIC
SERVICE STRESSES AND OF PERIODIC
PROOF TESTING ON PRESSURE VESSEL
MATERIAL BEHAVIOR.
AD-644 646

IRRADIATION EFFECTS ON REACTOR
STRUCTURAL MATERIALS.
AD-707 336

TENSILE PROPERTIES

THE TENSILE PROPERTIES OF
SELECTED STEELS FOR USE IN NUCLEAR
REACTOR PRESSURE VESSELS.
AD-666 480

*STORAGE TANKS

FILAMENT WOUND CONSTRUCTION
LINERS FOR HIGH PRESSURE AIR
STORAGE VESSELS.
AD-632 092
AN ANALYSIS OF SOME PRESSURE VESSEL HEADS.
AD-713 256

HYDROSTATIC TESTING
CONTROLLED DESTRUCTIVE TESTING
OF PRESSURE VESSELS.
AD-686 460

LOADING (MECHANICS)
APPLIED METHODS OF CALCULATION
OF SHELLS AND THIN-WALLED
CONSTRUCTIONS -- TRANSATION.
AD-716 527

ORIFICES
ANALYSIS OF A CIRCULAR
CYLINDRICAL PERFORATED SHELL.
AD-714 178

STIFFENED CYLINDERS
DESIGN METHOD FOR DOUBLE-WALLED
EXTERNAL PRESSURE VESSELS.
AD-728 656

STRESSES
STRESS ANALYSIS OF THIN
ELASTOPLASTIC SHELLS.
AD-747 466

UNDERWATER
DEVELOPMENT OF END-CLOSURE
SYSTEMS FOR UNDERSEA CONCRETE
PRESSURE RESISTANT CYLINDRICAL
HULLS.
AD-747 217

SUBMARINE HULLS
DEEP SUBMERGENCE
AN EXPLORATORY STUDY OF THE
FEASIBILITY OF GLASS AND CERAMIC
PRESSURE VESSELS FOR NAVAL
APPLICATIONS.
AD-641 875

DESIGN
INVESTIGATION OF ADVANCED DESIGN
CONCEPTS FOR DEEP SUBMERSIBLES.
AD-458 251

FRACTURE (MECHANICS)

AN EVALUATION OF FINITE ELEMENT
METHODS FOR THE COMPUTATION OF
ELASTIC STRESS INTENSITY FACTORS.
AD-735 874

GLASS
THE STRUCTURAL BEHAVIOR OF GLASS
PRESSURE HULLS.
AD-746 878

TANKS (CONTAINERS)
ANALYSIS
LINEAR ANALYSIS OF PRESSURE
WAVES IN A TANK.
AD-412 933

TANKS (CONTAINERS)
FUEL SYSTEMS
DEVELOPMENT OF A HERMETIC SEALED
NITROGEN STORAGE SYSTEM FOR THE
TALOS RIM-8E FUEL PRESSURIZATION
SYSTEM.
AD-631 493

TEST FACILITIES
PRESSURE VESSELS
IMPLICATIONS IN PRESSURE VESSELS,
EXPERIMENTAL RESULTS.
AD-702 731

THERMODYNAMICS
GASES
APPARATUS USED FOR THE
EXPERIMENTAL STUDY OF THE
THERMODYNAMIC PROPERTIES OF GASES
AT PRESSURES OF UP TO 10^-12
KIOBARS AND AT TEMPERATURES UP TO
3000K -- TRANSLATION.
AD-749 653

TITANIUM ALLOYS
CRACK PROPAGATION
THE EFFECTS OF THE SURFACE LAYER
ON PLASTIC DEFORMATION AND CRACK
PROPAGATION.
AD-721 292

HARDENING
DEVELOPMENT OF IMPROVED BIAXIAL
STRENGTH IN TITANIUM ALLOY ROCKET
MOTOR CASES THROUGH TEXTURE.
PRESSURE-VELSEL STEELS AND WELDMENTS.**
AD-720 678

TOUGHNESS
PHYSICAL AND MECHANICAL PROPERTIES OF PRESSURE VESSEL MATERIAL FOR APPLICATION IN A CRYOGENIC ENVIRONMENT.**
AD-443 851

•VANADIUM
 RADIATION DAMAGE
 IRPADIATION EFFECTS ON REACTOR STRUCTURAL MATERIALS.**
 AU-711 321

•WELDING
 NICKEL ALLOYS
 CHARACTERIZATION OF GTA WELDMENTS IN 1W41-8CO-2CR-1YO STEEL.***
 AU-746 111

PRESSURE VESSELS
 DESIGN, PERFORMANCE, FABRICATION, AND MATERIAL CONSIDERATIONS FOR HIGH-PRESSURE VESSELS.
 AU-603 694

SYMPOSIA
 COMMISSION ALL PRESSURE VESSELS, BOILERS AND PIPE LINES.***
 AU-636 385

TITANIUM ALLOYS
 DEVELOPMENT OF WELDING TECHNIQUES FOR FABRICATING A THICK PLATE TITANIUM PRESSURE BOX.
 AU-617 902

•XELDS
 RADIATION DAMAGE
 THE EFFECT OF RESIDUAL ELEMENT ON SBOF IRRADIATION RESPONSE OF SELECTED PRESSURE VESSEL STEELS AND WELDMENTS.**
 AU-630 802
 MAJOR FACTORS AFFECTING NEUTRON IRRADIATION EMORITILEMENT OF

D-2U
UNCLASSIFIED
UNCLASSIFIED

TITLE INDEX

ACOUSTIC CHARACTERISTICS AD-698 282
OF A GLASS-FILAMENT-WOUND PRESSURE
VESSEL, (U)

UNDERWATER SOUND EQUIPMENT

NUCLEAR REACTORS

ACRYLIC PLASTIC AD-749 029
HEMISPHERICAL SHELLS FOR NUC
UNDERSEA ELEVATOR, (U)

NUCLEAR PRESSURE VESSELS

ANALYSIS OF A CIRCULAR AD-714 178
CYLINDRICAL PERFORATED SHELL, (U)

*ELASTIC SHELLS

ANALYSIS OF NEUTRON- AD-709 898
EMITTANCE AND RADIUS-DENSITY
CONSIDERATIONS OF THE ARMY SH-1
REACTOR PRESSURE VESSEL, (U)

*PRESSURIZED WATER REACTORS

ANALYSIS OF RADIATION- AD-729 576
INDUCED EMITTANCE CITY RADIANTS ON
FRACTURE CHARACTERISTICS OF THICK-
WALLED PRESSURE VESSEL STEELS, (U)

STEEL

ANALYTICAL STUDY FOR A AD-491 356
HYDRO_DYNAMIC TEST SYSTEM, (U)

HYDRO_DYNAMIC

APPARATUS USED FOR THE AD-749 653
EXPERIMENTAL STUDY OF THE
THERMODYNAMIC PROPERTIES OF GASES
AT Pressures OF UP TO 10^-12
KILOBARS AND AT TEMPERATURES UP TO
400°K, (U)

*LABORATORY EQUIPMENT

APPLIED METHODS OF AD-716 527
CALCULATION OF SHELLS AND THIN-
WALLED CONSTRUCTIONS, (U)

*STRUCTURAL SHELLS

AVAILABILITY OF DATA ON AD-663 879
IRRADIATED MATERIALS AS RELATED TO
DESIGN REQUIREMENTS FOR WATER
COOLED REACTOR PRESSURE VESSELS, (U)

*PRESSURE VESSELS

BASIC ASPECTS OF CRACK AD-663 882
GROWTH AND FRACTURE, (U)

BUCKLING OF A CIRCULAR AD-716 862
ELASTIC RING CONFINED TO A
UNIFORMLY CONTRACTING CIRCULAR
BOUNDARY, (U)

*ELASTIC SHELLS

CASCADE ARRANGEMENT IN AD-614 591
SPHERICAL PRESSURE VESSEL DESIGN
FOR NUCLEAR POWER REACTORS, (U)

*PRESSURE VESSELS

CASCADE ARRANGEMENT IN AD-640 919
SPHERICAL VESSEL DESIGN FOR NUCLEAR
POWER REACTORS, (U)

CHARACTERIZATION OF GTA AD-746 111
ELEMENTS IN TR-8CU-2CR-MO
STEEL, (U)

*NIKEI ALLOYS

COMMISSION XII PRESSURE AD-636 385
VESSELS, BOILERS AND PIPE LINES, (U)

WELDING

A COMPLIANCE K AD-708 868
CALIBRATION FOR A PRESSURIZED THICK-
WALL CYLINDER WITH A RADIAL
CRACK, (U)

*PRESSURE VESSELS

COMPUTER PROGRAM FOR A AD-704 787
MONOLOC, HOLLOW, CLOSED-END
CYLINDER SUBJECTED TO INTERNAL
PRESSURE, (U)

*PRESSURE VESSELS

CONTROLLED Destructive AD-635 660
TESTING OF PRESSURE VESSELS, (U)

*PRESSURE VESSELS

THE CONVERSION OF 16" AD-625 950
INCH PROJECTILES TO PRESSURE
THE DESIGN OF RESEARCH AD-611 782
APPARATUS FOR CONSTANT-VOLUME
COMBUSTION PROCESSES (U)
*PRESSURE VESSELS

DESIGN, PERFORMANCE, AD-603 694
FABRICATION, AND MATERIAL
CONSIDERATIONS FOR HIGH-PRESSURE
VESSELS (U)
*PRESSURE VESSELS

DETERMINATION OF PROOF AD-720 576
TEST LEVEL FOR TEST-DEGRADABLE
COMPONENTS (U)
*RELIABILITY

DETERMINATION OF AD-638 994
STRESSES AT NON-RADIAL OPENINGS IN
SPHERICAL PRESSURE VESSELS (U)
*PRESSURE VESSELS

DEVELOPMENT OF A AD-631 443
HERMETIC SEALED NITROGEN STORAGE
SYSTEM FOR THE TALUS RIM-8E FUEL
PRESSURIZATION SYSTEM (U)
*GUIDED MISSILE COMPONENTS

DEVELOPMENT OF A AD-707 363
SPHERICAL ACRYLIC PLASTIC PRESSURE
HULL FOR HYDROSPACE APPLICATION (U)
*UNDERWATER VEHICLES

DEVELOPMENT OF END- AD-747 217
CLOSURE SYSTEMS FOR UNDERSEA
CONCRETE PRESSURE RESISTANT
CYLINDRICAL HULLS (U)
*PRESSURE VESSELS

DEVELOPMENT OF IMPROVED AD-851 958
BIAXIAL STRENGTH IN TITANIUM ALLOY
ROCKET MOTOR CASES THROUGH TEXTURE
HARDENING (U)
*ROCKET CASES

DEVELOPMENT OF WELDING AD-617 902
TECHNIQUES FOR FABRICATING A THICK
PLATE TITANIUM PRESSURE VESSELS (U)
*TITANIUM ALLOYS

THE DESIGN OF PRESSURE AD-690 183
VESSELS FOR VERY HIGH PRESSURE
OPERATION (U)

THE DESIGN OF PRESSURE AD-690 183
VESSELS FOR VERY HIGH PRESSURE
OPERATION (U)

THE DEPENDENCE OF AD-406 422
DYNAMIC STRENGTH OF CYLINDRICAL
PRESSURE VESSELS ON GEOMETRICAL
PARAMETERS (U)
*PRESSURE VESSELS

DESIGN, FABRICATION AND AD-429 031
HYDROTESTING OF A 120 INCH DIAMETER
PRESSURE VESSEL USING 18 PERCENT
NICKEL MARAGING STEEL (U)
*PRESSURE VESSELS

DESIGN METHOD FOR AD-428 856
DOUBLE-WALLED EXTERNAL PRESSURE
VESSELS (U)
*PRESSURE VESSELS

DESIGN OF MULTI-REGION AD-718 970
PRESSURE VESSELS USING MAXIMUM
SHEAR THEORY (U)
*PRESSURE VESSELS

DESIGN OF PRESSURE AD-467 730
VESSELS FOR CONTAINING
EXPLOSIVES (U)
*PRESSURE VESSELS

THE DESIGN OF PRESSURE AD-690 183
VESSELS FOR VERY HIGH PRESSURE
OPERATION (U)

THE DESIGN OF PRESSURE AD-690 183
VESSELS FOR VERY HIGH PRESSURE
OPERATION (U)
DISTRIBUTION OF AD-637 013
STRESSES IN A PRESSURIZED HOLLOW CYLINDER WITH A CIRCULAR HOLE. (U)

THE EFFECT OF AD-714 562
PROCESSING ON PLASTIC STRAIN ANISOTROPY OF Ti-6Al-4V. (U)

THE EFFECT OF REPEATED AD-422 866
LOADING ON FILAMENT WOUND INTERNAL PRESSURE VESSELS. (U)

THE EFFECT OF RESIDUAL AD-480 602
ELEMENTS ON SSUF IRRADIATION RESPONSE OF SELECTED PRESSURE VESSEL STEELS AND ELEMENTS. (U)

THE EFFECTS OF COUPLING AD-644 646
NUCLEAR RADIATION WITH STATIC AND CYCLIC SERVICE STRESSES AND OF PERIODIC PROOF TESTING ON PRESSURE VESSEL MATERIAL BEHAVIOR. (U)

THE EFFECTS OF THE AD-721 292
SURFACE LAYER ON PLASTIC DEFORMATION AND CRACK PROPAGATION. (U)

ELASTIC-PLASTIC AD-682 482
ANALYSIS OF PRESSURE VESSEL COMPONENTS. (U)

ELASTIC-PLASTIC AD-713 258
ANALYSIS OF SOME PRESSURE VESSEL HEADS. (U)

ELASTIC-PLASTIC AD-743 630
ANALYSIS OF THICK-WALLED PRESSURE VESSELS WITH SHARP DISCONTINUITIES. (U)

AN EVALUATION OF FINITE AD-735 874

ELEMENT METHODS FOR THE COMPUTATION OF ELASTIC STRESS INTENSITY FACTORS. (U)

EVALUATION OF HIGH-AD-404 182
STRENGTH LIGHTWEIGHT LAMINATED PRESSURE VESSELS OF LAP-JOINT CONSTRUCTION. (U)

EVALUATION OF HIGH-AD-408 278
STRENGTH LIGHTWEIGHT LAMINATED PRESSURE VESSELS OF LAP-JOINT CONSTRUCTION. (U)

AN EXPERIMENTAL AD-600 336
INVESTIGATION OF CLOSURES AND PENETRATIONS FOR PRESSURE VESSELS OF COMPOSITE CONSTRUCTION. (U)

EXPERIMENTAL STRESS AD-612 872
ANALYSIS OF A ONE-SIXTH SCALE MODEL OF AN ANCHORIC PRESSURE VESSEL. (U)

AN EXPLORATORY STUDY OF AD-641 875
THE FEASIBILITY OF GLASS AND CERAMIC PRESSURE VESSELS FOR NAVAL APPLICATIONS. (U)

FATIGUE CRACK TOLERANCE AD-717 301
IN THICK WALLED CYLINDERS. (U)

FATIGUE OF THICK-AD-716 032
WALLED, HIGH-PRESSURE CYLINDERS. (U)

FILAMENT-WOUND PRESSURE AD-600 215
VESSELS. (U)

FLAMMABILITY IN UNUSUAL AD-644 556
ATMOSPHERES. PART I. PRELIMINARY STUDIES OF MATERIALS IN HYPERBARIC ATMOSPHERES CONTAINING OXYGEN, NITROGEN, AND/OR HELIUM. (U)
UNCLASSIFIED
FOR-MET

PRESSURE VESSELS
FORMULAS AND METHODS AD-703 834
USED IN THE ANALYSIS OF PRESSURE VESSELS. (U)
*PROPELLANT TANKS

FRAC TURE DEVELOPMENT AD-663 203
AND MATERIAL PROPERTIES IN PRESSURE VESSELS* (U)
*STEEL

FRAC TURE TOUGHNESS AND AD-616 022
PRESSURE VESSELS PERFORMANCE. (U)
*PRESSURE VESSELS

HEAT TRANSFER AD-704 713
CONSIDERATIONS IN A PRESSURE VESSEL
HEATING CHARGED. (U)
*PRESSURE VESSELS

HIGH PRESSURE CHAMBER AD-661 225
DESIGN. (U)
*PRESSURE VESSELS

IMPLOSIONS IN PRESSURE AD-702 731
VESSELS, EXPERIMENTAL RESULTS. (U)
*UNDERWATER VEHICLES

IN-DEPTH EMBRITTLEMENT AD-604 696
TO A SIMULATED PRESSURE VESSEL WALL
OF A302-steel. (U)
*PRESSURE VESSELS

IN-REACTOR STUDIES OF AD-604 773
LOW CYCLE FATIGUE PROPERTIES OF A
NUCLEAR PRESSURE VESSEL STEEL. (U)
*PRESSURE VESSELS

THE INFLUENCE OF AD-709 554
COMPOSITION ON THE FRACTURE TOUGHNESS OF COMMERCIAL NUCLEAR
VESSEL STEELS. (U)
*NUCLEAR POWER PLANTS

INTERPRETING THE AD-748 147
STRUCTURAL SIGNIFICANCE OF TIME-DEPENDENT EMBRITTLEMENT PHENOMENA
TO NUCLEAR REACTOR PRESSURE VESSEL INTEGRITY. (U)
*NUCLEAR REACTORS

INVESTIGATION OF AD-458 281
AD VANCED DESIGN CONCEPTS FOR DEEP
SUBMERSIBLES. (U)
*SUBMARINE HULLS

IRRADIATION EFFECTS ON AD-671 094
REACTOR STRUCTURAL MATERIALS. (U)
*NUCLEAR REACTORS

IRRADIATION EFFECTS ON AD-707 336
REACTOR STRUCTURAL MATERIALS. (U)
*REACTOR MATERIALS

IRRADIATION EFFECTS ON AD-711 321
REACTOR STRUCTURAL MATERIALS. (U)
*REACTOR MATERIALS

IRRADIATION EFFECTS ON AD-744 941
REACTOR STRUCTURAL MATERIALS. (U)
*REACTOR MATERIALS

A LINEARIZED ANALYSIS AD-412 933
OF THE PRESSURE WAVES IN A TANK
UNDERGOING AN ACCELERATION. (U)
*PRESSURE VESSELS

LINERS FOR HIGH AD-632 092
PRESSURE AIR STORAGE VESSELS. (U)
*FILAMENT WOUND CONSTRUCTION

MAJOR FACTORS AFFECTING AD-720 678
NEUTRON IRRADIATION EMBRITTLEMENT
OF PRESSURE VESSEL STEELS AND
WELDMENTS. (U)
*STEEL

MANUFACTURE AND AD-610 081
HYDROTEST OF THREE 2U INCH DIAMETER
HIGH-AMAGING STEEL PRESSURE
VESSELS. (U)
*PRESSURE VESSELS

MECHANISMS OF METALLIC AD-636 963
FAILURE: FLAP INITIATION
TECHNIQUES AND MEASUREMENTS IN THIN-WALL PRESSURE VESSELS. (U)
*PRESSURE VESSELS

METASTABLE AUSTENITIC AD-902 636
FORMING OF HIGH STRENGTH PRESSURE
VESSELS. (U)
<table>
<thead>
<tr>
<th>Topic</th>
<th>Report Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plastic analysis and pressure vessel safety</td>
<td>AD-725 847</td>
</tr>
<tr>
<td>Structural properties</td>
<td></td>
</tr>
<tr>
<td>Practical considerations in applying laboratory fracture test criteria to the fracture-safe design of pressure vessels</td>
<td>AD-426 431</td>
</tr>
<tr>
<td>Preliminary report on fabrication and tests of an electrodeposited pressure bottle</td>
<td>AD-423 216</td>
</tr>
<tr>
<td>Pressurized vessels</td>
<td></td>
</tr>
<tr>
<td>Pressurized chamber for microelectrophysiological techniques (Caisson de compression pour techniques microélectrophyslogiques)</td>
<td>AD-621 281</td>
</tr>
<tr>
<td>Pressure vessel</td>
<td>AD-705 125</td>
</tr>
<tr>
<td>Concepts: exploratory evaluation of stacked-ring and segmented-wall designs with tie-rod end closure restrictions</td>
<td></td>
</tr>
<tr>
<td>Underwater vehicles</td>
<td></td>
</tr>
<tr>
<td>Pressure vessel for calibrating sonar transducers and glass capsule permits testing at pressures to 800 psig</td>
<td>AD-623 166</td>
</tr>
<tr>
<td>Pressure vessels</td>
<td>AD-702 600</td>
</tr>
<tr>
<td>Volume 1, (U)</td>
<td></td>
</tr>
<tr>
<td>Pressure vessels</td>
<td></td>
</tr>
<tr>
<td>Procedures for interpreting the structural implications of radiation-damage surveillance results on nuclear pressure vessels</td>
<td>AD-737 190</td>
</tr>
<tr>
<td>Reactor system components</td>
<td></td>
</tr>
<tr>
<td>Properties of graphite and fiber composites at cryogenic temperatures</td>
<td>AD-746 885</td>
</tr>
<tr>
<td>Composite materials</td>
<td></td>
</tr>
<tr>
<td>Radiation damage</td>
<td>AD-629 881</td>
</tr>
<tr>
<td>Surveillance of power reactor pressure vessels</td>
<td></td>
</tr>
<tr>
<td>Radiation damage</td>
<td></td>
</tr>
<tr>
<td>Ramjet technology</td>
<td>AD-602 048</td>
</tr>
<tr>
<td>Program, 1963: section AIV. aero thermal capability of plasma heaters.</td>
<td></td>
</tr>
<tr>
<td>High pressure air generation</td>
<td></td>
</tr>
<tr>
<td>Ramjet engines</td>
<td></td>
</tr>
<tr>
<td>A reassessment of fracture-safe operating criteria for reactor vessel steels based on Charpy-V performance</td>
<td>AD-711 845</td>
</tr>
<tr>
<td>Steel</td>
<td></td>
</tr>
<tr>
<td>Repairing thick-walled high-pressure vessels by electric arc welding</td>
<td>AD-421 911</td>
</tr>
<tr>
<td>Pressure vessels</td>
<td></td>
</tr>
<tr>
<td>Reverse yielding of a fully autofrettaged tube of large wall ratio</td>
<td>AD-425 162</td>
</tr>
<tr>
<td>Cylindrical bodies</td>
<td></td>
</tr>
<tr>
<td>Review of recent developments: aluminum and magnesium</td>
<td>AD-869 053</td>
</tr>
<tr>
<td>Aluminum alloys</td>
<td></td>
</tr>
<tr>
<td>Review of recent developments: low-temperature properties of metals</td>
<td>AD-870 390</td>
</tr>
<tr>
<td>Metals</td>
<td></td>
</tr>
<tr>
<td>The role of fracture</td>
<td>AD-713 819</td>
</tr>
<tr>
<td>Toughness and residual stresses in the fatigue and fracture behavior of large thick-walled pressure vessels</td>
<td></td>
</tr>
</tbody>
</table>
VESSELS (U)
SIMPLIFIED SHELL (AD-849 039)
ANALYSIS (EDGE AND INTERIOR INFLUENCE COEFFICIENTS FOR PRESSURE VESSELS WITH SPHERICAL CAP) (U)
PRESSURE VESSELS (AD-431 706)
STRESSES IN THIN VESSELS UNDER INTERNAL PRESSURE (U)
PRESSURE VESSELS
STRESS INTENSITY (AD-724 641)
FACTORS FOR INTERNALLY PRESSURIZED THICK-WALL CYLINDERS (U)
PRESSURE VESSELS
THE STRUCTURAL BEHAVIOR (AD-746 878)
OF GLASS PRESSURE HULLS (U)
SUBMARINE HULLS
STRUCTURE AND COMPOSITION EFFECTS ON IRRADIATION SENSITIVITY OF PRESSURE VESSEL STEELS (U)
STEEL
A STUDY OF THE BEHAVIOR (AD-425 729)
OF SMALL PRESSURE VESSELS UNDER BIAxIAL STRESS CONDITIONS AND IN THE PRESENCE OF SURFACE CRACKS (U)
PRESSURE VESSELS
STUDY OF THE EFFECTS OF (AD-420 977)
MECHANICAL DAMAGE ON THE PERFORMANCE OF FILAMENT-WOUND MOTOR CASES (U)
ROCKET CASES
STUDY OF THE EFFECTS OF (AD-295 424)
THICKNESS ON THE PROPERTIES OF LAMINATED FOR UNDERWATER PRESSURE VESSELS (U)
LAMINATES
A SURVEY ON FRACTURE OF (AD-697 764)
PRESSURIZED VESSELS (U)
PRESSURE VESSELS
TECHNIQUE FOR FORMING (AD-628 877)
PRESSURE WINDOWS FROM THIN METAL SHEETS (U)
PRESSURE VESSELS
THE TENSILE PROPERTIES (AD-664 460)
OF SELECTED STEELS FOR USE IN NUCLEAR REACTOR PRESSURE VESSELS (U)
STEEL

T-7
UNCLASSIFIED
TENSILE STRESSES ON THE AD-613 552 SURFACE OF AN ELLIPSOIDAL CAVITY IN COMPRESSIVE LOADING SITUATIONS. (U)

PRESSURE VESSELS

TOROIDAL-TYPE SHELLS AD-644 761 FREE OF BENDING UNDER UNIFORM NORMAL PRESSURE. (U)

HYDROSTATIC PRESSURE

TRANSITIONAL BEHAVIOR AD-407 432 OF HIGH-STRENGTH STEEL PRESSURE VESSELS. (U)

PRESSURE VESSELS

TRENDS IN CHARPY-V AD-700 233 SHELF ENERGY DEGRADATION AND YIELD STRENGTH INCREASE OF NEUTRON-EMBATTLED PRESSURE VESSEL STEELS. (U)

NUCLEAR REACTORS

USA STUDIES ON AD-684 067 IRRADIATION EFFECTS TO ADVANCED PRESSURE VESSEL MATERIALS. (U)

PRESSURE VESSELS

VERIFICATION TESTING OF AD-869 476 CONJUGATE STRUCTURE. (U)

PRESSURE VESSELS

WINDOWS FOR EXTERNAL OR AD-697 272 INTERNAL HYDROSTATIC PRESSURE VESSELS. PART IV. CONICAL ACRYLIC WINDOWS UNDER LONG-TERM PRESSURE APPLICATION AT 20,000 PSI. (U)

PRESSURE VESSELS

WINDOWS FOR EXTERNAL OR AD-718 812 INTERNAL HYDROSTATIC PRESSURE VESSELS. PART V. CONICAL ACRYLIC WINDOWS UNDER LONG-TERM PRESSURE APPLICATION OF 10,000 PSI. (U)

PRESSURE VESSELS

WINDOWS FOR EXTERNAL OR AD-736 594 INTERNAL HYDROSTATIC PRESSURE VESSELS. PART VI. CONICAL ACRYLIC WINDOWS UNDER LONG-TERM PRESSURE APPLICATION AT 5,000 PSI. (U)

ACRYLIC RESINS

WINDOWS FOR EXTERNAL OR AD-748 563 INTERNAL HYDROSTATIC PRESSURE VESSELS. PART VII. EFFECT OF TEMPERATURE AND FLANGE CONFIGURATIONS ON CRITICAL PRESSURE OF 90-DEGREE CONICAL ACRYLIC WINDOWS UNDER SHORT-TERM LOADING. (U)

ACRYLIC RESINS

YANKEE REACTOR PRESSURE AD-609 565 VESSEL SURVEILLANCE: EVALUATION OF SPECIMENS EXPOSED DURING THE SECOND CORE. (U)

RADIATION DAMAGE

T-8

UNCLASSIFIED
UNCLASSIFIED

PERSONAL AUTHOR INDEX

*ABILDSKOVO, D.
INVESTIGATION OF ADVANCED DESIGN CONCEPTS FOR DEEP SUBMERSIBLES,
AD-458 251

*ALFRING, RICHARD
PROPERTIES OF GRAPHITE FIBER COMPOSITES AT CRYOGENIC TEMPERATURES,
AD-746 685

*AMATEAU, MAURICE F.
THE EFFECT OF PROCESSING ON PLASTIC STRAIN ANISOTROPY OF Ti-6AL-4V,
AD-714 562

*ANDERSON, EVERETT E.
THE DESIGN OF RESEARCH APPARATUS FOR CONSTANT-VOLUME COMBUSTION PROCESSES,
AD-411 782

*ANTANOVICH, A. A.
APPARATUS USED FOR THE EXPERIMENTAL STUDY OF THE THERMODYNAMIC PROPERTIES OF GASES AT PRESSURES OF UP TO 10-12 KILOBARS AND AT TEMPERATURES UP TO 3000K,
AD-749 653

*ARMIENTO, DOMENIC F.
FRACTURE TOUGHNESS AND PRESSURE VESSEL PERFORMANCE,
AD-415 022

*ATTERBURY, T. J.
DESIGN, PERFORMANCE, FABRICATION, AND MATERIAL CONSIDERATIONS FOR HIGH-PRESSURE VESSELS,
AD-403 694

*AU, NORMAN N.
STRESSES IN THIN VESSELS UNDER INTERMEDIATE PRESSURE,
AD-431 706

*AVDONIN, A. S.
APPLIED METHODS OF CALCULATION OF SHELLS AND THIN-WALLED CONSTRUCTIONS,
AD-716 527

*BECKER, HERBERT
PHOTOELASTIC INVESTIGATION OF STRESSES IN A PENETRATED HEMISPHERE,
AD-615 415

PHOTOELASTIC INVESTIGATION OF STRESSES AT WINDOWS AND HATCHES IN SPHERICAL PRESSURE VESSELS,
AD-653 749

*BHAT, G. K.
A STUDY OF THE BEHAVIOR OF SMALL PRESSURE VESSELS UNDER BIAXIAL STRESS CONDITIONS AND IN THE PRESENCE OF SURFACE CRACKS,
AD-425 729

*BOLLER, T. J.
STUDY OF THE EFFECTS OF MECHANICAL DAMAGE ON THE PERFORMANCE OF FILAMENT-WOUND MOTOR CASES,
AD-420 977

*BRADLEY, W.
RESEARCH AND DEVELOPMENT IN SUPPORT OF THE POLARIS PROGRAM, TASK I, INVESTIGATION OF FILAMENT MING PATTERNS,
AD-425 196

*BRIER, F. W.
WINDOWS FOR EXTERNAL OR INTERNAL HYDROSTATIC PRESSURE VESSELS, PART III, CRITICAL PRESSURE OF ACRYLIC SPHERICAL SHELL WINDOWS UNDER SHORT-

P=1
UNCLASSIFIED
UNCLASSIFIED

BUR-CLE

PRESSURE APPLICATIONS
AD-689 789

BURKLEY, R. A.

STUDY OF THE EFFECTS OF MECHANICAL DAMAGE ON THE PERFORMANCE OF FILAMENT-WOUND MOTOR CASES
AD-420 977

BURNS, A. BRUCE

OPTIMUM THICKNESS TRANSITIONS FOR CYLINDRICAL PRESSURE VESSELS WITH HEMISPHERICAL HEADS
AD-657 080

BUSCH, COURTNEY C.

MECHANISMS OF METALLIC FAILURE: FLAW INITIATION TECHNIQUES AND MEASUREMENTS IN THIN-WALL PRESSURE VESSELS
AD-636 963

BUSCH, COURTNEY C.

STUDY OF THE EFFECTS OF MECHANICAL DAMAGE ON THE PERFORMANCE OF FILAMENT-WOUND MOTOR CASES
AD-404 977

CAMPBELL, J. E.

REVIEW OF RECENT DEVELOPMENTS: LOW-TEMPERATURE PROPERTIES OF METALS
AD-470 390

CARMAN, CARL M.

FRACTURE TOUGHNESS AND PRESSURE VESSEL PERFORMANCE
AD-435 022

CASSIDY, L. M.

DESIGN, PERFORMANCE, FABRICATION, AND MATERIAL CONSIDERATIONS FOR HIGH-PRESSURE VESSELS
AD-603 694

CHAGNEUX, ROGER

PRESSURE CHAMBER FOR MICROELECTROPHYSIOLOGICAL TECHNIQUES (CAISSON DE COMPRESSION POUR TECHNIQUES MICROELECTROPHYSIOLOGIQUES), AD-621 281

CHRISTIAN, J. L.

PHYSICAL AND MECHANICAL PROPERTIES OF PRESSURE VESSEL MATERIAL FOR APPLICATION IN A CRYOGENIC ENVIRONMENT
AD-443 851

CHURCHILL, M. V.

DESIGN METHOD FOR DOUBLE-WALLED EXTERNAL PRESSURE VESSELS
AD-428 856

CITRIN, G.

EVALUATION OF HIGH-STRENGTH LIGHTWEIGHT LAMINATED PRESSURE VESSELS OF LAP-JOINT CONSTRUCTION
AD-404 182

EVALUATION OF HIGH-STRENGTH LIGHTWEIGHT LAMINATED PRESSURE VESSELS OF LAP-JOINT CONSTRUCTION
AD-408 276

CLAFFY, GEORGE

CRYOGENIC STRETCH-FORMING OF SOLID-PROPELLANT ROCKET CASES
AD-401 459

CLAXTON, W. B.

DEVELOPMENT OF A HERMETIC SEALED NITROGEN STORAGE SYSTEM FOR THE TALOS RH-6E FUEL PRESSURIZATION SYSTEM
AD-631 441

CLELAND, W. E.
Technique for forming pressure windows from thin metal sheets. AD-628 677

Colbert, L.

Design, fabrication and hydrotesting of a 1201 inch diameter pressure vessel using 18 percent nickel maraging steel. AD-429 031

Cooley, L. A.

Fracture development and material properties in FHHC-Penn State pressure vessel. AD-663 203

Crosley, F. A.

Development of improved axial strength in titanium alloy rocket motor cases through texture hardening. AD-651 950

CZUL, Ernest C.

Controlled destructive testing of pressure vessels. AD-686 660

Dainges, J.

Investigation of advanced design concepts for deep submersibles. AD-458 251

Dalrymple, E.

The dependence of dynamic strength of cylindrical pressure vessels on geometrical parameters. AD-490 622

Dalrymple, E. W.

Design of pressure vessels for confining explosives. AD-467 730

Davidson, Thomas E.

The design of pressure vessels for very high pressure operation. AD-540 183

Dalrymple, J.

The role of fracture toughness and residual stresses in the fatigue and fracture behavior of large thick-walled pressure vessels. AD-713 519

Dawson, V. C. D.

Fatigue of thick-walled, high-pressure cylinders. AD-716 032

Dawson, Victor C. D.

Reverse yielding of a fully autofrettaged tube of large wall ratio. AD-425 162

Del Rio, C. J.

High pressure chamber design. AD-661 225

Del Rio, C. J.

Computer program for a monobloc, hollow, closed-end cylinder subjected to internal pressure. AD-704 707

Duffy, A. R.

Design, performance, fabrication, and material considerations for high-pressure vessels. AD-603 694

Dull, Dennis L.

The effect of processing on plastic strain anisotropy of Ti-6Al-4V, AD-477 011
DISTRIBUTION OF STRESSES IN A PRESSURIZED HOLLOW CYLINDER WITH A CIRCULAR HOLE
AD-637 013

FENGO, H.

DEVELOPMENT OF IMPROVED BIAxIAL STRENGTH IN TITANIUM ALLOY ROCKET MOTOR CASES THROUGH TEXTURE HARDENING
AD-851 958

FITZPATRICK, J. M.

A SURVEY ON FRACTURE OF PRESSURIZED VESSELS
AD-697 764

FOLIAS, E. S.

RESEARCH AND DEVELOPMENT IN SUPPORT OF THE POLARIS PROGRAM, TASK I. INVESTIGATION OF FILAMENT WINDING PATTERNS
AD-425 196

EL-BAYOUNY, LOTFI

PLASMA ARC WELDING PROCESS DEVELOPMENT PROGRAM, VOLUME I
AD-655 520

GAW, W. D.

BUCKLING OF A CIRCULAR ELASTIC RING CONFINED TO A UNIFORMLY CONTRACTING CIRCULAR BOUNDARY
AD-716 862

FALKENAU, V. A.

CONTROLLED DESTRUCTIVE TESTING OF PRESSURE VESSELS
AD-686 660

GOELLER, J. E.

FATIGUE OF THICK-WALLED, HIGH-PRESSURE CYLINDERS
AD-716 032

GORB, M. L.

ON THE METHOD OF TESTING METALS AT HIGH TEMPERATURE AND PRESSURE

POLAIRC, M. H.

AD-714 562
VALUES.
AD-639 140

GRAY, R. O. * * *
THE CONVERSION OF 16-INCH PROJECTILES TO PRESSURE VESSELS.
AD-625 950 * * *

WINDO*S FOR EXTERNAL OF INTERNAL HYDROSTATIC PRESSURE VESSELS. PART I. CONICAL ACRYLIC WINDOWS UNDER SHORT-TERM PRESSURE APPLICATION.
AD-646 882 * * *

WINDO*S FOR EXTERNAL OR INTERNAL HYDROSTATIC PRESSURE VESSELS. PART II. FLAT ACRYLIC WINDOWS UNDER SHORT-TERM PRESSURE APPLICATION.
AD-652 343 * * *

WINDO*S FOR EXTERNAL OR INTERNAL HYDROSTATIC PRESSURE VESSELS. PART VI. CONICAL ACRYLIC WINDOWS UNDER LONG-TERM PRESSURE APPLICATION AT 5,000 PSIG.
AD-136 594

GRAY, R. A. JR.

IRRADIATION EFFECTS ON REACTOR STRUCTURAL MATERIALS.
AD-107 336

GREEN, C. E.*

PRESSURE VESSEL FOR CALIBRATING SONAR TRANSDUCERS. ACOUSTICALLY TRANSPARENT FIBER GLASS CAPSULE PERMITS TESTING AT PRESSURES TO 800 PSIG.
AD-673 146

GRIFFEL, WILLIAM

SIMPLIFIED SHELL ANALYSIS (EDGE AND INTERIOR INFLUENCE COEFFICIENTS FOR PRESSURE VESSELS WITH SPHERICAL CAP.)
AD-849 039

HALLWELL, J. B.

REVIEW OF RECENT DEVELOPMENTS. ALUMINUM AND MAGNESIUM.
AD-869 053

HAMILTON, HAROLD

PHOTOELASTIC INVESTIGATION OF STRESSES IN A PENETRATED HEMISPHERE.
AD-615 415

PHOTOELASTIC INVESTIGATION OF STRESSES AT WINDOWS AND HATCHES IN SPHERICAL PRESSURE VESSELS.
AD-653 749

HAUCK, W. J.

MANUFACTURE AND HYDROTEST OF THREE 20-INCH DIAMETER MARAGING STEEL PRESSURE VESSELS.
AD-610 081

HAWTHORNE, J. R.

NEUTRON EMBRITTLEMENT OF REACTOR PRESSURE VESSEL STEELS.
AD-423 526

IN-REACTOR STUDIES OF LOW CYCLE FATIGUE PROPERTIES OF A NUCLEAR PRESSURE VESSEL STEEL.
AD-606 773

YANKEE REACTOR PRESSURE VESSEL SURVEILLANCE: EVALUATION OF SPECIMENS EXPOSED DURING THE SECOND CORE.
AD-609 565

RADIATION DAMAGE SURVEILLANCE OF POWER REACTOR PRESSURE VESSELS.
AD-629 881

AVAILABILITY OF DATA ON IRRADIATED MATERIALS AS RELATED TO DESIGN REQUIREMENTS FOR WATER COOLED REACTOR PRESSURE VESSELS.
AD-663 879
UNCLASSIFIED

HAW-JOH

DEGRADATION AND YIELD STRENGTH INCREASE OF NEUTRON-EMBRITTLED PRESSURE VESSEL STEELS.
AD-700 233

HODGE, PHILIP G., JR

PLASTIC ANALYSIS AND PRESSURE VESSEL SAFETY.
AD-729 847

HOFFMAN, O.

DEVELOPMENT OF IMPROVED BIAXIAL STRENGTH IN TITANIUM ALLOY ROCKET MOTOR CASES THROUGH TEXTURE HARDENING.
AD-851 958

HU, L. W.

CASCADE ARRANGEMENT IN SPHERICAL PRESSURE VESSEL DESIGN FOR NUCLEAR POWER REACTORS.
AD-614 591

Hussain, Moayyed A.

CASCADE ARRANGEMENT IN SPHERICAL VESSEL DESIGN FOR NUCLEAR POWER REACTORS.
AD-640 919

Johnson, John M.

TRANSITIONAL BEHAVIOR OF HIGH-STRENGTH STEEL PRESSURE VESSELS.
AD-407 432

Irwin, G. R.

BASIC ASPECTS OF CRACK GROWTH AND FRACTURE.
AD-669 882

Johnson, George

P=6

UNCLASSIFIED
VAPOR CONTAINER LEAK TEST: 3-5 AUGUST 1970
AD-718 026

*JOHNSON, J. E.

FLAMMABILITY IN UNUSUAL ATMOSPHERES: PART I. PRELIMINARY STUDIES OF MATERIALS IN HYPERBARIC ATMOSPHERES CONTAINING OXYGEN, ATMOGEN, AND/OR HELIUM.
AD-644 556

*KENDALL, DAVID P.

THE DESIGN OF PRESSURE VESSELS FOR VERY HIGH PRESSURE Operation.
AD-690 183

*KHOJASTEH-BAKHT, M.

ELASTIC-PLASTIC ANALYSIS OF SOME PRESSURE VESSEL LIDS.
AD-713 258

*KIERNAN, THOMAS J.

AN EXPERIMENTAL INVESTIGATION OF CLOSURES AND PENETRATIONS FOR PRESSURE VESSELS OF COMPOSITE CONSTRUCTION.
AD-600 336

*KIES, J. A.

AN EXPERIMENTAL INVESTIGATION OF BASIC ASPECTS OF CRACK GROWTH AND FRACTURE.
AD-694 751

*KRAMER, IRVIN R.

THE EFFECTS OF THE SURFACE LAYER ON PLASTIC DEFORMATION AND CRACK PROPAGATION.
AD-721 292

*KRENSKE, MARTIN A.

AN EXPERIMENTAL INVESTIGATION OF CLOSURES AND PENETRATIONS FOR PRESSURE VESSELS OF COMPOSITE CONSTRUCTION.
AD-600 336

TOROIDAL-TYPE SHELLS FREE OF BENDING UNDER UNIFORM NORMAL PRESSURE.
AD-694 751

*KLIER, EUGENE P.

THE TENSILE PROPERTIES OF SELECTED STEELS FOR USE IN NUCLEAR REACTOR PRESSURE VESSELS.
AD-664 460

*KNIGHTON, GEORGE W.

SM-1A PRESSURE VESSEL LIFETIME AS RESULT OF IN-PLACE ANNEALING.
AD-699 330

*KOH, R. C.

LINERS FOR HIGH PRESSURE AIR STORAGE VESSELS.
AD-632 092

*KRAFFT, J. M.

IRRADIATION EFFECTS ON REACTOR STRUCTURAL MATERIALS.
AD-664 682

AN EXPERIMENTAL INVESTIGATION OF CLOSURES AND PENETRATIONS FOR TENSILE STRESSES ON THE SURFACE OF AN ELLIPTICAL CAVITY IN COMPRRESSIVE LOADING SITUATIONS.
AD-613 552
UNCLASSIFIED

KUR-LOS

* KURAL, MURAT
FORMULAS AND METHODS USED IN THE ANALYSIS OF PRESSURE VESSELS,
AD-703 634

* KUSANO, HAROLD M.
IMPLOSIONS IN PRESSURE VESSELS, EXPERIMENTAL RESULTS,
AD-702 731

* LANGE, E. A.
FRACTURE DEVELOPMENT AND MATERIAL PROPERTIES IN PYREX-PENN STATE PRESSURE VESSEL,
AD-663 203

* LARSEN, K.
ELASTIC-PLASTIC ANALYSIS OF THICK-WALLED PRESSURE VESSELS WITH SHARP DISCONTINUITIES,
AD-743 630

* LASSELLE, RALPH R.
A COMPLIANCE CALIBRATION FOR A PRESSURIZED THICK-WALL CYLINDER WITH A RADIAL CRACK,
AD-708 660

* LEONARD, ROBERT G.
DEVELOPMENT OF ENFORCER SYSTEMS FOR UNDERSEA CONCRETE PRESSURE RESISTANT CYLINDRICAL HULLS,
AD-747 217

* LEVEN, M. M.
DETERRMINATION OF STRESSES AT NON-RADIAL OPENINGS IN SPHERICAL PRESSURE VESSELS,
AD-638 994

PHOTOELASTIC ANALYSIS OF OPENINGS IN SPHERICAL AND CYLINDRICAL VESSELS SUBJECTED TO INTERNAL PRESSURE,
AD-652 411

* LEWIS, R. E.
DEVELOPMENT OF IMPROVED BIAXIAL STRENGTH IN TITANIUM ALLOY ROCKET MOTOR CASES THROUGH TEXTURE HARDENING,
AD-651 958

* LEYENAAR, ANTONIO R.
DESIGN OF MULTI-REGION PRESSURE VESSELS USING MAXIMUM SHEAR THEORY,
AD-718 970

* LIND, N. C.
PHOTOELASTIC STUDY OF THE STRESSES NEAR OPENINGS IN PRESSURE VESSELS,
AD-617 890

* LOMACKY, GILES
STRESS ANALYSIS OF THIN ELASTOPLASTIC SHELLS,
AD-709 446

AN EVALUATION OF FINITE ELEMENT METHODS FOR THE COMPUTATION OF ELASTIC STRESS INTENSITY FACTORS,
AD-733 874

* LOSS, F. J.
AVAILABILITY OF DATA ON IRRADIATED MATERIALS AS RELATED TO DESIGN REQUIREMENTS FOR WATER COOLED REACTOR PRESSURE VESSELS,
AD-636 699

THE EFFECTS OF COUPLING NUCLEAR RADIATION WITH STATIC AND CYCLIC SERVICE STRESSES AND OF PERIODIC PROOF TESTING ON PRESSURE VESSEL MATERIAL BEHAVIOR,
AD-643 677

A REASSESSMENT OF FRACTURE-SAFE OPERATING CRITERIA FOR REACTOR VESSEL STEEL STEELS BASED ON CHARPY-V
PERFORMANCE
AD-711 845

ANALYSIS OF RADIATION-INDUCED EMBRITTLEMENT GRADIENTS ON FRACTURE CHARACTERISTICS OF THICK-WALLED PRESSURE VESSEL STEELS
AD-720 676

LUTSYUK-KHUDIN, V. A.

NEW METHOD OF PRODUCTION OF CLAD PLATE ROLLED PRODUCTS FOR PRESSURE VESSELS
AD-646 787

LYONS, JOHN THOMAS, III

HEAT TRANSFER CONSIDERATIONS IN A PRESSURE VESSEL BEING CHARGED
AD-706 713

MACKenzie, A.

THE DEPENDENCE OF DYNAMIC STRENGTH OF CYLINDRICAL PRESSURE VESSELS ON GEOMETRICAL PARAMETERS
AD-406 622

DESIGN OF PRESSURE VESSELS FOR CONFining EXPLOSIVES
AD-667 73U

MANOHONEY, J. G.

ANALYSIS OF A CIRCULAR CYLINDRICAL PERFORATED SHELL
AD-714 178

MARCAL, PEDRO V.

ELASTIC-PLASTIC ANALYSIS OF PRESSURE VESSEL COMPONENTS
AC-632 462

MARK, R.

PHOTOELASTIC INVESTIGATION OF STRESS CONCENTRATIONS IN SPHERE-CYLINDER TRANSITION REGIONS; INCLUDING A COMPARISON OF RESULTS FROM PHOTOELASTIC AND FINITE ELEMENT ANALYSES
AD-667 834

MARKUS, HAROLD

FRACTURE TOUGHNESS AND PRESSURE VESSEL PERFORMANCE
AD-615 022

MAYKUT, A. R.

DETERMINATION OF PROOF TEST LEVEL FOR TEST-DEGRADABLE COMPONENTS
AD-720 576

MAYNOR, HAL W.

CRACK TOLERATING ABILITY OF A HIGH-STRENGTH BIAXIALLY STRESSED CYLINDRICAL PRESSURE VESSEL CONTAINING A SURFACE CRACK
AD-734 926

MAYNOR, HAL W., JR.

MECHANISMS OF METALLIC FAILURE: FLAP INITIATION TECHNIQUES AND MEASUREMENTS IN THIN-WALL PRESSURE VESSELS
AD-636 963

MCIVER, R. W.

STRESS ANALYSIS OF A 4-INCH DIAMETER PRESSURE VESSEL DURING A 111 BIAXIAL BURST TEST
AD-638 925

MCKAY, J. R.

WINDOWS FOR EXTERNAL OR INTERNAL HYDROSTATIC PRESSURE VESSELS, PART VII: EFFECT OF TEMPERATURE AND FLANGE CONFIGURATIONS ON CRITICAL PRESSURE OF 90-DEGREE CONICAL ACRYLIC WINDOWS UNDER SHORT-TERM LOADING
AD-748 583

MILLS, E. J.
UNCLASSIFIED

MOODY, W. A.*

DESIGN, PERFORMANCE, FABRICATION, AND MATERIAL CONSIDERATIONS FOR HIGH-PRESSURE VESSELS,
AD-603 694

NISHIDA, KANEHIRO

WINDOWS FOR EXTERNAL OR INTERNAL HYDROSTATIC PRESSURE VESSELS, PART V, CONICAL ACRYLIC WINDOWS UNDER LONG-TERM PRESSURE APPLICATION OF 10,000 PSI,
AD-718 612

MOONEY, C. H., JR

PRELIMINARY REPORT ON FABRICATION AND TESTS OF AN ELECTRODEPOSITED PRESSURE BOTTLE,
AD-423 216

MORKEN, PAUL G.*

DEVELOPMENT OF ENCLOSED CLOSURE SYSTEMS FOR UNDERSEA CONCRETE PRESSURE RESISTANT CYLINDRICAL HULLS,
AD-747 217

MULVILLE, P. C.*

TENSILE STRESSES ON THE SURFACE OF AN ELLIPTICAL CAVITY IN COMPRESSION LOADING SITUATIONS,
AD-613 552

MURPHY, H. V.*

TOROIDAL-TYPE SHELLS FREE OF BENDING UNDER UNIFORM NORMAL PRESSURE,
AD-644 751

NIEDERSTADT, G.*

BERECHNUNG OBERFLÄCHENKRÄFTEFLÄCHEN (CALCULATION REGARDING ABOVE GROUND LIQUID STORAGE TANKS),
AD-725 796

NIKITIN, D. G.*

REPAIRING THICK-WALLED HIGH-PRESSURE VESSELS BY ELECTRIC ARC WELDING,
AD-621 711

OGLESBY, JOHN J.*

AN EVALUATION OF FINITE ELEMENT METHODS FOR THE COMPUTATION OF ELASTIC STRESS INTENSITY FACTORS,
AD-746 878

OUTWATER, JOHN O.*

ON THE STRENGTH DEGRADATION OF FILAMENT WOUND PRESSURE VESSELS SUBJECTED TO A HISTORY OF LOADING,
AD-603 122

THE EFFECT OF REPEATED LOADING ON FILAMENT WOUND INTERNAL PRESSURE VESSELS,
AD-422 866

PARIS, P. C.*

BASIC ASPECTS OF CRACK GROWTH AND FRACTURE,
AD-663 882

PARKS, V. J.*

DISTRIBUTION OF STRESSES IN A PRESSURIZED HOLLOW CYLINDER WITH A CIRCULAR HOLE,
AD-637 013

PELLINI, M. S.*

PRACTICAL CONSIDERATIONS IN APPLYING LABORATORY FRACTURE TEST CRITERIA TO THE FRACTURE-SAFE DESIGN OF PRESSURE VESSELS,
THE EFFECT OF RESIDUAL ELEMENTS ON 95OF IRRADIATION RESPONSE OF SELECTED PRESSURE VESSEL STEELS AND WELDMENTS.
AD-690 602

PRANDONI, JOSEPH F.
ACOUSTIC CHARACTERISTICS OF A GLASS-FILAMENT-WOUND PRESSURE VESSEL.
AD-698 282

PREPOST, R.
TECHNIQUE FOR FORMING PRESSURE WINDOWS FROM THIN METAL SHEETS.
AD-628 877

PROCTOR, JAMES F.
STRESSES IN SHALLOW GLASS DOMES WITH CONSTRAINED EDGES.
AD-638 139

PUZAK, P. P.
PRACTICAL CONSIDERATIONS IN APPLYING LABORATORY FRACTURE TEST CRITERIA TO THE FRACTURE-SAFE DESIGN OF PRESSURE VESSELS.
AD-426 431

ANALYSIS OF RADIATION-INDUCED EMBRITTLEMENT GRADIENTS ON FRACUTRE CHARACTERISTICS OF THICK-WALLED PRESSURE VESSEL STEELS.
AD-720 676

RAYNER, Jno.
METASTABLE AUSTENITIC FORMING OF HIGH STRENGTH PRESSURE VESSELS.
AD-402 636

METASTABLE AUSTENITIC FORMING OF HIGH STRENGTH PRESSURE VESSELS.
AD-438 009

RAYMOND, LOUIS
THE EFFECT OF PROCESSING ON PLASTIC STRAIN ANISOTROPY OF Ti-6AL-4V, AD-714 562

*REINER, ALBERT N.

THE ROLE OF FRACTURE TOUGHNESS AND RESIDUAL STRESSES IN THE FATIGUE AND FRACTURE BEHAVIOR OF LARGE THICK-WALLED PRESSURE VESSELS, AD-713 519

*RUNG, R.

ANALYSIS OF A CIRCULAR CYLINDRICAL PERFORATED SHELL, AD-714 178

*SAUNDERS, R. D.

STUDY OF THE EFFECTS OF THICKNESS ON THE PROPERTIES OF LAMINATED FOR UNDERWATER PRESSURE VESSELS, AD-296 424

*SCALON, RAYMOND D.

A COMPLIANCE K CALIBRATION FOR A PRESSURIZED THICK-WALLED CYLINDER WITH A RADIAL CRACK, AD-708 868

*SCHEIDT, R. R.

EXPERIMENTAL STRESS ANALYSIS OF A ONE-SIXTH SCALE MODEL OF AN ANISOTROPIC PRESSURE VESSEL, AD-612 972

*SCHEUTZLER, J. C.

CASCADE ARRANGEMENT IN SPHERICAL PRESSURE VESSEL DESIGN FOR NUCLEAR POWER REACTORS, AD-614 591

CASCADE ARRANGEMENT IN SPHERICAL VESSEL DESIGN FOR NUCLEAR POWER REACTORS, AD-640 919

*SCHWARTZ, F.

DESIGN OF PRESSURE VESSELS FOR CONFINING EXPLOSIVES, AD-467 730

*SEIBERT, WILLARD J.

ON THE STRENGTH DEGRADATION OF FILAMENT WOUND PRESSURE VESSELS SUBJECT TO A HISTORY OF LOADING, AD-403 122

*SEIGEL, ARNOLD E.

REVERSE YIELDING OF A FULLY AUTOFRETTAGED TUBE OF LARGE WALL RATIO, AD-425 162

HIGH PRESSURE CHAMBER DESIGN, AD-661 229

*SEMPLE, CHARLES W.

ANALYTICAL STUDY FOR A HYDRODYNAMIC TEST SYSTEM, AD-419 356

*SERPE, C. Z., JR.

IN-DEPTH EMBRITTLEMENT TO A SIMULATED PRESSURE VESSEL WALL OF A302-B STEEL, AD-606 696

*RADIATION DAMAGE SURVEILLANCE OF POWER REACTOR PRESSURE VESSELS, AD-629 881

*RADIATION DAMAGE SURVEILLANCE OF POWER REACTOR PRESSURE VESSELS, AD-629 881

*NEUTRON SPECTRAL CONSIDERATIONS AFFECTING PROJECTED ESTIMATES OF RADIATION EMBRITTLEMENT OF THE ARMY SH-1A REACTOR PRESSURE VESSEL, AD-641 283

IRRADIATION EFFECTS ON REACTOR STRUCTURAL MATERIALS, AD-707 336

IRRADIATION EFFECTS ON REACTOR
UNCLASSIFIED

SER-SNI

SM-1A REACTOR PRESSURE VESSEL
SURVEILLANCE: IRRADIATION OF
FOLLOW-ON CAPSULES IN THE SM-1
REACTOR,
AD-717 61B

DAMAGE-FUNCTION ANALYSIS OF NEUTRON
EMBRITTLEMENT IN STEEL AT REACTOR
SERVICE TEMPERATURES,
AD-745 299

SMAHINIAN, P.

IRRADIATION EFFECTS ON REACTOR
STRUCTURAL MATERIALS,
AD-744 941

SHARIFI, P.

ELASTIC-PLASTIC ANALYSIS OF SOME
PRESSURE VESSEL HEADS,
AD-713 258

SILMAN, ROBERT A.

PROPERTIES OF GRAPHITE FIBER
COMPOSITES AT CRYOGENIC
TEMPERATURES,
AD-748 885

SMITH, JR.

IRRADIATION EFFECTS ON REACTOR
STRUCTURAL MATERIALS,
AD-711 321

SMITH, HERSCHEL L.

CHARACTERIZATION OF GTA ELEMENTS
IN 10N1-6CO-2CR-1MO STEEL,
AD-746 111

SMITH, K. W.

RESEARCH AND DEVELOPMENT IN SUPPORT
OF THE POLARIS PROGRAM, TASK 1.

P-13

UNCLASSIFIED
INVESTIGATION OF FILAMENT MINDING PATTERNS.
AD-425 196

*SMITH, R. L.

STUDY OF THE EFFECTS OF THICKNESS ON THE PROPERTIES OF LAMINATED FOR UNDERWATER PRESSURE VESSELS.
AD-295 424

*SPRAGUE, J. A.

IRRADIATION EFFECTS ON REACTOR STRUCTURAL MATERIALS.
AD-744 941

*STACHIM, J. D.

SOLID GLASS AND CERAMIC EXTERNAL PRESSURE VESSELS.
AD-428 905

THE CONVERSION OF 16-IN. PROJECTILES TO PRESSURE VESSELS.
AD-776 950

WINDOWS FOR EXTERNAL OR INTERNAL HYDROSTATIC PRESSURE VESSELS, PART I.
CONICAL ACRYLIC WINDOWS UNDER SHORT-TERM PRESSURE APPLICATION.
AD-646 682

WINDOWS FOR EXTERNAL OR INTERNAL HYDROSTATIC PRESSURE VESSELS, PART II.
FLAT ACRYLIC WINDOWS UNDER SHORT-TERM PRESSURE APPLICATION.
AD-652 343

WINDOWS FOR EXTERNAL OR INTERNAL HYDROSTATIC PRESSURE VESSELS, PART III.
CRITICAL PRESSURE OF ACRYLIC SPHERICAL SHELL WINDOWS UNDER SHORT-TERM PRESSURE APPLICATION.
AD-689 789

WINDOWS FOR EXTERNAL OR INTERNAL HYDROSTATIC PRESSURE VESSELS, PART IV.
CONICAL ACRYLIC WINDOWS UNDER LONG-TERM PRESSURE APPLICATION AT 20,000 PSI.

AD-697 272

PRESSURE VESSEL CONCEPTS:
EXPLORATORY EVALUATION OF STACKED-RING AND SEGMENTED-WALL DESIGNS WITH TIE-ROD END-CLOSURE RESTRAINTS.
AD-705 125

DEVELOPMENT OF A SPHERICAL ACRYLIC PLASTIC PRESSURE HULL FOR HYDROSPACE APPLICATION.
AD-707 363

WINDOWS FOR EXTERNAL OR INTERNAL HYDROSTATIC PRESSURE VESSELS, PART V.
CONICAL ACRYLIC WINDOWS UNDER LONG-TERM PRESSURE APPLICATION OF 10,000 PSI.
AD-718 812

WINDOWS FOR EXTERNAL OR INTERNAL HYDROSTATIC PRESSURE VESSELS, PART VI.
CONICAL ACRYLIC WINDOWS UNDER LONG-TERM PRESSURE APPLICATION AT 5,000 PSI.
AD-736 594

WINDOWS FOR EXTERNAL OR INTERNAL HYDROSTATIC PRESSURE VESSELS, PART VII.
EFFECT OF TEMPERATURE AND FLANGE CONFIGURATIONS ON CRITICAL PRESSURE OF 90-DEGREE CONICAL ACRYLIC WINDOWS UNDER SHORT-TERM LOADING.
AD-748 583

ACRYLIC PLASTIC HEMISPHERICAL SHELLS FOR NUC UNDERSEA ELEVATOR.
AD-749 029

*STACK, THOMAS E.

DESIGN OF MULTI-REGION PRESSURE VESSELS USING MAXIMUM SHEAR THEORY.
AD-718 970

*STARR, G. L.

PLASMA ARC WELDING PROCESS DEVELOPMENT PROGRAM, VOLUME I.

P-14

UNCLASSIFIED
UNCLASSIFIED

AD-855 520

STEEL, L. E.

IRRADIATION EFFECTS ON REACTOR
STRUCTURAL MATERIALS,
AD-744 941

INTERPRETING THE STRUCTURAL
SIGNIFICANCE OF TIME DEPENDENT
EMBRITTLEMENT PHENOMENA TO NUCLEAR
REACTOR PRESSURE VESSEL INTEGRITY,
AD-748 147

STEEL, D. E.

IN-REACTOR STUDIES OF LOW CYCLE
FATIGUE PROPERTIES OF A NUCLEAR
PRESSURE VESSEL STEEL,
AD-606 773

STEEL, I. E.

IRRADIATION DAMAGE SURVEILLANCE OF
POWER REACTOR PRESSURE VESSELS,
AD-629 881

STEEL, L. E.

NEUTRON EMBRITTLEMENT OF REACTOR
PRESSURE VESSEL STEELS,
AD-423 526

IN-DEPTH EMBRITTLEMENT TO A
SIMULATED PRESSURE VESSEL WALL OF
A302-B STEEL,
AD-606 696

YANKEE REACTOR PRESSURE VESSEL
SURVEILLANCE: EVALUATION OF
SPECIMENS EXPOSED DURING THE SECOND
CORE,
AD-609 565

NEUTRON SPECTRAL CONSIDERATIONS
AFFECTING PROJECTED ESTIMATES OF
IRRADIATION EMBRITTLEMENT OF THE ARMY
S-1A REACTOR PRESSURE VESSEL,
AD-641 283

IRRADIATION EFFECTS ON REACTOR

P-15

UNCLASSIFIED
UNCLASSIFIED

STEELS FOR COMMERCIAL NUCLEAR POWER REACTOR PRESSURE VESSELS,
AD-703 963

CHARACTERIZATION OF GTA WELDS IN 110Ni-8Cr-2Mo-1%0 STEEL,
AD-746 111

PHOTOELECTRIC INVESTIGATION OF STRESS CONCENTRATIONS IN SPHERE-CYLINDER TRANSITION REGIONS:
INCLUDING A COMPARISON OF RESULTS FROM PHOTOELECTRIC AND FINITE ELEMENT ANALYSES,
AD-667 634

PHOTOELECTRIC STUDY OF THE STRESSES NEAR OPENINGS IN PRESSURE VESSELS,
AD-617 890

VERIFICATION TESTING OF CONJUGATE STRUCTURE,
AD-669 470

THE ROLE OF FRACTURE TOUGHNESS AND RESIDUAL STRESSES IN THE FATIGUE AND FRACTURE BEHAVIOR OF LARGE THICK-WALLED PRESSURE VESSELS,
AD-713 519

FATIGUE CRACK TOLERANCE IN THICK WALLED CYLINDERS,
AD-717 301

RESEARCH AND DEVELOPMENT IN SUPPORT OF THE POLARIS PROGRAM: TASK I:
INVESTIGATION OF FILAMENT WINDING

P=16

UNCLASSIFIED
A.) 734 926

WATSON, H. E.

YANKEE REACTOR PRESSURE VESSEL SURVEILLANCE: EVALUATION OF SPECIMENS EXPOSED DURING THE SECOND CORE.
AD-609 565

WATSON, H. E.

INRADIATION EFFECTS ON REACTOR STRUCTURAL MATERIALS.
AD-744 941

INTERPRETING THE STRUCTURAL SIGNIFICANCE OF TIME DEPENDENT KARBILTLEMENT PHENOMENA TO NUCLEAR REACTOR PRESSURE VESSEL INTEGRITY.
AD-748 147

WELLS, A.

BASIC ASPECTS OF CRACK GROWTH AND FRACTURE.
AD-563 882

*WILSON, FRANK *

FILAMENT-WOUND PRESSURE VESSELS.
AD-600 215

WITZELL, W. E.

PHYSICAL AND MECHANICAL PROPERTIES OF PRESSURE VESSEL MATERIAL FOR APPLICATION IN A CRYOGENIC ENVIRONMENT.
AD-443 851

WOODS, F. J.

FLAMMABILITY IN UNUSUAL ATMOSPHERES, PART I. PRELIMINARY STUDIES OF MATERIALS IN HYPERBARIC ATMOSPHERES CONTAINING OXYGEN, NITROGEN, AND/OR METHANE.
AD-644 556

YANG, C. T.

PHYSICAL AND MECHANICAL PROPERTIES