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I. INTRODUCTION,

In order to get a computer to deCl with the physical world !t
must have a data representation on which oomputations Involving
space, tlms, shape# slze, and the appearance of things can be done.
It Is my current preJudloe that polyhedra provide the Proper starting
coint for building such a Physical world representations At Stanford
Artificial Intellegence, BInford and Agin have started Instead with
spine-cross section models as an alternate approach to the same
Problems Ereference 13, Other researchers with somewhat dfferent
goals, are attempting to build semantio, predicate calculus, problem
solving# or startegY PIRnni g World models. Ir. any event. this
caner Is about a bod , faoe, e gg, ve-tex Pol hedron model that is
for mOdeling •bjac s and scenes of oojects for the sake of computer
vision,

Although the data structure to be discussed is not language
deoendbnt, the terminlogy and examples will follow ALGOL and LISP.
Also, the reader is assumed to have some acquaintance with the Ideas
associated with the following technical termst

A: block, node, Item, element, atom.

1: link, poonter, address, reference.
C: datum, content, value,
D: list, ring, stack, odlb tree,
E: dynamic free storage & memory allocatlon.

A t'crough presentation of these terms and Ideas can be found in
chapter two of volume one of Knuth's cookbook, 'The Art of Computer
Programming, CReference 73, The word "ring" used informally In this
paper Will always mean a double pointer ring with a head; and as In
LISP, words of memory happen to be abl6 to hold two Pointers.
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FIGUjRE 1.2 - A Polyhedron M•odel of a M'echanical Arm.
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It A, Introduc-tion to World Modeling.

I will Introduce my requirements for a computer model of the
physical world In terms of Its role as a memory, As a memorY# a

world ;odel has contents and an addressing meohanlsm, The klnds of
data that I wish to hold In my world model are:

CONTENT REQUIREMENTS
1. Topological data.
2, Geometric data,
3, Photometric data.
4, Parts trot data,

Topological data has to do with the notion of neighborhoodi a

world model has data on what is next to what. A face, edge, vertex
model Is essentially dedicated to surface topologyl matters of volume

topology are not stored but rather must be computed. Geometric data

has to do with nations such as locus, length, area and volume.
Photometric data includes the locus and nature of light sour'oes as
well as data on how surfaces reflect, absorb and soatter light, Parts

tree data has to do with the notion that objects are composed of
carts, which I construe as data on the structure of the Physical
world rather than as purely an artifact of having structured world

datal that ie, I prefer to have the specification of how an entity Is

broken Into carts be external to my world model, The kinds of data
not included are semantic data (other than body names); physical data
such as mass, Inertia tensors, electrical oropertls and so onl and
cultural date such as whether an object is a toy, tool, or weaPon;
with %my artistic, religious or market value.

Next the kinds of addreosln mechanisms I wish to have# (or
equivalently the inDut-oUtDUt modes of the model) are:

4CCESSING REQUIREMENTS
I, Appearance - given a camera, return an image of

what the world would look like from that camera.

2, Recognition - given an Image, return the objects
from the world model that appear in that Image.

3, Camera Solution - givon a recognized image,
find the location & orientation of the camera.

4. Perception - given Image$, from solved cameras,
place new bodies into tVi model for oortions of
the Images that have nuc yet been recognized.

5, Spatial Accessing - given a locus and radius,
return the portions of objects In that sohere.

Clearly, these are the high level accessing requirements which are
the reasons for having a world model and the design goals for model
bullding.
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FIGURE 1.3 - A Camera Nodel.

FIGURE 1.4 - Logical and Physical P'aster Sizes.

LDX: 16 columns

LDY 12 * - PDY =2.3"
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1. B. Introduction to a Camera Model.

As the accessing requirements Imoly, a world model.reQuires a
spfclal entity called a camera which is uced to model Image
formation. Although the camera model is Importaht here for a comolete
specification of the data, It may be skipped on a first reading. The
cartioular camera model I have been using lately, Is ex ressed by
eighteen real numbers Involving nine degrees of freedom. First there
Is tle camera lens center louel

CX, CY, Cap In world coordinates.

3 Aflxed to the lens center Is the camera frame of reference with unit
vectors i, J and k. When the Image formed by the camera Is placed In
correscondence to a display screen, as Illustrated In figure 1,31 the
unit Vector I maos into the rlghtward positive x of the display
screen, and the unit vector J maps Into the upward positive y of the
VisplaY screen, and the unit vector k comes out of the display screen
to form a right handed coordinate system, Together the three Unit
vectors of the gamert are the three by three rotation matrix:

I

IX, ly, I2
JXO jy, Ja In world coordinates.

.[ KX, KY, KE

Next, there are three scales which Uetermlne the Ooriespondenoe
between world size and image siZe. Observe that the world Ts measured
In physical units of length like meters or feet while computer Images
come In Integral sLzes like 1024 by 1024 or 480 rows oY 512 columns,
thus the conversion scales must be In terms of logical Image units

t er PhYsical world unilts, In an actual television camera a minute
Image (say 9mm by 12mm) Is formed on a vtdiion tube and that Image
has a Particular number of rows ard columns, It Is the little Image
on the vidicon that we pretend to model by the six parameters:

LDX, LDY, LDZ Logical raster size,
t PDX, PDY, FOCAL Phi'jIctI raster sIze.

Where the number named FOCAL# is the focal plans distanoce which !n
this model (with dlsiant obJeots) can safely be esqua&ted with the Ions
fecal length and can be given In inllimeters WonVentiOna! lens run
12,5mm to 75mm for I" TV). The integr LDE Is an artifact so that
the units acme out correctly in the I dimension, Thus the scales
factors are defined:

SCALEX ' -FOCAL.LDX/PDX;
SCALSY . -FOCALeLDY/PDO(
sCALEJ FOCALeLOij

This simple camera model ;s used tc Compute vertex Imayo
cocrdlnates, A more alaborate ohysical camera model can be found Yn
Sobel [reference 93.

• !



FIGURE 1.5 -A Renaissance Camera Model.
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1 J, C, Introductlon to Body# Face, Edgoe Vertex (BFEV) Modeling,

This intrtduotion to BFEV modeling will be Informal and
specific to the winged edge model presented In Part-1! of this paper.
Many of the basic numerical relations which make BFEV models
ImPotant are stated in ALGOL notation without Proof.

The Vertex,

A vertex Is an Instance of a point In a Euclidean th'ee
space, The Important thing about a vertex is Its world locus (with
oomponent names XWCYWCEWC standing for world-coordinates), Vertex
lochI are the basic geometric data from which length, area, volume,
face vectors and Image positions can be computed. Also a Vertex may
exist simultaneously in one or more image spaces. An Image space
(with component names XPP#YPP,ZPP standing for perspective-proJeoted)
Is always three dimensional and Is determined with respect to a given
camera centered coordinate system (with component names XCCYCC,#CC
standing for camera-coordinates). The third Image component, 1 PP,
Is taken Inversely proportional to the distance of the vertex from
the camera Image Diane, ZCC. Using the camera of the previous
section. The transformation of a vertex world locus to a camera
centered locus Is:

t X z XWC " CXI

Y* YWC - CYI
2 z WC - Cli

XCC * IX.X + IY.Y + 12021
YCC * JX*X + JY*Y + Jz*iz
ZCC * KX*X + KY*Y + Kjeji

The first three assignment statements are the translation to
the camera frame's origin, the second three assignments are the
rotation to the camera frame's orientation, Next the oersoectlve
projection transformation is comouted(

XPP SCALEX*XCC/ZCC;
YPP " SCALEY*YCC/ZCCi
iPP SCALEi /zCCI

The XPP and YPP assignments are derived by means of similar
triangles, as Is being done by the man In figure 1,51 the loo
assignment Is for preserving the depth Information and the
collnearity of the world in the perspective Projected Image space, A3
given, the PP frame is right handed and vertices in front of the
camera's Image olane will have negative EpPI lop values near -FOCAL
are close to the camera and values approaching Zero are far away,

A final matter with respect to vertices Is their valence, The
valence of a vertex Is the number of edges that meet at the vertex. A
vertex valence of three, for example, Indicates a trihedral corner.
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1, C. Introduction to BFEV Modeling, (cont'inued),

The Edge,

For a start, the structure of an edge need be thought of as
little Pore than two vertices; the topological subtlety of edges will
be explained later. However, two vertices do define the Important
geometric edge data called the 2D line coefficients. Named AA, RB,
CC; these coefficients are computed from the perspective locus of the
edge's endpoints as follows:

AA Y1 - Y2;
BB X2 - XI:
CC X10Y2 - X2*Yl;

These coefficients appear in the 2D equation of the line that
contains the edge:

0 s AA*X + BB.Y + CC;

Wher the edge coefficients are normalized:

L - SQRT(AAt2+9Bt2);
AA ' AA/L;
BB - BB/L;

CC 4 CC/l.;

the line equation gives the distance, of a point XY from the line:

S* AA*X + 38 *Y + CC;

The distance is actually ABSCOQ) since 0 is negative an one ?ide side
of the line; also if one were standing on the plane at ooint X1,Yi
facing x2,Y2 the Q oosItive half-plane would be on your left and the
O negative half plane would be on Your right.

An Important operation on two edges is to detect whether Or
not they intersect; this can be decided by ohecking first whether tha

endlOints of one edge are in the opposite half planes of the other
edge, and second whether the endpoints of th, latter edge are In the
opoosite half planes of the first. When bo conditions obtain, then
the Intersection point can be found:

T * (Al*B2 - A2*Bl);
X 4 (B1.C2 - B2*Cl)/T;
Y -(A2eC1 - AI*C2)/T;

An actual compare for Intersection should initially check for the
identity case, and for edges with a vertex in common,

K•)l
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I, C. Xntroductlon to BFEV Medellng, (continued),

The Face,

A face Is a finite region of Plane enclosed by s ralght
lines, A safe formal face structure could be built by d5tntng a
triangle as three non-colinear vertices and then lns::t;ng that all
faces be triangle Interiors, Unhappily, BFEV faces are usually
represented as a list of Vertices and edges (or by something nearly
equivalent) for the sake of saving memory space, Such %list' faces
are not monolithic but tend to suffer special cases and Pathologies
such astSu aCoincident or crossing edges#

Holes and DIsjolntnesso
Concavity (6 Convexity),
Non-coplanarlty,

Like edges, faces have characteristic coefficients Face coefficients

satisfy the equation of a plane In whioh the face Is embedded:

AA*X + BB*Y + CC*jj a KK,

The equation could be divided by KK. but that is uidesirable because
the AA# 081 CC are more useful as a unit normal vector, In which case
KK Is the distance of the origin from the plane, Given the Iooli of

three non-oollinear vertices, the coefficients of a plane can be

computed by Kramer's rule as follows:

KK Xl*(Z2*Y3-Y2*13)
+ Y1*(X2*e3-"2*X3)
S+ 21*(Y2oX3"X2*Y3)1

AA .. (E1.y2-Y3) + 22e(Y3-Y1) + 13*(YIoy2));
BB * (XC*(Z2*-3) 4 X2*(eC23-) + XUe(1-22));
CC (Xi*(Y3-Y2) + X2e(Yj-Y3) + X3*(Y2-Y1))M

L and normallzedl

ABC * SQRT(AAt2 + BBf2 + CC#2);
AA & AA/ABC;
BB SB/ABCI
CC CC/ABC;
KK KK/ABC;

If the given vertices VI, V2* V3 had been taken going counter
clockwise about the face as viewed from the exterior of the solid,
then the following relations obtains

AA*X + 88eY + CC*2 < KK Implies XYoi above the Plane,
AA*X + BBY + CC*e z KK Implies X,Y#Z In the plane,
AA*X + OBeY + CC*e ) KK Implies X*Y#e below the plane,

Face coefficients Prove useful In both world and Image coordinates.
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I. C, Irtroduction to BFEV Modeling, (continued),

POLYHEDRA, BODIES and OBJECTS,

In elementary geometry# a polyhedron Is sRid to be a solid
formed (or bounded) by Plane faces; the word "polyhedron" literally
r eaning "many-faced". Topologically, simple volyhedra satisfy
Euler's F-E+V=2 ecuation; where F, E and V are the number of faces,
edges and vertices of the polyhedron respectively. This ecuation was
known to Descartes ;n 1640, but the first Proof wasn't given until
1752. when Euler proved the relation by considering the graph
corresponding to the edges of polyhedra. A simple polyhedron Is one

U= horeomorphic to a Sphere. The rigorous development of volume measure,
and Ln turn 'solid' volyhedra, is not simple; thus it has been easier
to take the topologlcal notion F-E+V=2 as the more orimitive
definition of a Voiyhedron on which to base a data structure and to
Orcceed towards the appearance of 'solidness' which is a more
corplicatea notion.

Counter to the usual usuage, I defino the word "body" to mean
an entity more specific than a Polyhedron; the Idea being that a
Polyhearon Is represented by the whole structure of bodles, faces,
edges and vertices. Bodies may have location, orientation and volume
In space. Bodies may be conected to faces, edges and vertices# which
IraY or may not form a complete polyhedron. It is typical to have
only one body to a polyhedron when representing a rigid object like a
sleage hammer and several bodies to a polyhedron when representing a
flexible object like a man. Furthermore, the body concept Is used to
hanole the notion of Parts and abstract regional objects such as a
Parking lot, For example, the Stanford Al Parking Lot is
recresented by a body that has thPee parts: the Near, Mid and Far
Lots. The Near Lot then has aisles and lanes and lamp Islands; a lamp
Island has a curb and two lampsi a lamp has a base, stem and too.
This Parts structure is carried In body nodes, Fimally, the word
"object" will be used to refer to physical objects such as a
redwooo-tree, building, or roadway,

Preceding page blank
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Figure 1.6
FACE PLRIMETER - a face is surrounded oy edges and vertices.
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Figure 1.7
VERTEX PERIMETER - a vertex is surrounded by edges and faces.
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Figure 1,8
EDGE PLRIMETER - an edge Is surrounded by 2 faces 4 2 vertices,
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I. C. Irtroduction to BFEV Modeling, (continued).

FOUR KINDS OF BFEV ACCESSING.

1. Accessing bY name and serial number.
42. Parts-Tree Accessing.
3. FEV Sequential Accessing,
4. FEV Perimeter Accessing.

A BFEV mocel has four kinds of accessing. The most
conventional BFEV access is retrieval oy symboliO name which requires
a symbol table, Next, between bodies there is Parts-Tree accessing.
At the top of the Parts-Tree is a sp'icial body named the world to
which all the other Dodies are attached; thus the world body serves
as an USLIST node, Given a particular body, a list of its sub-parts
can te retrieved as well as its supra-part or "supart". A suoart is
the whole entity to which a part belongs, the World being its own
sucart,

Within eac, bony there Is face, edge and vertex soguential
accessing. Given a oody, all its faces, or edges, or vertices need to
be readily availaole since nersoective orojection loops thru all the
vertices# and the Process of disolay clipping loops thru all the
ejg6s, and the act of checking for body intersection looas thru all
the taces. In LISO# one might provide FEV seauential accesslng by
Placing a list of faces, a list of edges and a list of vertices on
the Property list of eacn tzodye so that a cube might be represented
as:

(bEFPROP CURE (F1 F2 F3 F4 F5 r6) FACES)
S(DEFPROP cURE (El E2 E3 E4 E5 E6 E 7 E8 E9 EIS Ell .12)EDGES)

(DEFPROP ZUSE (Vl V2 V3 V4 V5 V6 V7 V8) VERTTCES)

Finally, among the faces, edges and vertices of a body there
is perimeter accessing. Faces have a oerimeter of edges and vertices
Eflure 1.6); less commonly used, vertices nave a perimeter of edges

(. anc taces [figure 1.73; anO of oarticular note, edges have a
Peritmeter always for.ned by two facei and two vertices, Eftgure 1.8).
Perimeter accessing reauires that given a face, edge or vertex# that
the Perinreter of that entitY be readily accessible. Since the surface
of a polyhedron is orientable, that Is has a well defined Inside and
outside, (Klein bottles with their crosscaps will not be modeled),
such perimeter lists can be ordered (say clockwise) with respect to
the extorior of the polyhedron. Perimeter accessing is mentioned in
GuZman [reference 61 and Falk (reference 43 and is the underlying
basis of oart-II of this PaOer which presents a polyhedron model
built for accessing and altering face, edge and vertex perimeters.
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Figure 2,1 *BASIC NODE STRUCTURE:,

BODY-BLOCK FACE-BLOCK EDGE-BLOCK VERTEX-BLOCK
-3, oarttocopat -30 =31 .3, XWC
021 -2* -2, -2. YWC

Of type 0. type of type 0. type
*11 rifaceojpface +1. nfacepofaoe +1, mfaceroface +1.
*29 fledjped 42, pod +2, riodeped +.2 pod
+31 nvt*0vt +3, 43, nvt~ovt +3. Mvtoovt

+4 4, +4s nowtoow +4,
+5, +5, +5, ncow~voow +5.
1+6. 1+6. - +6, 146,

5 words 2 words 6 words 5 words

Figure 2.2 -THE WINGED EDGE.
(AS viewed from the exterior of a solid),

NCCW(E:) \/PCW(E)

ePVTCE)

NFACECE) E PFACE(E)

NVTCE)

NCWCE) /\PCCWCE)

Figure 2.3 -AN ACTUAL NODE STRUCTURE - SEPTEMEER 1972,

BODY-BLOCK FACEF'.R DG-LOCK VERTEBJ..QC.
o3, oartocopart -3. AA -31A -3.x~
-2t l000! -2, B8 -2v B8 -2. YWC
.1; OnAmo, -1. CC -1, CC -1. EWC
0, tYvesseriaI 0. typopserlal 0, tyoesserial 0. typeoserial

*11 rifacesoface +1. mfaceopface +1, mfacesofaoe +1. XDC,Tjontr~
+2, fled~oed +2. pod *2, nedloed +2, YDC,ood
+3, flvt~pvt +39 00 +34 nvt,ovt +3. nv'toovt
+40 Fcr'tlVcnt +4, KK +4, rmowppcw +4, XPP

+59Eom#Pct +#*5, Micow'pccW +5. YPP
146, nbodyvpbodY +6. lilts 1+6. alttgbody 146. FDD

K _
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PakT-11. THE WINGED ADE DATA ST:;JCT.JR,,

II. A, Winged Edge Data Structure.

Hodles, Faces, Edges and Vertices are reoresented o, blocKs
of contiguously addressed Words. A single block size of ten Acrds is
adeouate. A single word, like a LISP node, can hold two aadres5es or
a floatinq point number, The HFEV blocks are Pointed %, ty the
address of tleir word nu-mbered zero which contains Co~troi oits
incicat;ng whether the block Is a body, face, edge or vertex. Figure
2.1 illustrates the block format tnat is being presented as an
exampie of a winged edge data structure; a minimal numoer of words
for each block is indicated.

The basic geometric datum is the vertex locus. 1iich is
stored in three Words of each vertex block at Positions -3, -ý, -1;
these positions are named XWC, YWC# ZWC respectively; the letters
"WC" standinq for "world coordinates",

The basic tooological data are the three rings of the body;
(a ring of faces, a ring of edges, and a ring of vertices) ;nd the
wingea edge pointers (eight such pointers in each edge blockand one
such Pointer In each face and vertex clock). The face, edge andvertex ring pointers are stored at positions +I, +Z, +3; eacn
Position has two names: NFACE, :.ED, NVT for the left pointers
respectively; and PFACE, PEG, FjT for the right. A face, edge Or
vertex can only belong to one body and so there is only one body node
in a given face, edge or vertex ring; and that body node serves as
the head of the ring. The reason for double pointer rings is for the
sake of raoid deletion: other Minor advantages would not Justify the
use of double rings.

The eight WINGED Pointers of an edge block Include: two
Pointers to the faces of that edge, two pointers to the vertices of
that eoae, and four pointers to the next edges clockwise and counter
clocKlse in each of that edge's two faces; these last four pointers
are called the wings of that edge, AS figure 2,2 suggests, four of
these eight pointers are stored In %he same positions and referred to
by the sarie names as the face and vertex ring pointers; namely the
NFAGL, PFACE, NVT and PVT Wointers, There are four ways in which a
Pair Of faces anj a Dair of vertices can be placed Into tme tqo face
Positions and two Vertex positions of an edge; by constrain;ma these
choices two bits are imolicitly encoded, on0 bit is called the edge
oarity, and the other ;s called the surface Parity; these oits are
exolained later, finally, the single winged edge pointer found in
faces and vertices is kepDt in the position named PED and it ooints to
one of the edges belonging to that face or vertex.

Although the vertices in figure 2.2 are sho~n wit"% three
edges, vertices may have any numRer of edges; those other :otentlal
edges Would not ne cIrectly connected to E and so were not sno~n.
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A SUMMARY OF WINGED EDGE OPERATIONS.

DYNAMIC STORAGE ALLOCATION,

2.. Q - GETBLK(SIZE);
2 RELBLK(OPSIZE);

BFEV MAKE KILL OPERATIONS.

1, BNEW MKB(B)) KLB(BNEW);
2. FNEW MKF(B)i KLFCBDFNEW)i
3. ENEW .*MKE(g); KLE(BoENEW)i
4, VNEW MKVC9); KLV(BVNEW)1

FETCH LINK AND STORE LINK OPERATIONS,

1, F NFACE(O); F PFACE(Q)l NFACE.CF#O); PFACECFO);
2, E NEOcO); E NED(O); NEO.(EqO); PEO.cEO);
3, V NVT(Q); V NVT(Q); NVT.(VO); PVT.(V.o)i
4. A NCWCE)i A PCW(E); NCW.(A#E); PCW.CA*E)i
5. A NCCW(E); A PCCW(E); NCCW.(APE~i PCCWe(A#E);

WING LINK OPERATIONS.

1. WING(EltE2);
2, INVERT(E);

PERIMETZR FETCH OPERATIONS.

1., ECW(E01
2. E ECCWt(poCfl
3. F FCW(E,V);
4, F FCCWCE#V);
5. V VCW(E#F);
6s V VCCW(E#F1;
7. 0 OTHER(EO))

PARIS TREE OPERATIONS.

1, 9 PART(S); 8 s- COPART( )
2. B BODYCO); B & SUPART(B);
3. ATTCB3.,B2); ATTACHCBl,82);
14. OETCB)l DETACH(B);
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I1. b, The Winged Edge Operations.

Dyramic Storage Allccation,

At the very bottol, of what is becoming a rather dee:; nest of
Orimitives withi.i orimitives, are the two dynamic storage allocation
furctiOns GETBLK and RELPLK. GETBLK allocates fron 4. to 4K words of
memory space in a contiguous block and returns the machi-e address of
the tirst word of that block. RELBLK releases the indicatei block to
the aVailaole free memory space. (It Is sad that the machines of our
day do rot come witn dynamiC free storage), A good reference for
irrDlemerting such dynamic storage, mentioned earlier, Is Knuth
Ereference 7). Although a fixed block size of ten or fewer words can
be flade to handle the 3FEV entities, grandiose and f;ckle research
applications (as 4ell as memory use optim, ization) odeann the
flexibility Of a variable flock size.

BFEV Make & Kill Operations.

Just above the free storage routines are the four pairs of
mrake ano kill operations. The MKB operation creates s body block and
attaches it as a sub-part of the given body. The world tCey always
exists so that MKB(WORLD) will make a body attached to the world. In
this paper, the terms 'attach' and 'detach' refer to Operations on
tha Parts-tree linkages. The FEV make operations: MKF, i:Ks, MKV
create the correSponding FEV entitles and place the- ir their
respective FEV rings of tha given bOdY. In the current
implementation, the FEV makers Set tne type bitS of the •ntitYe and
Increment the proper total FEV Counter, as well as the proper body
FEV counter In the given Cody's node# (the Font, Ecnt, Vcnt node
positions are shown in figure 2.3), The kill operations: KLEG KLF,
KLE, ana KLV; delete the entity from its ring (or remove !t from the
Darts-tree), release its space by ca!ling RELBLK, ana then decrement
the appropriate counters, The body of the entity is needed DY the
kill primitives and can be Provide directly as an argunent or if
m issing, will 00 found in tne data bY the primitive itself,

Fetch Link and Store Link Operations.

Each of the fetch link and store link operations named in the
sumrarY is a sin;le machine Instruction that accesses the
corres~ondln- link position in a node. Once eFEV nodes exist, with
their rings :nd parts-tree already in place; the fetch a-d store 1Ink
operations are used to construct or modify a polyhedron'Z :;rfawe, At
this lowest level, constructing a polyhedron renulres -. ree steos:
first the two vertex and two face pointers &re Placed ;,tc each edge
in counter clockwise order as they appear when that edge ;s viewea
frOr the exterior of the solid; second an edge pointer is *laced in
each face and vertex# so that one can later get from a givcn face or
vertex to one of its edges; and third the edge wings tre linkea so
that all tne ordere3 perimeter accessing operations describeo below
will work. Wing linking is facilitated by the WING ooeratIcn.



PAGE 19

FIGU~RE 2.4 MIDPOINT EXAMPLE C39e% text on page 20).

\ vt/

nccw \ / pcw

V.

ENEW I
I nvt

VNEw
I g) vt

E I

ncw / \ pccw

/ rvt\

INTEGER~ PROCEDURE MIDPOINT (INTEGER E);
BEGIN "MIDPOINT"

INTEGER B,ENEWVNEW*V1DV2;

" CRLATE A NEW EDGE AND VERTEX$
B "8ODY(E);
VNEW .MKV(B);
ENEW MKE(B);

"a GET VERTICES AND FACES CONNECTED TO EDGES;
PVT, (PVT(E)*ENEW)i
PVT, (VNEW*E);
NVT, (VNEWlENEW)
PFACE, (PFACE(E)tENEW);
NFACE, (NFACE(E) DENEW);

"a GET EDGES CONNECTED TO VERTICES;
IF PED(V)=E THEN PED.(ENEWtV);
PEG, (ENEWOVNEW);

LINK THE WINGS TOGETHER;
WINGC NCC W(E ) ENE H);SWING(PCW CE) ,ENE W) ;
NCW,%(EPENEW) JPCCW. (E:,ENEW);
PCW, (ENEW.E) JNCCW, CENEWoE) i

aPLACE VNEW AT MIDPOINT POSITION;
V44 o. PVTCENEW)i V2 0- NVTCE);
X WC(VI.EW) -(XWC(Vi,)+XWC(V2)) * 0.5;
YWC(VNEW) - (YWC(Vi)4.YWC(V2)) * 0.5;
ZWCCVNEW) -(ZWC(Vi,)*ZWC(V2)) * 0.5;
RETURN(VNEW);

4END "MIDPOINT";
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The wing Link Operation,

The WING operation stores edge pointers into edges so that
the face perimeters and vertex perimeters are made; and so that
surface parity is preserved. Given two edges which have a vertex and

a face in common, the WING operation places the first edge in the

Procer relationship (PCWo NCCW, NCW, or PCCW) with resoect to the

second, and the second In the proper relationsh!o with respect to the

firsto The INVERT operation swaps the vertex, face, clockwise wing,

and counter clockwise wing pointers of an edge, INVERT oreserves
surface parity# but flips edge parity.

The Midpoint Example,

In figure 2,4 an example of how the operations given so far
coula be used to code a midpoint primitive Is shown, The examole
miopoint Primitive takes an edge argument and splits it In two by
making a new edge and a new vertex and by placing them Into the

f: Polyhedron with the topology shown In the diagran, Then the midpoint

locus Is computed and the new vertex is return, The ALGOL notation

usea Is SAIL, which allows defining the character "I" as a COMMENT

delifilter and allows defining XWC as a real numoer from the special
arraY named MEMORy, The MEMORY array In SAIL Is the job's actual

machine memory Space and gives the user the freedom of accessing any

t worc in his core Image,

The Parts-Tree Operations,

As shown in figure 2,1, each body node has two oarts-tree

links named PART and COPART, The PART link is the head of a list of
"sub-Parts of the body, When a body has no sub-parts the PART link is
the negative of that body's pointer; that is the body Points at
itso:f4 When a body has parts# the first part is pointed at by PART
anr the second Is Pointed at by the COPART link of the first and so
on unt!1 a neeative oaInter Is retrieved which inalcates the end of

the Parts list, The negative pointer at the end of S oarts list
points back to the org!nal body, which is the suora-part or "suvart"
of all those bodies in that list,

The parts Mlay be accessed by Its link names PART and COPART.
Also the SLpART of a hody returns the (positive) Pointer to the

supart of a body, The BODY operation returns the body to which a face
edge or vertex belongs; this might be found by CDR'i;g a FEV ring
until a body node is reached) but for the sake of speed each edge (as

shown in figure 2,3) has a PBOOY link which points oack to the body
te which the edge belongs, and since each face and vertex ooints at

an edgej the body of an FEV entity can be retrieved by "etc!-ing only
one or two links,
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Part Tree Operations (continued).

The Parts-tree is altered by the DET(M) oparrt;cn which
removes a body f3 from Its supart and leaves It hanging free; and the
ATTkd,,8) operation which places a free body P1 Irto the -arts llst
of a bodY B2, Since bodies are nade attached to the world oodY and
general!y kept attached to something, two further cnrtS-tree
operations are orovided, compounding the first two in the necessarY
.Tarner, Tne DETACH(9) operation DET's 9 from Its current owner and
ATT's it to the world; and the ATTACH(B1,82) op6ration ' 11 6'fT BI

from its supart and attach it to a new supart. In normal (one World)
circu1stances one only neads to usa ATTACH to build thinrs.

Perimeter Fetch and Store Operations,

There are seven Perimeter fetch Drilitives, whic- Anen given
an edge ano one of its links will fetch another link ir I certain
fashion. Using the winged edge data structure these Prlrlttvgs are

easily inplemented in a few machine instructions which test th-e type
bits ano typically do one or two compares, Clockwise and counter
clockwise are always determined from the outside of a oolyhedrorl
looKing down on a Particular face, edge or vPrtex. I aro!og;ZS for
the high redundancy on the next page, but felt that it ,as necesbary
to nake the explanations independent for reference,

FIGLL 2, - FacP Perimeter Accessing witfn respect to eage E.

VC'W )---------.E...-------a VCh(LF)\ /
F /

ECCW(E,F) EC:. ( ,r)
\ /

\ /
\ /

FI'3LUL 2.6 - Vertex Perimeter AOC8Ssini with resoPct to *';e E,

C~CWE•v) I FCW(E,V)
RV

/ \/ \
/ \

EZCC(E,V) EcX(E,v)



The Perimeter Fetch Ooerations,

E - LCW(E,F); Get Edge Clockwise from L atbout F's perimeter.
£ - LCUw(EF); Get Edge Counter Clockwise from E about F's oerimeter.

.Given an edge ano a face belonging to that edge, the ECW
fetch primitive returns the next edge Clockwlis belonging to the
given face's perimeter and the ECCW fetch primitive returns the next
edge counter clockwise belonging to the given face's perimeter,

E LCW(E,V); Get Edge Clockwise from E about V's perimeter,
E ECCw(Ev); Got Edge Counter Clockwise from E about V's oer!-meter.

Given an edge and a vertex belonging +o that edge, the ECW
fetch primitive returns the next edge clockwise belonging to the
given Vertex's Perimeter and the ECCW fetch orlmitlve returns the
next edge counter clockwise belonging to the given vertex's

� Perimeter.

F * FCW(E,V); Get the face clockwise from E about V.
F - FCCW(E,V); Get the face counter clockwise from E about V.

Given an edge and a vertex belonging to that edge, the FCW
fetch Primitive returns the face clockwise from the given edge about
the given vertex and the FCCW fetch primitive returns the face
counter clockwise from the given edge about the given vertex,

V VCW(E,F); Get the vertex clockwise from E about F.
V VCCW(EF); Get the vertex counter clockwise from E about F,

Given an edge and a face belonging to that edge, the vCw
fetch Primitive returns the vertex clockwise from the given edge
about the given face and the VCCW fetch primitive returns the vertex
counter clockwise from the given edge about the given face,

F U UTHER(.,F); Get the other face of an edge.
V UTKER(EV); Get the other vertex of an edge,

Given an edge and one face of that edge the CTHER fetch
Driffitive returns the other face belonging to that edgo, Given an
edge and one vertex of that edge the OTWER fetch primitlve returns
the other vertex belonging to that edge,

t


