A FINITE ELEMENT ANALYSIS OF SHOCK AND
FINITE-AMPLITUDE WAVES IN ONE-DIMENSIONAL
HYPERELASTIC BODIES AT FINITE STRAIN

R. B. Fost, et al

Alabama University

Prepared for:

Air Force Office of Scientific Research

October 1972
A FINITE ELEMENT ANALYSIS OF SHOCK AND FINITE-AMPLITUDE WAVES IN ONE-DIMENSIONAL HYPERELASTIC BODIES AT FINITE STRAIN

by

R. B. Post and J. T. Oden

The University of Alabama in Huntsville
School of Graduate Studies and Research
Huntsville, Alabama

October 1972

Approved for public release; distribution unlimited.
Qualified requestors may obtain additional copies from the Defense Documentation Center, all others should apply to the National Technical Information Service.

Reproduction, translation, publication, use and disposal in whole or in part by or for the United States Government is permitted.
The general theory of shock and acceleration waves in isotropic, incompressible, hyperelastic solids is used in conjunction with the concept of finite elements to construct discrete models of highly nonlinear wave phenomena in elastic rods. A numerical integration scheme which combines features of finite elements and the Lax-Wendroff method is introduced. Numerical calculations of the critical time for shock formulation are given. Numerical results obtained from representative cases are discussed.
<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHOCK WAVES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RUBBERLIKE MATERIALS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FINITE ELEMENT METHODS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NUMERICAL INTEGRATION</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A Finite Element Analysis of Shock and Finite-Amplitude Waves
In One-Dimensional Hyperelastic Bodies at Finite Strain

by

R. B. Fost and J. T. Oden

Research Sponsored by Air Force Office of Scientific Research
Office of Aerospace Research, United States Air Force
Contract F44620-69-C-0124

The University of Alabama in Huntsville
School of Graduate Studies and Research
Huntsville, Alabama

October 1972

Approved for public release; distribution unlimited.
A FINITE ELEMENT ANALYSIS OF SHOCK AND FINITE-AMPLITUDE WAVES
IN ONE-DIMENSIONAL HYPERELASTIC BODIES AT FINITE STRAIN

R. B. Fost and J. T. Oden

Department of Engineering Mechanics, The University of Alabama in Huntsville

SUMMARY. The general theory of shock and acceleration waves in isotropic, incompressible, hyperelastic solids is used in conjunction with the concept of finite elements to construct discrete models of highly non-linear wave phenomena in elastic rods. A numerical integration scheme which combines features of finite elements and the Lax-Wendroff method is introduced. Numerical calculations of the critical time for shock formulation are given. Numerical results obtained from representative cases are discussed.

1. INTRODUCTION

Until very recent times, the quantitative study of the dynamic response of highly elastic solids at finite strain has stood outside the reach of existing analytical and computational methods. The complete dynamical theory is, itself, still being pieced together some 20 years after the modern era of finite elasticity began (e.g. [1,2]), and while a few solutions to finite-amplitude vibration problems have been contributed (e.g. [3,4,5] or, for additional references [6]), and while some advances have been made in the theory of finite elastic waves (e.g., [7,8,9]), actual calculations invariably involve rather ideal geometries, boundary- and initial conditions, and/or material properties. The highly nonlinear character of the momentum equations for the most simple hyperelastic material does not account for all of the computations problems--by definition,
the hyperelastic solid possesses no dissipative mechanism to provide smoothing or damping of higher frequencies. Consequently, the computationally convenient features of damping encountered in nonlinear viscoelasticity and thermoviscoelasticity calculations [10,11,12] are not present. To complicate matters, it is now generally recognized that shock waves can be easily produced in such materials, even when smooth initial conditions are prescribed. The recent experimental work of Kolsky [13] gives evidence to the possibility of even tensile shock waves developing in certain stretched natural rubbers, a phenomena already anticipated in the theoretical work of Bland [8] and Chu [9]. In such cases, practically all of the popular numerical integration schemes now used in structural dynamics are ineffective.

In the present paper, we consider an important subclass of the problems alluded to in our opening comments, and we demonstrate that the finite-element method, when used in conjunction with established methods of computational hydrodynamics and implemented with modern computing machinery, can be extremely effective for this class of problems. More specifically, the present paper is concerned with the application of the finite-element method to the calculation of shock waves and finite-amplitude acceleration waves in highly elastic rubber-like materials. So as not to obscure conceptual and physical details, this investigation is confined to the study of only longitudinal motions of finite homogeneous rods of isotropic, incompressible, hyperelastic materials. We hope to treat the more difficult problems of finite-amplitude waves in two- and three-dimensional hyperelastic bodies in later work. Herein, we develop a fully discrete representation of the behavior which employs a finite-element approximation of the spatial variation of the displacement field or the longitudinal extension ratio and a finite-difference representation of the temporal behavior. For
shock calculations, we introduce an apparently new explicit integration scheme which is shown to be very effective in handling the formation, propagation, and reflection of shocks in disturbed media. The scheme involves the use of finite-elements as a basis for formulating Lax-Wendroff-type time integration algorithms. Moreover, we also consider the problem of computing numerically various critical times required for the formation of shocks from smooth and Lipschitz-continuous initial data. In the final section of the paper, we cite numerical results obtained from a number of representative test cases.

2. **PHYSICS OF WAVES IN NONLINEAR ELASTIC MATERIALS**

In this section, we shall review certain features of the dynamical and thermodynamical theory of finite elasticity that are essential to our study. More complete details can be found in the books of Green and Zerna [14], Green and Adkins [15], and Bland [8], and certain special features are discussed in the papers of Nowinski [16], Ames [17], and Reddy and Achenbach [18].

2.1 **Motion of a Thin Rod.** We begin by considering longitudinal motions of a thin rod of isotropic, incompressible material. While at rest in a natural reference configuration \(\mathbf{r}_0 \), the rod has a uniform symmetric cross section of area \(A_0 \), a length \(L_0 \), and a mass density \(\rho_0 \). To describe the motion of the rod relative to its reference configuration, we establish a fixed spatial frame of reference \(x \), with origin 0 at one end of the bar, which is assumed to be restrained from motion. We denote by \(X \) the labels of material particles (material coordinates) of the bar, and we select these labels so as to numerically coincide with the spatial coordinates \(x \) when the bar occupies its reference configuration. The function \(x = x(X,t) \)
then gives the spatial position of the particle X at time t and defines the longitudinal motion of the bar, while $u(X,t) = x(X,t) - X$ defines the displacement of particle X at time t.

The material gradient $\partial x/\partial x$ serves as a convenient measure of the deformation; physically, it represents the longitudinal extension ratio λ (also called the stretch) which is expressible in terms of the displacement gradient according to

$$\lambda = \frac{\partial x}{\partial x} = 1 + \frac{\partial u}{\partial x} = 1 + u_x$$

(2.1)

where here, and henceforth, we use the subscript notation $u_x = \partial u/\partial x$ to denote partial differentiation with respect to X. The extensional strain γ is then simply $(\lambda^2 - 1)/2$.

Now any disturbance supplied to the rod will travel with finite speed from one particle to another in the form of a surface (curve) of discontinuity S (a wave) in the $X-t$ plane. If we denote by $Y(t)$ the particle X reached by a wave front at time t, then the set of points $(Y(\tau), \tau)$, τ being a real parameter, defines a curve in the $X-t$ plane across which jump discontinuities in various partial derivatives of $u(X,t)$ can occur. Indeed, acceleration waves involve jumps in the acceleration u_{tt} (and the stress gradient $\partial \sigma/\partial x$) and shock waves (shocks) involve the propagation of surfaces across which jump discontinuities in the velocity $u_t(X,t) = u_t = \partial u/\partial t$ and the stress are experienced. The intrinsic wave speed relative to the material, denoted c, is then simply $dy(t)/dt$. However, the spatial position $y(t)$ of the wave is clearly

$$y(t) = x(Y(t), t)$$

(2.2)

and the absolute wave speed, as seen by a stationary observer, is

$$v = \frac{dy(t)}{dt} = \frac{dx(Y(t), t)}{dt}$$

(2.3)
2.2 The Balance Laws. We assume, of course, that the response of bar satisfies the basic conservation laws of physics. For the problems at hand, these assume the following global forms:

linear momentum

$$A_0 \frac{d}{dt} \int_{l_0-Y(t)} \rho_0 \dot{u} dX + \rho A_o c \dot{\mathcal{E}} = A_0 (\sigma(l_0(t)) - \sigma(0,t)) - A_o \mathcal{E} \gamma$$ \hspace{1cm} (2.4)

energy

$$\frac{1}{2} A_o \frac{d}{dt} \int_{l_0-Y(t)} \left(\rho_0 \dot{u}^2 + 2e \right) dX + \frac{1}{2} \rho A_o c \dot{\mathcal{E}} + A_o \mathcal{E} \gamma$$

$$= A_0 (\sigma(X,t) \dot{u}(X,t) + q(X,t)) \bigg|_{X=L_0} - A_0 \mathcal{E} \gamma - A_o \mathcal{Q} \gamma$$ \hspace{1cm} (2.5)

clausius-duhem inequality

$$A_o \frac{d}{dt} \int_{l_0-Y(t)} \dot{\Theta} dX + A_o c \dot{\mathcal{S}} = A_0 (\frac{q}{\Theta}) \bigg|_{X=L_0} - A_o \mathcal{S} \gamma$$ \hspace{1cm} (2.6)

Here $\sigma(X,t)$ is the first Piola-Kirchhoff stress, e is the internal energy per unit initial volume, q is the heat flux, \mathcal{S} is the entropy per unit initial volume, and Θ is the absolute temperature. Quantities in brackets denote jumps suffered at the surface of discontinuity $(Y(t),t)$; e.g.

$$\mathcal{E} = \sigma(Y(t^-),t) - \sigma(Y(t^+),t)$$ \hspace{1cm} (2.7)

etc. Mass is conserved in the rod and we have ignored body forces and internal heat sources for simplicity.

At particles X that do not fall on a surface of discontinuity, (2.4)-(2.6) lead to the local forms of the balance laws.
\begin{align*}
\rho_0 \ddot{u} - \sigma_x &= 0 \\
\dot{e} - \sigma^\lambda - q_x &= 0 \quad (2.8) \\
\dot{\sigma}^\lambda - q_x + \frac{q_{\theta_x}}{\theta} &= 0 \\
\text{whereas at the surface of discontinuity, we obtain the jump conditions} \\
\rho_0 c \left[\ddot{\mathbf{u}} \right]_y + \left[\sigma \right]_y &= 0 \\
\frac{1}{2} \rho_0 c \left[\ddot{\mathbf{u}}^2 \right]_y + c \left[\dot{\mathbf{c}} \right]_y + \left[c \dot{\mathbf{u}} \right]_y + \left[q \right]_y &= 0 \quad (2.9) \\
c \left[\dot{\xi} \right]_y - \left[\dot{\theta} \right]_y &= 0 \\
\text{It is often convenient to introduce the Helmholtz free energy } \varphi(X,t) \text{ and the internal dissipation } \delta(X,t) \text{ defined for } X \neq Y(t) \text{ by} \\
\varphi = e - \xi \theta \quad \text{and} \quad \delta = \theta \dot{\xi} - q_x \\
\text{Then the last member of (2.8) can be rewritten in the alternate form} \\
\delta + \frac{q_{\theta_x}}{\theta} = \sigma \dot{\lambda} - \dot{\varphi} + \dot{\mathbf{c}}^\lambda + \frac{q_{\theta_x}}{\theta} \geq 0 \quad (2.11) \\
\text{In addition, we can also impose Maxwell's theorem, which asserts that for any function } f(X,t) \text{ jointly continuous in } X \text{ and } t, \text{ but whose first partial derivatives } f_x \text{ and } \hat{f} \text{ suffer jump discontinuities at } S, \text{ the jump across } S \text{ in the (two-dimensional) gradient of } f \text{ must be parallel to a vector } (-1, c) \text{ normal to } S. \text{ Applying this idea to the motion } x(X,t) \text{ yields Hadamard's compatibility condition:} \\
\left[\dot{u} \right]_y + c \left[\dot{\lambda} \right]_y = 0 \quad (2.12)
\end{align*}

2.3 Waves in Hyperelastic Materials. We now aim our analysis toward waves in hyperelastic materials; that is, we wish to consider materials for which there exists a potential } W \text{ which is a function of the current
value of λ, and for which

$$\dot{\psi} = a\lambda \quad \text{and} \quad \sigma = \frac{\partial W}{\partial \lambda} \quad (2.13)$$

The question arises, however, as to whether or not a theory of hyperelasticity is reconcilable within the thermodynamic framework established thus far. This is a classic question, and standard arguments can be found in a number of places (e.g. [6, 12]) to the effect—hyperelasticity is indeed possible in a number of physically meaningful situations. The fact that these standard arguments are not valid at surfaces of discontinuity is fundamental to the physics of shock waves.

We mention two cases. First, consider a class of perfect materials (cf. [6], p. 296), the constitution of which is defined by equations for e, σ, θ, and q depicted as functions of the current values of λ and ξ, with q also dependent on $\theta_x(X,t)$. For reversible processes performed on such materials, the dissipation $\delta = \theta_x^2 - q_x = 0$, and (2.8) gives

$$(\sigma - \frac{\partial e}{\partial \lambda}) \dot{\lambda} + (\theta - \frac{\partial e}{\partial \theta}) \dot{\xi} + \frac{1}{\theta} q\theta_x \geq 0 \quad (2.14)$$

so long as $X \epsilon (L_0 - Y(t))$. Secondly, we consider a class of simple materials (cf. [12], p. 202) whose constitution is defined by equations for φ, σ, ξ, and q in terms of current values of λ and θ, with q dependent upon $\theta_x(X,t)$ also. For reversible process ($\delta = 0$), using (2.10) in (2.8) gives us the inequality

$$(\sigma - \frac{\partial \varphi}{\partial \lambda}) \dot{\lambda} - (\xi + \frac{\partial \varphi}{\partial \theta}) \dot{\theta} + \frac{1}{\theta} q\theta_x \geq 0 \quad (2.15)$$

for all $X \epsilon (L_0 - Y(t))$. If these two inequalities, (2.14) and (2.15), are to be maintained for arbitrary rates, it necessarily follows (cf. [12], p. 214) that in the absence of a shock, a theory of hyperelasticity is appropriate for reversible isentropic processes ($\delta = 0$, $\dot{\xi} = 0$) performed on
the above class of perfect materials and for reversible isothermal processes
(\delta = 0, \dot{\delta} = 0) performed on the above class of simple materials. In the
former case, the strain energy is associated with the internal energy, in
the latter case it is associated with the free energy. However, since a
shock is characterized by discontinuities in the displacement gradient,
the necessary derivatives of \epsilon in (2.14), or of \varphi in (2.15), do not exist
for \chi = \chi(t). Therefore, we must have energy dissipation at \chi = \chi(t), i.e.,
\delta = \theta \xi - q_x > 0, and we lose the notion of reversibility.

Due to the considerable difficulties involved in solving the nonlinear
thermo-mechanical equations governing irreversible thermodynamic processes,
the only exact solutions available (cf. [19,20]) are for shocks with uniform
conditions on both sides of the discontinuity. Hence, for additional
solutions, we need to simplify the governing equations so that they become
tractable. One possibility, suggested by the exact discontinuous solutions
themselves, is the well known fact that "weak shocks" are nearly isentropic
(e.g., see [8], [21], or [22] for detailed discussions). That is, taking
the proportional change in magnitude across the shock of some state pa-
parameter, say \xi, as a measure of shock "strength", the change in entropy
across the shock is only of third order in the shock strength for small
changes of \xi. Therefore, for weak shocks, we can neglect the entropy
change and consider \xi as constant for all \chi and t, i.e., the deformation
takes place isentropically. It is of special interest to consider this
"isentropic approximation" when the initial, or reference configuration
is the natural stress-free state where \lambda(\chi,0) = 1, \theta(\chi,0) = T_0 = constant.
Then the isentropic approximation becomes \xi = 0 everywhere for all time.
Moreover, for this case, the isentropic approximations render the mechanical
equations independent of the thermal equations, and the mechanical jump
conditions (the first of (2.9) and (2.12)) alone are sufficient to
determine the shock process. (Naturally the energy jump condition remains valid, but here it would only be used to check the energy balance after solving the problem.) Also, we can readily define the strain energy function W of (2.13) in terms of the internal energy $W(\lambda) = e(\lambda, \xi)|_{\xi = 0}$, so that we have the constitutive relation for the stress $\sigma = \partial e/\partial \lambda$, in agreement with (2.13).

We remark that the local balance laws (2.8) suggest another simplification: the adiabatic approximation, wherein we assume the heat conduction small enough to take $q = 0$. Outside the shock region, the adiabatic process is reversible ($\xi = 0$); and then from (2.10) we get the reversible adiabatic process to be an isentropic process. Hence, in regions of the rod where $X \neq Y(t)$, a theory of hyperelasticity, in the sense of (2.14), is possible. At the shock, the adiabatic process is not reversible: entropy is produced. Then, by integrating the inequality in (2.8) with $q = 0$, we get $\xi = \xi(X)$. Therefore the entropy at each material point has a constant value unless a shock passes over the point, at which time the value of the entropy is changed to a new constant. Consequently, until the time at which a shock forms, the adiabatic process is isentropic for every $X \in (0, L_0)$; after this time, the adiabatic process is, in general, piecewise isentropic, i.e., it is isentropic for every $X \in \{(0, Y(t^-)), [Y(t^+), L_0]\}$.

Both of these assumptions can, of course, be simultaneously incorporated if we consider the propagation of weak adiabatic shocks. In this case, again following (2.14), the material will be everywhere hyperelastic at all times.

3. EVOLUTION AND PROPAGATION OF DISCONTINUITIES

In this section we will look at the physical conditions which are generally required for the formation and propagation of discontinuities—both shock waves and acceleration (simple)waves in rubber-like materials.
We also briefly consider methods for determining the time required for discontinuities to evolve during the solution process.

3.1 Propagation of Shock and Acceleration Waves. In the absence of shocks, we previously obtained the first member of (2.8) as the local form of the law of conservation of linear momentum. In view of the constitutive relation (2.13) for hyperelastic materials we have $\sigma = \sigma(\lambda)$, so that the local momentum equation for such materials can be written in the form

$$\ddot{u} - c^2(u_x)u_{xx} = 0$$

(3.1)

where the squared intrinsic wave speed, $c^2(u_x)$, is given by

$$c^2(u_x) = \frac{1}{\rho_0} \frac{d\sigma}{d\lambda}$$

(3.2)

We also note that, since $\dot{\lambda} = u_x$, we can recast the local momentum equation (3.1) in terms of λ according to

$$\ddot{\lambda} = [c^2(\lambda)u_x]_x$$

(3.3)

where, clearly, the forms of $c^2(\lambda)$ and $c^2(u_x)$ will be different.

As noted earlier, for hyperelastic solids the stress is derivable from a potential function W which represents the strain energy per unit undeformed (reference)volume V_0. For isotropic incompressible bodies, W is generally defined in terms of the first two principal invariants, I_1 and I_2, of Green's deformation tensor, the third principal invariant being unity. In the present case, $I_1 = 2\lambda^{-1} + \lambda^2$, $I_2 = 2\lambda + \lambda^{-2}$, and elimination of the hydrostatic pressure with the condition that transverse normal stresses are zero, leads to the general constitutive law

$$\sigma = 2(W_1 \lambda + W_2)(1 - \lambda^{-3})$$

(3.4)

where $W_\alpha = \partial W / \partial I_\alpha$, $\alpha = 1,2$. Substituting (3.4) into (3.2), we observe that the square of the wave speed in materials defined by (3.4) is of the form
\[c^2 = \frac{2}{\rho_o} \left[(1 + 2\lambda^{-3})W_1 + 3\lambda^{-4}W_\rho + 2(1 - \lambda^{-3})^2(W_{11}\lambda^2 + 2W_{12}\lambda + W_{22}) \right] \]
(3.5)

If we eliminate, on physical grounds, the possibility of complex wave speeds, we, in turn, impose conditions on the form of \(W \) and its derivatives \(W_\sigma \), \(W_\gamma \). In this regard, we shall assume that the stress \(\sigma \) is a continuous monotonically increasing function of the stretch \(\lambda \), so that for all \(\lambda \in (0,\infty) \), we have \(0 < \rho_o c^2(\lambda) = d\sigma/d\lambda < \infty \). This important property allows us to interpret qualitatively a number of interesting nonlinear wave phenomena. For example, suppose that a time-dependent surface traction is applied at the free end of the rod. During each infinitesimal increment in time, the corresponding increment in load produces a "wavelet," so that, using Nowinski's terminology \([16]\), the net effect of the loading is to produce an "infinite manifold" of wavelets propagating along the rod. Obviously, each successive wavelet propagates at a speed determined by the instantaneous slope of the \(\sigma \) vs. \(\lambda \) curve for the material. Thus if consecutive wavelets are propagated with decreasing speeds, the slope of the wave front will gradually decrease (contrasting markedly with the usual sharp discontinuity at the wave front in materials with linear \(\sigma - \lambda \) curves), and the response will be propagated as a simple wave. However, if the distance between successive wavelets decreases during propagation (they are generated with increasing speeds), the wave profile steepens until the discontinuity is transformed into a shock wave.

To be more specific, consider, for example, the following special forms of the strain energy function:

\((i) \) The neo-Hookean form, \(W = C(I_1 - 3) \) \hspace{1cm} (3.6)
\((ii) \) The Mooney form, \(W = C_1(I_1 - 3) + C_2(I_2 - 3) \) \hspace{1cm} (3.7)
\((iii) \) The Biderman form, \(W = B_1(I_1 - 3) + B_2(I_1 - 3)^2 + B_3(I_1 - 3)^3 + B_4(I_2 - 3) \) \hspace{1cm} (3.8)
Here C, C_1, C_2, \ldots, B_4 are material constants. Examples of a variety of other forms of W proposed for real materials are summarized in [12]. Note that for Mooney materials

$$c^2 = \frac{2}{\rho_0}[C_1(1 + 2\lambda^{-3}) + 3C_2\lambda^{-4}]$$ \hspace{1cm} (3.9)

whereas in the case of Biderman materials

$$c^2 = \frac{2}{\rho_0}[(B_1 + 2B_2(2\lambda^{-1} + \lambda^2 - 3) + 3B_3(2\lambda^{-1} + \lambda^2 - 3)^2)(1 + 2\lambda^{-3})$$
$$+ 3B_4\lambda^{-4} + (4B_2 + 12B_3(2\lambda^{-1} + \lambda^2 - 3))(\lambda - \lambda^{-2}^2)]$$ \hspace{1cm} (3.10)

The function c^2 for neo-Hookean materials follows from (3.9) by setting $C_2 = 0$. Equations (3.6)-(3.8) with (3.4) and (3.9) and (3.10) describe $\sigma - \lambda$ and $c - \lambda$ curves of the type shown in Figs. 1 and 2. Clearly, the type of wave generated by an initial disturbance depends upon both the initial state (i.e., the initial value of λ) and whether λ is subsequently increased or decreased. A discontinuity is propagated as a simple wave if, and only if, the intrinsic wave speed of the material in front of the discontinuity is greater than that of the material behind the discontinuity (cf. [21], p. 243). Hence, Fig. 2 suggests that for both the Mooney and neo-Hookean materials, only compression shock waves can be developed. However, for certain Biderman-type materials (curve \mathcal{C} in Fig. 2), it is possible to produce a tensile shock wave if the material is prestretched sufficiently. The development of such tensile shocks has, in fact, been observed experimentally by Kolsky [13]. It is also interesting to consider the case in which an applied tension load is suddenly removed. From Fig. 2 we can see that this discontinuity cannot be propagated by a simple wave since the wave speed is smaller before the load is released than after. Thus, it follows that the instant the stress at the end of the rod begins to decrease (after having increased) is also the time at which the first
Fig. 1. Stress versus stretch for some rubber-like materials.

\[\frac{1}{\rho_0} \frac{d\sigma}{d\lambda} = c \]

Fig. 2. Wave speed versus stretch for some rubber-like materials.
wavelet emanates from the end with a propagation speed faster than the preceding wavelets. Therefore, at some time subsequent to the moment when the unloading starts, the propagated influence of this release, or unloading, is expected to develop into a shock wave.

3.2 Evolution of Discontinuities. The formation of discontinuities in solutions of nonlinear hyperbolic equations has been a topic of interest for many years. The research on this topic falls into two principal categories: discontinuities which evolve from Lipschitz continuous initial data and those which evolve from smooth initial data. In the former case, there is a clearly defined wave front and a characteristic along which the initial discontinuity (even when starting with analytic initial data, a Lipschitz discontinuity can subsequently develop) propagates until it tends to a jump discontinuity at some critical time, say \(t_{cr} \). This jump discontinuity then propagates in a completely different manner from the Lipschitz discontinuity. As this is discussed in detail in [8], [21], and [23], we will mention only the essential features.

In general, the characteristics of the nonlinear wave equation are curved lines in the \(X-t \) plane. However, if a constant initial state is prescribed for the rod, the characteristics of positive slope are a family of straight lines and the corresponding wave is a simple (acceleration) wave. If the excitation at the end of the rod is such that successive wavelets are generated with decreasing shift rates, these straight characteristics diverge in the \(X-t \) plane. But, if the shift rate at the end of the rod increases (e.g., due to compression or, sometimes, sufficient tension with an "S-shaped" \(\sigma-\lambda \) curve), the characteristics of positive slope will no longer diverge. Instead, they converge and form an "envelope" as shown in Fig. 3. It is on this envelope that the values of velocity and stress,
Fig. 3. Characteristic field for simple wave with a shock formation.
carried by the characteristics, conflict so that the curve C_2 is an approximation of a shock wave propagating with variable speed and carrying a variable stress. The earliest time that such an envelope appears, i.e., when the first two characteristics converge, a cusp is formed at some point X_{cR}. At this point (X_{cR}, t_{cR}), a unique solution of the wave motion, characterized as a simple wave, is mathematically impossible. It is the jump conditions which enable us to continue past (X_{cR}, t_{cR}) with a unique solution for the shock.

The second category; the evolution of discontinuities from smooth initial data, is the topic which seems to be of current interest (see e.g., [17], [24], [25], [26]). When applicable, the method presented by Ames [17,24] is the simplest and the most accurate. This method results from observing that classes of quasilinear equations can be obtained by differentiation of first-order nonlinear equations. The first order equations are then used to calculate the time t_{cR}.

For the one-dimensional rod considered herein, we find from [17] that the critical time is given by

$$t_{cR} = \min \frac{1}{h'\phi'}$$ \hspace{1cm} (3.11)

where primes mean differentiation of the quantity with respect to the argument and the forms of h and ϕ depend upon which form of the wave equation we are considering, (3.1) or (3.3). For the displacement form of the equation of motion, (3.1), we have

$$u_x = h[X + c(u_x)t]$$ \hspace{1cm} (3.12)

$$\phi = c(u_x)$$ \hspace{1cm} (3.13)

with $c(u_x)$ being the material shift rate defined in (3.2). If we consider (3.3) on the other hand, we have
\[\lambda = h[X + \phi(\lambda)t] \]
\[\phi = c(\lambda) \]

where the form of \(c(\lambda) \) is given in (3.5).

4. FINITE ELEMENT APPROXIMATIONS

We are now ready to develop discrete models of the equations governing nonlinear waves by using the finite-element concept. Toward this end, we begin, as usual, by partitioning the rod into a finite number \(E \) of segments connected together at nodal points at their ends. The \(E+1 \) nodes are labeled \(0 = X^0 < X^1 < \ldots < X^{E+1} = L \), and the mesh length \(h = X^{\alpha+1} - X^\alpha \) \((\alpha = 0,1,\ldots,E)\) is assumed to be uniform. In the finite-element method, we seek an approximate solution to either (3.1) or (3.3) in a finite dimensional subspace of \(H^1(0,L) \), the elements of which are locally of the form

\[f(X,t) = f_\alpha(t)\psi_\alpha(X) \]
(4.1)

The repeated nodal index \(\alpha \) ranges from 1 to 2 for the one-dimensional rod element. Here, \(f_\alpha(t) \) is the value of \(f(X,t) \) at node \(\alpha \) of the element at time \(t \), and \(\psi_\alpha(X) \) are the usual local (elemental) interpolation functions. In general, these local basis functions contain complete polynomials of degree \(p \), where \(p+1 \) is the order of the highest material derivative that appears in the energy equation for the element. In this case, for either (3.1) or (3.3), we have \(p=1 \) (cf. [12]).

To obtain approximate solutions to (3.1), we take \(f(X,t) \) in (4.1) to be the local displacement field \(u(X,t) \):

\[u(X,t) = u_\alpha(t)\psi_\alpha(X) \]
(4.2)

Approximate solutions to (3.3) are similarly obtained when we take \(f(X,t) \) to be the local extension ratio (stretch) \(\lambda(X,t) \):
4.1 Local Form of the Equations of Motion. We consider first the equation of motion (3.3). We seek approximations of weak solutions of (3.3) by requiring that

\[\int_0^h \lambda \phi \, d\xi = \int_0^h \phi (c^2 \lambda) \, d\xi \]

(4.4)

for any arbitrary function \(\phi(\xi) \) which has a continuous first derivative and which vanishes outside the element. Integrating the right hand side of (4.4) by parts gives

\[\int_0^h \lambda \phi \, d\xi + \int_0^h \frac{1}{\rho_0} \frac{\partial \sigma}{\partial \xi} \phi_\xi \, d\xi = \left[\frac{1}{\rho_0} \frac{\partial \sigma}{\partial \xi} \phi \right]_0^h \]

(4.5)

where, from (3.2), \(\frac{\partial \sigma}{\partial \xi} = (\partial \sigma/\partial \lambda) \lambda_\xi = c^2 \lambda_\xi \). If \(\phi_\xi \) is constant, (4.5) becomes

\[\int_0^h \lambda \phi \, d\xi + \frac{1}{\rho_0} \phi_\xi [\sigma]_0^h = [c^2 \lambda_\xi \phi]_0^h \]

(4.6)

Taking a piecewise linear approximation for \(\lambda \) in (4.3), we have

\[\lambda(X,t) = \lambda_\alpha(t) \psi_\alpha(X) \]

(4.7)

where for the \(j \)th element

\[\{ a_\alpha \} = [0,1] ; \{ b_\alpha \} = \frac{1}{h} [-1,1] \]

(4.8)

Hence, with (4.8) in (4.7), we have

\[\lambda_\xi = \psi_\alpha, \lambda_\alpha = b_\alpha \lambda_\alpha = \frac{1}{h} (\lambda_2 - \lambda_1) \]

(4.9)

\[\psi_\alpha, \xi = b_\alpha = \frac{1}{h} [-1,1] \]
Taking $\phi(X) = \dot{\psi}_\alpha(X)$ in (4.6) and incorporating (4.7), we obtain the equation of motion for a typical rod element

$$m_{B\alpha} \ddot{A}_\alpha + b_\alpha A_\alpha [\sigma]^h = p_\alpha$$

(4.10)

where $m_{B\alpha}$ is the consistent mass matrix defined by

$$m_{B\alpha} = m_{\alpha\alpha} = \rho_o A_o \int_0^h \dot{\psi}_\beta \dot{\psi}_\alpha dX$$

(4.11)

p_α is the generalized force at node α

$$p_\alpha = A_\alpha [\dot{\psi}_\alpha \dot{\psi}_\alpha]^h$$

(4.12)

Equation (4.11) can be integrated to get the consistent mass matrix in the form

$$m_{B\alpha} = \frac{1}{6} m (1 + \delta_{B\alpha})$$

(4.13)

where $m = \rho_o A_o h$ is the mass of a typical element and δ_{MN} is the Kronecker delta. However, if the mass is considered to be lumped at the nodes, $m_{B\alpha}$ will be of the diagonal form, $m_{B\alpha}/2$. We prefer the lumped mass model in this study, not only for the increased computational speed, but also because it tends to maintain the finite character of the speed at which waves are propagated along the rod while simultaneously reducing "ringing" in front of the wave front.

We now turn to the displacement form of the equation of motion (3.1). Analogous to the procedure used to model (3.3), we approximate the local displacement field by (4.2)

$$u(X,t) = \dot{\psi}_\alpha(X) u_\alpha(t) = (a_\alpha + b_\alpha X) u_\alpha$$

(4.14)

with a_α and b_α defined in (4.8), and here $u_\alpha = u(X_\alpha,t)$. Accordingly, we obtain as the equation of motion for a typical rod element,
\[m_\alpha \ddot{u}_\beta + b_\alpha A_\alpha h \sigma = p_\alpha \] (4.15)

In this case, since \(u_\alpha = b_\alpha u_\beta \), both \(\lambda \) and \(\sigma = \sigma(\lambda) \) are constant for each element. The mass matrix is as previously defined, but the generalized nodal force \(p_\alpha \) is now

\[p_\alpha = A_\alpha \sigma h \] (4.16)

4.2 Global Form of the Equations of Motion. To facilitate book-keeping, we use superscripts as the element index and subscripts as the nodal index. If we define \(P_N \) as the net generalized force applied at node \(N \), so that

\[P_N = p_{2N-1}^N + p_1^N, \]

then the global equation of motion for node \(N \) is obtained from (4.10) as

\[P = m \ddot{X} - (A - 2a, + F_N + 1) \] (4.17)

where, from (4.8), \(b_{N-1} = + h^{-1} \) and \(b_N = - h^{-1} \), and we have used the lumped mass model. At the ends of the rod, of course, the form of (4.17) changes according to the type of boundary conditions. Equations (4.17) represent the global system of nodal equations of motion for the finite-element model of the rod. Since the solution to these equations will be in terms of the displacement gradients \((\lambda - 1 = \partial u / \partial x) \), the nodal displacements, if desired, are obtained by spatial integration.

The displacements can be obtained directly if the global equations of motion are formed as above, but using (4.15) rather than (4.10):

\[P_N = m \ddot{u}^N + A_\alpha (\sigma^{N-1} - \sigma^N) \] (4.18)

5. FINITE ELEMENT/DIFFERENCE EQUATIONS

The remaining step in discretizing the nonlinear equations is approximating their temporal behavior. Solving the nonlinear equations of motion
by stepwise numerical methods can be severely complicated by the presence of shocks. Therefore, we choose an explicit finite difference scheme which automatically treats the shocks, whenever and wherever they may occur, without the necessity of the tedious application of the jump conditions at each time step of the solution process. This method is the well-known Lax-Wendroff difference scheme [27,28], which is generally classified as an artificial dissipative method. The success of this particular method comes from applying finite difference approximations to the governing equations expressed as "conservation" laws. (For details of the theory of conservation laws and weak solutions, see, e.g., [23], [27], or [29].) The novel aspect of the following temporal discretization is that, by rewriting (3.1) as (3.3), we obtain the governing equation in the form of a conservation law which, with only a linear finite-element approximation, enables us to develop a Lax-Wendroff type integration scheme.

5.1 Lax-Wendroff-Finite-Element Scheme. The temporal discretization is accomplished in the spirit of the Lax-Wendroff equations (cf. [28], p. 302): we first denote \(\bar{q}_N = \tilde{q}_N \) and expand \(q_n(t+\Delta t) \) into a Taylor series up to second order terms

\[
q_n(t+\Delta t) = q_n(t) + \Delta t \tilde{q}_n + \frac{1}{2}(\Delta t)^2 \ddot{q}_n + O(\Delta t^3)
\]

(5.1)

The \(t \) derivatives in (5.1) are now replaced by \(X \) derivatives (except for the nodal force \(P_n \)) by means of (4.17) where

\[
\tilde{q}_N = \frac{A_o}{mh} \left(\sigma_{N-1} - 2\sigma_N + \sigma_{N+1} \right) + \frac{1}{m} P_N
\]

(5.2)

\[
\ddot{q}_N = \frac{\partial}{\partial t} \tilde{q}_N = \frac{A_o}{mh} \left(\sigma_{N-1} - 2\sigma_N + \sigma_{N+1} \right) + \frac{1}{m} \dot{P}_N
\]

(5.3)

Since \(\sigma = \sigma(\lambda) \), \(\dot{\sigma} = \rho_o c^2 q \), so that (5.3) becomes
\[\ddot{q}_N = \frac{1}{h^2} (c_{N-1}^2 q_{N-1} - 2 c_N^2 q_N + c_{N+1}^2 q_{N+1}) + \frac{1}{m} \ddot{p}_N \]

(5.4)

Note that since the quantities \(P_N \) are prescribed, so also are the \(\dot{P}_N \) (e.g., if \(P_N = \sin t \), then \(\dot{P}_N = \cos t \)). Substituting (5.2) and (5.4) into (5.1), we obtain the finite element/difference equation for the interior nodes of the discrete model:

\[q_{n+1}^{n+1} = \left(\frac{\Delta t}{h} \right)^2 \left[\frac{1}{2} (c_{N+1}^2)^2 q_{n}^{n+1} + \left(\frac{h}{\Delta t} \right)^2 - (c_N^2)^2 \right] q_n^{n+1} + \frac{1}{2} (c_{N-1}^2)^2 q_{n-1}^{n+1} \]

\[+ \frac{\Delta t A_0}{m h} (\sigma_{n-1}^a - 2 \sigma_n^a + \sigma_{n+1}^a) + \frac{1}{2m} [2 \Delta t P_n^a + (\Delta t)^2 \dot{P}_n^a] \]

(5.5)

where \(t = n \Delta t \), and \(q(t) = q(n \Delta t) = q^n \), etc. Similarly, the finite element/difference equations for the end nodes are

\[q_{i+1}^{i+1} = \left(\frac{\Delta t}{h} \right)^2 \left[\left(c_i^a \right)^2 q_i^n + \left(\frac{h}{\Delta t} \right)^2 - (c_{i+1}^a)^2 \right] q_i^n + 2 \frac{\Delta t A_0}{m n} (\sigma_i^a - \sigma_{i+1}^a) \]

\[+ \frac{1}{m} [2 \Delta t P_i^a + (\Delta t)^2 \dot{P}_i^a] \]

(5.6)

and

\[q_{\ell+1}^{\ell+1} = \left(\frac{\Delta t}{h} \right)^2 \left[\left(c_\ell^a \right)^2 q_\ell^n + \left(\frac{h}{\Delta t} \right)^2 - (c_{\ell+1}^a)^2 \right] q_\ell^n + 2 \frac{\Delta t A_0}{m h} (\sigma_\ell^a - \sigma_{\ell+1}^a) \]

\[+ \frac{1}{m} [2 \Delta t P_\ell^a + (\Delta t)^2 \dot{P}_\ell^a] \]

(5.7)

To compute the extension ratios, we simply repeat the foregoing procedure: we first expand \(\lambda_{N+1}^{n+1} \):

\[\lambda_{N+1}^{n+1} = \lambda_N^n + \Delta t q_N^n + \left(\frac{\Delta t}{2} \right) \dot{q}_N^n + 0(\Delta t^2) \]

(5.8)

and so, using (5.2), we get:

\[\lambda_{N+1}^{n+1} = \lambda_N^n + \Delta t q_N^n + \frac{1}{2 \rho_o} \left(\frac{\Delta t}{h} \right)^2 (\sigma_{N-1}^a - 2 \sigma_N^a + \sigma_{N+1}^a) + \frac{(\Delta t)^2}{2m} P_N^a \]

\[\lambda_{i+1}^{i+1} = \lambda_i^n + \Delta t q_i^n + \frac{1}{\rho_o} \left(\frac{\Delta t}{h} \right)^2 (\sigma_i^a - \sigma_{i+1}^a) + \frac{(\Delta t)^2}{m} P_i^a \]

(5.9)

\[\lambda_{\ell+1}^{\ell+1} = \lambda_{\ell+1}^n + \Delta t q_{\ell+1}^n + \frac{1}{\rho_o} \left(\frac{\Delta t}{h} \right)^2 (\sigma_\ell^a - \sigma_{\ell+1}^a) + \frac{(\Delta t)^2}{m} P_{\ell+1}^a \]
where \(\sigma^0_N \) and \((c^0_N)^2 \) are determined from (3.4) and (3.2) respectively.

Equations (5.5)-(5.7) and (5.9) are the 2(E+1) finite element/difference equations used herein for the study of shock waves.

5.2 Velocity-Centered Central Difference Scheme. To illustrate the effectiveness of the Lax-Wendroff method we will compare the results with the finite element/difference equations which are obtained using the displacement equations (4.18). The temporal discretization is accomplished for these equations by using velocity formulated central difference [30], in which the general nodal equation, \(\ddot{u}_N(t) = F(t) \), is approximated by introducing the nodal velocity \(\dot{v}_N = \dot{u}_N \) and thereby generating two equivalent first order equations, which are then differenced to obtain

\[
\begin{align*}
\dot{v}_N^{n+1} &= \dot{v}_N^n - \Delta t F_N^n \\
\dot{u}_N^{n+1} &= \dot{u}_N^n + \Delta t \dot{v}_N^{n+1}
\end{align*}
\]

(5.10)

Direct substitution shows that (5.10) is equivalent to using the usual central difference approximation for \(\ddot{u}_N \). However (5.10) generally admits to less round-off error (cf. [31]).

5.3 Stability and Convergence of the Central Difference Schemes for Nonlinear Wave Equations. We remark that in a recent paper [311 we presented a detailed analysis of the numerical stability criteria and rates of convergence for finite-element/finite-difference approximations of the nonlinear wave equation (3.1). For completeness, the principal results of that study are summarized as follows:

- The stability of the scheme in energy is assured if \((h/\Delta t) > \nu_1 C_{\nu_1}^\alpha \max (u_x) /2 \), where \(h \) is the minimum mesh length for the finite-element model, \(\nu_1 (\alpha = 1,2) \) are constants, \(\nu_1 \) corresponding to a consistent mass formulation and \(\nu_2 \) to a lumped mass formulation, and \(C_{\nu_1}^\alpha \max (u_x) \) is the maximum
speed of propagation of acceleration waves relative to the material. Obviously, this result reduces to similar criterion obtained for linear difference approximations when $C_{\text{max}} = \text{constant}.$

- To maintain stability for a given finite-element/difference scheme with fixed $h,$ it is necessary to use a smaller time step for the consistent mass formulation than for the lumped mass formulation since $v_1 > v_2.$

- Under the stated assumptions, the square of the L_2-norm, $\|e_i^{(1)}\|^2,$ of the gradient of the error at each time step i is $O(h^2 + (\Delta t)^2).$ (Similar accuracies are obtained after R time steps in the linear case). Uniform convergence of the error e is also obtained.

- The same rates-of-convergence for the consistent mass formulation are obtained for the lumped mass formulation.

All of these results hold only at points at which the solution is smooth - i.e., at points not at the wave front.

6. **Numerical Results**

In this section, we cite numerical results obtained from application of the preceding theory to representative problems. For our numerical examples, we consider a thin rod of Mooney material ($C_1 = 24.0$ psi, $C_2 = 1.5$ psi) with the following undeformed characteristics: length = 3.0 inches, cross-sectional area = 0.0314 in2, mass density = 10^{-4} lb.sec2/in4. For the finite element model, we take 60 evenly spaced elements, so that $h = 0.05$ in. and $N_0 = 61.$

6.1 **Tensile Loading (square wave).** We consider a force of constant magnitude applied at the free end of the rod as a step function at $t = 0,$
then similarly removed at a later time \(t = t^* \), i.e., a square wave. For this example, \(t^* = 0.002 \) seconds. Figure 4 shows the stress wave response to a two pound step loading (this corresponds to 86\% strain statically) for both mass distributions and both time integration schemes previously discussed. Several important items mentioned earlier can be observed in Fig. 4.

1. The lumped mass model tends to preserve the finiteness of the speed of propagation. (Note the "ringing" in front of the consistent mass stress wave.)

2. The acceleration wave front does tend to flatten with time.

3. The wave is propagated into the undisturbed portion of the rod as a simple wave. Recall that for a simple wave, \(Y(t) \) is constant, so that by multiplying \(Y(0.001) \) by 2.0 - the ratio of the elapsed time increments - we obtain \(Y(0.002) \), except, of course, for that portion of the wave affected by the fixed boundary.

4. The Lax-Wendroff scheme is clearly superior to the central difference scheme, particularly in the presence of shocks. Not only does it produce no ringing in front of the wave, but the unloading shock wave is depicted without the large oscillations behind the shock. (These oscillations have been interpreted by some as numerical instability of the integration scheme. This is not so; the amplitude of these oscillations does not change with time. As pointed out in [28], these are lumped mass oscillations resulting from discretization error and they represent the internal energy which must appear in the "shocked" region according to the jump conditions. It is conjectured that the Lax-Wendroff scheme converts this oscillatory energy into true internal energy.)

Figure 5 shows in some detail the response of the rod to this 2-lb step load. The results confirm the fact that weak shocks propagate in a
Fig. 4. Effects of Mass Distribution and Temporal Operator on Stress Wave Response in a Thin Rod.
Fig. 5a. Time history of stress wave response to step load at end of rod.
Fig. 5b. Time history of stress wave response to step load at end of rod.
Fig. 5c. Time history of stress wave response to step load at end of rod.
manner similar to simple waves — the stress increases at the wall almost by a factor of 2.0 and the stress wave is reflected from the wall without appreciable change in shape or magnitude.

6.2 Sinusoidal Forcing Function. This example dramatically illustrates that the central difference scheme, without modification, cannot handle shocks. Here a concentrated, time-dependent load which varies sinusoidally is applied at the free end; a complete loading cycle occurs in 0.002 seconds. It is clear from the computed response shown in Fig. 6 that shocks develop quickly for this kind of loading. Unlike the response for the tensile step load where the unloading wave is produced by simply removing the load, the sinusoidal load actually "pushes" the end of the rod. The instant the load starts to decrease is the moment when the first wavelet is generated which propagates faster than the preceding one. Thus, at some time subsequent to when the compression cycle starts, a compression shock forms in the rod.

A comparison between the two integration schemes is also shown in Fig. 6 for the sinusoidal loading. In this case, it is clear that the "shocked internal energy" behind the compression shock renders the central difference scheme unacceptable. It is interesting to note, however, that the tension cycle evidently "absorbs" the large oscillations preceding it and again produces a smooth wave front. The detailed response to this loading is shown in Fig. 7. From the response shown, we notice several interesting features of nonlinear wave motion:

- The compressive shock wave is reflected from the wall as a compressive shock wave by almost doubling the compressive stress; but the tension part of the stress wave 's reflected with only a small increase in stress.
Fig. 6. Comparison of stress wave response to sinusoidal end load on rod for two integration schemes.
Fig. 7a. Time history of stress wave response to sinusoidal end load.
Fig. 7b. Time history of stress wave response to sinusoidal end load.
Fig. 7c. True history of stress wave response to sinusoidal end load.
At $t = 4.7$ millisec, two compression shocks collide. The numerical results shown here indicate that when two shocks collide in a solid material, they penetrate one another with little or no deterioration. This is apparently contrary to the collision of shocks in gases [21].

By comparing the response at $t = 3$ msec with that at $t = 5$ msec, we note that the response tends to repeat itself (with some variation due to the reflection) with essentially the same period as that of the forcing function.

As in the development of shocks from Lipschitz continuous data, the shock forms subsequent to initiation of the compressive cycle. Thus we are led to examine the positive slope characteristics in the X-t plane to see if they predict t_{cs} for this type of loading. Figures 8 and 9 show that if we assume straight compression characteristics of positive slope, the cusp of the corresponding envelope in the X-t plane does, in fact, give a good estimate of the t_{cs} observed in the stress-time plots.

Acknowledgement. The support of this work by the U.S. Air Force Office of Scientific Research under Contract F44620-69-C-0124 is gratefully acknowledged. Professor Nima Geffen followed early phases of this work and made available to the authors her recent work on shock formation [32]. We are grateful for her encouragement and interest in our project.

7. REFERENCES

Fig. 8. Characteristic field computed for sinusoidal end load.
Fig. 9. Change in stress distribution during shock formation.

Distance Along the Rod ~ inches

Stress, σ ~ psi

$t = 1.6$ ms

$t = 1.7$ ms

$t = 1.8$ ms

Reproduced from best available copy.

