An analytical study of the two-dimensional viscous, incompressible steady flow over an airfoil of arbitrary shape was made. Theodorsen's method was used to analyze the potential flow around the airfoil, providing edge velocities for the boundary layer equations, which were then solved by the Karman-Pohlhausen method. The resulting boundary layer displacement thickness was then added to the original airfoil shape to obtain a better potential flow solution. Iteration was continued in this manner until the desired accuracy was obtained. A computer program was written to effect this airfoil analysis technique. Potential flow surface velocity distribution, angle of attack at zero lift, and wall shearing stress were shown to agree well with results of other investigators.
Airfoil
Theodorsen
Conformal transformation
Potential flow
Boundary layer
AN ANALYSIS OF THE FLOW FIELD AROUND A 2-D BODY OF ARBITRARY SHAPE

THESIS

Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology

Air University
in Partial Fulfillment of the Requirements for the Degree of Master of Science

by

Ellie B. Underwood, Jr., B.S.A.S.E.
Captain USAF
Graduate Aeronautical Engineering

December 1971

-IC-

Approved for public release; distribution unlimited.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Figures</td>
<td>iii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>iv</td>
</tr>
<tr>
<td>List of Symbols</td>
<td>v</td>
</tr>
<tr>
<td>Abstract</td>
<td>viii</td>
</tr>
<tr>
<td>I. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>II. Theodorsen's Method</td>
<td>6</td>
</tr>
<tr>
<td>III. Karman-Pohlhausen Method</td>
<td>21</td>
</tr>
<tr>
<td>IV. Computer Study</td>
<td>33</td>
</tr>
<tr>
<td>V. Results</td>
<td>36</td>
</tr>
<tr>
<td>VI. Conclusions and Recommendations</td>
<td>43</td>
</tr>
<tr>
<td>Bibliography</td>
<td>45</td>
</tr>
<tr>
<td>Appendix A: Computer Program and Sample Output Format</td>
<td>46</td>
</tr>
<tr>
<td>Vita</td>
<td></td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Transformation Planes and Notation</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>Boundary Layer Coordinate System</td>
<td>22</td>
</tr>
<tr>
<td>3</td>
<td>Transformation of NACA 4424 Airfoil</td>
<td>38</td>
</tr>
<tr>
<td>4</td>
<td>Pressure Distribution on NACA 1408 Airfoil</td>
<td>39</td>
</tr>
<tr>
<td>5</td>
<td>Shear Stress on NACA 1408 Airfoil</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>Boundary Layer Displacement Thickness on NACA 1408 Airfoil</td>
<td>41</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Comparison of Zero Lift Angles of Attack</td>
<td>36</td>
</tr>
<tr>
<td>2</td>
<td>Comparison of Potential Flow Velocities for NACA 1408 Airfoil</td>
<td>37</td>
</tr>
</tbody>
</table>
List of Symbols

For Theodorsen's Method

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Dimensional proportionality constant (length)</td>
</tr>
<tr>
<td>A_n, B_n, C_n</td>
<td>Fourier coefficients</td>
</tr>
<tr>
<td>i</td>
<td>$\sqrt{-1}$</td>
</tr>
<tr>
<td>m</td>
<td>Intermediate quantity in Joukowski transformation, defined on page 9</td>
</tr>
<tr>
<td>R</td>
<td>Radius vector in exact circle plane</td>
</tr>
<tr>
<td>u</td>
<td>Velocity in x-direction</td>
</tr>
<tr>
<td>V</td>
<td>Potential flow surface velocity</td>
</tr>
<tr>
<td>V_∞</td>
<td>Freestream velocity</td>
</tr>
<tr>
<td>v</td>
<td>Velocity in y-direction</td>
</tr>
<tr>
<td>w</td>
<td>Complex potential function</td>
</tr>
<tr>
<td>x</td>
<td>Cartesian coordinate in freestream flow direction</td>
</tr>
<tr>
<td>y</td>
<td>Cartesian coordinate perpendicular to freestream flow direction</td>
</tr>
<tr>
<td>z</td>
<td>Complex position vector in exact circle plane</td>
</tr>
<tr>
<td>z'</td>
<td>Complex position vector in pseudo-circle plane</td>
</tr>
<tr>
<td>α</td>
<td>Angle of attack</td>
</tr>
<tr>
<td>β</td>
<td>Angle of attack at zero lift</td>
</tr>
<tr>
<td>Γ</td>
<td>Circulation</td>
</tr>
<tr>
<td>ϵ</td>
<td>Conformal angular distortion function</td>
</tr>
<tr>
<td>ζ</td>
<td>Complex position vector in airfoil plane</td>
</tr>
<tr>
<td>θ</td>
<td>Angular measure in exact circle plane</td>
</tr>
<tr>
<td>λ</td>
<td>Dummy variable of integration corresponding to θ</td>
</tr>
</tbody>
</table>
Symbol Descriptions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ</td>
<td>Radius vector in pseudo-circle plane</td>
</tr>
<tr>
<td>ϕ</td>
<td>Potential function</td>
</tr>
<tr>
<td>ϕ</td>
<td>Magnification exponent in exact circle plane</td>
</tr>
<tr>
<td>ψ</td>
<td>Stream function</td>
</tr>
<tr>
<td>ψ</td>
<td>Magnification exponent in pseudo-circle plane, as a function of ω</td>
</tr>
<tr>
<td>$\overline{\psi}$</td>
<td>ψ, as a function of θ</td>
</tr>
<tr>
<td>ω</td>
<td>Angular measure in pseudo-circle plane</td>
</tr>
</tbody>
</table>

For Karman-Pohlhausen Method

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a,b,c,d</td>
<td>Coefficients in assumed velocity profile</td>
</tr>
<tr>
<td>F,f_1,f_2,z,k</td>
<td>Boundary layer parameters</td>
</tr>
<tr>
<td>U</td>
<td>Boundary layer edge velocity</td>
</tr>
<tr>
<td>x</td>
<td>Streamwise coordinate</td>
</tr>
<tr>
<td>y</td>
<td>Cross-stream coordinate</td>
</tr>
<tr>
<td>δ</td>
<td>Boundary layer thickness</td>
</tr>
<tr>
<td>δ_1</td>
<td>Boundary layer displacement thickness</td>
</tr>
<tr>
<td>δ_2</td>
<td>Boundary layer momentum thickness</td>
</tr>
<tr>
<td>η</td>
<td>Cross-stream coordinate referenced to boundary layer thickness, y/δ</td>
</tr>
<tr>
<td>Λ</td>
<td>Shape factor</td>
</tr>
<tr>
<td>μ</td>
<td>Absolute viscosity</td>
</tr>
<tr>
<td>ν</td>
<td>Dynamic viscosity</td>
</tr>
<tr>
<td>ρ</td>
<td>Fluid density</td>
</tr>
<tr>
<td>τ_w</td>
<td>Shear stress at airfoil surface</td>
</tr>
<tr>
<td>o</td>
<td>Subscript indicating stagnation point</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>l</td>
<td>Subscript indicating first point downstream of stagnation point</td>
</tr>
<tr>
<td>n</td>
<td>Subscript indicating general point</td>
</tr>
</tbody>
</table>
AN ANALYSIS OF THE FLOW FIELD AROUND A 2-D BODY OF ARBITRARY SHAPE

I. Introduction

Purpose

The purpose of this study was to determine the velocity field and, therefore, the pressure distribution about a body of arbitrary shape in a two-dimensional, steady, incompressible, constant viscosity flow, utilizing a combination of Theodorsen's method and the Karman-Pohlhausen method. A computer program to implement this combined method has been written, and results from this program are described herein.

Some practical and theoretical considerations leading to this combined method are presented in the remainder of this section.

Background

The theoretical analysis or design of an airfoil shape is based primarily upon a knowledge of the velocity field in the neighborhood of the body. Since the time of Prandtl, aerodynamicists have realized that the flow over a body could be divided, for purposes of analysis, into two regions. Observations indicate that viscous forces predominate over inertia forces in a very thin layer near the surface of the body, and this region has come to be called the boundary layer. Outside this region, the flow may, with little error, be considered inviscid. Since inviscid flow with a
uniform parallel onset velocity may be described in terms of a velocity potential, the inviscid region is also called the region of potential flow. If the velocity field can be determined in the inviscid flow, then the velocity at the edge of the boundary layer will be known and may be used as a boundary condition for solution of the boundary layer equations. Each of these regions will now be considered.

Region of Inviscid Flow

For thin streamlined airfoils at low angles of attack, small perturbation theory permits a number of simplifying assumptions in the equations of motion for inviscid flow. However, no such simplified potential theory was available for airfoils of arbitrary shape until 1933, when Theodorsen's method (Ref 2) was published.

Theodorsen made use of the fact that any closed curve, such as an airfoil, defined in the complex plane, may be transformed mathematically into a circle. This transformation may be further required to be conformal; that is, to preserve the local angular relationship between lines passing through each point. Conformality, therefore, ensures that the angle of attack of the airflow is unaffected by the transformation. The problem then becomes that of analyzing the two-dimensional flow over a circle. Since this is one of the very few cases for which exact solutions to the equations of motion are known, the velocity at each point
on the circle may be obtained immediately. Then, through an inverse transformation, the potential flow velocity at the corresponding point on the surface of the airfoil may also be determined. This velocity may be used as an approximation, (since boundary layer thickness has not yet been accounted for) to the velocity at the edge of the boundary layer.

Straightforward though this method appears, its use before the advent of high-speed computers was limited in practice by the enormity of the task of solving the necessary integral equations iteratively to the desired accuracy. The transformation is very time-consuming and tedious when performed by hand, providing numerous opportunities to make minor mathematical errors which may invalidate subsequent work. Since these are precisely the disadvantages in computation that a digital computer is designed to overcome, Theodorsen's method lends itself well to formulation for machine use.

The rate at which the iterative solution converges is largely dependent upon how nearly the original airfoil approximates a circle. Therefore, Theodorsen recommends the use of an intermediate analytical transformation (the Joukowski transformation) which converts the airfoil shape into a pseudo-circle conformally, and, thereby, reduces the computation time required.
Boundary Layer Region

The boundary layer equations may be derived from the Navier-Stokes equations for viscous fluid motion under the assumptions of steady, incompressible, constant viscosity flow at large Reynold's numbers. The Karman-Pohlhausen method (Ref 3) of solving the boundary layer equations is based on the further assumption that the velocity profile may be adequately represented as a fourth-degree polynomial satisfying appropriate boundary conditions, including the edge velocity distribution previously found from Theodorsen's method.

Combined Flow Fields

The boundary layer flow determined from the Karman-Pohlhausen method is only a first approximation, because a body with a boundary layer appears to the potential flow to be thicker by the amount of the displacement thickness. Therefore, the displacement thickness of the boundary layer must be computed for the approximate edge velocity; then this thickness must be added to the actual thickness of the body; and the inviscid velocity field for the resulting shape determined by Theodorsen's method. Thus, the velocity field solutions are continually refined until the change in displacement thickness from one iteration to the next is negligible. At this point, the problem of finding the velocity field may be considered solved. With the velocity field known, other aerodynamic parameters such as lift,
drag, circulation, and separation point may also be computed, using standard methods.
II. Theodorsen's Method

Method of Presentation

Theodorsen's method of irrotational flow analysis depends upon several important results of potential theory and the theory of conformal transformations of complex functions. These results will be briefly summarized before a detailed presentation of the Joukowski and Theodorsen transformations is given. Finally, the process for obtaining surface velocities by an inverse transformation will be presented.

Review of Potential Theory

The flow outside the boundary layer is assumed to be steady, irrotational, and incompressible, permitting its description in terms of a velocity potential \(\Phi \) or a stream function \(\Psi \), defined so that:

\[
\begin{align*}
 u &= \frac{\partial \Phi}{\partial x} = \frac{\partial \Psi}{\partial y} \quad \text{velocity in } x\text{-direction} \\
 v &= \frac{\partial \Phi}{\partial y} = -\frac{\partial \Psi}{\partial x} \quad \text{velocity in } y\text{-direction}
\end{align*}
\]

The lines of constant \(\Psi \) (streamlines) and lines of constant \(\Phi \) (equipotential lines) are orthogonal families of curves.

Any functions of \(\Phi \) and \(\Psi \) which satisfy Laplace's equation, \(\nabla^2 \Phi = \nabla^2 \Psi = 0 \), represent possible types of fluid motion. The boundary conditions of impermeability of the airfoil surface and uniform flow at infinity define a unique solution.
Conformal Transformation

If $w(\zeta) = \phi(x,y) + i\psi(x,y)$ is an analytic function of the complex variable $\zeta = x + iy$, and the components ϕ and ψ satisfy Laplace' equation, then certain useful relations exist between the ζ-plane and the w-plane. Specifically, any simple curve $f(\zeta)$, such as an airfoil surface, maps into a curve $f(w)$ in the w-plane in such a manner that the angles between pairs of lines passing through any point in the ζ-plane remain unchanged at the image point in the w-plane, although local rotations and magnifications may occur. Therefore, the streamlines and equipotential lines of the ζ-plane remain orthogonal in the plane of transformation.

An exception occurs at points where $\frac{dw}{d\zeta} = 0$. These points correspond to flow stagnation points in the exact circle plane, and also in the airfoil plane, unless the trailing edge is cusped, in which case the airfoil has no trailing edge stagnation point.

Riemann has shown that the transformed curve may be specified without negating the conformal characteristic of the transformation. In particular, the interior of any simply-connected region can be mapped inside a circle, with the curve enclosing the region mapping onto the circumference of the circle. This transformation is unique when the origins and orientations of the coordinate systems in the two planes are specified.
The transformation \(\zeta = z' + \frac{a^2}{z'} \), where the \(\zeta \)-plane is the plane of the airfoil \(\zeta = x + iy \) is the Joukowski transformation. If the airfoil is elliptical or one of the special class of airfoils known as Joukowski airfoils, then a circle results in the \(z' \)-plane. If not, then a curve (pseudo-circle in Fig. 1) closely approximating a circle results for conventional airfoil shapes. While this transformation is not essential to Theodorsen’s method, it improves the rate of convergence of the subsequent transformation.

The constant "a" is included to preserve dimensions and has the dimension of length. The curve in the \(z' \)-plane can also be represented as \(z' = a e^{\psi+iu} \) in polar coordinates, where \(\rho = ae^{\psi} \) is the radius vector and the angular coordinate is \(\omega \). Substituting the polar form of \(z' \) into the transformation equation yields

\[
\zeta = 2a \cosh (\psi + i\omega) \quad (2)
\]

or

\[
\zeta = 2a \cosh \psi \cos \omega + 2ia \sinh \psi \sin \omega \quad (3)
\]

Noting that \(\zeta = x + iy \), and equating real and imaginary parts, the airfoil coordinates may be found explicitly in terms of the transformation coordinates

\[
x = 2a \cosh \psi \cos \omega
\]

\[
y = 2a \sinh \psi \sin \omega \quad (4)
\]
The inverse relations between coordinates will now be determined. Solving Eqs (4) for \(\cosh \psi \) and \(\sinh \psi \) and substituting into the identity \(\cosh^2 \psi - \sinh^2 \psi = 1 \) gives

\[
\left(\frac{x}{2a \cos \omega} \right)^2 - \left(\frac{y}{2a \sin \omega} \right)^2 = 1
\]

which can be solved for \(\omega \)

\[
\omega = \sin^{-1} \sqrt{\frac{1}{2} \left[m + \sqrt{m^2 + (y/a)^2} \right]}
\]

where

\[
m = 1 - \left(\frac{x^2 + y^2}{4a^2} \right)
\]

Likewise, Eqs (4) may be solved for \(\cos \psi \) and \(\sin \psi \) and substituted into the identity \(\cos^2 \psi + \sin^2 \psi = 1 \), giving

\[
\left(\frac{x}{2a \cosh \psi} \right)^2 + \left(\frac{y}{2a \sinh \psi} \right)^2 = 1
\]

so that,

\[
\psi = \sinh^{-1} \sqrt{\frac{1}{2} \left[m + \sqrt{m^2 + (y/a)^2} \right]}
\]

Theodorsen Transformation

\[
\sum_{n=0}^{\infty} \frac{C_n}{z^n}
\]

The Theodorsen transformation \(z' = z e^{i\theta} \) maps the pseudo-circle in the \(z' \)-plane into an exact circle (Fig. 1) in the \(z \)-plane. The coefficients \(C_n \) are complex numbers of the form \(A_n + iB_n \). The condition that the flow at infinity
Fig. 1. Transformation Planes and Notation.
must be identical in airfoil and exact circle planes
requires that \(A_0 = B_0 = 0 \). The transformation then becomes

\[
 z' = z e^{(\psi - \phi) + i\omega - \theta)}
\]

Suitable means must now be found for determining the constants \(A_n \) and \(B_n \).

The equation for the exact circle may be expressed as

\[z = ae^{\phi+i\theta} \]

in polar coordinates where \(\phi \) is a constant and \(R = ae^\phi \) is the radius vector and the angular coordinate is \(\theta \).

Eliminating the constant "a" between the polar definitions of \(z \) and \(z' \) yields

\[
 z' = z e^{(\psi - \phi) + i(\omega - \theta)}
\]

Now, combining with the transformation equation

\[
 (\psi - \phi) + i(\omega - \theta) = \sum_{n=1}^{\infty} \frac{A_n + iB_n}{z^n}
\]

Note that

\[
 z^n = (ae^{\phi+i\theta})^n = [R(\cos \theta + i \sin \theta)]^n = \frac{R^n}{\cos n\theta - i \sin n\theta}
\]

Substituting into Eq (11)
\[(\psi - \phi) + i(\omega - \theta) = \sum_{n=1}^{\infty} \left[\frac{A_n}{R^n} \cos n\theta + \frac{B_n}{R^n} \sin n\theta \right] (13)\]

expanding

\[(\psi - \phi) + i(\omega - \theta) = \sum_{n=1}^{\infty} \left[\frac{A_n}{R^n} \cos n\theta + \frac{B_n}{R^n} \sin n\theta \right] +

+ i \sum_{n=1}^{\infty} \left[\frac{B_n}{R^n} \cos n\theta - \frac{A_n}{R^n} \sin n\theta \right] (14)\]

and equating real and imaginary parts of Eq (14) establishes

the following conjugate Fourier expansions:

\[\psi - \phi = \sum_{n=1}^{\infty} \left[\frac{A_n}{R^n} \cos n\theta + \frac{B_n}{R^n} \sin n\theta \right] (15)\]

\[\omega - \theta = \sum_{n=1}^{\infty} \left[\frac{B_n}{R^n} \cos n\theta - \frac{A_n}{R^n} \sin n\theta \right] (16)\]

The Fourier coefficients \(\frac{A_n}{R^n}\), \(\frac{B_n}{R^n}\), and \(\phi\) (the constant term) of Eq (15) are given by

\[\frac{A_n}{R^n} = \frac{1}{2\pi} \int_{0}^{2\pi} \bar{\Psi}(\lambda) \cos n\lambda \, d\lambda (17)\]

\[\frac{B_n}{R^n} = \frac{1}{2\pi} \int_{0}^{2\pi} \bar{\Psi}(\lambda) \sin n\lambda \, d\lambda (18)\]

\[\phi = \frac{1}{2\pi} \int_{0}^{2\pi} \bar{\Psi}(\lambda) \, d\lambda (19)\]
where \(\lambda \) is an angular measure corresponding to \(\theta \) and
\[
\psi(\lambda) = \psi[\omega(\lambda)],
\]

since \(\psi \) is known only as a function of \(\omega \).
Therefore, a relation between \(\psi \) and \(\theta \) (or \(\lambda \)) must be found.
For any particular value of \(\theta \), the coefficients given in
Eqs (17) and (18) may be substituted into Eq (16), thereby
eliminating these coefficients from that relation

\[
\omega - \theta = \frac{1}{W} \sum_{n=1}^{\infty} \left[\cos n\theta \int_0^{2\pi} \psi(\lambda) \sin n\lambda \, d\lambda -
\sin n\theta \int_0^{2\pi} \psi(\lambda) \cos n\lambda \, d\lambda \right]
\]

which reduces to

\[
\omega - \theta = \frac{1}{W} \sum_{n=1}^{\infty} \left[\int_0^{2\pi} \psi(\lambda) \sin n(\lambda-\theta) \, d\lambda \right] =
\]

\[
\frac{1}{W} \int_0^{2\pi} \psi(\lambda) \left[\sum_{n=1}^{\infty} \sin n(\lambda-\theta) \, d\lambda \right]
\]

But,

\[
\sum_{n=1}^{N} \sin n(\lambda-\theta) = \frac{1}{2} \cot \frac{\lambda-\theta}{2} - \frac{\cos \left[(2N+1) \frac{\lambda-\theta}{2} \right]}{2 \sin \frac{\lambda-\theta}{2}}
\]

so that
\[
\omega - \theta = \lim_{N \to \infty} \left[\frac{1}{2\pi} \int_0^{2\pi} \bar{\psi}(\lambda) \cot \frac{\lambda - \theta}{2} \, d\lambda \right]
\]
\[
\frac{1}{2\pi} \int_0^{2\pi} \bar{\psi}(\lambda) \cos \left(\frac{(2N+1) \lambda - \theta}{2} \right) \frac{\sin \frac{\lambda - \theta}{2}}{2} \, d\lambda \]

(24)

Since the second term is identically zero and the first one is unaffected in the limit,

\[
\omega - \theta = \frac{1}{2\pi} \int_0^{2\pi} \bar{\psi}(\lambda) \cot \frac{\lambda - \theta}{2} \, d\lambda
\]

(25)

The difference, \((\omega-\theta)\) or \((\omega-\lambda)\), between angular coordinates of a point and its image in the pseudo-circle and exact circle planes is called the conformal angular distortion function, and is denoted by \(\epsilon\), so that

\[
\epsilon(\theta) = \frac{1}{2\pi} \int_0^{2\pi} \bar{\psi}[(\epsilon(\lambda) + \lambda) \cot \frac{\lambda - \theta}{2} \, d\lambda
\]

(26)

Equation (26) is of fundamental importance in the practical application of Theodorsen's method, as it may be solved iteratively for \(\epsilon(\theta)\), from which \(\omega(\theta)\) is obtained permitting the solution of Eq (19) for the constant \(\phi\). Note that the relationship between polar coordinates in the pseudo-circle and exact circle planes has been obtained without having to solve for the Fourier coefficients directly.
Surface Velocity

It is shown in potential flow theory that the complex velocity potential for a circle in the z-plane immersed in steady, x-directed flow is

\[w(z) = \phi + i\psi = -V_\infty \left(z + \frac{R^2}{z} \right) - \frac{i\Gamma}{2\pi} \ln \frac{z}{R} \]

(27)

where \(V_\infty \) is the freestream velocity, \(R = ae \) is the radius of the circle, and \(\Gamma \) is the circulation. The fluid velocity in the circle plane is obtained by differentiating \(w(z) \)

\[V(z) = \frac{dw}{dz} = u + iv = -V_\infty \left(1 - \frac{R^2}{z^2} \right) - \frac{i\Gamma}{2\pi z} \]

(28)

This velocity will be zero (\(u = v = 0 \)) at stagnation points. Therefore, the locations (\(z_0 \)) of these points is given by the value for \(z \) when \(\frac{dw}{dz} = 0 \). That is,

\[z_0 = -i\Gamma \pm \frac{\sqrt{16\pi^2 R^2 V_\infty^2 - \Gamma^2}}{4\pi V_\infty} \]

(29)

A non-zero angle of attack \(\alpha \) may be accounted for by replacing \(z \) by \(z e^{i\alpha} \) in the real part of Eq (27). This has the effect of rotating the flow field about the circle by the angle \(\alpha \).

\[w(z) = -V_\infty \left(ze^{i\alpha} + \frac{R^2}{z} e^{-i\alpha} \right) - \frac{i\Gamma}{2\pi} \ln z \]

(30)
and

\[V(z) = -V_\infty e^{i\alpha} \left(1 - \frac{R^2}{z^2} e^{-2i\alpha} \right) - \frac{i\Gamma}{2\pi z} \quad (31) \]

The well-known Kutta-Joukowski condition requires that the trailing edge (\(\omega = \pi \)) on an airfoil which does not have a cusped trailing edge be a stagnation point in order that infinite velocities and pressure gradients may be avoided. The circulation required to meet this condition may be found by setting \(z_0 = R e^{i(\pi + \beta)} = -R e^{i\beta} \) (where \(\beta \) is the negative of the value of \(\varepsilon \) at \(\omega = \pi \), and is called the angle of zero lift for the airfoil) and \(V(z) = 0 \) in Eq (31), and solving for the corresponding \(\Gamma \):

\[\Gamma = 4\pi R V_\infty \sin (\alpha + \beta) \quad (32) \]

Then

\[V(z) = \frac{dw}{dz} = -V_\infty e^{i\alpha} \left(1 - \frac{R^2}{z^2} e^{-2i\alpha} \right) - i \frac{4\pi R V_\infty \sin (\alpha + \beta)}{2\pi z} \quad (33) \]

The velocity, \(v(z) \), in the plane of the circle must now be converted to the velocity, \(v(\zeta) \), at the surface of the airfoil through the use of transformation derivatives:

\[v(\zeta) = \left| \frac{dw}{d\zeta} \right| = \left| \frac{dw}{dz} \right| \left| \frac{dz}{d\zeta} \right| \left| \frac{dz'}{d\zeta'} \right| \quad (34) \]

and these derivatives must now be determined. Recall that \(z = R e^{i\theta} \) on the surface of the circle. Substituting this
value for \(z \) in Eq (33) gives

\[
\frac{dw}{dz} = -Ve^{i\alpha}[1 - e^{-2i(\alpha+\theta)}] - 2iVe^{-i\theta} \sin (\alpha+\beta)
\]

(35)

which reduces to

\[
\frac{dw}{dz} = -2iV[e^{-i\theta}][\sin (\alpha+\theta) + \sin (\alpha+\beta)]
\]

(36)

the absolute value of which is

\[
\left|\frac{dw}{dz}\right| = 2V[\sin (\alpha+\theta) + \sin (\alpha+\beta)]
\]

(37)

From the definitions of \(z, z', \) and \(\epsilon \)

\[
\frac{z'}{z} = \frac{ze^{\psi+i\epsilon}}{ae^{\phi+i\theta}} = e^{(\psi-\phi)+i\epsilon}
\]

(39)

Differentiating and noting that \(\phi \) is a constant

\[
\frac{dz'}{dz} = e^{(\psi-\phi)+i\epsilon} + ze^{(\psi-\phi)+i\epsilon} \frac{d}{dz} [(\psi-\phi)+i\epsilon] =
\]

\[
\frac{z'}{z} \left[1 + z \frac{d}{dz} (\psi+i\epsilon) \right]
\]

(39)

But

\[
\frac{1}{z} \frac{dz}{d\theta} = \frac{1}{ae^{\phi+i\theta}} d(ae^{\phi+i\theta}) = i\theta
\]

(40)

Substitution into Eq (39) gives
Further algebraic manipulation on this equation gives

$$\frac{dz'}{dz} = \frac{z'}{z} \left[1 + \frac{d(\psi+i\sigma)}{i\sigma} \right] = \frac{z'}{z} \left(1 - i \frac{d\phi}{d\theta} + \frac{dc}{dc} \right) \tag{41}$$

Applying the definition $\epsilon = \omega - \theta$, and reducing

$$\frac{dz'}{dz} = \frac{z'}{z} \left[\frac{(d\theta/d\omega) + (dc/d\omega) - i (d\psi/d\omega)}{(d\theta/d\omega)} \right] \tag{42}$$

And finding the absolute value

$$\left| \frac{dz'}{dz} \right| = e^{\psi - \phi} \left[\frac{1 + (d\psi/d\omega)^2}{1 - (d\epsilon/d\omega)} \right] \tag{44}$$

Inverting

$$\left| \frac{dz}{dz'} \right| = e^{\phi - \psi} \left[\frac{1 - (d\epsilon/d\omega)}{\sqrt{1 + (d\psi/d\omega)^2}} \right] \tag{45}$$

which is the desired derivative. Substituting the definition $z' = ae^{\psi+i\omega}$ into the Joukowski transformation

$$\zeta = ae^{\psi+i\omega} + ae^{-\psi-i\omega} = 2a \cosh (\psi+i\omega) \tag{46}$$

Differentiating

$$\frac{d\zeta}{dz'} = 2 \sinh (\psi+i\omega) e^{-\psi-i\omega} \tag{47}$$
Expanding

$$\frac{d\zeta}{dz} = 2e^{-\psi-i\omega} (\sinh \psi \cosh i\omega + \cosh \psi \sinh i\omega) \quad (48)$$

Noting that \(\cosh i\omega = \cos \omega \) and \(\sinh i\omega = i \sin \omega \), this becomes

$$\frac{d\zeta}{dz} = 2e^{-\psi-i\omega} (\sinh \psi \cos \omega + i \cosh \psi \sin \omega) \quad (49)$$

Then

$$\left| \frac{d\zeta}{dz} \right|^2 = 4e^{-2\psi} (\sinh^2 \psi \cos^2 \omega + \cosh^2 \psi \sin^2 \omega) \quad (50)$$

which reduces to

$$\left| \frac{d\zeta}{dz} \right|^2 = 4e^{-2\psi} (\sinh^2 \psi + \sin^2 \omega) \quad (51)$$

Taking the square root and inverting gives the final derivative

$$\left| \frac{dz}{d\zeta} \right| = \frac{e^\psi}{2\sqrt{\sinh^2 \psi + \sin^2 \omega}} \quad (52)$$

The derivatives given in Eqs (37), (45), and (52) will now be substituted into Eq (34) to find the airfoil surface velocity

$$V(\xi) = \frac{V_0 e^\psi [\sin (\alpha + \theta) + \sin (\alpha + \beta)][1 - (d\epsilon/d\omega)]}{\sqrt{(\sinh^2 \psi + \sin^2 \omega)[1 + (d\psi/d\omega)^2]}} \quad (53)$$
This is the velocity which will then be used as an approximation for the edge velocity in the analysis of the boundary layer.
III. Karman-Pohlhausen Method

Origin

General motion of a viscous fluid is described by the Navier-Stokes equations, which were derived from first principles. Schlichting (Ref 3) has shown that, if Reynolds number is large, viscosity is constant, and flow is steady and incompressible, then the equations of motion for flow over a surface may be approximated by the momentum integral equation:

\[U^2 \frac{d\delta_2}{dx} + (2\delta_2 + \delta_1) U \frac{dU}{dx} = \frac{\tau_w}{\rho} \quad (54) \]

where the boundary layer displacement and momentum thicknesses are, respectively,

\[\delta_1 = \int_0^\infty \left(1 - \frac{u}{U} \right) dy \quad (55) \]
\[\delta_2 = \int_0^\infty \frac{u}{U} \left(1 - \frac{u}{U} \right) dy \quad (56) \]

and where \(x \) and \(y \) are, respectively, the streamwise and cross-stream coordinates of a general point in the flow (Fig. 2), with the corresponding velocities given by \(u \) and \(v \). Note that the boundary layer edge velocity \(U \) is a parameter common to both the potential flow and boundary layer regions.

The following analysis is due originally to Pohlhausen, but is presented in the form developed by Holstein and
Bohlen, and described by Schlichting.

Velocity Profile

A velocity profile of the following form is now assumed:

\[
\frac{u}{U} = an + bn^2 + cn^3 + dn^4
\]

(57)

where \(n = y/\delta \) and \(a, b, c, \) and \(d \) are coefficients to be determined.

Observations indicate that the following boundary conditions should be applied to the solution of Eq (54):

\[
u = 0 \quad \text{at } y = 0
\]

(58)

\[
\nu \frac{\partial^2 u}{\partial y^2} = -U \frac{du}{dx} \quad \text{at } y = 0
\]

(59)

\[
u = U \quad \text{at } y = \delta
\]

(60)

\[
\frac{\partial u}{\partial y} = 0 \quad \text{at } y = \delta
\]

(61)

\[
\frac{\partial^2 u}{\partial y^2} = 0 \quad \text{at } y = \delta
\]

(62)

where \(\delta \), called the boundary layer thickness, is the cross-stream distance from the surface at which the boundary layer meets the potential flow region.

Note that the first boundary condition, Eq (58), is identically satisfied by the assumed solution by virtue of the omission of a constant term in the polynomial. There remain, therefore, four boundary conditions to determine.
a, b, c, and d. In terms of the assumed velocity profile, the second through fifth boundary conditions become, respectively,

\[\frac{\partial^2}{\partial \eta^2} \left(\frac{u}{U} \right) \left(\frac{\partial^2}{\partial \eta^2} \right)^2 = -\frac{dU}{dx} \quad \text{at } \eta = 0 \quad (63) \]

\[\frac{u}{U} = 1 \quad \text{at } \eta = 1 \quad (64) \]

\[u \left[\frac{\partial^2}{\partial \eta^2} \left(\frac{u}{U} \right) \left(\frac{\partial^2}{\partial \eta^2} \right) \right] = 0 \quad \text{at } \eta = 1 \quad (65) \]

\[u \left[\frac{\partial^2}{\partial \eta^2} \left(\frac{u}{U} \right) \left(\frac{\partial^2}{\partial \eta^2} \right)^2 \right] = 0 \quad \text{at } \eta = 1 \quad (66) \]

Application of these conditions to the assumed solution and defining a shape factor

\[A = \frac{\delta^2}{V} \frac{dU}{dx} \quad (67) \]

leads to the following expression for the velocity profile:

\[\frac{u}{U} = (2\eta - 2\eta^3 + \eta^4) + \frac{A}{6} (\eta - 3\eta^2 + 3\eta^3 - \eta^4) \quad (68) \]

By applying the physical constraints that \(\frac{\partial u}{\partial y} = 0 \) at \(y = 0 \) at the separation point and that \(\frac{u}{U} \leq 1 \) within the boundary layer, the upper and lower physical limits on \(A \) are readily determined. These have been found to be +12 and -12, respectively.
Other Parameters

The displacement thickness, momentum thickness, and shear stress will now be found in terms of \(A \).

Substituting the above velocity profile and the definition for \(\eta \) into the definition for displacement thickness given by Eq (55) gives

\[
\frac{\delta_1}{\delta} = \int_0^1 [1 - (2\eta - 2\eta^3 + \eta^4)] - \frac{A}{6} (2\eta - 3\eta^2 + 3\eta^3 - \eta^4)] d\eta \quad (69)
\]

And, finally,

\[
\frac{\delta_1}{\delta} = \frac{3}{10} - \frac{A}{120} \quad (70)
\]

Likewise,

\[
\frac{\delta_2}{\delta} = \frac{37}{315} - \frac{A}{945} - \frac{A^2}{9072} \quad (71)
\]

Now, the shear stress, by definition, is

\[
\tau_w = \mu \left. \frac{\partial u}{\partial y} \right|_{y=0} \quad (72)
\]

Evaluating the derivative and multiplying both sides by \(\frac{\delta}{\mu U} \), gives

\[
\frac{\tau_w \delta}{\mu U} = 2 + \frac{A}{6} \quad (73)
\]
Simplification of Momentum Integral Equation

The momentum integral equation can now be put into a form from which practical results may be obtained.

Multiplying both sides of Eq (54) by $\frac{\delta_2}{v}$, and reducing, leads to

$$\frac{\tau_u \delta_2}{\nu U} = \frac{u}{v} \delta_2 \frac{d\delta_2}{dx} + \left(2 + \frac{\delta_1}{\delta_2}\right) \frac{\delta_2^2}{v} \frac{dU}{dx}$$

(74)

Equations (67), (68), (70), (71), and (74), together with the known edge velocity distribution, form a solvable system. However, elimination of dependence of the other variables on δ is desirable, since the boundary layer thickness is physically meaningless. Furthermore, the $\frac{d\delta_2}{dx}$ quantity in Eq (74) leads to a requirement for $\frac{d^2U}{dx^2}$ at every point on the surface. By suitable mathematical manipulation, this can be reduced to a requirement for $\frac{d^2U}{dx^2}$ at the upstream stagnation point only. The following analysis proceeds, therefore, toward these objectives.

Introduction of several new parameters will permit simplification of the form of Eq (74). Define

$$K = \frac{\delta_2^2}{v} \frac{dU}{dx}$$

(75)

Then,

$$K = \left(\frac{\delta_2}{\delta}\right)^2 \frac{\delta_2^2}{v} \frac{dU}{dx} = \Lambda \left(\frac{\delta_2}{\delta}\right)^2 = \Lambda \left(\frac{37}{315} - \frac{A}{945} - \frac{A^2}{9072}\right)^2$$

(76)
Let

\[z = \frac{\delta_2^2}{v} \] \hspace{1cm} (77)

So that

\[\frac{dz}{dx} = \frac{2}{v} \delta_2 \frac{d\delta_2}{dx} \] \hspace{1cm} (78)

Also, from Eqs (75) and (77)

\[\kappa = z \frac{dU}{dx} \] \hspace{1cm} (79)

The ratio of displacement to momentum boundary layer thicknesses may be defined

\[f_1 = \frac{\delta_1}{\delta_2} \] \hspace{1cm} (80)

Or, using Eqs (70) and (71)

\[f_1 = \frac{\delta_1}{\delta_2} = \frac{3}{10} - \frac{A}{120} \] \hspace{1cm} (81)

\[\frac{\delta_1}{\delta_2} = \frac{37}{315} - \frac{f}{945} - \frac{A^2}{9072} \]

And, finally, the definition

\[f_2 = \frac{\tau_w \delta_2}{\mu U} \] \hspace{1cm} (82)

gives, using Eqs (71) and (73),
\[
\ell_2 = \frac{\tau_m \delta_2}{\mu U} = \left(2 + \frac{A}{6} \right) \left(\frac{37}{315} - \frac{A}{945} - \frac{A^2}{9072} \right) \quad (83)
\]

Now, if these definitions are substituted into Eq (74), the result is

\[
f_2 = \frac{U}{2} \frac{dZ}{dx} + (2 + f_1)K \quad (84)
\]

which may be rearranged to give

\[
U \frac{dZ}{dx} = 2f_2 - (4 + 2f_1)K \quad (85)
\]

The right side of Eq (85) is a function of \(A \) alone, as shown by Eqs (76), (81), and (83). Therefore, if a new parameter \(F \) is defined such that

\[
F = 2f_2 - (4 + 2f_1)K \quad (86)
\]

Then, it may be shown that

\[
F = 2 \left(\frac{37}{315} - \frac{A}{945} - \frac{A^2}{9072} \right)
\]

\[
\left[2 - \frac{116}{315} A + \left(\frac{2}{945} + \frac{1}{120} \right) A^2 + \frac{2}{9072} A^3 \right] \quad (87)
\]

And Eq (85), the equation of motion, becomes

\[
\frac{dZ}{dx} = \frac{F}{U} \quad (88)
\]
Conditions at Stagnation Point

Enough relations now exist to permit a stepwise solution for all the boundary layer parameters, once a starting condition is known. Starting conditions, therefore, will now be determined at the upstream stagnation point.

Since the flow is brought to rest at the stagnation point, \(U_0 = 0 \) (where the "o" subscript means that an associated variable is to be evaluated at stagnation point conditions). Then, from Eq (88), \(F_0 \) must also be zero if \(\left(\frac{dZ}{dx} \right)_0 \) is to exist. Therefore, \(A_0 \) must be a root of Eq (87) when \(F = 0 \). The roots of this equation are -72.2, -37.8, 7.052, 17.9, and 28.2. Because of the physical limitations on the range of \(A \), it may be seen that

\[
A_0 = 7.052 \quad (89)
\]

Then from Eq (76),

\[
K_0 = .0770 \quad (90)
\]

And, from Eq (79),

\[
Z_0 = \frac{.0770}{\left(\frac{dU}{dx} \right)_0} \quad (91)
\]

which determines \(Z_0 \), since the edge velocity distribution is known from the potential flow analysis.

Now, \(\left(\frac{dZ}{dx} \right)_0 \) may be found by applying L'Hospital's Rule to Eq (88).
\[
\left(\frac{dZ}{dx} \right) \bigg|_0 = \lim_{x \to 0} \left[\frac{(dF/dx)}{(dU/dx)} \right] = \lim_{x \to 0} \left[\frac{(dF/dK)(dK/dx)}{(dU/dx)} \right]
\]

(92)

But, from Eq. (79),

\[
\frac{dK}{dx} = \frac{dZ}{dx} \frac{dU}{dx} + Z \frac{d^2U}{dx^2}
\]

(93)

Substituting this expression into Eq (92) and passing to the limit gives

\[
\left(\frac{dZ}{dx} \right) \bigg|_0 = Z_0 \left[\frac{\left(\frac{dF}{dK} \right) \bigg|_0}{1 - \left(\frac{dF}{dK} \right) \bigg|_0} \right] \left[\left(\frac{\frac{d^2U}{dx^2}}{dU/dx} \right) \bigg|_0 \right]
\]

(94)

But, using Eqs (76) and (87),

\[
\left(\frac{dF}{dK} \right) \bigg|_0 = \frac{\left(\frac{dF}{dK} \right) \bigg|_0}{\left(\frac{dK}{dx} \right) \bigg|_0} = -5.57
\]

(95)

Substituting the values for \(Z_0\) and \(\left(\frac{dF}{dK} \right) \bigg|_0\) given by Eqs (91) and (95), respectively, into Eq (94) provides an expression for \(\left(\frac{dZ}{dx} \right) \bigg|_0\) in terms of the edge velocity distribution:

\[
\left(\frac{dZ}{dx} \right) \bigg|_0 = -0.0652 \left(\frac{\frac{d^2U}{dx^2}}{dU/dx} \right) \bigg|_0
\]

(96)
Using the Method

With starting conditions known at the stagnation point, the value for \(Z \) at a distance \(\Delta x \) downstream is

\[
Z_1 = Z_0 + \left(\frac{dZ}{dx} \right) \bigg|_0 \Delta x
\]

(97)

Then, from Eq (79),

\[
K_1 = Z_1 \left(\frac{dU}{dx} \right) \bigg|_1
\]

(98)

The corresponding value of \(A \), from Eq (76) may now be used to find \(F_1 \) from Eq (87). Using Eq (88),

\[
\left(\frac{dZ}{dx} \right) \bigg|_1 = \frac{F_1}{U_1}
\]

(99)

so that the stepping process may be continued indefinitely, the value of \(Z \) at point "n" being

\[
Z_n = Z_{n-1} + \left(\frac{dZ}{dx} \right) \bigg|_{n-1} \Delta x
\]

(100)

Knowledge of \(A_n \) permits determination of \(f_{1n}, f_{2n} \), and the velocity profile \(\left(\frac{u}{U} \right)_n \), using Eqs (45), (83), and (68), respectively. Substituting \(Z_n \) into Eq (77) yields \(\delta_{2n} \), which in turn produces \(\tau_{wn} \) from Eq (82), and, the ultimate objective, \(\delta_{1n} \) from Eq (80). This value of \(\delta_{1n} \) must be added to the original airfoil thickness to form a better
approximation of the potential flow airfoil shape to be analyzed again by Theodorsen's method.

Limitation

The Karman-Pohlhausen method of boundary layer analysis does not properly describe the flow downstream of a separation point (the point at which the shear stress at the wall vanishes).
IV. Computer Study

Purpose of Computer Study

A Fortran Extended program for the CDC-6600 computer was written as part of this study and is listed in Appendix A. It implements the theory discussed in the preceding chapters and lays a foundation for more sophisticated airfoil analysis programs. Flow parameters from this program may be compared with those from simplified airfoil theories in order to determine the validity of thin airfoil and inviscid assumptions. Some pertinent facts about the program will be discussed in this chapter.

Program Composition

The computer program is composed of a main program and several subprograms and functions. The main program is called MAGIC and provides the means for reading input data, controlling data flow and sequencing among subprograms, and testing for completion of the iteration on displacement thickness. One principal subprogram is THEO, which applies Theodorsen's method to the airfoil; the other is BOUND, which solves the boundary layer equations using the Karman-Pohlhausen method. Other subprograms and their purposes include: FNEVAL, which defines integrands; SIMPS, which performs integrations using Simpson's Rule; MTXEQ, which solves systems of algebraic equations; PLSQ, a polynomial least-square curve-fitting routine; ATKN, an interpolating function; several subroutines for the CALCOMP plotter; and
Input

Program MAGIC requires an alphanumeric description of the airfoil (e.g., NACA 1408), the number of data points, the Cartesian coordinates of each point, a plotting index, freestream velocity, viscosity, density, and the angle of attack on the chord line. The airfoil chord line is assumed to lie on the x-axis with the trailing edge in the positive x-direction and the midchord point at the origin. Points defining the airfoil surface must begin at the trailing edge and be numbered in the counterclockwise direction. All dimensions must be referenced to chord length. The plotting index causes the airfoil and its transformations in subprogram THEO: (1) to be plotted on the same axes, (2) not to be plotted, or (3) to be plotted on separate axes, according as its value is -1, 0, or +1, respectively. The angle of attack must be given in degrees.

Additionally, accuracy requirements on various computations may be reset by modifications to the program.

Output

Program MAGIC computes and prints Cartesian coordinates in all three planes, polar coordinates in the pseudo-circle and exact circle planes, potential flow surface velocity, coefficients for fifth-order polynomials for $\Psi(\theta)$ and $\psi(\omega)$, radius of exact circle, zero-lift angle of attack, circulation, section lift, pressure coefficients, shear stress at
surface, momentum thickness, displacement thickness, shape factor, and several important quantities used in computing these. The airfoil surface in all three planes is plotted (provided that the plotting index is non-zero), as are pressure coefficient, shear stress, and displacement thickness as functions of chordwise station. Samples of output format are shown in Appendix A.

Limitations on Program

Although subprogram THEO gives correct results for non-zero angles of attack, subprogram BOUND does not, since the shift of upstream stagnation point with angle of attack has not been accounted for. Therefore, accurate results for the complete program may be expected only for zero angle of attack.

Values of shear stress and displacement thickness generated by subprogram BOUND downstream of the separation point become very large. These values are printed as output, but are actually limited to a reasonable maximum value before being plotted or transmitted to subprogram THEO for another iteration. In particular, the displacement thickness at the trailing edge is set to zero in order that the new airfoil shape considered by subprogram THEO will be a closed curve.
V. Results

Conformal Transformations

Transformations were accomplished by subprogram THEO on several airfoils, including NACA 1408 and NACA 4424. The output plot of the transformation on the NACA 4424 airfoil is presented in Fig. 3. Success of the transformation on these airfoils was measured by the accuracy of the output angle of zero lift, \(\beta \). The values for these angles as given by Abbott and von Doenhoff (Ref 1) are presented for comparison in Table 1. Comparison data was not available for the other airfoils used.

Table 1

<table>
<thead>
<tr>
<th>Airfoil</th>
<th>(Program MAGIC)</th>
<th>(Ref 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NACA 1408</td>
<td>.95°</td>
<td>.95°</td>
</tr>
<tr>
<td>NACA 4424</td>
<td>3.58°</td>
<td>3.50°</td>
</tr>
</tbody>
</table>

Potential Flow Surface Velocities

Surface velocities generated by subprogram THEO were also compared with those given by Abbott and von Doenhoff. A typical comparison is shown in Table 2. The velocities agree within 2% in most cases. Exceptions occur at points where the radius of curvature is relatively small; that is, near the leading edge. This probably reflects poor accuracies in numerical derivatives in that area.
Table 2

Comparison of Potential Flow Velocities for NACA 1408 Airfoil

<table>
<thead>
<tr>
<th>Chordwise Station (percent chord)</th>
<th>V/V∞ (Program MAGIC)</th>
<th>V/V∞ (Ref 1)</th>
<th>Chordwise Station (percent chord)</th>
<th>V/V∞ (Program MAGIC)</th>
<th>V/V∞ (Ref 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1.189</td>
<td>.780</td>
<td>1.061</td>
<td>1.311</td>
<td>.829</td>
<td>1.039</td>
</tr>
<tr>
<td>2.413</td>
<td>1.067</td>
<td>1.121</td>
<td>2.582</td>
<td>1.079</td>
<td>1.099</td>
</tr>
<tr>
<td>4.896</td>
<td>1.135</td>
<td>1.151</td>
<td>5.104</td>
<td>1.121</td>
<td>1.105</td>
</tr>
<tr>
<td>7.386</td>
<td>1.142</td>
<td>1.161</td>
<td>7.614</td>
<td>1.112</td>
<td>1.105</td>
</tr>
<tr>
<td>9.883</td>
<td>1.145</td>
<td>1.161</td>
<td>10.117</td>
<td>1.102</td>
<td>1.099</td>
</tr>
<tr>
<td>14.889</td>
<td>1.153</td>
<td>1.164</td>
<td>15.111</td>
<td>1.096</td>
<td>1.092</td>
</tr>
<tr>
<td>19.904</td>
<td>1.152</td>
<td>1.162</td>
<td>20.096</td>
<td>1.085</td>
<td>1.082</td>
</tr>
<tr>
<td>24.926</td>
<td>1.148</td>
<td>1.157</td>
<td>25.074</td>
<td>1.075</td>
<td>1.071</td>
</tr>
<tr>
<td>29.950</td>
<td>1.139</td>
<td>1.149</td>
<td>30.050</td>
<td>1.065</td>
<td>1.063</td>
</tr>
<tr>
<td>40.000</td>
<td>1.126</td>
<td>1.131</td>
<td>40.000</td>
<td>1.054</td>
<td>1.047</td>
</tr>
<tr>
<td>50.020</td>
<td>1.107</td>
<td>1.110</td>
<td>49.980</td>
<td>1.038</td>
<td>1.034</td>
</tr>
<tr>
<td>60.034</td>
<td>1.087</td>
<td>1.089</td>
<td>59.966</td>
<td>1.023</td>
<td>1.019</td>
</tr>
<tr>
<td>70.041</td>
<td>1.067</td>
<td>1.070</td>
<td>69.959</td>
<td>1.012</td>
<td>1.008</td>
</tr>
<tr>
<td>80.039</td>
<td>1.042</td>
<td>1.043</td>
<td>79.961</td>
<td>.998</td>
<td>.991</td>
</tr>
<tr>
<td>90.027</td>
<td>1.014</td>
<td>1.003</td>
<td>89.973</td>
<td>.982</td>
<td>.965</td>
</tr>
<tr>
<td>95.016</td>
<td>.966</td>
<td>.983</td>
<td>94.984</td>
<td>.953</td>
<td>.955</td>
</tr>
<tr>
<td>100.000</td>
<td>0</td>
<td>0</td>
<td>100.000</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Fig. 3. Transformation of NACA 4424 Airfoil.
Fig. 4. Pressure Distribution on NACA 1408 Airfoil.
Fig. 5. Shear Stress on NACA 1408 Airfoil.
Fig. 6. Boundary Layer Displacement Thickness on NACA 1408 Airfoil.
Boundary Layer Parameters

Pressure coefficients, shear stress, and boundary layer displacement thickness distributions are qualitatively correct (Figs. 4, 5, and 6) upstream of the separation point. As a quantitative check, the separation point for uniform flow around a circle was computed. Subprogram BOUND found this point to be at 105° from the upstream stagnation point. This agrees well with values from 104.5° to 108.8° determined by various investigators, as cited by Schlichting.

Running Time and Core Memory Required

Computer time required for program MAGIC is a function of airfoil shape, number of points, and accuracy required. The NACA 1408 airfoil, with 34 points defined, required approximately 50 seconds of CDC-6600 central processor time and two iterations to obtain a displacement thickness accuracy of .1% of chord length.

Approximately 40,000 octal words of core memory were required.
VI. Conclusions and Recommendations

Conclusions

Based upon the results shown in the preceding chapter, the following conclusions were drawn from this study:

1. Theodorsen's method computes values of zero lift angle of attack and potential flow surface velocities very accurately.

2. The Karman-Pohlhausen method of solving the boundary layer equations yields good results upstream of the separation point. No useful information is obtained from these equations downstream of the separation point. Knowledge of the shape factor permits determination of the coefficients in the assumed velocity profile at any point along the surface.

3. Program MAGIC is a practical means of analyzing incompressible flow about an airfoil, without resort to small perturbation or inviscid assumptions. Core memory and central processor requirements are very reasonable for an analysis of this magnitude. Input data requirements are minimal.

Recommendations

The following recommendations are made for future studies in extension of this one:

1. Program BOUND could be modified to permit boundary layer computations when angle of attack is not zero.
2. Integration of pressure distribution and shear stress would provide drag, moment, and center of pressure information.

3. According to Giesing (Ref 2), Theodorsen's method can be extended to linear arrangements of identical airfoils. Program MAGIC, so extended, could be of considerable value in cascade theory.

4. Theodorsen states that accounting for leading edge and trailing edge radii in locating the coordinate system origin improves the rate of convergence of the iteration on c. Inclusion of this correction might result in some saving in computer time.

5. Numerical derivatives of a higher order of accuracy near the leading edge would probably improve velocities computed in that region.

6. The inverse problem (see Ref 4) could be programmed. That is, given a desired pressure distribution, the required airfoil shape could be determined.

7. A more graphic means of input and output could be obtained by adapting the program to the cathode ray tube display terminal.
Bibliography

Appendix A

Computer Program and Sample Output Format

Reproduced from best available copy.
PROGRAM MAGIC TRACF

POC MACRO FtN V2.5-66/16 OPTAS 11/16/75 14:29:55

PAGE 1

PROGRAM MAGIC(INPUT,OUTPUT,TANGLES,INPUT,OUTPUT,PLT)

MAGIC IS A COMPUTER PROGRAM FOR ANALYSIS OF ATTACb-WINGS, INCOMPRESSIBLE L

THE NUMERICAL FLOW AROUND A ROSS OF ANY SHAPE, IT UTILIZES

THE FORMULATION METHOD AND THE MOKAN-FORNHLAAR METHOD. OUTPUTS ARE DESCRIBED

THE SUBROUTINES AND SOURCE.

MAGIC REQUIRES THE FOLLOWING INPUT DATA ITEMS-

10

- SPECIFICATION OF AIRFOIL(S)

- NUMBER OF POINTS

- V AND X FOR EACH POINT (X21,..., X)

- LEADING EDGEE

- TIP OR STREAMLINES

15

- AXES: ABSOLUTE CoSISITY, RELATIVE VELOCITY(S),

- THE NUMBER OF POINTS IS LIMITED TO 47. IF SUBROUTINES TWO FOR ADDITIONAL

20

- BETWEEN APPROXIMATELY 75,000 POINTS OR FEW POINTS

- NUMBER OF VECTORS IS A FUNCTION OF AIRFOIL SHAPE, NUMBER OF POINTS, AND ACCURACY

- REQUIRED.

25

- FUNCTIONS OF NUMERICAL OUTPUT REQUIREMENTS-

- ARRAY STRESSES WIND-TUNI ORDER COEFFICIENTS OF REOACIICAL POLYEDRAL

- ARRAY D WIND-TUNI ORDER COEFFICIENTS OF REOACIICAL POLYEDRAL.

- CUBE IS - "PLACEMENT IDENTIFIER."

- HELP TO IDENTIFY ITERATION.

- TAU IS SHEAR STRESS AT THE AIRFOIL SURFACE.

- EAN IS THE SWEEP FACTOR.

- X1, X2, X3, X4, X5, X6, X7, X8 ARE CARTESIAN COORDINATES IN THE THREE

- TRANFORMATION PLANES.

- ECCENTRICITY OR SINES ARE CARTESIAN COORDINATES IN THE ECCENTRIC CIRCLE

- AND CURV CIRCLE PLANES.

- DEG IS THE MAGNIFICATION FACTOR IN THE ECCENTRIC CIRCLE PLANES,

- BUT IS THE MOMENT MAGNIFICATION FACTOR IN THE CURV CIRCLE PLANES.

- VTV IS THE SURFACE VELOCITY/STREAMLINE VELOCITY RATIO.

- VIC IS THE PROCEDURE COEFFICIENTS.

- END TO (END...) TH.

- ANG IS THE ANGLE OF ATTACK.
<table>
<thead>
<tr>
<th>Line</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>162</td>
<td>WRITE(1,102)</td>
</tr>
<tr>
<td>163</td>
<td>WRITE(1,103)</td>
</tr>
<tr>
<td>164</td>
<td>WRITE(1,104)</td>
</tr>
<tr>
<td>165</td>
<td>1019 WRITE(1,102) EX(1),EX(2),FX(1),FX(2),N(1),N(2),N(3),N(4)</td>
</tr>
<tr>
<td>166</td>
<td>TD(1),TD(2)</td>
</tr>
<tr>
<td>167</td>
<td>TF(1),TF(2)</td>
</tr>
<tr>
<td>168</td>
<td>CONTINUE</td>
</tr>
<tr>
<td>169</td>
<td>CONTINUE</td>
</tr>
<tr>
<td>170</td>
<td>WRITE(1,102)</td>
</tr>
<tr>
<td>171</td>
<td>WRITE(1,103)</td>
</tr>
<tr>
<td>172</td>
<td>WRITE(1,104)</td>
</tr>
<tr>
<td>173</td>
<td>WRITE(1,105)</td>
</tr>
<tr>
<td>174</td>
<td>WRITE(1,106)</td>
</tr>
</tbody>
</table>

Comment: Reproduced from but available only.
<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>ATN</th>
<th>TRIG</th>
</tr>
</thead>
<tbody>
<tr>
<td>FUNCTION</td>
<td>ATN</td>
<td>TRIG</td>
</tr>
<tr>
<td>ATN X Y</td>
<td>ATN X Y</td>
<td>ATN X Y</td>
</tr>
</tbody>
</table>

ATN

```
FUNCTION ATN(X,Y,N,X,Y)
RETURN INTERPOLATING FUNCTION

V = TABLE OF INTERPOLATING VARIABLE VALUE,
   (X - Xichier PE PERCENTAGE),
   (Y - Y - Y IN PERCENTAGE),
   V = VS VALUES OF X AND Y VALUES.
   V = VALUE FOR WHICH INTERPOLATION IS REQUESTED.
   RETURN INTERPOLATING VALUE TO NEAREST IT'S FUNCTION VALUE.

IF X < 0, RETURN 180 PE 0 DEGREES.

IF X = 0 PE Y > 0, RETURN 90 PE 0 DEGREES.

IF X = 0 PE Y < 0, RETURN 270 PE 0 DEGREES.

IF X > 0 PE Y > 0, RETURN 90 PE 0 DEGREES.

IF X > 0 PE Y < 0, RETURN 270 PE 0 DEGREES.

IF X < 0 PE Y < 0, RETURN 270 PE 0 DEGREES.
```

TRIG

```
FUNCTION TRIG(X,Y,N,X,Y)
RETURN INTERPOLATING FUNCTION

V = TABLE OF INTERPOLATING VARIABLE VALUE,
   (X - X - X CHIQUER PE PERCENTAGE),
   (Y - Y - Y IN PERCENTAGE),
   V = VS VALUES OF X AND Y VALUES.
   V = VALUE FOR WHICH INTERPOLATION IS REQUESTED.
   RETURN INTERPOLATING VALUE TO NEAREST IT'S FUNCTION VALUE.

IF X < 0, RETURN 180 PE 0 DEGREES.

IF X = 0 PE Y > 0, RETURN 90 PE 0 DEGREES.

IF X = 0 PE Y < 0, RETURN 270 PE 0 DEGREES.

IF X > 0 PE Y > 0, RETURN 90 PE 0 DEGREES.

IF X > 0 PE Y < 0, RETURN 270 PE 0 DEGREES.

IF X < 0 PE Y < 0, RETURN 270 PE 0 DEGREES.
```
SUBROUTINE PLSX(Y,N,K,C,LST,EMAX,EPS,FREQ)

POLYNOMIAL LEAST SQUARE Curve FIT

PLS Will FIT A GIVEN SET OF DATA TO A POLYNOMIAL OF DEGREE K OF THE FORM...

\[y(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_k x^k \]

NAME THIS CURVE
MINIMUM SQUARE CURVE FITTED BY USING THE N COEFFICIENTS TO \(y \) FROM X

DESCRIPTION

WHAT IS THE ARRAY OF N INDEPENDENT VARIABLES
WHAT IS THE ARRAY OF M DEPENDENT VARIABLES
WHAT IS THE ARRAY OF THE DEPENDENT VARIABLE
WHAT IS THE DEGREE OF THE LEAST SQUARE POLYNOMIAL
WHAT IS THE ARRAY OF THE COEFFICIENTS, HIGH DEGREE TO LOW DEGREE, OF THE LEAST SQUARE POLYNOMIAL
LIST OF THE ERROR ANALYSIS OUTPUT
FREQ IS THE MAXIMUM FREQUENCY FROM THE LINES SYSTEM CHK FREQ SOLUTION

COMMON

PLSC0041, CF, NIF, I, J, JC, JR,
SUBROUTINE PLLC76

CALL WMIDM

CALL WMINI

CALL WMINI}

CALL WMINI

CALL WMINI
SUBROUTINE PLG3 TRACE

ERMS=ORTQISUM/FLOAT(N)
IF (LIST.EQ.1) PRINT 1003, EMAX, ERMS, ENCO
RETURN

C GIVE ERROR MESSAGE AND RETURN TO
C SYSTEM VIA FKNM
700 PRINT 1003, N, K
FALL SYSTEM (200, 1, 1)
RETURN

100 FORMAT (2H0N=H1F,TH K=H12,2HINCORRECT FOR SUBROUTINE PLG3)
1021 FORMAT (1H1,12X,*PLG30 POLYNOMIAL LEAST SQUARE
**PLG30 FIT POLY ANALYSIS
*CUP 1,11,14H - CINVN,1,14H,1,14H - CINVN,1,14H
190 FORMAT - PHTMHK,129,4H4443,16X,4HNB(1)/
192 FORMAT (1H1,15.8,5(1H1,14.2,4X))/
193 FORMAT (1H1,15.8,5(1H1.14.2,4X))/
*#H4HCRF64,19.4)
END
<table>
<thead>
<tr>
<th>SLRoutines_SIPS</th>
<th>TRACK</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPROUTINE SIPS</td>
<td>C</td>
</tr>
<tr>
<td>CALLING SEQUENCE</td>
<td>C</td>
</tr>
<tr>
<td>CALL SIPS(5), TOL, JNM, RSH, ALARM, TOLN</td>
<td>C</td>
</tr>
<tr>
<td>DEBUG LIMIT</td>
<td>C</td>
</tr>
<tr>
<td>TOL = 10**-5 TIMES SIGNPE, CIGP</td>
<td>C</td>
</tr>
<tr>
<td>JNM = NO. OF ITERATIONS ALLOWED</td>
<td>C</td>
</tr>
<tr>
<td>JRNM = NO. OF ITERATIONS</td>
<td>C</td>
</tr>
<tr>
<td>ANAPosition OF INTERNAL ALARMS.</td>
<td>C</td>
</tr>
<tr>
<td>ALARMS, INDICATE CONVERGENCE</td>
<td>C</td>
</tr>
<tr>
<td>TOL = NO. OF ITERATIONS REQUIRED FOR CONVERGENCE</td>
<td>C</td>
</tr>
<tr>
<td>EROTE REQUIRED: ITERATION TO EVALUATE INTEGRAND</td>
<td>C</td>
</tr>
<tr>
<td>EROTE = 10**-7, 10**-5, NOT CONVERGE AFTER</td>
<td>C</td>
</tr>
<tr>
<td>12X, 75, 2X, 1MUTERNATION///</td>
<td>C</td>
</tr>
<tr>
<td>15X = 15</td>
<td>C</td>
</tr>
<tr>
<td>GET P / R</td>
<td>C</td>
</tr>
<tr>
<td>25x = 25</td>
<td>C</td>
</tr>
<tr>
<td>GET P / R</td>
<td>C</td>
</tr>
<tr>
<td>CALL FUV1(E,F,V)</td>
<td>C</td>
</tr>
<tr>
<td>CALL FUV2(E,F,V)</td>
<td>C</td>
</tr>
<tr>
<td>EVALUATE INTEGRAND AT SPECIFIC POINTS</td>
<td>C</td>
</tr>
<tr>
<td>35x = 35</td>
<td>C</td>
</tr>
<tr>
<td>GET P / R</td>
<td>C</td>
</tr>
<tr>
<td>CALL FUV1(E,F,V)</td>
<td>C</td>
</tr>
<tr>
<td>CALL FUV2(E,F,V)</td>
<td>C</td>
</tr>
<tr>
<td>STOP</td>
<td>C</td>
</tr>
<tr>
<td>45x = 45</td>
<td>C</td>
</tr>
<tr>
<td>STOP</td>
<td>C</td>
</tr>
<tr>
<td>RETURN</td>
<td>C</td>
</tr>
</tbody>
</table>
Vita

Ellie B. Underwood, Jr., was born on 27 January 1939 in Beeville, Texas. He was graduated in June 1956 from Ballinger High School, Ballinger, Texas. In June 1961, he was awarded a Bachelor of Science degree in Aerospace Engineering from the University of Texas, Austin, Texas, and was commissioned in the United States Air Force at the same time. In June 1960, he was assigned to the Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio.

Permanent Address: P.O. Box 592
Ballinger, Texas 76821

This thesis was typed by Jane Manemann.