EFFECTS OF HIGH-ENERGY IONS ON SYNTHETIC QUARTZ

Joseph J. Comer, et al

Air Force Cambridge Research Laboratories
L. G. Hanscom Field, Massachusetts

1972
1. ORIGINATING ACTIVITY (Corporate authority)
Air Force Cambridge Research Laboratories (LQO)
L.G. Hanscom Field
Bedford, Massachusetts 01730

2. REPORT SECURITY CLASSIFICATION
Unclassified

3. REPORT TITLE
EFFECTS OF HIGH-ENERGY IONS ON SYNTHETIC QUARTZ

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)
Scientific
Interim

5. AUTHORS (First name, middle initial, last name)
Joseph J. Comer
Charles Bergeron
Lester F. Lowe

6. REPORT DATE
20 November 1972

7. TOTAL NO. OF PAGES
3

8. CONTRACT OR GRANT NO.

9. ORIGINATOR'S REPORT NUMBER(S)
AF/CR/L-72-0678

10. DISTRIBUTION STATEMENT
Approved for public release; distribution unlimited.

11. SUPPLEMENTARY NOTES

12. SPONSORING MILITARY ACTIVITY
Air Force Cambridge Research Laboratories (LQO)
L.G. Hanscom Field
Bedford, Massachusetts 01730

13. ABSTRACT

Synthetic quartz was bombarded with 3 MeV N⁺ ions at doses ranging from 4x10¹³ to 2x10¹⁶ N⁺/cm² and was examined by transmission electron microscopy. The nature of the damage in unannealed and annealed specimens was characterized. In particular, it was found that increased Dauphine inversion twinning occurred in specimens receiving doses up to ~1x10¹⁴ N⁺/cm².

KEYWORDS: Quartz, Ion implantation, Electron microscopy, Radiation damage
EFFECTS OF HIGH-ENERGY IONS ON SYNTHETIC QUARTZ

Joseph J. Comer, Charles Bergeron and Lester F. Lowe

Using a Van De Graaff Accelerator thinned specimens were subjected to bombardment by 3 MeV N\(^+\) ions to fluences ranging from 4x10\(^{13}\) to 2x10\(^{16}\) ions/cm\(^2\). They were then examined by transmission electron microscopy and reflection electron diffraction using a 100 KV electron beam.

At the lowest fluence of 4x10\(^{13}\) ions/cm\(^2\) diffraction patterns of the specimens contained Kikuchi lines which appeared somewhat broader and more diffuse than those obtained on unirradiated material. No damage could be detected by transmission electron microscopy in unannealed specimens. However, Dauphine\'s twinning was particularly pronounced after heating to 665\(^\circ\)C for one hour and cooling to room temperature. The twins, seen in Fig. 1, were often less than .25 \(\mu\)m in size, smaller than those formed in unirradiated material and present in greater number. The results are in agreement with earlier observations on the effect of electron beam damage on Dauphine\'s twinning (2). Also visible are a few dislocation loops possibly due to annealing of defects caused by the ions. These loops can readily be distinguished from the black damage centers formed by the electron beam during examination of the specimens. This was discussed in a paper presented at last year\'s meeting of this Society (1).

At a fluence of 1x10\(^{14}\) ions/cm\(^2\) Kikuchi lines were absent and extra spots appeared in the diffraction patterns. Reflection electron diffraction showed the presence of an extra phase which has not yet been identified. Transmission electron microscopy shows a heavy population of defect clusters, seen in Fig. 2, often aligned along a \(<10\overline{1}\overline{0}\>\) direction. Specimens annealed to 578\(^\circ\)C showed little change in the clusters. The electron diffraction patterns, however, contained rings or arcs suggesting that recrystallization of amorphous material may have occurred. At 655\(^\circ\)C the diffraction pattern indicates that the material is again mainly single crystal and the image contains many small regions of different contrast believed to represent Dauphine\'s twins. The small size of these twins, about 500 \(\AA\) or less, can be seen in Fig. 3. Upon heating the specimen to 760\(^\circ\)C dislocation loops and tangles of dislocations were observed.

Specimens bombarded to a fluence of 4x10\(^{14}\) ion/cm\(^2\) were amorphous in the regions examined. Some recrystallization occurred at 710\(^\circ\)C, and at 760\(^\circ\)C the specimen was polycrystalline in all regions transparent to the beam. No crystallization occurred in specimens bombarded to fluences of 2x10\(^{16}\) ion/cm\(^2\) on heating to 760\(^\circ\)C.

Results appear to confirm earlier observations regarding the increased number of Dauphine\'s twins per unit area occurring in damaged regions of quartz upon annealing and cooling through the \(a\)-\(\beta\) transformation temperature of 574\(^\circ\)C and suggest a correlation between fluence and size and number of twins observed. Differences in the ease of recrystallization of amorphous material may be related to the amount of crystalline material remaining after ion bombardment. For example, the failure of the specimen subjected to the highest fluence of 2x10\(^{16}\) ions/cm\(^2\) to recrystallize may be attributed to a lack of crystalline nucleation sites.

Reprinted from
Los Angeles, Calif., 1972, C. J. Arceaux (ed.).

Fig. 1 1x10^13 N⁺ Ions/cm². Dauphine twins and dislocation loops (arrows) formed on heating to 655°C.

Fig. 2 1x10^14 N⁺ Ions/cm². Strain fields from defect clusters in unannealed specimen.

Fig. 3 1x10^14 N⁺ Ions/cm². Diffraction pattern shows some randomly oriented quartz due to crystallization of amorphous material at 578°C.

Fig. 4 1x10^14 N⁺ Ions/cm². Annealed to 655°C. Small polygonal forms in different contrast may be Dauphine twins, regrown material or both.