EVALUATION OF RIFLE-FIRING BEHAVIOR OF TROOPS EQUIPPED WITH BODY ARMOR: A PILOT STUDY

Bernard M. Corona
Paul H. Ellis
R. Douglas Jones
R. Bradley Randall
Hayden A. Scheetz

Best Available Copy

September 1972

HUMAN ENGINEERING LABORATORY

ABERDEEN PROVING GROUND, MARYLAND

Approved for public release; distribution unlimited.
EVALUATION OF RIFLE-FIRING BEHAVIOR OF TROOPS EQUIPPED WITH BODY ARMOR: A PILOT STUDY

Bernard M. Corona
Paul H. Ellis
R. Douglas Jones
R. Bradley Randall
Hayden A. Scheetz

September 1972

APPROVED:

JOHN D. WEISZ
Director
U. S. Army Human Engineering Laboratory

U. S. ARMY HUMAN ENGINEERING LABORATORY
Aberdeen Proving Ground, Maryland

Approved for public release; distribution unlimited.
ABSTRACT

Twenty enlisted men, equipped with two types of body armor fired the M16 at pop-up targets. The range was electronically instrumented to record shots and hits, as well as relationships between these events. Each subject fired 180 rounds at targets which appeared for two, four and six-second presentation intervals. The results showed no significant difference between standard nylon vest, nylon titanium vest or no-vest conditions as subjects fired from the standing position. Further, it was evident that the shooter's performance during two-second presentations differed significantly from performance during four and six-second exposures. It was concluded that body armor alone does not affect rifle-firing behavior for either accuracy or firing time, that subsequent investigations need not include four or six second presentation times, and that further research on rifle-firing behavior should explore complete equipment ensembles, including load-carrying gear.
EVALUATION OF RIFLE-FIRING BEHAVIOR OF TROOPS
EQUIPPED WITH BODY ARMOR: A PILOT STUDY

INTRODUCTION

The experiment described in this report is one of a number of current and projected investigations aimed at developing comprehensive criteria for the evaluation of life-support systems. As a participant in the U. S. Army Materiel Command (USAMC) Five-Year Technical Plan for Personnel Protective Systems, the primary responsibility of the U. S. Army Human Engineering Laboratory (HEL) is to provide a battery of standardized tests applicable to existing and prototype armor ensembles. The overall experimental approach shown in Figure 1 indicates that the standardized tests will ultimately be based on laboratory experiments and field studies, objective and subjective measures, and individual and group performances.

The infantryman and his rifle form a weapon system which must be an efficient combination of components on the battlefield. This weapons system is neutralized if either the soldier or his rifle does not respond effectively in a crucial situation. As in any system, restrictions on any one component may influence total system effectiveness. Hence, any piece of equipment which may restrict the soldier in the act of firing his rifle may in fact interfere with system performance.

The USAMC Five-Year Armor Systems Technical Plan (1970) describes the requirement to investigate the infantryman’s performance as a weapons system, while equipped with body armor. This requirement is based on two anticipated effects of the man/equipment interface: the individual’s ability to hit the target while equipped with body armor; and, the effect of armor on his time to fire.

Accuracy of firing could be affected in many ways by existing body armor. Because of the bulky qualities of some ballistics materials, the shooter may not be able to “get the feel of the weapon” as he shoulders the rifle. Therefore, he may not shoulder the rifle at the same place for each shot. There may also be restriction of movement at the shoulder and at the arm pit as the shooter assumes the firing position. Further, the collar of the vest may interfere with “cheeking” the rifle and thus alter the sight picture. Finally, the added weight of the body armor could interfere in general with psychomotor performance and adversely affect aiming behavior.

Time to fire may be affected even more by body armor. If the soldier can hit the target, but requires more time to do so, it is possible that the delay could cause the shooter to become a casualty before he can fire. Since present armored vests are not “bullet proof,” any added exposure to small-arms fire would increase the vulnerability of the soldier to the enemy rifleman. This added vulnerability is particularly important when the tactical concept of fire superiority is considered.

To evaluate the effect of present body armor on small-arms firing behavior, an investigation was conducted to determine to what extent body armor affects the effective employment of small arms by the soldier. In addition to hit-probability and time-to-fire data, a photographic record was made of several shooters to evaluate possible restricted movements and shooting form.

The overall purpose of this investigation was to determine the feasibility of using existing range facilities to evaluate the effects of body armor on rifle-firing behavior.
ASSESSMENT OF EFFECTS OF ARMOR ON PSYCHOLOGICAL, PHYSICAL, AND PHYSIOLOGICAL PERFORMANCE.

WEIGHT
1. ABSOLUTE
2. PERCEPTION
3. DISTRIBUTION

BODY DYNAMICS
1. EXERCISE
2. EXECUTING
OPERATIONAL TASKS

ANTHROPOMETERICS
1. NUDE
2. ENSEMBLED
3. BODY ATTITUDE

ENSEMBLE EVALUATION
1. MOBILITY
2. COMPATIBILITY
3. USER ACCEPTANCE

INFANTRY WEAPONS
CREW SERVED WEAPONS
COMBAT VEHICLES
GROUND-AIR

Fig. 1. GENERAL EXPERIMENTAL APPROACH TO BODY ARMOR EVALUATION
METHOD

Subjects

Twenty U. S. Army enlisted men, grades E2 through E4, served as subjects. Each subject had received Army Basic Training and had qualified with the M16 rifle.

Apparatus

The experiment was conducted at M-Range, Aberdeen Proving Ground, Md. Five pop-up targets, electronically wired to record hits (Fig. 2) were situated in a 60-degree arc, 30 meters from a fixed firing point. A microphone, located near the firing point, provided a signal when impulse noise from the report of a rifle reached a level of 140 dB. A target controller located approximately 25 meters from the firing point was the center of the instrumentation system. A target-controller operator selected and initiated each target presentation by manually operating the appropriate target switch. Since the target presentation time was automatically controlled, only the inter-trial interval was dependent on a stopwatch manually controlled by the operator. This interval was held at 10 hundredths of a minute between each trial.

An event recorder received and recorded presentation onset, time of firing, time of hit, and presentation end.

The following sequence of events occurred on each test:

1. Operator selects one of five targets by pressing appropriate button.
2. Operator depresses target-presentation switch.
3. Event recorder runs.
4. Target appears.
5. Event record provides a target trace.
7. Operator starts stopwatch.
8. If hit, recorder marks, and the target goes down; if not hit, target goes down at presentation-time end. Event recorder stops.
11. At 10 hundredths of a minute, operator initiates the next target presentation.
12. The procedure is repeated for the appropriate number of shots.
MEASURES:
TIME TO FIRE PER TARGET
HIT Prob. AS FUNCTION OF TIME
HIGH SPEED FILM OF SUBJETS

CONDITIONS:
1. FATIGUES
2. VEST
3. LOAD CARRYING
4. HELMET
5. ALL-UP ENSEMBLES
RANGE: 30 METERS
5 ROUNDS PRACTICE
20 ROUNDS FOR RECORD

Fig. 2. HEL AUTOMATED POP-UP TARGET RANGE
Procedure

Each subject was required to fire three conditions of 60 rounds each, one for each of three different armor vest conditions (i.e., standard nylon, nylon titanium vest and no vest). The order of firing for the three conditions was randomized to distribute any learning effects or environmental conditions across treatments. Additionally, subjects did not fire the three conditions consecutively nor was the period between each condition constant because of a high incidence of equipment malfunction — typically the firing for each subject was distributed across two days.

Within each vest condition, every subject fired 20 rounds at targets with two-second presentation times, 20 rounds at four-second targets and 20 rounds at six-second targets. Since five targets were used, each target was presented four times during each two, four and six-second condition. The order of target presentation was 30 degrees left of center (Target 1), 30 degrees right of center (Target 2), 15 degrees left of center (Target 3), 15 degrees right of center (Target 4) and dead center (Target 5). This presentation order was held constant across all time and vest conditions. The first five rounds of each target presentation condition were considered practice rounds and not included in the experimental data.

The following instructions were given to each subject after he had been fitted in the appropriate armor vest for a given vest condition:

"On my command you will pick up your weapon and assume a comfortable standing position. Here is a 20 round magazine. Lock and load at my command. You are to fire one round at each target. The target will be visible for (two, four or six) seconds. Be sure you get one round and only one round off for each target. You must hold your weapon at port arms before each shot. The targets will appear in this order. (The subject was shown where each target would appear). The cameras located here and here (front and side) should not concern you. Do you understand your instructions? Pick up your weapon and assume a comfortable standing position. Lock and load. Safety off. Are you ready? Fire when the targets appear."

RESULTS

Using analysis of variance (ANOVA) for repeated measures across all variables, the time-to-fire data were evaluated (Table 1). The analysis shows statistically significant interactions between vests and shooter ($F = 2.13$, df $38/76$, $p < .01$) and target time and shooters ($F = 4.13$, df $38/76$, $p < .01$). Two significant main effects, target exposure time ($F = 690.55$, df $2/76$, $p < .005$) and shooters ($F = 3.9$, df $19/76$, $p < .01$), were found, while the third variable, vest conditions was non-significant.
TABLE 1
ANOVA Summary Table for Time-to-Fire Data

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vest</td>
<td>2</td>
<td>.13</td>
<td>.06</td>
<td>1.56</td>
</tr>
<tr>
<td>Target Exp. Time</td>
<td>2</td>
<td>24.86</td>
<td>12.43</td>
<td>690.55*</td>
</tr>
<tr>
<td>Shooters</td>
<td>19</td>
<td>7.10</td>
<td>.37</td>
<td>3.90*</td>
</tr>
<tr>
<td>Vest x Tgt Time</td>
<td>4</td>
<td>.04</td>
<td>.01</td>
<td>.56</td>
</tr>
<tr>
<td>Vest x Shooters</td>
<td>38</td>
<td>1.46</td>
<td>.038</td>
<td>2.13*</td>
</tr>
<tr>
<td>Tgt Time x Shooters</td>
<td>38</td>
<td>2.83</td>
<td>.074</td>
<td>4.13*</td>
</tr>
</tbody>
</table>

* p < .01

A one-way analysis of variance was performed on the hit-probability scores across presentation times (Table 2). This analysis showed a significant presentation time effect (F = 27.73, df 8, 152 p < .005). Duncan's multiple comparison technique was applied to the data. The results of this test revealed a significant difference between the two-second presentation time, and the remaining presentation times (four and six seconds). The four and six-second conditions did not differ significantly from each other.

The films of several shooters were evaluated qualitatively. While these results are not easily reduced to quantitative scores, several interesting problem areas were identified. These areas will be discussed in later sections of this report.

TABLE 2
ANOVA for Hit/Miss Data Across Presentation Times

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>179</td>
<td>15,098.977</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subjects</td>
<td>19</td>
<td>4,437.348</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>8</td>
<td>6,327.531</td>
<td>790.941</td>
<td>27.73*</td>
</tr>
<tr>
<td>Error</td>
<td>152</td>
<td>4,334.098</td>
<td>28.513</td>
<td></td>
</tr>
</tbody>
</table>

* p < .005
DISCUSSION

The results of this investigation suggest that the two armor-vest configurations tested do not differ significantly from a no-vest condition as far as time to fire and hit probability are concerned. However, it should be pointed out that the vest is only one of many equipment items the infantryman may carry. The interface of body armor with load-carrying gear and other infantry accouterments may cause performance decrements not apparent from this investigation. These possible interactions are the subject of on-going research.

Other findings of this experiment are important to the development of methodology for future research in this area. The significant difference between the two-second and other target presentation times, coupled with the non-significance between four and six-second presentation times, indicates that subsequent investigations can be confined to the two-second time frame. Additionally, it is apparent that subsequent experiments should be designed to more effectively describe and evaluate the interactions which appeared in this investigation.

The use of photography to qualitatively describe rifle-firing behavior of the individual while equipped with body armor adds another important dimension to methodological development. While the vest configurations were not statistically significant, the films of selected shooters show several possible shortcomings in present body-armor configurations. Several shooters were seen to appreciably alter their shooting form to accommodate the bulk of the vest. It was apparent from the films that many shooters placed the butt of the rifle at a different location on the shoulder for almost every shot. Further, it was noted that some subjects frequently snagged the rear sight of the rifle on the Velcro or zipper flap of the vest. To accommodate for this interference some shooters thrust the rifle butt out away from their body. This behavior indicates a learning effect which should be assessed in future research.

SUMMARY AND CONCLUSIONS

The task of evaluating firing behavior of soldiers equipped with body armor was approached by using an electronically-controlled pop-up target system capable of providing time-to-fire and hit-or-miss data. Presentation times of two, four and six seconds were used to determine an effective presentation interval. The findings indicate no statistical differences between no vest, standard nylon vest and titanium nylon vest conditions. Further, it was concluded that continued use of photography is warranted, that target presentation times should be held to two seconds, and that an experimental design better suited to describing shooter versus vest and shooter versus target time interactions should be used.
<table>
<thead>
<tr>
<th>DISTRIBUTION LIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>HQ DA (DARD-ARB)</td>
</tr>
<tr>
<td>Wash DC 20310</td>
</tr>
<tr>
<td>HQ DA (DACS-ZC-W-TIS)</td>
</tr>
<tr>
<td>Wash DC 20310</td>
</tr>
<tr>
<td>HQ DA (DAPE-ZA/Pers Rsch Div)</td>
</tr>
<tr>
<td>Wash DC 20310</td>
</tr>
<tr>
<td>Commanding General</td>
</tr>
<tr>
<td>U. S. Army Materiel Command</td>
</tr>
<tr>
<td>ATTN: AMCDL (Ofc of Deputy for Labs) Washington, DC 20315</td>
</tr>
<tr>
<td>Commanding General</td>
</tr>
<tr>
<td>U. S. Army Materiel Command</td>
</tr>
<tr>
<td>ATTN: AMCRD-G Washington, DC 20315</td>
</tr>
<tr>
<td>Commanding General</td>
</tr>
<tr>
<td>U. S. Army Materiel Command</td>
</tr>
<tr>
<td>ATTN: AMCRD (Air Def & Msl Ofc) Washington, DC 20315</td>
</tr>
<tr>
<td>Commanding General</td>
</tr>
<tr>
<td>U. S. Army Materiel Command</td>
</tr>
<tr>
<td>ATTN: AMCRD (Air Mobility Ofc) Washington, DC 20315</td>
</tr>
<tr>
<td>Commanding General</td>
</tr>
<tr>
<td>U. S. Army Materiel Command</td>
</tr>
<tr>
<td>ATTN: AMCRD (Dr. Kaufman) Washington, DC 20315</td>
</tr>
<tr>
<td>Commanding General</td>
</tr>
<tr>
<td>U. S. Army Materiel Command</td>
</tr>
<tr>
<td>ATTN: AMCRD (Mr. Crellin) Washington, DC 20315</td>
</tr>
<tr>
<td>Headquarters</td>
</tr>
<tr>
<td>USA Medical R&D Command</td>
</tr>
<tr>
<td>ATTN: Behavior Sciences Rsch Br. Main Navy Building Washington, DC 20315</td>
</tr>
<tr>
<td>Commanding Officer</td>
</tr>
<tr>
<td>Harry Diamond Labs.</td>
</tr>
<tr>
<td>ATTN: AMXDO-EDC (B. I. Green, Br. 720) Washington, DC 20438</td>
</tr>
<tr>
<td>Director</td>
</tr>
<tr>
<td>Walter Reed Army Institute of Research Walter Reed Army Medical Center ATTN: Neuropsychiatry Division Washington, DC 20012</td>
</tr>
<tr>
<td>Army Audiology & Speech Center Forest Glen Section Walter Reed General Hospital Washington, DC 20012</td>
</tr>
<tr>
<td>OAD/E&LS ODDR&E, Pentagon, Rm 3D129 ATTN: MAJ Henry L. Taylor Wash DC 20301</td>
</tr>
<tr>
<td>Dr. J. E. Uhlaner, Director US Army Behavior & Systems Rsch Lab. 1300 Wilson Blvd. Arlington, Va. 22209</td>
</tr>
<tr>
<td>Commanding General</td>
</tr>
<tr>
<td>US Army Combat Developments Command ATTN: CDCCD-C Fort Belvoir, Va. 22060</td>
</tr>
<tr>
<td>Commanding General</td>
</tr>
<tr>
<td>US Army Combat Developments Command ATTN: CDCMR Fort Belvoir, Va. 22060</td>
</tr>
<tr>
<td>Commanding General</td>
</tr>
<tr>
<td>US Army Combat Developments Command ATTN: CDCRE Fort Belvoir, Va. 22060</td>
</tr>
<tr>
<td>Commanding General</td>
</tr>
<tr>
<td>US Army Combat Developments Command ATTN: CDCCS-DS-Q Fort Belvoir, Va. 22060</td>
</tr>
<tr>
<td>Commanding Officer</td>
</tr>
<tr>
<td>US Army Mobility Equipment Research & Development Center ATTN: Human Factors Engr. Fort Belvoir, Va. 22060</td>
</tr>
<tr>
<td>Commanding Officer</td>
</tr>
<tr>
<td>Engr. Topographic Labs. ATTN: Mr. Sidney Presser Fort Belvoir, Va. 22060</td>
</tr>
<tr>
<td>Commanding General</td>
</tr>
<tr>
<td>USCONARC Fort Monroe, Va. 23351</td>
</tr>
<tr>
<td>Commanding General</td>
</tr>
<tr>
<td>USCONARC ATTN: ATT-RD-RD Fort Monroe, Va. 23351</td>
</tr>
<tr>
<td>President</td>
</tr>
<tr>
<td>US Army Infantry Board Fort Benning, Ga. 31905</td>
</tr>
<tr>
<td>Commanding Officer</td>
</tr>
<tr>
<td>US Army Materiel Command Infantry Rsch & Dev Liaison Office Fort Benning, Ga. 31905</td>
</tr>
<tr>
<td>Commanding General</td>
</tr>
<tr>
<td>U. S. Army Infantry School Library Infantry Hall Fort Benning, Ga. 31905</td>
</tr>
<tr>
<td>Commanding General</td>
</tr>
<tr>
<td>US Army Missile Command ATTN: AMSMI-RLB Fort Benning, Ga. 31905</td>
</tr>
<tr>
<td>US Army Board for Aviation Accident Research Laboratory ATTN: Gail Bankston Bldg. 5504 Fort Rucker, Ala. 36360</td>
</tr>
<tr>
<td>Director of Research</td>
</tr>
<tr>
<td>US Army Aviation HRU ATTN: Librarian P. O. Box 428 Fort Rucker, Ala. 36362</td>
</tr>
<tr>
<td>Commanding General</td>
</tr>
<tr>
<td>US Army Natick Laboratories ATTN: Tech Library (AMXRE-STL) Natick, Mass. 01760</td>
</tr>
<tr>
<td>Commanding General</td>
</tr>
<tr>
<td>Behavioral Sciences Division ATTN: AMXRE-PRB Natick, Mass. 01760</td>
</tr>
<tr>
<td>Commanding General</td>
</tr>
<tr>
<td>Behavioral Sciences Division ATTN: AMXRE-PRBN Natick, Mass. 01760</td>
</tr>
<tr>
<td>Headquarters</td>
</tr>
<tr>
<td>USA Rsch Inst. of Environmental Medicine ATTN: MEDRI-CL (Dr. J. Kobrick) Natick, Mass. 01762</td>
</tr>
<tr>
<td>Commanding General</td>
</tr>
<tr>
<td>US Army Electronics Command ATTN: AMSEL-RD-GDA Fort Monmouth, NJ 07703</td>
</tr>
<tr>
<td>Commanding General</td>
</tr>
<tr>
<td>US Army Electronics Command ATTN: AMSEL-VLA Fort Monmouth, NJ 07703</td>
</tr>
</tbody>
</table>
Commanding Officer
Picatinny Arsenal
ATTN: SMUFA-VC1 (Mr. J. Carlock)
Dover, NJ 07801

Director
Military Psychology & Leadership
United States Military Academy
West Point, NY 10996

Commanding Officer
US Army Medical Equipment R&D Lab.
Fort Totten, Flushing, LI, NY 11359

Commanding Officer
Watervliet Arsenal
ATTN: SWEWV-RDT
Watervliet, NY 12189

Commanding Officer
Frankford Arsenal
ATTN: Library (C2500, Bldg 51-2)
Philadelphia, Pa. 19137

Commanding Officer
Frankford Arsenal
ATTN: SMUFA-N; 6400; 202-4 (HF)
Philadelphia, Pa. 19137

President
US Army Maintenance Board
ATTN: Adjutant
Fort Knox, Ky. 40121

Commanding Officer
US Army Medical Research Lab.
Fort Knox, Ky. 40121

US Army Armor Human Research Unit
ATTN: Library
Fort Knox, Ky. 40121

Commanding General
US Army Tank-Automotive Command
ATTN: AMSTA- RKAЕ
Warren, Mich. 48090

Commanding General
(2) US Army Tank-Automotive Command
ATTN: AMSTA-RHFL, Rsh Library
Warren, Mich. 48090

Commanding General
US Army Tank-Automotive Command
ATTN: AMSTA-R
Warren, Mich. 48090

Commanding General
(2) US Army Weapons Command
ATTN: SWERI-RDD-PD
Rock Island Arsenal, Ill. 61201

Commanding General
US Army Weapons Command
ATTN: AMSWE-RDT
Rock Island Arsenal, Ill. 61201

Commanding General
US Army Weapons Command
ATTN: AMSWE-SMM-P
Rock Island Arsenal, Ill. 61201

Director of Graduate Studies & Research
ATTN: Behavioral Sciences Representative
US Army Command & General Staff College
Fort Leavenworth, Kan. 66027

Commandant
US Army Artillery & Missile School
ATTN: USAAMS Tech Library
Fort Sill, Okla. 73503

Director of Research
HumRRO Div. No. 5 (Air Def)
P. O. Box 6021
Fort Bliss, Tex. 79916

Commanding Officer
Yuma Proving Ground
ATTN: Tech Library
Yuma, Arizona 85364

Commanding Officer
Fort Huachuca Spc Comd, US Army
ATTN: Tech References Div.
Fort Huachuca, Az. 85613

Commanding General
US Army Electronics Proving Ground
ATTN: Mr. J. Abraham, Test Dir.
Fort Huachuca, Az. 85613

Commanding General
ATTN: Tech Library
White Sands Missile Range, NMex. 88002

Commanding General
White Sands Missile Range
ATTN: STEWS-TE-Q (Mr. Courtney)
White Sands Missile Range, NMex. 88002

Human Factors Division
G-2/3, USACDC
Fort Ord, Calif. 93941

USACDC Experimentation Command
ATTN: Tech Library, Box 22
Fort Ord, Calif. 93941

Commanding Officer
USACDC Air Defense Agency
Fort Bliss, Tex. 79916

Commanding Officer
USACDC Armor Agency
Fort Knox, Ky. 40121

Commanding Officer
USACDC Artillery Agency
Fort Sill, Okla. 73503

Commanding Officer
USACDC Aviation Agency
Fort Rucker, Ala. 36360

Commanding Officer
USACDC CBR Agency
Fort McClellan, Ala. 36201

Commanding General
USACDC Combat Systems Group
Fort Leavenworth, Kan. 66027

Commanding Officer
USACDC Comm-Info Agency
Fort Monmouth, NJ 07703

Commanding Officer
USACDC Engineer Agency
Fort Belvoir, Va. 22060

Commanding Officer
USACDC Infantry Agency
ATTN: Central Files
Fort Benning, Ga. 31905

Commanding Officer
USACDC Inst. of Strategic & Stability Operations
Fort Bragg, NC 28307

Commanding General
USACDC Intelligence & Control Sys Gp.
Fort Belvoir, Va. 22060

Commanding Officer
USACDC Medical Service Agency
Fort Sam Houston, Tex. 78234

Commanding Officer
USACDC Military Police Agency
Fort Gordon, Ga. 30905

Commanding General
USACDC Personnel & Logistics Group
Fort Lee, Va. 23801

Commanding Officer
USACDC Supply Agency
Fort Lee, Va. 23801

Commanding Officer
US Army Arctic Test Center
ATTN: STEAC-IT
APO Seattle, Wash. 98733

Commanding Officer
(2) US Army Tropic Test Center
ATTN: Behavioral Scientist
P. O. Drawer 942
Fort Clayton, Canal Zone

Director
Biomedical Lab., APG-EA
ATTN: HF Gp. (SMUEA-BL-H)

Director
Biomedical Lab., APG-EA
ATTN: Psychology See (SMUEA-BL-REP)

USAHA, APG-EA
ATTN: Librarian, Bldg 2100 (2)

Technical Library, Bldg 305, APG-AA

CO, USACDCMA, Bldg 305, APG-AA

USATECOM, Bldg 314, APG-AA

USACDC Ln Ofc, Bldg 314, APG-AA

USMC Ln Ofc, Bldg 314, APG-AA
Dr. F. Loren Smith (2)
Department of Psychology
University of Delaware
Newark, Del. 19711

Dr. Howard W. Stoudt
Harvard University
School of Public Health
655 Huntington Ave.
Boston, Mass. 02115

Dr. Harvey A. Taub
Research Director, Psych Services
Veterans Administration Hospital
Irving Ave. & University Place
Syracuse, NY 13210

Dr. Leonard Uhr
Computer Sciences Dept.
University of Wisconsin
1210 Dayton St.
Madison, Wis. 53706

Mr. Wesley E. Woodson
MAN Factors Inc.
4433 Convoy St., Suite D
San Diego, Calif. 92111

Dr. Richard A. Wunderlich
Psychology Dept.
Catholic University
Washington, DC 20017

LTL Ronald C. Petersen
Center for Research in Human Learning
University of Minnesota
400 Ford Hall
Minneapolis, Minn. 55455
ABSTRACT

Twenty enlisted men, equipped with two types of body armor fired the M16 at pop-up targets. The range was electronically instrumented to record shots and hits, as well as relationships between these events. Each subject fired 180 rounds at targets which appeared for two, four and six-second presentation intervals. The results showed no significant difference between standard nylon vest, nylon titanium vest or no-vest conditions as subjects fired from the standing position. Further, it was evident that the shooter's performance during two-second presentations differed significantly from performance during four and six-second exposures. It was concluded that body armor alone does not affect rifle-firing behavior for either accuracy or firing time, that subsequent investigations need not include four or six second presentation times, and that further research on rifle-firing behavior should explore complete equipment ensembles, including load-carrying gear.
<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINK A</th>
<th></th>
<th>LINK B</th>
<th></th>
<th>LINK C</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ROLE</td>
<td>WT</td>
<td>ROLE</td>
<td>WT</td>
<td>ROLE</td>
<td>WT</td>
</tr>
<tr>
<td>Body Armor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rifle-Firing Behavior of Troops</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Armor Vest</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluation of Life Support Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human Factor Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>