GENERALIZED UPPER BOUNDS AND TRIANGULAR DECOMPOSITION IN THE SIMPLEX METHOD

John A. Tomlin
Stanford University

Prepared for:
Office of Naval Research
September 1972
GENERALIZED UPPER BOUNDS AND TRIANGULAR DECOMPOSITION IN THE SIMPLEX METHOD

BY

JOHN A. TOMLIN

TECHNICAL REPORT NO. 72-20
SEPTEMBER 1972

DISTRIBUTION STATEMENT A
Approved for public release; Distribution Unlimited

Stanford University
CALIFORNIA
In this note we show how the new updating techniques for triangular factors of the basis can be modified for the generalized upper bounding algorithm.
UNCLASSIFIED

Security Classification

LINEAR PROGRAMMING
GENERALIZED UPPER BOUNDS
TRIANGULAR DECOMPOSITION

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

3. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

4. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parentheses immediately following the title.

5. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

6. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

7. REPORT DATE(S): Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.

8. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

9. NUMBER OF REFERENCES: Enter the total number of references cited in the report.

10. CONTRACT OR GRANT NUMBER(S): If applicable, enter the applicable number of the contract or grant under which the report was written.

11. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

12. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

13. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

14. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

- "Qualified requesters may obtain copies of this report from DDC."
- "Foreign announcement and dissemination of this report by DDC is not authorized."
- "U.S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through...
- "Qualified DDC users shall request through...
- "All distribution of this report is controlled. Qualified DDC users shall request through...

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact as: enter the price, if known.

15. SUPPLEMENTARY NOTES: Use for additional explanatory notes.

16. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

17. ABSTRACT: Enter an abstract giving a brief and factual summary of the report. Include address. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be classified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

18. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, roles, and weights is optional.
GENERALIZED UPPER BOUNDS AND TRIANGULAR DECOMPOSITION
IN THE SIMPLEX METHOD

by
John A. Tomlin

TECHNICAL REPORT 72-20
September 1972

DEPARTMENT OF OPERATIONS RESEARCH
Stanford University
Stanford, California

Research and reproduction of this report was partially supported by the National Science Foundation, Grant GJ 30408X; the Office of Naval Research under contract N-00014-67-A-0112-0011; and the U.S. Atomic Energy Commission contract AT(04-3)-326 PA #18.

Reproduction in whole or in part is permitted for any purposes of the United States Government. This document has been approved for public release and sale; its distribution is unlimited.
Introduction

Two recent advances in linear programming have been the very successful implementation of the Generalized Upper Bound (GUB) algorithm, due to Dantzig and Van Slyke [3] and the new methods for updating triangular factors of the basis in the Simplex Method (Bartels [1], Forrest and Tomlin [4]). The purpose of this note is to show that despite the special basis inverse manipulation involved in one step of the GUB algorithm these two techniques can be successfully combined.

We use the notation and terminology of Beale [2], denoting the GUB problem as maximize x_0 subject to:

$$x_0 + \sum_{k=0}^{t} \sum_j a_{ojk} x_{jk} = b_0$$

$$\sum_{k=0}^{t} \sum_j a_{ijk} x_{jk} = b_i, \quad (i = 1, \ldots, m) \quad (1)$$

$$\sum_j x_{jk} = b_{m+k}, \quad (k = 1, \ldots, t)$$

We denote the key variable of each set by x_{jk}^k and eliminate them to obtain the reduced system

$$x_0 + \sum_{k=0}^{t} \sum_j a_{ojk}^* x_{jk} = b_0^*$$

$$\sum_{k=0}^{t} \sum_j a_{ijk}^* x_{jk} = b_i^*, \quad (i = 1, \ldots, m) \quad (2)$$

where
\[a_{ij}^* = a_{ijk} - a_{ijk}^k \quad (i = 1, \ldots, m) \] (3)

\[b_i^* = b_i - \sum_{k=1}^{m} a_{ijk}^k b_{m+k} \]

and by convention \(a_{i0}^0 = 0 \) since there is no key for the non-GUB variables.

The GUB algorithm now works with the reduced system (2) and its basis \(B \). The modifications of the product form simplex algorithm required are detailed by Beale ([2], pp. 128-130).

Change of Basis

The only special feature of the GUB algorithm of concern here is the change of basis, and then only in one of the possible cases. This occurs when the incoming variable \(x_{qr} \) happens to eliminate the key variable \(x_{js} \) of some set \(s \) (where \(s \) may or may not equal \(r \)) which has some other non-key variables in the basis. In this case a new key must be found for set \(s \), which we choose from among the basic non-key variables. Let the old and new keys be \(x_{js0}^s, x_{js}^s \) and let \(x_{ju}^s \) be the other non-key variables in the set. The standard product form method proceeds by observing that the old non-key columns \(\bar{a}_{ju} s = \bar{a}_{ju} s - \bar{a}_{j0} s \) in the reduced basis \(B \) may be effectively replaced by their new representations \(\bar{a}_{ju} s = \bar{a}_{ju} s - \bar{a}_{j0} s \) through the identity
\[\tilde{a}_{j_u} = a_{j_u} - a_{j_0} = (a_{j_u} - a_{j_0}) - (a_{j_0} - a_{j_0}) \]

That is the new representation of the columns \(\tilde{a}_{j_u} \) in \(B \) may be obtained simply by multiplying \(B \) on the right by two-element column transformations.

This procedure works well for the standard product form. However, if the basis is maintained in triangular factor form, i.e.,

\[B = LU \]

where \(L \) is lower and \(U \) is upper triangular, this technique leads to a loss of structure which makes further iterations all but impossible.

The Modified Technique

An alternative to using the elementary transformations referred to above is to carry out explicit column operations on \(B \), though the amount of work required would make complete reinversion more attractive. Using the \(LU \) form of inverse however, we may operate on \(U \) much more conveniently. In the process of forming \(LU \) we will have pivoted on the columns \(\tilde{a}_{j_u} \) to produce

\[L^{-1}B = U = \]

\[\begin{array}{ccc}
& & \\
& & \\
& & \\
\end{array} \]
where the columns $y_{j_u}^u (u = 1, \ldots, v)$ of U correspond to the non-key basic columns of set s. Now if we choose j_N from among the j_u we see that multiplying the identity (4) on the left by L^{-1} we obtain

$$L^{-1} a_{j_u}^u = y_{j_u}^u - y_{j_N}^u \quad (j_u \neq j_N). \quad (6)$$

Hence we choose $j_N = j_1$ to maintain triangularity and drop the new key from the basis. Similarly we must modify the "partially updated" incoming column [5] if it belongs to the same set (i.e., $r = s$) since our previous representation $\gamma = L^{-1}(a_{qr} - a_{j_0}^s)$ involves the old key.

The new representation is from (4)

$$L^{-1} a_{qr} = \gamma - L^{-1}(a_{j_N}^s - a_{j_0}^s)$$

$$= \gamma - y_{j_N}^N. \quad (7)$$

This column is added to the right of U giving, for the new basis \bar{B},

$$L^{-1}\bar{B} = H =$$

where H is upper Hessenberg, $y_{j_N}^N$ is removed, and columns $j_u (\neq j_N)$ are replaced by $y_{j_u}^u - y_{j_N}^u$. This matrix H may now be reduced back to upper triangular form by any of the available methods (see [1],[4],[5]).

Note that if there is only one non-key basic variable in the set (i.e., $v = 1$) no subtraction of columns is necessary and the basis
updating procedure becomes identical to that of an ordinary simplex step. If there is more than one such column each \(y_u \) must have \(y_N \) subtracted from it.

Discussion

Although our choice of \(j_N < j_u \) preserves triangularity we cannot choose \(j_N \) on the grounds of either sparsity or numerical stability and furthermore the modified columns may now have more non-zero entries. This makes repacking of the product form inverse of \(U \) necessary. This is not serious in the Bartels and Golub algorithm since new non-zero elements in \(U \) are generated anyway (see [1], [5]). However in the Forrest and Tomlin method [4] the whole point is to avoid creation of new non-zero elements in existing packed columns of \(U \). Fortunately cases where repacking would be necessary seem to be very rare. Examination of a number of runs of GUB problems with the UMPIRE mathematical programming system show that basis changes of this type with \(v > 1 \) occur in only about two per cent of the iterations. This means that the time lost in repacking will be marginal and in fact we may take advantage of the opportunity to purge the backward transformation (\(U \) file of deleted vectors and elements ([4], p. 272).
References

