FOREIGN TECHNOLOGY DIVISION

This is an unedited rough draft translation by Joint Publications Research Services

VISCOOSITY, DENSITY AND SURFACE ENERGY OF MOLTEN ALLOYS OF IRON AND SILICON

by

P. V. Gel'd, P. V. Kocherov, Ye. S. Levin, B. A. Baum

Approved for public release; Distribution unlimited.
To get a better insight into physical properties of the Fe-Si system, the kinematic viscosity and the surface energy were calculated for alloys with variable amounts of Si. From the slope of log given vs 1/T curves, the activation energy was calculated, and the change in the isobar-isothermal potential given. By plotting the given potential vs T, it was possible to obtain the energy of activation of viscous flow. The dependence given and given potential on the alloy composition, which deviates from the rule of additivity, shows that the Fe-Si melts do not behave as ideal solutions. The energy of activation of viscous flow should be related to the bonding energy in the melts and to the dimensions of atomic associations representing the units of viscous flow. A higher energy of activation of Fe-Si permits concluding that in this case the units of viscous flow are the quasimol, of Fe-Si. In other melts together with quasimol, complexes particular atoms of the component in excess appear, their influence on the viscous flow being essential. At higher temps, the no. of these particular atoms is slightly increased which contributes to a decrease in the activation energy.
<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ROLE</td>
<td>WT</td>
<td>ROLE</td>
</tr>
<tr>
<td>Iron</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silicon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viscous Flow</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
UNEDITED ROUGH DRAFT TRANSLATION
by Joint Publications Research Services

VISCOSITY, DENSITY AND SURFACE ENERGY OF MOLTEN ALLOYS OF IRON AND SILICON

By: P. V. Gel'd, P. V. Kocherov, Ye. S. Levin, B. A. Baum

English pages: 7

Source: Fiziko-Khimicheskiye Osnovy Proizvodstva Stali (Physical-Chemical Basis of Steel Production) 1968, pp. 9-13

Approved for public release; distribution unlimited.

UR/0000-69-000-000

THIS TRANSLATION IS A RENDITION OF THE ORIGI-
NAL FOREIGN TEXT WITHOUT ANY ANALYTICAL OR
EDITORIAL COMMENT. STATEMENTS OR THEORIES,
ADVOCATED OR IMPLIED ARE THOSE OF THE SOURCE
AND DO NOT NECESSARILY REFLECT THE POSITION
OR OPINION OF THE FOREIGN TECHNOLOGY DI-
VISION.

PREPARED BY:
TRANSLATION DIVISION
FOREIGN TECHNOLOGY DIVISION
WPAFB, OHIO.

FTD-HC-23-1881-71

Date 24 Mar 1972
VISCOITY, DENSITY AND SURFACE ENERGY OF MOLTEN ALLOYS OF IRON AND SILICON

Article by P.V. Gel'd, P. V. Kocherov, Ya. S. Levin and B. A. Baum; Physical-Chemical Basis of Steel Production, Russian, 1968, pp 7-13

Investigations of heat and volume effects in mixing, heats of fusion and a number of other characteristics of molten alloys of silicon with fourth period transition metals indicates a high energy of interaction of dissimilar atoms and their severe microheterogeneity /1, 2/.

Results of determining viscosity, surface energy and density of Fe-Si alloys are presented below.

Kinematic viscosity was calculated according to the decrement of damping of a cylindrical crucible with the melt /3/. Surface energy and density were determined by the "large drop" method /4, 5, 6/.

On the basis of data on the relationship of kinematic viscosity of the melts to temperature, represented in Fig. 1, it is possible to calculate the activation energy in a straight-line slope in coordinates lg ν--T-1, the change of isobaric-isothermal potential ΔZ = RT ln(ν.M*-N) and the energy of activation of viscous flow by the tangent of the straight line in coordinates ΔZ--T /7/.

The non-idealness of the examined system can be confirmed by the relationship of ν and ΔZ to composition as shown in Fig. 2, which does not conform to the additive rule.

From data presented in Figs. 1 and 2 it follows that the activation energy of viscous flow (E) of all the melts (with the exception of Fe-Si and Si) is very close and depends very little on temperature. The change of action entropy of viscous flow is distinguished by this.

The magnitude of E can be determined basically by the bonding energies in the melt and by the dimensions of the atom groupings which are units of viscous flow. The higher activation energy for Fe-Si permits one to suggest that the units of viscous flow in the melt of monocilicide are evidently "quasimolecules" of Fe-Si /1, 2/. In melts of other compositions (Fe₃Si, Fe₂₁Si₁₁, Fe₅Si₃,
Fig. 1. Relationship of kinematic viscosity of Fe-Si alloys to temperature: 1—Iron; 2—25 At.\% Si (Fe$_3$Si); 3—34\% (Fe$_{21}$Si$_{11}$); 4—37.5\% (Fe$_5$Si$_2$); 5—50\% (FeSi); 6—67\% (Fe$_3$Si$_2$); 7—62\%; 8—85\% Si; 9—Silicon; a—v·10$^{-7}$, m2/sec.

Fig. 2. Relationship of $lg \nu$ of Fe-Si alloys to magnitude of T^{-1}: Numbers near the straight lines are the are the activation energies in the given temperature interval $E \cdot 10^{-3}$ kJoules/kg-atom.
FeSi₂, etc.) along with the quasimolecular complexes, in which strong homopolar bonds prevail, individual atoms of the excess component /Fe-up to 50 at.% Si and Si-above 50 at.% Si/ have substantial significance in viscous flow. Sizes and energies of interaction between them is approximately the same which leads to closeness in the activation energies of viscous flow. Certain differences in magnitudes were probably caused by the fact that the structure and composition of the quasimolecular groupings are basically determined by the structure and composition of the solid phase and varies with growth of N₃. With increased temperature the energy of thermal movement of the particles grows which leads to a decrease in the sizes of the cybotactic groupings in the melts and an increase in the number of "free" atoms. This develops with some decrease in the activation energy (see Figs. 1 and 2).

For iron monosilicide at temperatures above 1700 °C the activation energy turns out to be higher than at low temperatures which was caused by a change in the mechanism of viscous flow.

Apparently the dissociation of "quasimolecules", starting at almost 1700 °C, initially leads to a decrease in the energy of interaction between units of viscous flow which become not only "quasimolecules" but also individual atoms of iron and silicon.

The self-forming structure of the monosilicide can be confirmed, as shown in Figs. 3 and 4, also by the shape of the surface tension isotherms and density of Fe-Si alloys.

With the addition of silicon to iron, as a result of a strong interaction of the dissimilar atoms (ε₁Fe₂Fe < ε₁FeSi < ε₁Si₃₁), quasimolecular complexes are formed and the melt acquires a micro-heterogeneous structure /1, 2/. Here single cybotactic groupings are enriched with these complexes and the others with iron atoms. Inasmuch as the interaction of atoms in the indicated complexes takes place primarily in the directed homopolar bonds, then they turn out to be relatively weak bonds with the melt and with each other and flow into the surface layer thus lowering ε. According to the degree of increased silicon content the composition of the alloy approximates being equatomic. "Quasimolecules of FeSi are in the composition with structural units and the bonding energy between them is quite large which allows one to talk about the relatively high surface tension of the melt (almost 1210 ergs/cm²). With a further increase of silicon concentration the microheterogeneity of the melt is again increased and forms micro-groupings respectively enriched with Fe-Si₁₅ complexes as well as excess atoms. Since bonding of the latter with the melt is weaker they flow into the surface layer causing a lowering of its surface energy. This finds confirmation in the concentration relationship of silicon adsorption (see Fig. 4).

Accuracy of the presented concepts can also be confirmed by the value of compression observed in the formation of melts.
Fig. 3. Relationship of kinematic viscosity v, change in isobaric-isothermal potential AZ and activation energy of viscous flow E to composition of the alloys: 1--AZ, 1600 C; 2--w. 1400 C; 3--w. 1500 C; 4--w. 1600 C; 5--w. 1700 C; 6--T < 1570 C; 7--T = 1570-1700 C; a--$v \cdot 10^4$, m2/sec; b--AZ \cdot 10^7$, joules/kG-nm; c--Si, atomic %.
Fig. 4. Isotherms (1550°C) of surface tension and adsorption of silicon (G_{Si}) of molten Fe-Si alloys, black dots—data from work [8], white dots—data of the authors: a—σ, ergs/cm²; b—$G_{Si} \cdot 10^{10}$, g-atom/cm².

Fig. 5. Relationship of molar (V) and partially molar (\(\tilde{V}\)) volumes of the components of the Fe-Si alloys to composition at 1550°C: a—V, cm³/g-atom; b—Si, atomic %.
of the pure molten components (Fig. 5). The maximum values of compression \(UV = \left(\frac{9.68-8.34}{8.34}\right) \times 100 = 16\% \) corresponds to alloys close in composition to equatomic which speaks about the high energy of inter-particle interaction in them.

The temperature relationship of density and surface energy in the first approximation can be represented by the equations:

\[
\varphi = \varphi_0 - at; \quad \sigma = \sigma_0 - bt
\]

where \(t \) is temperature in °C and \(\varphi_0, \sigma_0, a \) and \(b \) are constants presented below:

<table>
<thead>
<tr>
<th>(a) Bc. % Si</th>
<th>7.0</th>
<th>14.36</th>
<th>23.18</th>
<th>28.50</th>
<th>33.46</th>
<th>37.50</th>
<th>50.50</th>
<th>60.50</th>
<th>100.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b) (\rho_0) g/cm(^3)</td>
<td>7.61</td>
<td>0.90</td>
<td>0.66</td>
<td>0.67</td>
<td>0.57</td>
<td>0.22</td>
<td>5.32</td>
<td>4.78</td>
<td>3.11</td>
</tr>
<tr>
<td>(c) (a \times 10^4) g/cm(^3)-deg</td>
<td>5.72</td>
<td>0.40</td>
<td>0.71</td>
<td>1.00</td>
<td>1.04</td>
<td>0.46</td>
<td>8.0</td>
<td>9.2</td>
<td>4.0</td>
</tr>
<tr>
<td>(d) (\sigma_0) g/cm(^2)</td>
<td>19.85</td>
<td>18.70</td>
<td>18.15</td>
<td>16.65</td>
<td>16.20</td>
<td>14.50</td>
<td>12.10</td>
<td>10.25</td>
<td>8.84</td>
</tr>
<tr>
<td>(e) (b) g/cm(^2)-deg</td>
<td>0.250</td>
<td>0.233</td>
<td>0.300</td>
<td>0.254</td>
<td>0.333</td>
<td>0.267</td>
<td>0.217</td>
<td>0.167</td>
<td>0.104</td>
</tr>
</tbody>
</table>

Key: a--Weight % Si
b--\(\rho_0 \) g/cm\(^3\)
c--\(a \times 10^4 \) g/cm\(^3\)-deg
d--\(\sigma_0 \) ergs/cm\(^2\)
e--\(b \) ergs/cm\(^2\)-deg

Thus, analysis of the isotherms of the studied characteristics of molten ferrosilicide (\(v, \Delta z, E, \varphi, \sigma, G_{Si}, V, V \)) indicate the change with increased silicon concentration with a structure of close order of melts and the possibility of forming micro-groupings in them, close in composition and structure to the monosilicide.

BIBLIOGRAPHY

