DYNAMIC PROPERTIES OF POLY (METHYL METHACRYLATE)
(PMMA) (PLEXIGLAS)

by

D. R. Christman

Materials and Structures Laboratory
Manufacturing Development, General Motors Corporation
General Motors Technical Center, Warren, Michigan 48090
Results of an experimental study on the dynamic properties of poly(methylmethacrylate) are presented. Areas studied included uniaxial stress behavior, elastic constants, equation of state, compressive and release wave characteristics, and spall fracture. The material showed viscoelastic response under uniaxial stress conditions, and was strain rate sensitive at 20° and 82°C. Longitudinal and shear wave velocities at 20°C were 2.746 and 1.392 mm/μsec, and temperature dependence was also measured. The shock wave equation of state was determined up to 20 kbar and showed a complex form in the stress-particle velocity plane that is indicative of non-linear shock velocity-particle velocity behavior. Complete wave profiles were obtained showing compressive wave and release wave development. Spall fracture velocity showed a slight pulse-width dependence and the fracture surface showed a granular-type appearance with extensive crazing.
<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINK A</th>
<th></th>
<th>LINK B</th>
<th></th>
<th>LINK C</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Stress-Strain-Strain Rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elastic Constants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equation of State</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compressive and Release</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wave Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spall Fracture</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DYNAMIC PROPERTIES OF POLY (METHYL METHACRYLATE) (PMMA) (PLEXIGLAS)

"This work was supported by the Defense Nuclear Agency under NWER Subtask AA 106"

by

D. R. Christman

Materials and Structures Laboratory
Manufacturing Development, General Motors Corporation
General Motors Technical Center, Warren, Michigan 48090

Prepared For

HEADQUARTERS
Defense Nuclear Agency
Washington, D.C. 20305

Under Contract DASA01-68-C-0114

"Approved for public release; distribution unlimited"
Results of an experimental study on the dynamic properties of poly(methylmethacrylate) are presented. Areas studied included uniaxial stress behavior, elastic constants, equation of state, compressive and release wave characteristics, and spall fracture. The material showed viscoelastic response under uniaxial stress conditions, and was strain rate sensitive at 20° and 82°C. Longitudinal and shear wave velocities at 20°C were 2.746 and 1.392 mm/μsec, and temperature dependence was also measured. The shock wave equation of state was determined up to 20 kbar and showed a complex form in the stress-particle velocity plane that is indicative of non-linear shock velocity-particle velocity behavior. Complete wave profiles were obtained showing compressive wave and release wave development. Spall fracture velocity showed a slight pulse-width dependence and the fracture surface showed a granular-type appearance with extensive crazing.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF ILLUSTRATIONS</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vi</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>SECTION I - UNIAXIAL STRESS BEHAVIOR</td>
<td>4</td>
</tr>
<tr>
<td>SECTION II - ELASTIC BEHAVIOR</td>
<td>6</td>
</tr>
<tr>
<td>Wave Velocities</td>
<td>6</td>
</tr>
<tr>
<td>Elastic Constants</td>
<td>7</td>
</tr>
<tr>
<td>SECTION III - EQUATION OF STATE</td>
<td>9</td>
</tr>
<tr>
<td>SECTION IV - WAVE PROPAGATION</td>
<td>18</td>
</tr>
<tr>
<td>SECTION V - SPALL FRACTURE</td>
<td>27</td>
</tr>
<tr>
<td>Recovery Tests</td>
<td>27</td>
</tr>
<tr>
<td>Spall Wave Profile</td>
<td>35</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>37</td>
</tr>
<tr>
<td>DISTRIBUTION LIST</td>
<td>41</td>
</tr>
<tr>
<td>DD FORM 1473 DOCUMENT CONTROL DATA - R&D</td>
<td>47</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Compressive Stress vs. Strain, PMMA</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Quartz Gage Records</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>Stress-Particle Velocity Hugoniot, PMMA</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>Stress-Strain Hugoniot, PMMA</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>Shock Velocity-Particle Velocity Hugoniot, PMMA</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>Stress-Compression Hugoniot, PMMA</td>
<td>17</td>
</tr>
<tr>
<td>7</td>
<td>Compressive Waves in PMMA (X-Cut Quartz Gages)</td>
<td>19</td>
</tr>
<tr>
<td>8</td>
<td>Wave Profile Test Records</td>
<td>20</td>
</tr>
<tr>
<td>9</td>
<td>Wave Profiles in PMMA (Velocity Interferometer)</td>
<td>21</td>
</tr>
<tr>
<td>10</td>
<td>Wave Profiles in PMMA (Magnetic Foil Gages)</td>
<td>24</td>
</tr>
<tr>
<td>11</td>
<td>Designed Composite, Test Configuration</td>
<td>25</td>
</tr>
<tr>
<td>12</td>
<td>Compressive Wave in Designed Composite</td>
<td>26</td>
</tr>
<tr>
<td>13</td>
<td>Spall Data for PMMA</td>
<td>28</td>
</tr>
<tr>
<td>14</td>
<td>Spall Fractures in PMMA</td>
<td>30</td>
</tr>
<tr>
<td>15</td>
<td>Spall Fracture Surface in PMMA (1.5 mm - 3.00 mm, 0.157 mm/μsec)</td>
<td>31</td>
</tr>
<tr>
<td>16</td>
<td>Spall Fracture Surface in PMMA, Scanning Microfractograph, 0° (1.5 mm - 3.0 mm, 0.157 mm/μsec)</td>
<td>32</td>
</tr>
<tr>
<td>17</td>
<td>Spall Fracture Surfaces in FF-17 Phenolic</td>
<td>33</td>
</tr>
<tr>
<td>18</td>
<td>Spall Fracture Surface in FF-17 Phenolic, Scanning Microfractograph, 45°</td>
<td>34</td>
</tr>
<tr>
<td>19</td>
<td>Spall Wave Profile in PMMA</td>
<td>v</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Elastic Constants for PMMA</td>
<td>8</td>
</tr>
<tr>
<td>II</td>
<td>Hugoniot Data, PMMA</td>
<td>13</td>
</tr>
<tr>
<td>III</td>
<td>Velocity Interferometer Test Data</td>
<td>22</td>
</tr>
</tbody>
</table>
This study of poly(methylmethacrylate) (PMMA) was conducted under the PREDIX program initiated by the Defense Nuclear Agency. The program was concerned primarily with the response of metals under impulsive loading conditions but some tests were performed on PMMA to provide data on a viscoelastic, anelastic material. Although the tests were not as extensive as those conducted on 6061-T6 aluminum, alpha titanium, and tantalum, sufficient data were obtained in various areas of material response to warrant preparation of a separate report.

The primary areas studied were: (1) uniaxial stress behavior; (2) elastic constants; (3) equation of state; (4) shock wave profiles; and (5) spall fracture. The experimental techniques utilized in this study are reviewed in Reference 6. Briefly, the principal techniques applied were:

Stress-Strain Studies - A laboratory-type universal testing machine was used for rates < 0.1/sec, a medium strain rate machine for rates of 10^{-3}/sec to 10^2/sec, and a Hopkinson bar device for rates of about 10^2 to 5×10^3/sec.

Elastic Constants - The pulse superposition method was used for measuring longitudinal and shear wave velocities as a function of temperature.

Equation of State - Gun-launched, flat-plate impact techniques were used to generate uniaxial strain conditions.
Velocities up to 0.6 mm/μsec were achieved with 63.5 mm and 102 mm single-stage compressed-gas guns. Hugoniot data were obtained with x-cut quartz gages.

Wave Propagation and Spall Fracture - Flat-plate impact techniques were also used. Wave profiles were measured with x-cut quartz gages, laser velocity interferometer and magnetic foil gages.

MATERIAL PROPERTIES

Poly(methylmethacrylate) or PMMA is a cast thermoplastic acrylic polymer made from methyl methacrylate monomers. The material used for the tests reported here was Rohm and Haas Plexiglas II UVA, an ultraviolet absorbing grade. The material was purchased as sheet stock in thicknesses of 1.6, 3.2, 12.7 and 25.4 mm. Unless noted, all data reported are for a test direction normal to the plane of the sheet.

The average measured density was 1.183 g/cc (0.0427 lb/in.³). The material has a softening or heat-distortion temperature in the range of 95-105°C and a Rockwell hardness of M93. Thermal analyses by Asay, et al., on cast Acrylux (Cadillac Plastic and Chemical Co.) rod gave the following:

Volume coefficient of thermal expansion, β:

\[145 \times 10^{-6} + 1.4 \times 10^{-6}T \quad \text{°C} \]

(10 to 100°C)

Specific Heat, \(c_p \):

\[0.1974 + 0.00176T \quad \text{cal/g-°C} \]

(-100 to 45°C)
The above give $\beta = 163 \times 10^{-6}$ and $c_p = 0.23$ at 20°C. Other data on PMMA give values of β as high as 240×10^{-6} and c_p as high as 0.35. (7,9)
SECTION I

UNIAXIAL STRESS BEHAVIOR

The uniaxial stress response of PMMA has been studied under several programs at General Motors Corporation. Results of these studies are given in References 10 to 14, and cover such areas as strain rate and temperature effects in compression and tension, fracture, specimen size effects, and the influence of prestraining (uniaxial stress) and preshocking (uniaxial strain) on stress-strain behavior. In addition, numerous papers have been published on deformation characteristics of PMMA (see, e.g., References 15 and 16).

The response of PMMA to uniaxial stress loading is viscoelastic with high strain rate sensitivity, as shown in Figure 1.* The low-strain modulus and the high-strain flow stress increase by a factor of two or more for a strain-rate increase of 0.003/sec to 1500/sec, and decrease correspondingly for a temperature increase of 22°C to 82°C.

PMMA exhibits significant stress relaxation in uniaxial stress, and a specimen loaded in compression to ~1% strain at ~10/sec relaxed from 2.34 kbar to 1.63 kbar in ~0.025 sec. Specimens loaded in compression at 2.5/sec to 99% of maximum stress and then unloaded showed no change in stress-strain response on subsequent reloadings. (11)

* The data in Figure 1 are for 9.5 mm dia. by 12.7 mm long cylinders machined from 12.7 mm dia. cast rod.
Uniaxial stress tests on unshocked (as-received) and shocked (uniaxial strain compressive loading to 5 kbar) specimens showed no differences in compressive stress-strain response for strain rates of 0.003/sec. to 1160/sec. (11)

![Figure 1 Compressive Stress vs. Strain, PMMA](image)
SECTION II

ELASTIC BEHAVIOR

WAVE VELOCITIES

Measurements were made of longitudinal and shear wave velocities in PMMA at 20°C and atmospheric pressure (P = 0). Values obtained were:

\[
\begin{align*}
C_L & = 2.746 \pm 0.003 \text{ mm/μsec} \\
C_S & = 1.392 \pm 0.002 \text{ mm/μsec}
\end{align*}
\]

The temperature dependence of \(C_L\) and \(C_S\) was also measured and, after correction for thermal expansion, gave:

\[
\begin{align*}
C_L & = 2.801 - 26.4 \times 10^{-4} T - 0.05 \times 10^{-4} T^2 \\
C_S & = 1.420 - 13.6 \times 10^{-4} T - 0.028 \times 10^{-4} T^2
\end{align*}
\]

\((T\ \text{in °C})\)

Asay, et al., \((8,17)\) measured the temperature dependence of \(C_L\) and \(C_S\) along the axial direction of cast PMMA rod and obtained values in reasonable agreement with those given above.

Asay, et al., \((17)\) also reported the pressure dependence of \(C_L\) and \(C_S\) giving:

\[
\begin{align*}
C_L & = 2.7519 + 0.2452P - 0.6766P^2 + 0.000589P^3 \\
C_S & = 1.3977 + 0.0965P - 0.00705P^2 + 0.00270P^3
\end{align*}
\]

\((P\ \text{in kbar})\)
Note that the zero pressure values of \(C_L \) and \(C_S \) (2.7519 and 1.3977) are about \(\sim 0.3\% \) higher than those given in Equation 1 for material taken from sheet stock.

ELASTIC CONSTANTS

Assuming PMMA is homogeneous and isotropic, elastic wave velocity data can be used to calculate various elastic constants. At 20°C and zero pressure, the following adiabatic constants were obtained:

- Bulk wave velocity, \(C_B = 2.23 \text{ mm/μsec} \)
- Sound wave velocity, \(C_E = 2.27 \text{ mm/μsec} \)
- Poisson's ratio, \(\nu = 0.327 \)
- Bulk modulus, \(K = 58.6 \text{ kbar} \)
- Shear modulus, \(G = 22.9 \text{ kbar} \)
- Elastic modulus, \(E = 60.8 \text{ kbar} \)
- Lamé's parameter, \(\lambda = 43.4 \text{ kbar} \)

Isothermal values of \(K \) and \(G \) as well as adiabatic and isothermal pressure and temperature derivatives at 20°C and zero pressure were calculated using pressure dependence, specific heat and thermal expansion data \(^*\) reported by Asay, et al.\((8,17)\) Results are given in Table I.

\(^*\) Use of higher values for \(\beta \) and \(c_p \) than reported by Asay has a small effect on the calculations, with the results being 0.2 to 4% different for \(\beta = 240 \times 10^{-6} \) and \(c_p = 0.35 \).
TABLE I

ELASTIC CONSTANTS FOR PMMA

\((P = 0, \ T = 20^\circ C)\)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K^S)</td>
<td>58.6 kbar</td>
</tr>
<tr>
<td>(\frac{\partial K^S}{\partial P} - T = K'^S)</td>
<td>12.7</td>
</tr>
<tr>
<td>(\frac{\partial K^S}{\partial T} - P)</td>
<td>-0.129 kbar/°C</td>
</tr>
<tr>
<td>(\frac{\partial K^S}{\partial P} - S = K'^S)</td>
<td>12.2</td>
</tr>
<tr>
<td>(\frac{\partial K^S}{\partial T} - S)</td>
<td>2.85 kbar/°C</td>
</tr>
<tr>
<td>(K^T)</td>
<td>56.4 kbar</td>
</tr>
<tr>
<td>(\frac{\partial K^T}{\partial P} - T = K'^T)</td>
<td>13.0</td>
</tr>
<tr>
<td>(\frac{\partial K^T}{\partial T} - P)</td>
<td>-0.151 kbar/°C</td>
</tr>
<tr>
<td>(\frac{\partial K^T}{\partial P} - S = K'^T)</td>
<td>12.4</td>
</tr>
<tr>
<td>(\frac{\partial K^T}{\partial T} - S)</td>
<td>2.90 kbar/°C</td>
</tr>
<tr>
<td>(G^S = G^T)</td>
<td>22.9 kbar</td>
</tr>
<tr>
<td>(\frac{\partial G^T}{\partial P} - T = G'^T)</td>
<td>3.58</td>
</tr>
<tr>
<td>(\frac{\partial G^T}{\partial T} - P)</td>
<td>-0.052 kbar/°C</td>
</tr>
<tr>
<td>(\frac{\partial G^T}{\partial P} - S = G'^T)</td>
<td>3.36</td>
</tr>
<tr>
<td>(\frac{\partial G^T}{\partial T} - S)</td>
<td>0.79 kbar/°C</td>
</tr>
</tbody>
</table>
The hugoniot equation of state is the locus of equilibrium states reached after shock-loading of a material, and data are usually obtained either as stress-particle velocity points or as shock velocity-particle velocity points. The hugoniot data presented in this report were obtained with x-cut quartz gages and representative records for direct impact and transmitted wave tests are shown in Figure 2. The buffered direct impact method (tungsten carbide or 4340 steel buffer plate on front of the quartz) permitted stresses up to 20 kbar in PMMA while keeping impact velocity requirements within the capability of the 102 mm gun. The use of quartz gages for transmitted wave tests was primarily for the study of compressive wave development, and results are discussed in the Wave Propagation Section.

The hugoniot may be expressed in several forms and the most convenient form based on quartz gage results is that established by a least-squares fit to data in the stress-particle velocity (\(\sigma_H - u_p\)) plane. Results for PMMA are given in Figure 3 and the hugoniot is

\[
\sigma_H = 29 u_p + 80.3 \frac{u_p^2}{u_p} - 244.5 \frac{u_p^3}{u_p^2} + 256.4 \frac{u_p^4}{u_p^3}
\]

For metals, a second order equation is usually sufficient to give a reasonable fit to the data, however, a fourth-order equation is given for PMMA for two reasons. First, the standard error for second and third-order fits is 0.1 kbar, while the fourth-order equation reduces this to 0.05 kbar. Second, the work of other investigators has established that
DIRECT IMPACT
PMMA → Qz

\[V_I = 0.122 \text{mm/\mu s} \]

\[\sigma_H = 3.40 \text{ kbar} \]

TIME

DIRECT IMPACT, BUFFERED
PMMA → 4340 ST./Qz

\[V_I = 0.163 \text{mm/\mu s} \]

\[\sigma_H = 5.55 \text{ kbar} \]

TRANSMITTED WAVE
6061-T6 Al → PMMA/Qz

\[V_I = 0.252 \text{mm/\mu s} \]

\[\sigma_H = 7.5 \text{ kbar} \]

Figure 2 Quartz Gage Records
PMMA does not have a conventional hugoniot in the low-pressure region (see e.g., Refs. 18-22).* Also shown in Figure 3 are data of Barker and Hollenbach(21) which show good agreement with the present work.

Transformation of the hugoniot into other planes, such as stress-volume \((\sigma_H - v)\) or shock velocity-particle velocity \((U_S - u_p)\) is performed by assuming a material model. Since PMMA does not show an elastic-plastic structure, this was done by assuming an ideal single-wave structure with equilibrium initial and final states and applying the mass and momentum conservation equations:

\[
\sigma_H = \rho_0 U_S u_p
\]

and

\[
v = v_0 \left(1 - \frac{u_p}{U_S}\right)
\]

Results are given in Table II and Figures 4 and 5. Barker's data and fits(21) are also shown. The calculated shock velocities from the present work are slightly lower than Barker's measured values, but the agreement is good considering the assumption underlying the data transformation and the effects of material variability and experimental error. Shock velocities measured on three transmitted wave tests are also given in Figure 5.

* Deal(23) did a review paper on all the data available up to 1965 on PMMA-type materials, but the data scatter did not permit resolution of details of low-pressure response.
Figure 3 Stress-Particle Velocity Hugoniot, PMMA

$$\sigma_H = 29u_p + 80.3u_p^2 - 244.5u_p^3 + 256.4u_p^4$$

(Fit to ○ Data)
Table II

Hugoniot Data, PMdA

<table>
<thead>
<tr>
<th>Stress 1 (kbar)</th>
<th>Particle Velocity 1 (mm/μs)</th>
<th>Shock Velocity 2 (mm/μs)</th>
<th>Strain 2 $1-(\nu/\nu_0)$</th>
<th>Compression 2 $\left(\nu_0/\nu\right)-1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.40</td>
<td>0.099</td>
<td>2.90</td>
<td>0.0341</td>
<td>0.0353</td>
</tr>
<tr>
<td>5.55</td>
<td>0.151</td>
<td>3.11</td>
<td>0.0486</td>
<td>0.0511</td>
</tr>
<tr>
<td>8.04</td>
<td>0.214</td>
<td>3.18</td>
<td>0.0674</td>
<td>0.0723</td>
</tr>
<tr>
<td>10.6</td>
<td>0.280</td>
<td>3.20</td>
<td>0.0875</td>
<td>0.0959</td>
</tr>
<tr>
<td>13.7</td>
<td>0.359</td>
<td>3.23</td>
<td>0.111</td>
<td>0.125</td>
</tr>
<tr>
<td>16.0</td>
<td>0.414</td>
<td>3.27</td>
<td>0.127</td>
<td>0.145</td>
</tr>
<tr>
<td>18.4</td>
<td>0.468</td>
<td>3.32</td>
<td>0.141</td>
<td>0.164</td>
</tr>
</tbody>
</table>

1. Measured (quartz gages).
2. Calculated ($\rho_0 = 1.183$ g/cc).
Figure 4 Stress-Strain Hugoniot, PMMA

\[\varepsilon = 1 - \frac{v}{v_0} \]
Figure 5 Shock Velocity-Particle Velocity Hugoniot, PMMA
The stress-compression hugoniot data are compared to ultrasonic hydrostats and hydrostatic compressibility in Figure 6. The ultrasonic hydrostats are based on Asay's pressure data and the equations of Birch,\(^{(24,25)}\)

\[
P_T = 84.6 (1+\mu)^{7/3} - (1+\mu)^{3/3} \quad 1+6.75 (1+\mu)^{2/3} - 1
\]

Murnaghan,\(^{(26)}\)

\[
P_S = 4.80 (1+\mu)^{12.2} - 1
\]

and Keane.\(^{(27,28)}\)

\[
P_S = 7.9 \left[(1+\mu)^{9.5} - 1 \right] - 16.7 \ln (1+\mu)
\]

The hydrostatic compression curve is Bridgman's data\(^{(29)}\) as reported by Halpin and Graham.\(^{(19)}\) Corrections from isothermal \((P_T)\) and adiabatic \((P_S)\) conditions to the hydrostat are less than 1% at 20 kbar and have been neglected. Compared to metals,\(^{(2-5)}\) the agreement between the shock wave data and the hydrostats is relatively poor in the low-pressure region. The ultrasonic and hydrostatic compression results, which are essentially "static" measurements, do not show the inflections in stress-compression behavior indicated by the dynamic shock wave measurements.
Figure 6 Stress-Compression Hugoniot, PMMA
SECTION IV

WAVE PROPAGATION

Shock wave characteristics were measured using quartz, a velocity interferometer and magnetic foil gages. The results presented here complement the more detailed work reported by Barker and Hollenbach (21) and Schuler (22) on the same grade of PMMA. They studied compressive and release wave characteristics at stresses up to 25 kbar and propagation distances out to 37 mm and also examined steady-state wave conditions.

Quartz gage records of compressive waves in PMMA at propagation distances of 3 and 6 mm are shown in Figure 7. The rise-time (after correcting for tilt effects) is only a few nanoseconds up to about two-thirds peak stress, after which there is a gradual rounding of the wave front for \(\sim 0.5 \mu \text{sec} \).

Representative records from the velocity interferometer and magnetic foil gage tests are given in Figure 8. Interferometer fringe patterns were generally clean and well-defined, giving good release wave arrival time and shape, although the compressive wave rise-time was too fast to permit fringe resolution. The magnetic foil gage test records were also noise-free but did show a slight "hump" at the first release level which has not been explained.

Velocity interferometer records are shown in Figure 9 with test conditions for each shot listed in Table III. The compressive behavior is essentially the same as described above although there is less rounding for the low velocity test (No. 95, \(\sim 1.7 \text{ kbar} \)). Spreading of the release wave with
Figure 7: Compressive Waves in PMMA (X-Cut Quartz Gages)
VELOCITY INTERFEROMETER

PMMA → PMMA/PMMA

\[V_I = 0.407 \text{ mm/\mu s} \]

\[X = 3.414 \text{ mm} \]

\[\sigma_H = 7.5 \text{ kbar} \]

Release Arrival

Compressive Wave

MAGNETIC FOIL GAGE

FQ → PMMA/M.F./PMMA

\[V_I = 0.163 \text{ mm/\mu s} \]

\[X = 1.996 \text{ mm} \]

\[\sigma_H = 4.6 \text{ kbar} \]

Figure 8 Wave Profile Test Records
TABLE III

<table>
<thead>
<tr>
<th>Config.</th>
<th>X/X₀</th>
<th>X₀</th>
<th>Impactor Thickness (mm)</th>
<th>Max. Stress (kbar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMMA+PMMA/PMMA</td>
<td>C.89</td>
<td>1.473</td>
<td>1.651</td>
<td>5.0</td>
</tr>
<tr>
<td>"</td>
<td>2.20</td>
<td>3.391</td>
<td>1.542</td>
<td>4.4</td>
</tr>
<tr>
<td>"</td>
<td>2.24</td>
<td>3.414</td>
<td>1.527</td>
<td>7.5</td>
</tr>
<tr>
<td>PMMA+PMMA</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>PMMA+PMMA/PMMA</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>PMMA+PMMA</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>PMMA+PMMA/PMMA</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test No.</th>
<th>V (mm/us)</th>
<th>Impact Velocity (mm/us)</th>
<th>12</th>
<th>85</th>
<th>86</th>
<th>88</th>
<th>89</th>
<th>95</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.277</td>
<td>0.246</td>
<td>0.407</td>
<td>0.250</td>
<td>0.256</td>
<td>0.097</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
increasing propagation distance is evident and there is some indication of structure in the release wave, being more pronounced at the higher particle velocity (No. 86) and at the longer propagation distance (No. 88). Similar behavior was noted by Barker. (21)

The magnetic foil test consisted of a multi-layered target with foil gages at the impact surface (input) and at three propagation distances. Results are shown in Figure 10, with wave arrival times calculated on the basis of a constant shock velocity of 3.07 mm/µsec. The initial release wave does not reduce particle velocity to zero because the impedance of the fused quartz impactor is higher than that of PMMA. The input pulse is not perfectly square due to the effects of impact tilt and gage thickness effects. As noted for the interferometer tests, there is spreading of the release wave with propagation distance although peak particle velocity attenuation has not yet occurred at the maximum distance (12.63 mm) observed.

One wave profile test was conducted on a "designed-composite." This composite consisted of aluminum rods inserted and bonded into a PMMA matrix and the test configuration is shown schematically in Figure 11. The transmitted compressive wave was measured with a 12.7 mm thick quartz gage and the test result is given in Figure 12 in terms of quartz stress. The initial portion of the wave is due to propagation down the aluminum rods and the slight structure evident in the first 0.8 µsec is probably due to elastic-plastic effects in aluminum. Arrival of the wave propagating in the matrix gives a final stress jump to \(\sim 11 \) kbar. Wave transit times in the rods and the matrix corresponded to the elastic wave velocity in aluminum and shock wave velocity in PMMA, respectively.
6061-T6 Aluminum Impactor

Composite Target:
3.2mm 6061-T6 Al Rods
set on 6.4mm centers
in PMMA

Gage Area = 70mm2
Rod Area = 16mm2
PMMA Area = 54mm2

X-Cut Quartz Gage

Figure 11 Designed Composite, Test Configuration
Figure 12 Compressive Wave in Designed Composite
SECTION V

SPALL FRACTURE

RECOVERY TESTS

Spall behavior of PMMA was studied by carrying out a series of impact and recovery tests.* Unlike metals, the recovered specimens did not require sectioning and metallographic preparation to determine the presence of fractures. Spall damage could be observed simply by viewing the specimen in transmitted light parallel to the shock wave propagation direction. However, the onset of spall in PMMA was evidenced by the appearance of one or a few "penny-like" cracks several millimeters in diameter, rather than numerous small voids or cracks. This, together with poor reproducibility apparently due to material effects, made determination of an incipient spall level even more difficult than with metals.

Incipient spall results for three times of loading (i.e., three impactor thicknesses), are given in Figure 13, along with earlier spall data of Charest(32) and Keller(33). The present data show a dependence of incipient spall velocity on time of loading. This is in agreement with the results of Charest who also used a gun-launched flat-plate technique. Keller showed a time-independent behavior, however, his data are for an exploding-foil technique. All three sets of data show different incipient spall levels, which is probably due to a number of factors, the most important of which are material variability, influence of differences in the X/X_o ratio, and different incipient spall criteria.

*The fracture of PMMA under uniaxial stress conditions has been studied in detail by Beardmore and Johnstone.(30,31)
Figure 13: Spall Data for PMMA
Fractures appearing at the incipient spall level are difficult to photograph optically because of depth of field problems and the relatively small difference in light transmission characteristics between incipient fractures and unfractured material. Optical photographs of specimens from tests ~10% above the incipient spall level are shown in Figure 14. (The dark "shadow" in the center of the righthand picture is a crack extending from the specimen surface to the spall plane). Although, of approximately the same total area, the fracture region has a considerably different appearance for the two specimens, the reason for which is not understood.

An optical photomicrograph of a completely spalled specimen is shown in Figure 15. The fracture surface has the appearance of a "polycrystalline" structure with extensive cracking or crazing within the "grains". The fracture subsurfaces were generally flat and normal to the shock propagation direction, although they were not all in the same plane (dispersion of ~0.2 mm). A scanning electron micrograph of the same specimen is shown in Figure 16.

A spall test was performed on a sample of FF-17 phenolic being studied under a related program.\(^{(34)}\) This material is a cured phenolic resin with a density of 1.29 g/cc. The specimen was completely spalled and the resulting fracture surface is shown in Figures 17 and 18. The optical photomicrographs (Figure 17) indicate that fracture initiated at a large number of points or defects and then propagated radially from these points, giving a "sunburst" pattern. These fracture zones were typically 0.1 to 0.4 mm diameter and, like PMMA, were generally flat and normal to the shock propagation direction. The scanning microfractographs show in more detail the development of this pattern around the central initiation point.
Figure 14 Spall Fractures in PMMA
Pictures taken with transmitted light normal to spall plane with 0.4μm sputtered gold film

Figure 15 Spall Fracture Surface in PMMA (1.5 mm + 3.00 mm, 0.157 mm/μsec)
Figure 16 Spall Fracture Surface in PWMA, Scanning Microfractograph, 0° (1.5 mm, 3.0 mm, 0.157 mm/sec)

SPUTTERED 0.4µm GOLD SURFACE

Reproduced from best available copy.
PICTURES TAKEN WITH TRANSMITTED LIGHT NORMAL TO Sº ALL PLANE

Figure 17 Spall Fracture Surfaces in FF-17 Phenolic
Figure 18: Sputtered 0.1μm Rhodium Surface, Spali Fracture Surface in FP-17 Phenolic, Scanning Microfractograph, 45°.
SPALL WAVE PROFILE

One test was conducted to obtain a complete wave profile under spall-producing conditions and the result is shown in Figure 19 (see Table III for test conditions). A good, noise-free velocity interferometer record was obtained, however, analysis of this record was difficult in that the expected wave profile is not entirely consistent with the apparent fringe pattern.* The compressive wave and release wave arrival are clear and agree with the wave profiles discussed earlier. The fringe pattern does not give an obvious fringe reversal after release wave arrival and therefore several interpretations of the release path are possible. The solid line shown implies a reversal at point A, which gives a pullback or release wave reversal \(\nu \approx 0.07 \text{ mm/\mu sec} \). This pullback is related to the spall strength of the material, and for metals \((2-5)\) it is always less than the incipient spall velocity for a given set of impact conditions. For the conditions shown, the incipient spall velocity in PMMA is \(\nu \approx 0.08 \text{ mm/\mu sec} \), which supports assumption of a reversal point at A. The dashed line is for no reversal at A. Although there is a fringe beginning at point B, the absence of a reversal between A and B would give a wave profile beyond B that is not reasonable. The solid wave would continue \(\rho \) above the initial peak velocity level while the dashed curve would continue down towards zero velocity, neither of which is consistent with observed spall profile behavior for other materials.

* Barker gives a detailed discussion of fringe analysis in Referencer 20 and 35.
Figure 19 Spall Wave Profile in PMMA
REFERENCES

