APPLICATIONS AND POTENTIAL OF THERMOMECHANICAL TREATMENT

DEFENSE METALS INFORMATION CENTER
BATTENELL MEMORIAL INSTITUTE
COLUMBUS, OHIO 43201
The Defense Metals Information Center was established at Battelle Memorial Institute at the request of the Office of the Director of Defense Research and Engineering to provide Government contractors and their suppliers technical assistance and information on titanium, beryllium, magnesium, aluminum, high-strength steels, refractory metals, high-strength alloys for high-temperature service, and corrosion- and oxidation-resistant coatings. Its functions, under the direction of the Office of the Director of Defense Research and Engineering, are as follows:

1. To collect, store, and disseminate technical information on the current status of research and development of the above materials.

2. To supplement established Service activities in providing technical advisory services to producers, melters, and fabricators of the above materials, and to designers and fabricators of military equipment containing these materials.

3. To assist the Government agencies and their contractors in developing technical data required for preparation of specifications for the above materials.

4. On assignment, to conduct surveys, or laboratory research investigations, mainly of a short-range nature, as required, to ascertain causes of troubles encountered by fabricators, or to fill minor gaps in established research programs.

Contract No. F33615-69-C-1343

H. Dana Moran
Director

Notices.

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Qualified requestors may obtain copies of this report from the Defense Documentation Center (DDC), Cameron Station, Building 5, 5010 Duke Street, Alexandria, Virginia 22314; or from the Clearinghouse for Federal Scientific and Technical Information, U. S. Department of Commerce, Springfield, Virginia 22151.

This document has been approved for public release and sale; its distribution is unlimited.
Applications and Potential of Thermomechanical Treatment

Henning, H. J.

November, 1970

12

DNIC Memorandum 251

The author's primary theme is that there are sufficient data already available to permit the use of thermomechanical treatment (TMT) routinely in the manufacture of some alloy products. The use of TMT for products of low carbon steels, aluminum alloys, maraging steels, titanium alloys, nickel-base alloys and high-alloy steels is discussed briefly. Most of the memorandum deals with TMT of alloy steels. The future of TMT is forecast briefly, particularly with respect to alloy steels. An extensive bibliography includes sources in several languages, primarily English and Russian. A few sources in French, German, Czech, Serbo-Croatian, and Japanese are also cited.
<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alloy steels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum-base alloys</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High alloy steels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maraging steels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel-base alloys</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermomechanical treatment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Titanium-base alloys</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INSTRUCTIONS

1. **ORIGINATING ACTIVITY:** Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. **REPORT SECURITY CLASSIFICATION:** Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. **GROUP:** Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. **REPORT TITLE:** Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.

4. **DESCRIPTIVE NOTES:** If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. **AUTHOR(S):** Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. **REPORT DATE:** Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.

7a. **TOTAL NUMBER OF PAGES:** The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. **NUMBER OF REFERENCES:** Enter the total number of references cited in the report.

8a. **CONTRACT OR GRANT NUMBER:** If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b, 8c & 8d. **PROJECT NUMBER:** Enter the appropriate military department identification, such as project number, subproject number, system number, task number, etc.

9a. **ORIGINATOR'S REPORT NUMBER(S):** Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. **OTHER REPORT NUMBER(S):** If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

10. **AVAILABILITY/LIMITATION NOTICES:** Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

 (1) "Qualified requesters may obtain report of this report from DDC."

 (2) "Foreign announcement and dissemination of this report by DDC is not authorized."

 (3) "U.S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through "

 (4) "U.S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through "

 (5) "All distribution of this report is controlled. Qualified DDC users shall request through "

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. **SUPPLEMENTARY NOTES:** Use for additional explanatory notes.

12. **SPONSORING MILITARY ACTIVITY:** Enter the name of the governmental office, laboratory, sponsoring (paying for) the research and development. Include address.

13. **ABSTRACT:** Enter an abstract giving a brief and factual summary of the document indicative of the report even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the highest security classification of the information in the paragraph, accompanied by a note of the security classification obeyed.

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. **KEY WORDS:** Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required identifying such as equipment model designation, technical military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>THERMO-MECHANICAL TREATMENT OF SPECIFIC ALLOYS</td>
<td>1</td>
</tr>
<tr>
<td>Low Carbon Steels</td>
<td>2</td>
</tr>
<tr>
<td>Aluminum Alloys</td>
<td>2</td>
</tr>
<tr>
<td>Maraging Steels</td>
<td>3</td>
</tr>
<tr>
<td>Titanium Alloys</td>
<td>3</td>
</tr>
<tr>
<td>Nickel-Base Alloys</td>
<td>3</td>
</tr>
<tr>
<td>High-Alloy Steels</td>
<td>3</td>
</tr>
<tr>
<td>Alloy Steels</td>
<td>4</td>
</tr>
<tr>
<td>FORECAST FOR THERMO-MECHANICAL TREATMENT</td>
<td>8</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>9</td>
</tr>
<tr>
<td>Open Literature Sources</td>
<td>9</td>
</tr>
<tr>
<td>Government-Sponsored Research Reports</td>
<td>11</td>
</tr>
</tbody>
</table>
APPLICATIONS AND POTENTIAL OF THERMOMECHANICAL TREATMENT*

H. J. Henning**

INTRODUCTION

Thermomechanical treatment (TMT) has been the subject of perhaps more than 1000 papers and reports accounting for over a half-million pounds, and probably closer to one million pounds of papers, data sheets, and comprehensive reports. Several million dollars have been spent by industry and government in evaluating the fundamentals of TMT. Doubtless, more money will be spent in the '70s. A question worth asking is—when are we going to get down to the task of applying these fundamentals in the preparation of actual products? Certainly, there are enough technical data available to demonstrate what can be expected in the way of improvements in hardware performance.

Take the agenda of The Technical Cooperation Program meeting on TMT as an example; only one or two of the papers considered TMT practices in relation to a specific production or preproduction product application. The rest of the papers provided only more fundamental background on TMT, leaving the choice of applications to the audience.

After conducting a reasonably complete review of the literature on the subject, and reviewing results of several projects on TMT at Battelle Memorial Institute, the author has concluded that the work on TMT in the '70s would be best spent on applications, with some diminished effort directed to fundamental aspects.

The objective of this memorandum is to present an overview of thermomechanical treatments as they apply to several metal-base systems and to point out where the TMT processes seem either practical or impractical in their application to production hardware. Toward this objective, one should recognize two basic assumptions: (1) that TMT practices offer means of developing unusually favorable mechanical properties not obtainable by hot-working and heat-treatment processes alone; and (2) that part-shape capability in TMT is limited by roughly the same criteria that limit the cold-working of metallic hardware.

Consistent with Assumption (1), significant improvements through TMT in such properties as tensile strength, impact resistance, low-cycle fatigue, and fracture toughness are reasonably well documented. Simultaneous improvements in several of these properties are sometimes observed. Most often, however, the improvements in strength properties are obtained at some expense of ductility and toughness. In any case, a wealth of data is available to show how the properties are interrelated after various TMT procedures.

Assumption (2) indirectly helps to identify the kinds of shapes to which TMT can be applied. For example, sheet, plate, bar, rod, and reasonably simple cross sections like C's, T's, U's, and L's can all be cold drawn or cold rolled to impart special properties. These are the same shapes that can be processed by thermomechanical treatments. Similarly, some extruded shapes are also amenable to TMT. All of these shapes are characterized by deformation occurring predominantly in one direction along a common axis.

Cold-working processes are not readily applied to complex shapes where the metal has to flow along three axes at the same time. For example, certain types of closed-die forgings cannot be cold worked without resorting to multiple-step die sequencing to develop one direction of flow followed by flow in other directions in one or more succeeding die stages. The same practical restrictions are placed on TMT. It is very difficult to cold forge a complex rib-and-web part. It is even more difficult to apply TMT in this situation. Consequently, the benefits of TMT are obtainable in a variety of part shapes commonly produced by cold finishing such as:

Rolled Products--bar, rod, flats, plate, sheet

Extruded Products--cylinders, tubes, L's, T's, U's

Forgings--disks, flats, rounds, squares, cups

These should be considered as applications rather than limitations.

There is a size limitation on products that can be cold formed; TMT places an even more stringent size limitation on the same products. Time is the most important factor, because the materials being TMT processed are generally in a metastable condition—ready to undergo a favorable or unfavorable metallurgical change. The more stable the material, the broader the size range of parts that can be processed by TMT. The practical weight limitations indicated in Figure 1 for various products are considered as realistic considering today's TMT technology. Larger parts that are to be processed by TMT require materials of particular structural stability. It should be noted that the greatest weight capability shown in Figure 1 for sheet and plate is for carbon-steel plate (cross-hatched portion of bar), which is commonly warm rolled to strengths substantially higher than those of hot-rolled products. The other practical weight limit for sheet and plate (clear portion of bar) is considered realistic for alloy steels.

THERMOMECHANICAL TREATMENT OF SPECIFIC ALLOYS

To date, most investigations of TMT have been concerned with the alloys listed in Table I. This listing of materials represents an approximate ascending order of attention that was given to the respective TMT processes during the '60s. An increasing percentage of more recent R&D effort on TMT is being directed to the nickel-base alloy systems.
Table 1. Materials Subjected to Experimental TMT During the 1960's

<table>
<thead>
<tr>
<th>Material</th>
<th>Description of TMT</th>
<th>Objective</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon and low-alloy constructional steels</td>
<td>Strain aging accomplished by warm finishing</td>
<td>Higher strength</td>
<td></td>
</tr>
<tr>
<td>Low- and moderate-alloy high-strength steels</td>
<td>Hot-cold working or ausforming</td>
<td>Higher strength</td>
<td></td>
</tr>
<tr>
<td>Maraging steels</td>
<td>Warm working by controlling reductions at lower end of hot-working temperature range</td>
<td>Increased ductility, reduced grain size</td>
<td>TMT controls both grain size and precipitation reactions</td>
</tr>
<tr>
<td>Tool steels</td>
<td>Hot-cold working and/or ausforming</td>
<td>Improved toughness</td>
<td></td>
</tr>
<tr>
<td>Bearing steels</td>
<td>Hot-cold working</td>
<td>Improve fretting fatigue life of bearings</td>
<td></td>
</tr>
<tr>
<td>High-speed steels</td>
<td>Hot-cold working above the nose of the time-temperature transformation (TTT) curve</td>
<td>Improved wear resistance and dimensional stability</td>
<td></td>
</tr>
<tr>
<td>Nickel-base super-alloys</td>
<td>Controlled reductions and temperatures specifically to alter metallurgical structure and precipitation hardening</td>
<td>Increased strength, increased resistance to low-cycle fatigue</td>
<td>Properties of all-beta alloys depend on controlled warm reduction</td>
</tr>
<tr>
<td>Titanium alloys</td>
<td>Working at specific temperatures and reductions to control microstructure</td>
<td>Optimization of mechanical properties</td>
<td></td>
</tr>
<tr>
<td>Aluminum alloys</td>
<td>Warm or cold TMT processes to alter residual stresses</td>
<td>Reduce sensitivity to stress corrosion</td>
<td></td>
</tr>
<tr>
<td>Iron-base super-alloys</td>
<td></td>
<td>Respond unfavorably to TMT</td>
<td></td>
</tr>
</tbody>
</table>

Many excellent papers have been prepared to explain the details of changes occurring in metals during TMT processing. In essence, the accepted view is that TMT combines the attributes of three classical hardening mechanisms—work hardening, structural refinement, and metallurgical transformation. These mechanisms are active to greater or lesser degrees in each material. The warm strain essentially hastens normal metallurgical reactions.

Low-Carbon Steels

The low-carbon steels are generally not transformable to martensite. The TMT processes are limited to controlled warm rolling to produce strain-aging effects. Warm strain accelerates precipitation of nitrides and carbides, which strengthen the ferrite phase. Thus, the steels are simultaneously strain hardened and precipitation hardened—both very classic phenomena.

At least three steel mills in the United States offer structural carbon steels finished with proprietary warm-rolling practices. The steel plates are often 25 to 30 percent stronger than their hot-rolled counterparts.

Aluminum Alloys

In aluminum alloys, 1651 or 1652 treatments are used to modify the strength and the residual-stress system in the sense that controlled reduc-

![Figure 1. Practical Weight Limits on Various TMT Products](image-url)
tions are used to develop special properties after aging, these widely accepted practices could be termed TMT processes. Such treatments are effective in the higher strength aluminum alloys because they are in a metastable condition in the solution-heat-treated condition—they age harden significantly at room temperature.

The TMT of high-strength aluminum alloys provides some minor strengthening, but more important, it increases their resistance to stress-corrosion cracking.

Maraging Steels

The metallurgical reactions occurring in the hot working of maraging steels are somewhat characteristic of TMT. Mostly because of the high-nickel content, the austenite phase is very sluggish in its recrystallization reaction even during deformation at temperatures in the vicinity of 1700 F. The effects of prior strain are retained even after the normal solution-heat-treatment cycles at 1500 and 1600 F. This residual strain hardening has an influence on the subsequent precipitation reactions occurring during aging and generally results in components having modest improvements in strength, ductility and impact resistance compared with components that are recrystallized at temperatures above 1900 F before solution heat treating and aging.

Titanium Alloys

The classical alpha-to-beta structural relationships in titanium alloys can be modified only by varying the hot-working cycles to provide the desired proportions and distributions of each phase. From the metallurgical viewpoint, the control of titanium microstructure through controlled combinations of reduction and temperature represents a TMT process. Defined as such, it is one of the most widely used production applications of the TMT processes.

The all-beta alloys are dependent on TMT processing for final strength performance. For example, the familiar Ti-15V-11Cr-3Al alloy is one that requires controlled reductions at temperatures in the vicinity of 1450 F before normal properties can be obtained on subsequent aging. Both strength and ductility are increased by this warm-working practice which has a major influence on the speed and uniformity of the precipitation reaction during aging.

Experience with the titanium alloys has shown that accurate control of both processing temperatures and reductions is necessary to achieve the desired properties in the final product. The control is similar to that required in TMT processing of other alloy systems.

Nickel-Base Alloys

Recent research and development work with TMT has been directed to the task of obtaining improvements in certain properties of high-strength nickel-base superalloys: a good example is General Electric's program on Udimet 700 and René 95.* Depending on the amount of warm deformation, for example, the tensile strength of Udimet 700 at 1000 F can be increased from about 190,000 psi in the normal solution-treated-and-aged (STA) condition to over 250,000 psi after TMT consisting of controlled reductions on components that have been previously solution annealed. The reductions are generally performed at intermediate temperatures (1550 to 1900 F) where some precipitation of carbides normally occurs. The warm working accelerates the precipitation reactions and provides for a more uniform distribution of carbides during aging. The strain apparently provides a tremendous increase in the number of sites available for carbide precipitation, thereby reducing carbide enrichment at the grain boundaries. A variety of TMT cycles are being studied. Most provide dramatic increases in room-temperature strengths of these alloys. This improved strengthening is maintained on heating to temperatures of up to about 1400 F. At temperatures above 1400 F, the treated alloys may actually be weaker than those that were not given TMT.

As one might expect, the strain energy resulting from TMT may accelerate elevated-temperature metallurgical reactions; hence, reductions in creep resistance may be encountered at temperatures higher than about 1450 F.

Two leading aircraft-engine builders have expressed confidence that TIT will be useful for obtaining substantial increases in design strengths of Udimet 700 and René 95—especially low-cycle fatigue strengths. In support of this contention, data reviewed so far by the author certainly looks promising.

In all probability, the upper temperatures design strengths for TMT hardware will be reduced slightly from those for the normal STA products because of the decreased creep resistance. However, as applied to a turbine disk for example, this reduction would be significant only for the outer rim—a relatively small proportion of the total part. The rest of the disk is cooler anyway, and the application of TMT should permit significant weight reductions in the webs and hub.

Potential higher strength materials for turbine disks provide part of the incentive for concentrating on TMT. Nickel-base superalloys for aircraft-engine applications are one material class for which the '70s will probably witness a substantial increase in the application of TMT processes.

High Alloy Steels

From the metallurgical viewpoint, it is convenient to consider tool steels, bearing steels, and high-speed steels as a group, because the TMT practices for all of them are similar, and include the following steps:

* Nominal Compositions

<table>
<thead>
<tr>
<th></th>
<th>Co</th>
<th>Cr</th>
<th>Mo</th>
<th>V</th>
<th>Ti</th>
<th>Zr</th>
<th>B</th>
<th>Cb</th>
<th>H</th>
<th>Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>Udimet 700</td>
<td>15</td>
<td>15</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>0.01</td>
<td>0.02</td>
<td>--</td>
<td>--</td>
<td>Bal</td>
</tr>
<tr>
<td>René 95</td>
<td>15</td>
<td>15</td>
<td>3.5</td>
<td>2.5</td>
<td>--</td>
<td>0.01</td>
<td>3.5</td>
<td>3.5</td>
<td>Bal</td>
<td></td>
</tr>
</tbody>
</table>

*
(1) Austenitize at temperatures normal for hardening the alloy
(2) Cool to about 1400 to 1450°F
(3) Deform, with reductions of 20 percent or more
(4) Quench in a suitable oil or salt
(5) Tempered to the desired hardness.

The responses to TMT of the different steels are slightly different however. The carbide-rich high-speed steels behave somewhat like the nickel-base alloys in that TMT enhances the uniformity of carbide precipitation during both deformation and tempering, and the end product is harder than that obtained without TMT. For the tool steels and bearing steels, however, even though the carbide precipitation occurring during deformation is enhanced by TMT, and provides for a higher as-quenched hardness, the hardness of the TMT-processed end product is not significantly higher than that obtainable by tempering, where secondary hardness peaks are normally observed.

The most promising prospects for TMT processes in this group of steels appear to fall into three areas:

(1) Resistance to contact fatigue is improved substantially in the high-alloy bearing steels.
(2) The toughness or impact resistance of high-speed steels increases somewhat.
(3) The hardness of some of the medium-carbon tool steels can be increased significantly.

TMT of special-quality bearing races seems to represent the most promising application. Otherwise, it is doubtful that there will be any significant use of TMT toward improving these steels, partly because the steels are so hard and, hence, difficult to finish after TMT.

It is likely that the rapid growth of electroslag-melting processes, through improved cleanliness, will offer a more practical alternative method than TMT for enhancing the properties of these steels.

Alloy Steels

By far the most extensive research and development work on TMT has been directed to the broad group of alloy steels containing modest levels of alloy elements and carbon levels between 0.30 and 0.50 percent. Perhaps 10 to 50 grades fall within this category of steels. Most of them are typified by reasonably good hardenability, and usually have a deep bay in their time-temperature transformation (TTT) curves, as typified by Figure 2.

The TTT consists of either hot-cold working steels above the "nose" of the TTT curve or ausforming in the deep-bay region. A typical cycle consists of:

(1) Austenizing at normal hardening temperatures
(2) Cool to either the hot-cold working or the ausforming temperature range
(3) Deforming, with reductions of 20 percent or more
(4) Quenching in a suitable oil or molten salt
(5) Tempering to the desired hardness.

At hot-cold working temperatures, the forming forces are about 2 to 3 times those for hot working. However, at ausforming temperatures, the forming forces are similar to those for typical 18Cr-8Ni stainless steels, or closer to 5 times those for hot working.

FIGURE 2. SCHEMATIC COMPARISON BETWEEN HOT-COLD WORKING AND AUSFORMING OF ALLOY STEELS

The U.S. company most active in developing TMT of alloy steels during the '60s was the Ford Motor Company. Although several manufacturing firms and research centers have been evaluating TMT, Ford seems to have gone further than most in applying the processes to actual hardware. For example, Ford's Aeroneutronics Division has been applying TMT to the task of preparing dual-hardness armor plate having unusually good toughness. Ford's research center has been evaluating hot-cold working as a means of producing lighter weight leaf springs. Three sets of truck springs are compared in Figure 3, which shows how TMT permits reductions in the overall weight of the springs and the number of leaves. The upper assembly on each pair is the standard (no TMT) and the lower represents the spring assembly redesigned through TMT and requiring fewer leaves to carry the same load. The lower example shows that only six TMT processed leaves are required where 10 were formerly needed. Recent information from Ford indicates that the TMT springs have definitely outperformed the standards in both bench tests and field tests. Fatigue strength of the TMT-processed springs was more than 20 percent higher than that of the standards. Although the use of TMT for this application appears to be technically feasible, application of TMT processing would require a substantial investment in new equipment, and Ford has not yet begun to use the process for production.

TMT research at Battelle has included four programs on the TMT of alloy steels—one for the Air Force and three for private industry. Similar to that of other TMT research programs, the objective generally has been to obtain higher hardnesses and higher strength components. For example, Table 2 shows some results from Battelle research, and compares typical tensile properties for three different
Number of Leaves	Capacity, Lb	Weight, Lb
8 | 60.5 | 67.5
9 | 46.5 | 49.5
10 | 73.0 | 67.5
6 | 56.0 | 56.0

FIGURE 3. COMPARISON OF CONVENTIONAL AND TNT LAT SPRING ASSEMBLIES OF SAE 5150 STEEL SHOWING REDUCTIONS IN BOTH WEIGHT AND NUMBER OF COMPONENTS

Lower spring in each group is designed for the capacity shown, using steel processed by TNT.

TABLE 2. PROPERTY IMPROVEMENTS ATTAINABLE BY AUSFORGING AND HOT-COLD FORGING

<table>
<thead>
<tr>
<th>Steel</th>
<th>Condition</th>
<th>Ultimate Tensile Strength, ksi</th>
<th>Yield Strength, ksi</th>
<th>Reduction in Area, percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-11</td>
<td>Conventional</td>
<td>320</td>
<td>270</td>
<td>10</td>
</tr>
<tr>
<td>H-11</td>
<td>Ausforged at 1000°F</td>
<td>390</td>
<td>350</td>
<td>97</td>
</tr>
<tr>
<td>86AC</td>
<td>Conventional</td>
<td>350</td>
<td>355</td>
<td>13</td>
</tr>
<tr>
<td>86AC</td>
<td>Ausforged at 1000°F</td>
<td>390</td>
<td>335</td>
<td>22</td>
</tr>
<tr>
<td>4340</td>
<td>Conventional</td>
<td>290</td>
<td>240</td>
<td>88</td>
</tr>
<tr>
<td>4340</td>
<td>Hot-cold forged at 1400°F</td>
<td>320</td>
<td>275</td>
<td>33</td>
</tr>
</tbody>
</table>

In one of the Battelle programs, the processing and properties of hot-cold work cycled material were compared with those of material that was ausforged with the discovery that working provided strengthening similar to that from ausforging provided sufficient deformation was applied. As shown in Figure 1, a 30 percent reduction by hot-cold working results in a hardness response similar to that produced by a 20 percent reduction by ausforging.

*Nominal Compositions:

<table>
<thead>
<tr>
<th>Steel</th>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>Cr</th>
<th>Ni</th>
<th>Mo</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-11</td>
<td>0.40</td>
<td>0.25</td>
<td>0.8</td>
<td>5.0</td>
<td>-</td>
<td>1.5</td>
<td>0.1</td>
</tr>
<tr>
<td>86AC</td>
<td>0.10</td>
<td>0.50</td>
<td>0.3</td>
<td>0.7</td>
<td>1.7</td>
<td>0.2</td>
<td>--</td>
</tr>
<tr>
<td>4340</td>
<td>0.15</td>
<td>0.60</td>
<td>0.3</td>
<td>1.0</td>
<td>0.7</td>
<td>1.0</td>
<td>0.1</td>
</tr>
</tbody>
</table>
impact resistance and the greatly improved fatigue strengths achievable. For example, the Battelle studies showed that the fatigue life of forgings was increased substantially by hot-cold working. As shown in Figure 5, fatigue life of hot-cold forged 1540 steel components was several times that for conventionally heat-treated components. Similar improvements were noted for specimens both longitudinal and transverse to the forging direction.

One example of a part that has been successfully hot-cold forged under production conditions is shown in Figure 6. The figure illustrates the sequences used in forging an engine mount from the fillet stage. The parts were hot-cold forged in the finish-forging operation.

A comparison of hot-cold working with ausforming is presented in Table 3. While it is true that the highest possible strengths are achievable through ausforming, the need for precise control of both time and temperature will continue to limit applications of ausforming under production conditions.

Another advantage of hot-cold working cycles over ausforming is that the ITT curve of the steel need not have a very deep bay, hence, lower cost alloys can be hot-cold worked.

Perhaps the most attractive features of the processing of alloy steels with IMF are improved
In the United States, several current programs are aimed at applying TMF to specific steel hardware components. At the Ladish Company, for example, several 36-inch-long rib-and-web forgings, illustrated in Figure 8, have been hot-cold forged with some success. Of particular significance in that program are the substantial improvements in fatigue strength being obtained in reasonably large parts, as shown in Figure 9.

The hot-cold forged part in Figure 8 represents a practical limit for shape complexity of TMF-processed components.

Reviews of the literature from the United Kingdom, West Germany, Canada, and the U.S.S.R. indicate that TMF research in those countries is producing property improvements in steel similar to those reported in the United States. Some of the emphasis on the foreign programs is being placed on different aspects of TMF; nonetheless, it is quite clear that so much data already exists on TMF that almost any new research program aimed strictly at collecting fundamental data will very likely duplicate much of the work already done.

FIGURE 6. STEPS IN THE MANUFACTURE OF A 4340 STEEL ENGINE MOUNT BY HOT-COLD FORGING

One of the cycles used for hot-cold forging the engine mount is illustrated in Figure 7, which shows that all deformation was done at the hot-cold working temperature. Eventually, the first two forging steps were done hot (2150 F) and the process still provided enough deformation at about 1100 F to obtain the improvements in strength corresponding to about a 40 percent reduction.

FIGURE 7. ILLUSTRATION OF PROCESS SEQUENCE USED IN HOT-COLD FORGING OF ENGINE MOUNT
for metal removal provide an alternative to conventional machining.

Welding the DIT product removes the beneficial effects of the DIT; furthermore, the weld zone cannot be heat treated for proper grain refinement.

Since the forming forces are higher and the austenite phase is actually strain hardening during DIT processing, there are practical limits on steel shapes producible.

It would be inappropriate to conclude that only very little basic research needs to be done on DIT. However, so much research has been done to date, it seems logical that future developmental work should concentrate on evaluating potential applications of DIT against a framework of limitations that are reasonably well identified.

The basic shapes that are amenable to DIT are given in Table 4, which also gives some examples of hardware articles that could be prepared from them.

TABLE 4. POTENTIAL APPLICATIONS OF DIT

<table>
<thead>
<tr>
<th>Basic Shapes</th>
<th>Articles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extruded tubing</td>
<td>Small bearing races</td>
</tr>
<tr>
<td>Forged disks</td>
<td>Turbine wheels</td>
</tr>
<tr>
<td>Rolled or forged flats</td>
<td>Leaf springs</td>
</tr>
<tr>
<td>Rolled or extruded shapes</td>
<td>Special springstructurals</td>
</tr>
<tr>
<td>Forged cups</td>
<td>Large bearing races</td>
</tr>
<tr>
<td>Rolled rounds or squares</td>
<td>Torsion-bar springs</td>
</tr>
<tr>
<td></td>
<td>Ball bearings</td>
</tr>
<tr>
<td></td>
<td>Special tools</td>
</tr>
<tr>
<td>Forged blocker shapes</td>
<td>Airframes</td>
</tr>
</tbody>
</table>

The future applications of DIT will depend largely on the ingenuity of those in the manufacturing community who are willing to capitalize on the benefits.
BIBLIOGRAPHY

Open Literature Sources

Sources Containing Extensive Bibliographies (various languages)

Neue Hütte, Vol 13, No 12 (1968), Lohnert, W., "Thermomechanical Treatment of Steels, Significant Factors and Attainable Results", 716-722 (in German). [35 References]

Sources in English

Ibid., Ivanov, V. S., and Veitsman, M. B., "Increasing the Fatigue Strength of Steel Kh18N9T by Mechano-thermal Treatment", 625-626.

Ibid., Kopaleishvili, V. P., "Effect of Deformation Rate in High-Temperature Thermomechanical Treatment on the Mechanical Properties of Steel 50KhN2A", 651.

Ibid., Ivanov, V. S., et al., "Mechanical Finish Treatment as an Effective Method of Improving the High-Temperature strength of Alloys and Metals", 89-95.

Sources in Russian

ibid., Kopaleishvili, V. P., "Effect of Deformation Rate During High-Temperature Thermo-Mechanical Treatment on the Mechanical Properties of Chromium Steel 50Kh2A", 65-66.

'Oprr. Prochnosti i Plastichnosti Met. (Russian Collection, Published 'Nauka i tekhn.', Minsk) (1968), Nikiforova, D. A., "The Effects of High- and Low-Temperature Mechanical Treatments on the Mechanical Properties of the (Ball Bearing) Steel, ShKh15G", 74-77.

Sources in French

Sources in German

Sources in Czech

Sources in Serbo-Croatian

Sources in Japanese

Government-Sponsored Research Reports

United States

"Precipitation Hardening in Shock Loaded Alloys", Ministry of Technology, D.Mat/Aviation, United Kingdom, University of Birmingham, Dept. of Physical Metallurgy (December 1968).

"Research on Ausforming of Steel", Ministry of Technology, Materials Division, Birmingham University (January 1969).

"Very High Strength Steel Research: Machining of Ausformed Steel", Ministry of Defence, Royal Armament Research and Development Establishment, University of Manchester Institute of Science and Technology (January 1969).

"Fracture of Ausformed Steels", Ministry of Defence, Royal Armament Research and Development Establishment, RARDE/02(e) (November 1968).

"Ausforming of RARDE Steel", Ministry of Defence, Royal Armament Research and Development Establishment, University of Nottingham, Dept. of Metallurgy (October 1968).

