A SURVEY OF DIGITAL SIGNAL PROCESSING
TECHNIQUES FOR SPEECH ANALYSIS:
INTRODUCTION FOR DOCUMENT SERIES TM-4857

5 January 1972
A Survey of Digital Signal Processing Techniques for Speech Analysis:

H. Barry Ritea

Distribution of this document is unlimited.

<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Signal Processing</td>
<td>ROLE</td>
<td>WT</td>
<td>ROLE</td>
</tr>
<tr>
<td>Speech Analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The work reported herein was supported by the Advanced Research Projects Agency of the Department of Defense under Contract DAHC15-67-C-0149, ARPA Order No. 1327, Amendment No. 4, Program Code No. 2D30 and 2P10.

A SURVEY OF DIGITAL SIGNAL PROCESSING TECHNIQUES FOR SPEECH ANALYSIS: INTRODUCTION FOR DOCUMENT SERIES TM-4857

by

H. Barry Ritea

5 January 1972

The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied of the Advanced Research Projects Agency or the U. S. Government.

Distribution of this document is unlimited.
ABSTRACT

1. **INTRODUCTION**

The analysis of speech characteristically involves the use of digital signal-processing techniques. Although analog methods are preferred for their speed, digital techniques can be modified more easily and can be quickly added to other software packages. Moreover, the computational efficiency of some digital techniques has increased so substantially over the past several years that these techniques have become more and more attractive to the researcher. In particular, the rediscovery in 1965 of the so-called Fast Fourier Transform (FFT) algorithm made the practical computation of the discrete Fourier Transform (DFT) a reality. Using the FFT algorithm and various properties of the DFT, it was later shown that autocorrelation functions, convolutions, and digital filters could be calculated efficiently. More recent interesting applications of the FFT have been directed to the problems of pitch detection and formant analysis of voiced speech.

In this document series we shall present different FFT algorithms and contrast them with respect to computation time, accuracy, storage requirements, and other restrictions. In addition, various applications of the FFT will be given, along with sample test cases. Complete FORTRAN codes will accompany the discussions. As new algorithms are developed, they will be tested as above, and the results will be published in future volumes in this series.

The objective is non-tutorial insofar as the description of the algorithms is concerned. Rather, this series will provide a clearinghouse for the algorithms so that each can be similarly tested and evaluated and the best can be chosen objectively.