When US Government drawings, specifications, or other data are used for any purpose other than a definitely related government procurement operation, the government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded, by implication or otherwise, as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

If this copy is not needed, return to RADC (OCSE), GAFB, NY 13440.
INVESTIGATION OF LASER PROPAGATION PHENOMENA

S. A. Collins
G. W. Reinhardt

Contractor: The Ohio State University
ElectroScience Laboratory
Contract Number: F30602-71-C-0132
Effective Date of Contract: 30 December 1970
Contract Expiration Date: 29 December 1971
Program Code Number: 9E20

Principal Investigator: Dr. Stuart A. Collins, Jr.
Phone: 614 422-5045

Project Engineer: Edward K. Damon
Phone: 614 422-5953

Contracting Engineer: Raymond P. Urtz, Jr.
Phone: 315 330-3443

Approved for public release; distribution unlimited.

This research was supported by the Advanced Research Projects Agency of the Department of Defense and was monitored by Raymond P. Urtz, Jr., RADC (OCSE), GAFB, NY 13440 under Contract F30602-71-C-0132.
INVESTIGATION OF LASER PROPAGATION PHENOMENA

Interim Technical Report - January 1, 1971 to July 1, 1971

S.A. Collins and G.W. Reinhardt

August 1971

ElectroScience Laboratory

Program Code 1E20

Report Date

Total No. of Pages 44

Total No. of Refs

Contract F 30602-71-C-0132

ARPA Order 1279

Program Code 1E20

Contract F 30602-71-C-0132

ARPA Order 1279

Program Code 1E20

RADC-TR-71-248

Approved for public release, distribution unlimited.

This report deals with theoretical investigations in the area of linear atmospheric propagation phenomena and microturbulence statistics. It specifically deals with the examination of proper averaging times required for propagation experiments and with theoretical backup for phase structure function measurements. Finally, a bibliography on optical propagation which was prepared earlier has been updated.
UNCLASSIFIED
Security Classification

KEY WORDS

| Averaging time | Phase structure function | Micrometeorology | Laser propagation |

<table>
<thead>
<tr>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROLE</td>
<td>WT</td>
<td>ROLE</td>
</tr>
</tbody>
</table>

INSTRUCTIONS

1. **ORIGINATING ACTIVITY:** Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. **REPORT SECURITY CLASSIFICATION:** Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. **GROUP:** Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. **REPORT TITLE:** Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.

4. **DESCRIPTIVE NOTES:** If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. **AUTHOR(S):** Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. **REPORT DATE:** Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.

7a. **TOTAL NUMBER OF PAGES:** The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. **NUMBER OF REFERENCES:** Enter the total number of references cited in the report.

8a. **CONTRACT OR GRANT NUMBER:** If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b. **Project Number:** Enter the appropriate military department identification, such as project number, subproject number, system number, task number, etc.

9a. **ORIGINATOR'S REPORT NUMBER(S):** Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. **OTHER REPORT NUMBER(S):** If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

10. **AVAILABILITY/LIMITATION NOTICES:** Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

 1. "Qualified requesters may obtain copies of this report from DDC."
 2. "Foreign announcement and dissemination of this report by DDC is not authorized."
 3. "U.S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through...
 4. "U.S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through...
 5. "All distribution of this report is controlled. Qualified DDC users shall request through...

 If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. **SUPPLEMENTARY NOTES:** Use for additional explanatory notes.

12. **SPONSORING MILITARY ACTIVITY:** Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. **ABSTRACT:** Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

 It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

 There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. **KEY WORDS:** Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, roles, and weights is optional.

UNCLASSIFIED
Security Classification
This technical report has been reviewed and is approved.

Raymond P. Hirt
RADC Project Engineer
ABSTRACT

This report deals with theoretical investigations in the area of linear atmospheric propagation phenomena and microturbulence statistics. It specifically deals with the examination of proper averaging times required for propagation experiments and with theoretical backup for phase structure function measurements. Finally, a bibliography on optical propagation which was prepared earlier has been updated.
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>AVERAGING TIMES</td>
<td>1</td>
</tr>
<tr>
<td>PHASE STRUCTURE FUNCTION STUDIES</td>
<td>16</td>
</tr>
<tr>
<td>BIBLIOGRAPHY OF OPTICAL PROPAGATION IN A TURBULENT ATMOSPHERE</td>
<td>30</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>42</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>43</td>
</tr>
</tbody>
</table>
INTRODUCTION

This is the first interim report under Contract No. F 30602-71-0132 entitled "Investigation of Laser Propagation Phenomena." This effort is aimed at providing theoretical support to the RADC Laser Propagation Program. The report covers the period January 1, 1971 to July 1, 1971.

The theoretical support is in the area of linear atmospheric propagation phenomena and microturbulence statistics. Other areas include theoretical support to the performance of propagation experiments and in the interpretation and processing of the data to ensure proper match between theory and experiment.

During the past six months effort has been concentrated in two areas; examination of proper averaging times required for propagation experiments and theoretical backup for phase structure function measurements. A bibliography on optical propagation prepared previously was also updated. The work on averaging times is in direct support to the experimental program at RADC because it is intended to supply information to be used in the data taking procedure. Some suggestions have already been incorporated into the data-taking procedure. The phase structure function work consists of the calculation of curves of interest in experiment design and interpretation. Specifically the curves predict the contribution of various portions of the path to the final measured value of the phase structure function for a spherical wave and for horizontal and slant paths in the turbulent boundary layer. These will be useful in interpretation of results and in future design of experiments. The bibliography is an extension of a previous work.

These items will now be considered in detail starting with the work on averaging times!

AVERAGING TIMES

In any type of measurement involving random quantities, the quantities of interest must be average values because it is only the average values which have any chance of being reproducible and predictable. Such quantities as means, variances and covariances, which are of interest in one application or another are all examples. However, in order for these quantities to be reproducible, and therefore meaningful, the averages must be taken over a representative set of values, a set large enough to include all the values to be encountered in the proper proportion. It is to answer the question of how much data to take in order to provide such a set of values that this study has been undertaken. This study is by no means complete. The chief result to date has been an examination of the literature to determine the various approaches used there. Results of this examination will be presented here.
There are several criteria for determining what a proper averaging time might be. They are based on precision desired and on the duplication of conditions required by assumptions in theoretical developments. For example, in theories of light beam propagation in random media the assumption of homogeneity and isotropy are almost always invoked. Further one may well use the central limit theorem to simplify predictions involving not too long propagation paths. In taking the data one generally uses the ergodic theorem and measures time averages rather than ensemble averages. Finally the upper and lower spectral limits of the desired data must be considered. All of these points depend on the averaging time for satisfactory physical implementation. In this section we present a review of the various approaches in the literature to questions involving averaging times, indicating assumptions and making a few limited observations. Much of the work described comes from the micrometeorological literature, the rest stemming from communication sources. The various authors consider various aspects of averaging times, based on the criterion selected, Ergodic principle, etc.; and on the type of data, analog vs sampled data, time signals or power spectra, etc. These approaches will now be reviewed.

In the first approach (Lumley and Panofsky, 1964; Davenport and Root, 1950; Bendat and Piersol, 1966) to questions of averaging times the question posed is how long must a time average be in order for it to represent an ensemble average. The discussion considers a random stationary analog signal, call it \(f(t) \). \(f(t) \) could be a direct signal or some function of a signal. The object is to relate the time average,

\[
\bar{f}(t) = \frac{1}{T} \int_{0}^{T} f(t+t') \, dt'
\]

and the ensemble average \(\langle f(t) \rangle \). Ensemble averages are denoted by angular brackets. The measure of the difference between the two is taken to be the ensemble average square difference, \(\sigma^2(t) \) between the two.

\[
\sigma^2(t) = \langle \left[\frac{1}{T} \int_{0}^{T} f(t+t') \, dt' - \langle f(t) \rangle \right]^2 \rangle
\]

\(\sigma^2(t) \) is the ensemble variance of the time average.

An expression for an appropriate averaging time is worked out in terms of \(B(t') \), the ensemble covariance of \(f(t) \), where

\[
B(t') = \langle [f(t+t') - \langle f(t) \rangle] [f(t) - \langle f(t) \rangle] \rangle
\]
and the autocorrelation $\rho(t) = B(t)/B(0)$. The basic expression is derived by first expressing Eq. (2) first as a double integral and then by putting it in terms of the autocorrelation to give

\begin{align}
(4a) \quad \sigma^2 &= \frac{1}{T^2} \int_0^T \int_0^T \left[f(t+t') - \langle f(t) \rangle \right] \left[f(t+t'') - \langle f(t) \rangle \right] dt' dt'' \\
(4b) \quad &= \frac{B(0)}{T^2} \int_0^T \int_0^T \rho(t'-t'') dt' dt''
\end{align}

The basic expression is simplified by transformation to sum and difference coordinates with the subsequent performance of one of the integrals.

\begin{align}
(5) \quad t_1 &= \frac{t'-t''}{2}, \quad t_2 = \frac{t'+t''}{2}
\end{align}

\begin{align}
(6a) \quad \sigma^2 &= \frac{2 B(0)}{T} \int_0^T dt_1 \rho(t_1) \int_{t_1}^{T-t_1} dt_2 \\
(6b) \quad &= \frac{2 B(0)}{T} \int_0^T (1 - \frac{t_1}{T}) \rho(t_1) dt_1
\end{align}

Equation (6b) can be further simplified if it is the case that the autocorrelation $\rho(t_1)$ drops to zero in a time much less than T. In that case the second term in the parenthesis inside the integral in Eq. (6b) is negligible. The result expressed in terms of I, the integral scale of the autocorrelation,

\begin{align}
(7) \quad I &= \int_0^\infty \rho(t_1) dt_1
\end{align}
Equation (8) is put in a more useful form by expressing σ as a fraction, ϵ, of the ensemble mean, $\epsilon = \sigma / \langle f \rangle$, giving

\[
T = \frac{2 B(0)}{\sigma^2} \frac{1}{<f>^2} \epsilon^2
\]

Equation (9) is the basic result. It is used to give averaging times formulas for several random quantities (Bendat and Piersol, 1966).

There are several points worth indicating about this result. The first is that it expresses an averaging time for $f(t)$ in terms of the ensemble averages $B(0)$, $<f(t)>$ and an integral of an ensemble average. Thus, in order to estimate the averaging time required for time average to duplicate the ensemble average, it is necessary to already know some of these ensemble averages. To circumvent this problem, one might attempt a trial run, assume that the time averaged variance, mean, and integral scales are approximately realistic and estimate the averaging time. If the estimated value turns out to be what has already been used, then the measurements are at least consistent within the given framework.

A second point is indeed more significant: Eq. (9) says that for very long averaging times, the time and ensemble averages become identical. Thus, in situations where it is impossible or prohibitive to set up an ensemble of representative situations, then a time average can in principle be made to suffice. It was assumed that $f(t)$ was stationary, so that there are not any long term trends to worry about.

The final point concerns an interpretation of Eq. (9). One might regard a long time average as a sort of ensemble average if the time record could be partitioned into successive segments each uncorrelated. Then each segment could be regarded as an independent ensemble member and the time and ensemble averages would be comparable. In that sense the integral scale of the autocorrelation gives a time proportional to a decorrelation time. The quantity

\[
2I \frac{B(0)}{<f>^2}
\]
might be a little more representative of a decorrelation time. Then the decorrelation time divided by the square of the desired precision gives the requisite averaging time.

Alternatively, (Bendat and Piersol, 1966) one can state the same concept in different terms by defining the equivalent bandwidth, W, where

\[W = \frac{1}{4I}. \]

Then the time-bandwidth product, WT is defined as the number of degrees of freedom and identified with the number of independent ensemble members. Thus the fractional deviation from ensemble average, \(\varepsilon \), is inversely proportional to the time-bandwidth product, as might be intuitively expected.

If one assumes a gaussian distribution of data, the equation

\[T = \frac{2 B(0) I}{\langle f \rangle^2 \varepsilon^2} \]

can be further reduced. If the quantity to be measured is the mean square value of \(u \), a gaussian random variable, then \(B(0) = \langle (u^2 - \langle u^2 \rangle)^2 \rangle = 2\langle u^2 \rangle^2, \langle f \rangle^2 = \langle u^2 \rangle^2 \), and

\[T = \frac{4.1}{\varepsilon^2} \]

(Lumley and Panofsky, 1964). This equation, which assumes a Gaussian distribution, was applied to some microthermal data taken on March 23, 1371 at the Rome Air Development Center. Figure 1 shows the autocorrelation vs delay time for a single temperature sensor. The autocorrelation does approach a zero value so we assume that the integral scale does exist and trends in data are unobservable. From this graph we find that \(I = 0.1 \) sec. and

\[T = \frac{(4)(.1 \text{ sec})}{\varepsilon^2} \]

for \(\varepsilon = 10\% \) \(T = 40 \text{ sec} \)
\(\varepsilon = 5\% \) \(T = 160 \text{ secs} \)
\(\varepsilon = 2\% \) \(T = 1000 \text{ secs} \)
Fig. 1. Autocorrelation versus delay time of microthermal data.
A second approach (Charnock and Robinson, 1957) to the question of averaging times considers sampled data, again asking how long a data-taking duration is required. This method considers a random function of time sampled N times over a long interval T, from which are calculated the mean

$$\bar{f} = \frac{1}{N} \sum_{i=1}^{N} f_i$$

and variance

$$B_N(0) = \frac{1}{N} \sum_{i=1}^{N} (f_i - \bar{f})^2$$

The subscript N denotes explicitly the number of data samples used. The N data samples are divided into sections of s samples each and the question asked is how large must s be in order for the section variances, averaged over the sections, to approximate the complete variance $B_N(0)$.

The approach is to consider the variances of the individual sections. The quantity used for comparison is $B_s(0)$, the section variances averaged over all the sections

$$B_s(0) = \frac{1}{m} \sum_{a=0}^{m-1} \frac{1}{s} \sum_{i=a+s}^{a+s} (f_i - \frac{1}{s} \sum_{j=a+1}^{a+s} f_j)^2$$

In Eq. (12) there are m sections of s=N/m samples. The subscript "a" indexes the individual sections. If the whole trace is considered as just one section then s = N, m = 1 and a = 0. In that case $B_N(0)$ is merely the complete sample variance indicated in Eq. (11). If there is only one sample in each section, then

$$s = 1, m = N$$

so that each term in the parenthesis in Eq. (12) is identically zero. Thus $B_1(0) = 0$.

The question posed is what is the shape of the $B_s(0)$ curve as a function of s? The behavior one would like to see is to have the mean of the section variances, $B_s(0)$, approach $B_N(0)$ for $s \ll N$. Then the
total number of samples, N, and the averaging time, T_m, is well above that required in practice. The minimum number of samples would be that for which $B(0)$ initially comes within some preset region near $B_N(0)$. For this situation the $B_s(0)$ vs s curve would be similar to that of Fig. 2a. If the total number of samples is too small then the $B_s(0)$ curve might have a shape more nearly like that of Fig. 2b. Thus it is

![Graph (a)](image1)

$B_N(0) \quad \rightarrow s \quad N$

![Graph (b)](image2)

$B_N(0) \quad \rightarrow s \quad N$

Fig. 2. Variance versus averaging time.
the shape of the $B_s(0)$ curve that determines the appropriateness of
the averaging time. The values of N and s must be sufficiently large
with $s \ll N$ to give the proper shape. In a sense this is also a self-
consistency method as described because there is no a priori way
stated for determining optimum values of s or T.

Continuing with this approach (Chamok and Robinson, 1957;
Pasquill, 1962; Kahn, 1957 and Smith, 1962) the main points are
made after Eq. (12) is simplified. To do this, add and subtract the
long term average, \bar{f}, inside the parenthesis in Eq. (12), multiply out
the square and simplify.

\begin{equation}
B_s(0) = \frac{1}{m} \sum_{a=0}^{m-1} \frac{1}{s} \sum_{i=as+1}^{as+s} (f_i - \bar{f})^2
\end{equation}

\begin{equation}
= \frac{1}{m} \sum_{a=0}^{m-1} \frac{1}{s} \sum_{i=as+1}^{as+s} [(f_i - \bar{f})^2 - 2(\bar{f} - \bar{f}) \frac{1}{s} \sum_{i=as+1}^{as+s} (f_i - \bar{f})^2]
\end{equation}

\begin{equation}
= \frac{1}{m} \sum_{a=0}^{m-1} \frac{1}{s} \sum_{i=as+1}^{as+s} [(f_i - \bar{f})^2 - \frac{1}{s} \sum_{i=as+1}^{as+s} (f_i - \bar{f})^2]
\end{equation}

Equation (13c) was the starting point for Chamok and Robinson.
In the first term in Eq. (13b) the double summation is merely the
complete sum over all samples so this term is merely $B_N(0)$. Thus Eq. (12)
reduces to

\begin{equation}
B_s(0) = B_N(0) - \frac{1}{m} \sum_{a=0}^{m-1} \frac{1}{s} \sum_{i=as+1}^{as+s} (f_i - \bar{f})^2
\end{equation}

The second term in Eq. (14) contains the difference between the section
means and the long term mean and indeed should go to zero if the
sections become sufficiently long, leaving $B_N(0)$ as desired.

The second term in Eq. (14) can be further simplified by writing
it in terms of the covariance $B_0(k)$, where

\begin{equation}
B_0(k) = \frac{1}{m(s-k)} \sum_{a=0}^{m-1} \frac{1}{s} \sum_{i=as+1}^{as+s-k} (f_i - \bar{f}) (f_{i+k} - \bar{f})
\end{equation}
Thus multiplying out the terms in the double summation in the second
term in Eq. (14) and regrouping using Eq. (15) gives

\[(16a) \quad B_s(0) - B_N(0) = \frac{1}{s} \left[\frac{1}{s} B_0(1-s) + \frac{2}{s} B_0(2-s) + \ldots + \frac{s}{s} B_0(0) + \ldots + \frac{1}{s} B_0(s-1) \right] \]

\[(16b) \quad = \frac{1}{s} \left(\frac{s-1}{s} \right) \sum_{k=s}^{s-1} (1 - \frac{|k|}{s}) B_0(k). \]

If \(s \) and \(N \) are sufficiently large, then the summation in Eq. (16b)
can be approximated by an integral

\[(17a) \quad B_s(0) - B_N(0) = \frac{1}{s} \int_{-s}^{s} \left(1 - \frac{|k|}{s} \right) B(k) \, dk \]

\[(17b) \quad = \frac{2B(0)}{s} \int_{0}^{s} \left(1 - \frac{|k|}{s} \right) \frac{B(k)}{B(0)} \, dk \]

assuming \(B(k) \) is a symmetric function. The right hand side of Eq.
(17b) then has a form identical with Eq. (6b) if we put

\[(17c) \quad \frac{T}{N} = t_1 \quad \text{and} \quad \frac{T}{N} = T. \]

\(T_0 \) is as before time required for all \(N \) samples. The result is

\[(17d) \quad B_T(0) = B_N(0) - \frac{2 B_N(0)}{T} \int_{0}^{T} \left(1 - \frac{t_1}{T} \right) \frac{B(t_1)}{B_N(0)} \, dt_1 \]

Equation (17d) can be derived in a slightly different fashion,
and a more complete comparison between the approaches of Lumley and
Panofsky presented first and of Charmok and Robinson can be presented
by interpreting the sum in Charmok and Robinson's approach in a
particular way and by assuming a continuous rather than a sampled
trace. Thus consider the trace of duration \(T_0 \) to be divided up into sections each of duration \(T \). Then identify the \(m \) intervals with members of an ensemble. One then computes the time average and the time variance, i.e., the time average square deviation, about the time average for each ensemble member. The question asked then is how does this ensemble average of the time variances depend on averaging time, \(T \), e.g., how long must \(T \) be in order for the ensemble average time variance to approach the ensemble variance.

With the interpretations of the sums in mind we can rewrite Eq. (12) by replacing the sum over "\(a \)" by an ensemble average and replacing the sum over "\(i \)" by a time average. Equation (12) becomes

\[
B_T(0) = \frac{1}{T} \int_0^T \left[f(t) - \frac{1}{T} \int_0^T f(t) \, dt \right]^2 \, dt
\]

and Eq. (14) similarly becomes

\[
B_T(0) = B(0) - \left[\frac{1}{T} \int_0^T f(t) \, dt \right]^2
\]

The second term on the right hand side of Eq. (18b) is identical to the expression in Eq. (4a) and can be similarly simplified giving

\[
B_T(0) = B(0) - \frac{2B(0)}{T} \int_0^{T/2} (1 - \frac{t}{T}) \rho(t) \, dt
\]

which is the same as Eq. (17d), if we identify \(B_T(0) \) with the ensemble variance. This reinforces the concept of individual time samples being independent and being regarded as individual ensemble members.

It is interesting to note here that the same integral is used in two different situations. In Eq. (6b) it gives the mean square ensemble average difference between time and ensemble averages, denoting the approach of these two averages with increased averaging time. In Eq. (18c) it gives the ensemble average of the time variance, again denoting the approach of the two with increasing averaging time.

There is one other result of Charnok and Robinson; a procedure for processing the function \(B_T(0) \) in Eq. (17b) and Fig. 2 to give directly the covariance \(B(s) \). This expression is
(19a) \[B(s) = B(0) - \frac{1}{2} \frac{d^2}{ds^2} (s^2 B_S(0)) \]

This result is obtained by differentiating \(s^2 B_S(0) \) with \(B_S(0) \) taken from Eq. (17a) to give

(19b) \[\frac{d^2}{ds^2} (s^2 B_S(0)) = 2s B_N(0) - \int_{-s}^{s} B(k) \, dk \]

(19c) \[\frac{d^2}{ds^2} (s^2 B_S(0)) = 2B_N(0) - 2B(s) \]

Using the fact that

(20) \[B_N(0) = \frac{1}{N} \sum_{i=1}^{N} (f_i - \bar{f})^2 = B(0) \]

and rearranging gives Eq. (19a). Thus, from averaging times it is possible to pull out data on other than just averaging times.

It is also possible to express the approach of the averaging time to its proper value as given in Eqs. (16b) and (17a) using a spectral description, (Charnock and Robinson, 1957; Ogura, 1957; Pasquill, 1962 and Smith, 1962). Thus, for example, introduce the power spectrum \(S(\omega) \) given by

(21) \[B(t) = \int_{-\infty}^{\infty} s(\omega) \, e^{j\omega t} \, d\omega \]

into Eq. (17a)

(22) \[B_s(0) = B_N(0) - \frac{1}{T} \int_{-T}^{T} dt \left(1 - \frac{t}{T} \right) \int_{-\infty}^{\infty} s(\omega) \, e^{j\omega t} \, d\omega \]

Performing the integration and using Eqs. (20 and 21) gives

(23) \[B_s(0) = \int_{-\infty}^{\infty} s(\omega) \left(1 - \frac{\sin^2 \left(\frac{1}{2\omega T} \right)}{\left(\frac{1}{2\omega T} \right)^2} \right) d\omega \]
Equation (23) indicates the well-known fact that a finite averaging time acts like a frequency filter. The filter function in this case is \(1 - [\sin(\omega T)/(\omega T)]^2\) which acts like a high-pass filter, passing frequencies higher than \(f_0 = 1/T\). Thus the period of recording should be sufficiently long to faithfully reproduce the lowest frequencies desired.

To summarize the results so far, it appears that an acceptable averaging time for approach of time average and variance to the corresponding ensemble averages might be deduced by plotting a set of data in a manner indicated in Fig. 2a and adjusting the total amount of data and length of sections until a curve similar to Fig. 2a is obtained. The time average will then be a good representation to the ensemble average. One should then check that the section durations are sufficiently long that the lowest frequencies desired are reproduced. Finally it is possible to obtain the covariance from the curve in Fig. 2a.

A third approach to averaging time considers measurement of power spectra (Blackman and Tukey, 1958) of random stationary analog data, normally distributed. Several steps of data processing are used. First the data are processed to give the covariance which is then multiplied by a bell-shaped curve which forces the product to stay at zero after some lag time \(T_m\) after which the covariance has become very small. The product is then transformed to give the power spectrum and the power spectrum is then averaged over an ensemble of situations. The question posed is again, how long must the original data trace be in order for the power spectral value to be within a predetermined range, in dB, say ninety percent of the time.

The averaging time question is answered quite simply for power spectra because they follow chi-square statistics. For such a case the confidence limits are used to determine the number of degrees of freedom, \(k\), which are in turn related to the power spectral mean and variance as shown in Eq. (25).

\[
k = \frac{2\langle P(\omega) \rangle^2}{\langle P(\omega) \rangle - \langle P(\omega) \rangle^2}
\]

These spectral averages are in turn related to the averaging time \(T\) and the cutoff time \(T_m\) to give the desired results. The basic steps in the derivation of this method will be outlined. The reader is referred to the original source (Blackman and Tukey, 1958) for a more detailed discussion.

To continue with the derivation outline, then, start with the time trace \(X(t)\) of a single ensemble member. For that case the covariance is given by (neglecting end of trace effects)
\[
B(\tau) = \frac{1}{T} \int_{-T/2}^{T/2} X(t-\frac{T}{2}) X(t+\frac{T}{2}) \, dt
\]

For this same time trace, the power spectral density would then be

\[
(27a) \quad P(\omega) = \int_{-\infty}^{\infty} B(\tau) D(\tau) \cos \omega \tau \, d\tau
\]

\[
(27b) \quad = \frac{1}{T} \int_{-\infty}^{\infty} d\tau \, D(\tau) \cos \omega \tau \int_{-T/2}^{T/2} X(t-\frac{T}{2}) X(t+\frac{T}{2}) \, dt
\]

\[
D(\tau) \text{ is a bell shaped function with the restrictions}
\]

\[
D(\tau) = 1 \quad \tau = 0
\]

\[
D(\tau) = 0 \quad \tau > T_m
\]

where \(T_m \) is the value of \(\tau \) at which the covariance becomes negligibly small. \(D(\tau) \) eliminates noise arising from fluctuations for \(\tau > T_m \).

The ensemble average of the power spectrum would then be

\[
(28a) \quad <P(\omega)> = \frac{1}{T} \int_{-\infty}^{\infty} d\tau \, D(\tau) \cos \omega \tau \int_{-T/2}^{T/2} <X(t-\frac{T}{2}) X(t+\frac{T}{2})> \, dt
\]

\[
(28b) \quad = \int_{-\infty}^{\infty} d\tau \, D(\tau) B_0(\tau) \cos \omega \tau
\]

where

\[
(29) \quad B_0(\tau) = <X(t+\frac{T}{2}) X(t-\frac{T}{2})>
\]

is the ensemble covariance of \(X(t) \).

The mean square of the spectral density can also be estimated starting with Eq. (27b), we have for a single trace,
Taking the ensemble average of both sides of Eq. (30) would give a fourfold average under the integral sign. This can be evaluated assuming the data, (the X's) are normally distributed. The result is

\[\langle X(t+\frac{\tau}{2}) X(t-\frac{\tau}{2}) X(t'+\frac{\tau'}{2}) X(t'-\frac{\tau'}{2}) \rangle = B_0(t-t'+\frac{\tau+\tau'}{2}) \]

Equations (30) and (31) are evaluated in the spectral domain. The result, when combined with Eq. (28a), is

\[\langle (P(\omega)-\langle P(\omega) \rangle)^2 \rangle = \frac{1}{2\pi} \int_0^\infty H^2(\omega,\omega_1) \ p^2(\omega_1) \ d\omega_1 \]

where \(H(\omega,\omega_1) \) is a symmetrized transform of \(D(\tau) \). Finally Eqs. (29) and (32) are evaluated assuming the \(P(\omega) \) does not change appreciably over a spectral range \(2\pi/T_m \). The results, when inserted into Eq. (25), are

\[k = \frac{2\langle P(\omega) \rangle^2}{\langle (P(\omega)-\langle P(\omega) \rangle)^2 \rangle} = \frac{2T \int_0^\infty [P(\omega)H(\omega)]^2 \ d\omega}{2\pi \int_0^\infty [P(\omega)H(\omega)]^2 \ d\omega} = \frac{2T}{T_m} \]

Equation (33) is the basic result. It says that the number of degrees of freedom as determined from the chi-square distribution and the desired precision is given by \(2T/T_m \). This is then interpreted, as before, as the number of statistically independent sections of data.

As another approach we might indicate what one could also apply the chi-square distribution to finding the proper averaging time when dealing specifically with the variance of a normally distributed stationary
PHASE STRUCTURE FUNCTION STUDIES

In the examination of phase structure function various curves have been plotted to provide useful information for comparing results and for planning experiments. There are two types of curves. The first type shows spherical wave phase structure function as a function of separation for various ranges normalized to refractive index parameter, C_n. This data is intended for direct comparison with experimental results. The second type of curve shows the contribution to spherical wave phase structure function of various portions of the propagation path. These curves of relative contribution versus distance are plotted for various separations, for various values of the parameter $2kL_0/L$ where $\lambda = 2\pi/k$ is the wavelength, L is the total range and L_0 is the turbulence outer scale. They are also normalized to C_n. Also included are various paths, including horizontal and slightly inclined paths with the beam propagation both upward and downward. These curves are intended to be useful in the design and interpretation of future experiments and in the possible interpretation of present data.

The curves are based on expressions already in the literature (Carlson, 1969) derived using the Rytov approximation. The basic expression for $D_s(\rho)$ is

$$D_s(\rho) = 8\pi^2 k^2 \int_0^L \left[1 - J_0^2(\kappa \rho) \right] \int_0^L \left(\frac{1}{2kZ} \right)^2 \phi_N \left(\frac{L}{Z} \right) dZ \kappa d\kappa$$

where
- $\lambda = 2\pi/k = $ light wavelength
- $\rho = $ observation point separation
- $\kappa = $ spatial frequency
- $L = $ range
- $Z = $ distance from transmitter along propagation path
- $\phi_N = $ refractive index spatial spectrum.

random variable. For example, let a time trace be divided into sections each T_m long, so that they are essentially uncorrelated. Then the mean variance formed from the variances of the individual traces should follow a chi-square distribution. Thus, one need merely use the chi-square tables in conjunction with the desired precision to determine the requisite number of degrees of freedom. This then gives the number of sections of length T_m in the total data run.

To summarize, the study of averaging times must concern the criterion for setting the averaging time, and the exact quantity measured. Several examples appearing in the literature have been considered associated with the approach of the time average value of the mean and the variance to the ensemble value and the precision of the power spectrum and variance to the desired values.
The index spatial spectrum used is the Von Karman spectrum given in Eq. (35).

\[S_N(k) = \frac{0.033 C_n^2(H) e^{-\left(\frac{\kappa L_0}{5.92}\right)^2}}{(\kappa^2 + 1/L_0^2)^{11/6}} \]

(35a)

\[S_N(k) = \frac{0.033 C_n^2(H) (\kappa^2 + L_0^{-2})^{-11/6}} \]

(35b)

where \(L_0 \) = turbulence inner scale, \(H \) = height.

The approximate form in Eq. (35b) was used because the phase structure function is not generally measured at the separations comparable with the inner scale, and the curves are for comparison with measured values. For the slant paths the structure parameter was taken to vary with height to the power (-4/3), (Wyngard et al, 1971) and the outer scale proportional to altitude. These are valid in the first 500 ft for unstable air and well developed turbulence.

\[C_n^2(H) = C_n^2(H_0)(H/H_0)^{-4/3} \]

(36a)

\[L_o(H) = L_o(H_0)\left(\frac{H}{H_0}\right) \]

(36b)

\[\frac{H}{H_0} = 1 + \frac{Z}{L_o} \left(\frac{H_L - H_0}{H_0}\right) \]

(36c)

where \(H_o \) = transmitter height \(H_L \) = receiver height.

Equation (36c) written with distance along the path as a parameter was the actual expression used.

The calculations were performed on a digital computer using expressions derived from Eqs. (34) - (36). To find the incremental pathlength contributions to \(D_s(\rho) \) the order of integrations in Eq. (34) was reversed, the resultant inner integral giving the desired incremental path contributions. The calculations were made using normalized dimensionless parameters.
(37a) \(u \equiv L_0(H_0)k \)
(37b) \(v \equiv Z/L \)
(37c) \(y \equiv 2kL_0^2(H_0)/L \)
(37d) \(C_0 \equiv C_N^2(H_0)k^{7/6}L^{11/6} = C_k^S(0)/0.13 \)

(Tatarski, 1961) giving to Eq. (34) the form

(38a) \(D_s(p/L_0) = \{0.033 \times 8\pi^2C_0 \times (\frac{y}{2})^{5/6} \} \int_0^1 dv F(v) \)

where

(38b) \(F(v) = \int_0^1 dv(1-J_0(2u)) \frac{u^2}{i} \cos^2\left(\frac{u^2}{i} - 1\right) \times \left[\left(\frac{1}{1 + \frac{v}{H}/H_0}\right)^2 + \frac{u^2}{v^2}\right]^{-11/6} \)

\[\times (1 + \frac{H_0 - H_0}{H_0})^{-4/3} \]

Of the reduced parameters, \(u \) is a reduced spatial frequency, \(v \) is reduced range, \(y \) is the Fresnel number for an aperture the size of the outer scale, and \(C_0 \) is proportional to the spherical wave log amplitude variance, often used as a scaling parameter.

Figures 3a and 3b show the contribution to the normalized phase structure function for 8 separations (normalized) and for \(y = 10^3 \). The normalized function, \(F(v) \) is insensitive to the parameter \(y \) and hence Fig. 3a covers all of the experimentally interesting range of \(y \). Fig. 3b shows that \(y \) has a larger (but still small) effect on \(F(v) \) for the smaller separations \((p/L_0) \). This means that the range dependence in \(F(v) \) is very nearly independent of wavelength, the values \(10^3 < y < 10^5 \) cover both 0.6\(u \) and 10\(u \) for ranges of interest. The wavelength dependence is in the \(y^{5/6} \) part of the normalization constant in front of the integrals. From Figs. 3a and 3b it is evident that the most important contributions to \(D_s \) are made near the receiver for a horizontal path.
Fig. 3a. Differential spherical wave phase structure function contribution vs normalized range for five normalized separations.
Fig. 3b. Differential spherical wave phase structure function contribution vs normalized range for three normalized separations.
Figures 4 and 5 show the normalized D_s integrand for an upward and downward slant path respectively. In the upward path the curve amplitude has "saturated", so that a more nearly constant contribution to range results. In the downward path the turbulence effects are strongly concentrated at the receiver.

Having the functions in Figs. 3a and 3b it is a simple matter to calculate the complete phase structure function.

The unnormalized phase structure function, for direct comparison with experimental results, is presented in Figs. 6a, 6b, and 6c for the three ranges of immediate interest.

Having developed the programs to calculate range dependence of the phase structure function, it was also possible with only minor modifications to calculate the range dependence of the small aperture angle of arrival correlation functions.

The small aperture elevation (B_a) and the azimuth (B_g) angle of arrival correlation functions are related to the phase structure function by

\begin{equation}
B_a (\rho) = \frac{1}{2k^2} \frac{\partial^2 D_s (\rho)}{\partial \rho^2}
\end{equation}

\begin{equation}
B_g (\rho) = \frac{1}{2k^2} \frac{\partial D_s (\rho)}{\partial \rho}
\end{equation}

Equations 34, 39, and 40 may be used to find the contribution to B_a and B_g from various ranges, and (for simplicity) a horizontal path.

\begin{equation}
B_g (0) = 4\pi^2 \times 0.033 \left(\frac{c}{N_0} \right) \frac{1}{L_0^{1/3}} \int_0^1 G(v) \, dv
\end{equation}

\begin{equation}
G(v) = \frac{1}{v^3} \frac{\partial}{\partial v} \left(\frac{1}{v} \right) \cos^2 \left(\frac{1}{\sqrt{v}} \right) \frac{1}{(1+u^2)^{11/6}}
\end{equation}

21
Fig. 4. Differential spherical wave phase structure function contribution vs normalized range for three normalized separations.
Fig. 5. Differential spherical wave phase structure function contribution vs normalized range for five normalized separations.
Normalized phase structure $S_0/\rho/\lambda_0^2$ (m/km)

- $\lambda_0 = 1 \text{mm}$
- $\lambda = 10.6 \mu \text{m}$
- $L = 914.4 \text{m}$

Fig. 6b. (Cont.)
(42) \[B_0(L_0^2) = 4\pi^2 \times 0.033 \, \frac{C_n^2(H_0)}{L_0^{1/3}} \int_0^1 H(v) \, dv \]

\[H(v) = \int_0^\infty J_0 \left(\frac{u}{L_0} \right) \frac{u^3}{v} \cos^2 \left(\frac{u^2}{v} \left(\frac{1}{v} - 1 \right) \right) \]

\[\times (1 + \frac{u^2}{v^2})^{-11/6} \, du - G(v). \]

Typical examples are shown in Figs. 7a and 7b.

The numerical calculations were done with double precision (17 significant figures) arithmetic. A 96 point Gaussian quadrature integration subroutine was used to do the inner integrations. The numerical integration limits are such as to yield better than 1.5% accuracy.
Fig. 7(a,b). Differential normalized angle of arrival correlation function contribution vs normalized range.
Fig. 7b. (Cont.)

Differential Path Contribution

$\frac{1}{L_0} < 5$

$10^3 \leq Y \leq 10^5$

Elevation $H(Y)$

Azimuth $G(Y)$

Normalized Range, $Y = Y/L$

0.00

0

-0.005

-0.01

-0.015

-0.02

0.005

0.01

0.015

0.02

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
The final item is a continuation of the bibliography included in Ohio State University Report RF 2880-2, and includes journal articles dealing with the effects of a turbulent atmosphere on electromagnetic wave (generally light beam) propagation. These articles are listed by year and then alphabetically by author. One of the major features of this revised bibliography is the inclusion of Russian articles in Izv. Vuz. Radio Fizika that have not been translated into the English edition Soviet Radio Physics. These original Russian articles have English titles and abstracts.

There was also some additional information on authors and journals compiled from the complete bibliography. This information is presented in two additional listings.

List 1 tabulates the journals surveyed, the years and the number of entries found for the complete bibliography.

List 2 gives an alphabetical tabulation of the first authors in the complete bibliography and the years that they published.
1967

BOURKOV V G YASHIN Yu IZV VUZ RADIOFIZ 10 1631-1638 1967
TO THE THEORY OF ELECTROMAGNETIC WAVE REFRACTION IN TWO-DIMENSIONAL INHOMOGENEOUS ISOTROPIC MEDIUM

GACHA M E - RADIOPHYS 10 494 1967 (10 775 1967)
INVESTIGATION OF THE STATISTICAL PROPERTIES OF STRONG FLUCTUATIONS IN THE INTENSITY OF LIGHT PROPAGATED THROUGH THE ATMOSPHERE NEAR THE EARTH

KAZANTSEV A N LUKIN u RAD ENG AND ELEC 12 1891-1910 1967
STUDY OF IONOSPHERE RADIOWAVE PROPAGATION

KOMISSAROV V M - RADIOPHYS 10 270 1967 (10 496 1967)
INVESTIGATION OF THE STATISTICAL PROPERTIES OF STRONG FLUCTUATIONS IN THE INTENSITY OF LIGHT PROPAGATING THROUGH THE ATMOSPHERE NEAR THE EARTH

KAZANTSEV A N LUKIN u - RAD ENG AND ELEC 12 1891-1910 1967
STUDY OF IONOSPHERE RADIOWAVE PROPAGATION

STREZH P E - RAD ENG AND ELEC 12 1570-1577 1967
PLANE WAVES INCIDENT ON THE DIVISION BOUNDARY (VACUUM-INHOMOGENEOUS ISOTROPIC MEDIUM)

TATARKO V I - IZV VUZ RADIOFIZ 10 1762-1765 1967
ESTIMATION OF LIGHT DEPOLARIZATION BY TURBULENT ATMOSPHERIC INHOMOGENEITIES

STUDY OF METER, DECIMETER, CENTIMETER, AND SUBMILLIMETER RADIOWAVE PROPAGATION

1968

ARSAEV I E KIMBER B E - IZV VUZ RADIOFIZ 11 1377-1387 1968
ON GEOMETRIC-OPTICS APPROACH IN CONSIDERATION OF WAVE PROPAGATION IN INHOMOGENEOUS ABSORBING MEDIA

BAKHAREVA M F - RAD ENG AND ELEC 13 963-968 1968
FREQUENCY SPACE CORRELATION OF THE FIELD FLUCTUATIONS, AMPLITUDE AND INTENSITY IN A MEDIUM WITH RANDOM INHOMOGENEITIES

BAKHAREVA M F - RAD ENG AND ELEC 13 445-454 1968
FREQUENCY SPACE CORRELATION OF AMPLITUDE AND PHASE FLUCTUATIONS IN A MEDIUM WITH FORTUITOUS HETEROGENEITIES

DEMENENKO L N ET AL - IZV VUZ RADIOFIZ 11 200-204 1968
SCINTILLATION OF DISCRETE SOURCES IN TROPOSPHERE

DOLIN L S - IZV VUZ RADIOFIZ 11 840-849 1968
EQUATIONS FOR CORRELATION FUNCTIONS OF A WAVE BEAM IN A RANDOMLY- INHOMOGENEOUS MEDIUM

GURVICH A S ET AL - IZV VUZ RADIOFIZ 11 66-71 1968
EXPERIMENTAL INVESTIGATIONS OF FLUCTUATIONS OF ARRIVAL ANGLE OF LIGHT UNDER THE CONDITIONS OF STRONG FLUCTUATIONS OF INTENSITY

GURVICH A S ET AL - IZV VUZ RADIOFIZ 11 1360-1370 1968
FLUCTUATIONS OF THE PARAMETERS OF A LASER LIGHT WAVE PROPAGATING IN THE ATMOSPHERE

IZUROV A G - RAD ENG AND ELEC 13 1155-1160 1968
FLUCTUATIONS OF THE AMPLITUDE AND PHASE OF PLANE MONOCHROMATIC WAVE OF SUBMILLIMETER WAVE AT PROPAGATION IN NEAR EARTH MEDIUM OF TURBULENT ATMOSPHERE WITH DUE REGARD FOR THE ABSORPTION IN WATER VAPOR

SHABELNIKOV A V - RAD ENG AND ELEC 13 2115-2121 1968
ELECTROMAGNETIC WAVE REFRACTION IN THE EARTH ATMOSPHERE WITH LAMINATED HETEROGENEITIES

SHISHOV V I - IZV VUZ RADIOFIZ 11 866-875 1968
THE THEORY OF WAVE PROPAGATION IN RANDOM MEDIA

ZAITSEV YU A ET AL - IZV VUZ RADIOFIZ 11 1402-1411 1968
ON THE USE OF GEOMETRICAL OPTICS APPROXIMATION IN ELECTRODYNAMICS OF
INHOMOGENEOUS ANISOTROPIC MEDIA

1969

ARTEMYEV A V RAE ENG AND ELEC 14 54-546 1969

COHERENCE DISTORTION BY ATMOSPHERE

BARABANENKOV YU N IZV VUZ RADIOFIZ 12 894-899 1969

CORRELATION FUNCTION OF A RANDOM FIELD OF GREAT OPTICAL DEPTH

BUNKIN F V ET AL IZV VUZ RADIOFIZ 12 875-881 1969

RANDOM SPATIAL OUTBREAKS OF INTENSITY IN PROPAGATING A WAVE THROUGH A TURBULENT MEDIUM

GRACHEVA M E ET AL IZV VUZ RADIOFIZ 12 235-255 1969

THE AVERAGING EFFECT OF THE RECEIVING APERTURE ON LIGHT INTENSITY FLUCTUATIONS

IZMUMOV A O RAE ENG AND ELEC 14 1312-1314 1969

CORRELATION OF FLUCTUATIONS OFAMPLITUDE AND PHASE OF PLANE MONOCHROMATIC WAVE OF SUBMILLIMETER BAND AT PROPAGATION IN TURBULENT ATMOSPHERE NEAR THE EARTH LAYER

KLYATSKIN V I IZV VUZ RADIOFIZ 12 723-726 1969

ON DISPERSION OF THE ANGLE OF ARRIVAL OF A PLANE LIGHT WAVE PROPAGATING IN A MEDIUM WITH RANDOM WEAK INHOMOGENEITIES

KLYATSKIN V I IZV VUZ RADIOFIZ 12 1506-1511 1969

FUNCTIONAL DESCRIPTION OF THE CHARACTERISTICS OF A PLANE LIGHT WAVE PROPAGATING IN A MEDIUM WITH RANDOM INHOMOGENEITIES OF THE REFRACTIVE INDEX

APPLICABILITY OF A MARKOV RANDOM PROCESS IN PROBLEMS RELATING TO THE PROPAGATION OF LIGHT IN A MEDIUM WITH RANDOM INHOMOGENEITIES

KON A I TATARSKI VI IZV VUZ RADIOFIZ 12 173-180 1969

CORRELATION OF BEAM TRANSVERSE SHIFTS IN A TURBULENT ATMOSPHERE

KON A I IZV VUZ RADIOFIZ 12 664-693 1969

THE EFFECTS OF FINITE DIMENSIONS OF A SOURCE AND A RECEIVER ON LIGHT INTENSITY FLUCTUATIONS

KRAVTSOV YU A ET AL IZV VUZ RADIOFIZ 12 674-685 1969

COMPLEX GEOMETRICAL OPTICS OF INHOMOGENEOUS ANISOTROPIC MEDIA

KRAVTSOV YU A ET AL IZV VUZ RADIOFIZ 12 1175-1180 1969

APPLICATION OF THE PERTURBATION THEORY TO THE EIKONAL EQUATION IN THE CASE OF INHOMOGENEOUS ANISOTROPIC MEDIA

GEOMETRICAL OPTICS AND CONSERVATION OF THE ADIABATIC INVARIANT

MORDUKHOVICH M I IZV VUZ RADIOFIZ 12 682-685 1969

INVESTIGATION OF GROUND BASED SOURCE SCINTILLATIONS FROM AIRPLANE PERMITIN G V FRAIMAN A IZV VUZ RADIOFIZ 12 1836-1841 1969

THE FIELD STRUCTURE NEAR CAUSTIC IN A MEDIUM WITH FLUCTUATIONS OF THE DIELECTRIC PERMITTIVITY

STOTSKIY A A RAE ENG AND ELEC 14 1547-1551 1969

MEASUREMENT OF FLUCTUATIONS OF PHASE DIFFERENCES OF CENTIMETER RADIONAVES PROPAGATING IN THE ATMOSPHERE LAYER CLOSE TO THE EARTH

YUZVNOV A O RAE ENG AND ELEC 14 1615-1617 1969

FREQUENCY SPECTRUM OF THE FLUCTUATIONS OF THE AMPLITUDE OF THE SUBMILLIMETER WAVEBAND PLANE MONOCHROMATIC WAVE PROPAGATING IN THE TURBULENT ATMOSPHERE NEAR THE EARTH

1970

BOURICIUS G M B ET AL J OPT SOC AM 60 1484-1489 1970
EXPERIMENTAL STUDY OF ATMOSPHERICALLY INDUCED PHASE FLUCTUATIONS IN AN OPTICAL SIGNAL
BUNKIN F V ET AL IZV VUZ RADI0FIZ 13 1039-1052 1970
DIFFUSION OF LIGHT IN A TURBULENT MEDIUM
BUSER R G B0HN G K J OPT SOC AM 60 1079-1084 1970
DETERMINATION OF ATMOSPHERICALLY INDUCED PHASE FLUCTUATIONS BY LONG DISTANCE INTERFEROMETRY AT 6328A
CHYTIL B J ATM AND TFRP PHY 32 961-966 1970
AMPLITUDE AND PHASE SCINTILLATIONS OF SPHERICAL WAVES
CLIFFORD S F ET AL IEEE PGAP 10 264-274 1970
THE THEORY OF MICROWAVE LINE-OF-SIGHT PROPAGATION THROUGH A TURBULENT ATMOSPHERE
CONSORTINI A ET AL Appl OPT 9 2543-2547 1970
INVESTIGATION OF ATMOSPHERIC TURBULENCE BY NARROW LASER BEAMS
DAGKESAMANSKAYA I ET AL IZV VUZ RADI0FIZ 13 16-20 1970
STRONG INTENSITY FLUCTUATIONS FOR WAVES PROPAGATING IN RANDOMLY HOMOGENEOUS AND ISOTROPIC MEDIA
FARROW J B GIBSON A F OPT ACTA 17 317-336 1970
INFLUENCE OF THE ATMOSPHERE ON OPTICAL SYSTEMS
FEIZULIN Z I RAD ENG AND ELEC 15 90-1397 1970
THE FLUCTUATIONS OF THE AMPLITUDE AND THE PHASE OF A LIMITED WAVE BEAM PROPAGATING IN A RANDOMLY NON UNIFORM MEDIUM
FElsen L B WHITMAN G M IEEE PGAP 18 242-253 1970
WAVE PROPAGATION IN TIME-VARYING MEDIA
GELFER E I ET AL IZV VUZ RADI0FIZ 13 271-274 1970
INVESTIGATION OF INTENSITY OF A FOCUSED LASER BEAM PASSED THROUGH A TURBULENT ATMOSPHERE
GRACHEVA M E ET AL IZV VUZ RADI0FIZ 13 50-55 1970
MEASUREMENT OF THE MEAN LEVEL OF THE AMPLITUDE OF A LIGHT WAVE PROPAGATING IN A TURBULENT ATMOSPHERE
GRACHEVA M E ET AL IZV VUZ RADI0FIZ 13 56-60 1970
MEASUREMENT OF DISPERSION OF STRONG INTENSITY FLUCTUATIONS OF LASER RADIATION IN THE ATMOSPHERE
GRACHEVA M E ET AL RAD ENG AND ELEC 15 1290-1292 1970
THE FLUCTUATIONS OF THE INTENSITY OF THE FOCUSED LASER BEAM PROPAGATING IN THE ATMOSPHERE
GURVICH A S TIME N S RAD ENG AND ELEC 15 812-815 1970
THE FREQUENCY SPECTRA OF THE FLUCTUATIONS OF THE INTENSITY OF A SPHERICAL WAVE PROPAGATING IN THE ATMOSPHERE
HOVERSTEN R O ET AL PROC IEEE 58 1626-1650 1970
COMMUNICATION THEORY FOR THE TURBULENT ATMOSPHERE
IMAI M ET AL RAD SCI 5 1009-1016 1970
MODE CONVERSION OF GAUSSIAN LIGHT BEAMS PROPAGATING THROUGH A RANDOM MEDIUM
KAZARIAN R A ET AL PROC IEEE 58 1546-1547 1970
MEASUREMENT OF THE AVERAGE STRUCTURAL CHARACTERISTIC OF THE ATMOSPHERIC REFRACTIVE INDEX
KERR J R ET AL PROC IEEE 58 1691-1709 1970
ATMOSPHERIC OPTICAL COMMUNICATIONS SYSTEMS
KHMELEVTSOV S S ET AL IZV VUZ RADI0FIZ 13 146-148 1970
INTENSITY FLUCTUATIONS OF A LASER BEAM PROPAGATING IN A TURBULENT ATMOSPHERE
KLEEN R H OCHS G R J OPT SOC AM 60 1695-1697 1970
MEASUREMENT OF THE WAVELENGTH DEPENDENCE OF SCINTILLATION IN STRONG TURBULENCE
KLYATSKIN VI ET AL.IZV VUZ RADIOFIZ 13 1061-1068 1970
TO THE THEORY OF PROPAGATION OF LIGHT BEAMS IN A MEDIUM WITH RANDOM INHOMOGENEITIES

KON A I IZV VUZ RADIOFIZ 13 61-70 1970
LIGHT FOCUSING IN A TURBULENT MEDIUM

KON A I FEYZULIN Z I IZV VUZ RADIOFIZ 13 71-74 1970
FLUCTUATIONS OF THE PARAMETERS OF SPHERICAL WAVES PROPAGATING IN A TURBULENT ATMOSPHERE

KRAVTSOV YU A IZV VUZ RADIOFIZ 13 281-285 1970
"GEOMETRICAL" DEPOLARIZATION OF LIGHT IN A TURBULENT ATMOSPHERE

LAUSSADE J P YARIV A RAD SCI 5 1119-1126 1970
A THEORETICAL STUDY OF OPTICAL WAVE PROPAGATION THROUGH RANDOM ATMOSPHERIC TURBULENCE

LAWRENCE R S ET AL.PROC IEE 58 1523-1545 1970
A SURVEY OF CLEAR-AIR PROPAGATION EFFECTS RELEVANT TO OPTICAL COMMUNICATIONS

LITVINOVA T P IZV VUZ RADIOFIZ 13 462-464 1970
ON FREQUENCY SPECTRUM WIDTH AT STRONG FLUCTUATIONS OF THE WAVE AMPLITUDE IN A TURBULENT ATMOSPHERE

LIVINGSTON P M ET AL.J OPT SOC AM 60 925-935 1970
LIGHT PROPAGATION THROUGH A TURBULENT ATMOSPHERE. MEASUREMENT OF THE OPTICAL FILTER FUNCTION

MACADAM D P J OPT SOC AM 60 1617-1627 1970
DIGITAL IMAGE RESTORATION BY CONSTRAINED DECONVOLUTION

MANO K PROC IEE 58 1405-1406 1970
SYMMETRY ASSOCIATED WITH THE BORN AND RYTOV METHODS

MANO K PROC IEE 58 1163-1169 1970
INTERRELATIONSHIP BETWEEN TERMS OF THE BORN AND RYTOV EXPANSIONS

MIYAKE MIZIO DONELIAN M J GEOPHYS RES 75 4506-4518 1970
AIRBORNE MEASUREMENT OF TURBULENT FLUXES

NORDUKHOVICH M I IZV VUZ RADIOFIZ 13 275-280 1970
MEASUREMENT OF DISPERSION OF INTENSITY FLUCTUATIONS AND THE MEAN LEVEL OF THE AMPLITUDE OF LASER LIGHT PROPAGATING ALONG STRONGLY INHOMOGENEOUS TRACE

NAIDA O N IZV VUZ RADIOFIZ 13 1496-1500 1970
ON SOLUTIONS OF EQUATIONS OF QUASI-ISOTROPIC GEOMETRICAL OPTICS APPROXIMATION

PIERONI L BREMMER H J OPT SOC AM 60 936-947 1970
MUTUAL COHERENCE FUNCTION OF THE LIGHT SCATTERED BY A TURBULENT MEDIUM

RIZVI S H S PANDEY H D OPTIK 32 212-217 1970
RESOLUTION OF A TELESCOPE WITH RECTANGULAR APERTURE IN ATMOSPHERE

RYZHOV YU A TAMOTKIN V IZV VUZ RADIOFIZ 13 356-357 1970
RADIATION AND PROPAGATION OF WAVES IN RANDOM INHOMOGENEOUS MEDIA (A REVIEW)

THERMAL RADIATION IN A RANDOMLY INHOMOGENEOUS MEDIUM

SEDIN V YA ET AL. IZV VUZ RADIOFIZ 13 44-49 1970
INTENSITY FLUCTUATIONS IN PULSE LASER BEAM PROPAGATING IN THE ATMOSPHERE AT DISTANCES UP TO 9.8 KM

SHABALINOV A V RAD ENG AND ELEC 15 1077-1079 1970
THE STUDY OF OPTICAL WAVE PHASE FLUCTUATIONS USING DIFFRACTION GRATINGS

SINGH K CHOPRA K N OPTIK 31 250-257 1970
FAR FIELD DIFFRACTION IMAGES OF GENERAL PERIODIC RECTANGULAR WAVE OBJECTS IMAGED BY AN OPTICAL SYSTEM OPERATING IN A MEDIUM WITH SINUSOIDAL AMPLITUDE DISTURBANCE

SODHA M S ET AL.OPT ACTA 17 623-629 1970
THE FLUCTUATIONS OF INTENSITY AT THE FOCUS OF AN ANNUAL APERTURE
VAITSEL V I ET AL 12V VUZ RADIOFIZ 13 1072-1079 1970
INVESTIGATION OF COHERENCE OF RADIATION BY INTERFERENCE METHOD
WALDMAN G S J OPT SOC AM 60 1525-1526 1970
GENERALIZED OPTICAL TRANSFER FUNCTION IN THE FRESNEL APPROXIMATION
WHITMAN A M BERAN M J J OPT SOC AM 60 1595-1607 1970
BEAM SPREAD OF LASER LIGHT PROPAGATING IN A RANDOM MEDIUM

1971

BERTOLOTTI M APPL OPT 10 42-45 1971
ELECTRICAL RECORDING OF THE AMPLITUDE AND PHASE FLUCTUATIONS OF A
WAVE FRONT
BROOKNER E L J OPT SOC AM 61 641 1971
LOG-AMPLITUDE FLUCTUATIONS OF A LASER BEAM
BUSER R G J OPT SOC AM 61 468-491 1971
INTERFEROMETRIC DETERMINATION OF THE DISTANCE DEPENDENCE OF THE PHASE
STRUCTURE FUNCTION FOR NEAR-GROUND HORIZONTAL PROPAGATION AT 6328A
EICHHAMANN G J OPT SOC AM 61 161-168 1971
QUASI-GEOMETRIC OPTICS OF MEDIA WITH INHOMOGENEOUS INDEX OF REFRACTION
FRIE O L APPL OPT 10 721-731 1971
SPECTRAL AND ANGULAR COVARIANCE OF SCINTILLATION FOR PROPAGATION IN A
RANDOMLY INHOMOGENEOUS MEDIUM
LUTOMIRSKI R F YURA H J OPT SOC AM 61 482-487 1971
WAVE STRUCTURE FUNCTION AND MUTUAL COHERENCE FUNCTION OF AN OPTICAL
WAVE IN A TURBULENT MEDIUM
MOLYNEUX J E J OPT SOC AM 61 248-255 1971
PROPAGATION OF THE NTH-ORDER COHERENCE FUNCTION IN A RANDOM MEDIUM. THE
GOVERNING EQUATIONS
MOLYNEUX J E J OPT SOC AM 61 369-377 1971
PROPAGATION OF THE NTH-ORDER COHERENCE FUNCTION IN A RANDOM MEDIUM, II.
GENERAL SOLUTIONS AND ASYMPTOTIC BEHAVIOR
ROSE H W ET AL APPL OPT 10 515-518 1971
COHERENT OPTICAL TARGET RECOGNITION THROUGH A PHASE DISTORTING MEDIUM
SHAPIRO J H J OPT SOC AM 61 492-494 1971
RECIPROCITY OF THE TURBULENT ATMOSPHERE
STAVROUDIS O N APPL OPT 10 260-263 1971
ORTHOTOMIC SYSTEMS OF RAYS IN INHOMOGENEOUS ISOTROPIC MEDIA
SU H H PLONUS M A J OPT SOC AM 61 256-260 1971
OPTICAL PULSE PROPAGATION IN A TURBULENT MEDIUM
TAYLOR L S MELLMAN S J OPT SOC AM 61 236-241 1971
PROPAGATION OF MUTUAL COHERENCE FUNCTION IN TURBULENT MEDIA USING THE LOCAL
INDEPENDENCE APPROXIMATION
VARVATISI A D ET AL RAD SCI 6 87-97 1971
ON THE RENORMALIZATION METHOD IN RANDOM WAVE PROPAGATION
LIST 1

AKUS ZH - (Soviet Physics-Acoustics), Akusticheskii Zhurnal (Akademiya Nauk SSSR), Moscow, Russia, 1957 (1)

BEITR PHYSIK ATM - Beitraege Zur Physik Der Atmosphaere, Frankfurt am Main, Germany, 1964, 1966 (2)

CAN J PHYS - Canadian Journal of Physics, Ottawa, Canada, 1962 (1)

IEEE INT CONV REC - Institute of Electrical and Electronic Engineers International Convention Record, New York, N.Y., U.S.A., 1964 (1)

IZV VUZ RADIOFIZ - Izvestiya Vysshykh Uchebnikh Zavedenii Radiofizika, Gorkiy, USSR, 1/65-12/70 (40)

J MATH PHYS - Journal of Mathematical Physics, New York, N.Y. U.S.A., 1964 (1)

JAPAN J APPL PHYS - Japanese Journal of Applied Physics, Tokyo, Japan, 1966 (1)

JETP - Soviet Physics-JETP (English translation of "Zhurnal Eksperimental'noi i Teoreticheskoi Fizikii") New York, N.Y. U.S.A., 1/46-8-70 (22)

NUOVO CIMENTO - Nuovo Cimento, Bologna, Italy, 1962 (1)

OBSERVATORY - Observatory, The, Sussex, England, 1962 (1)

OPTIK - Optik, Zeitschrift fur das gesamte Gebiet der Licht-und Elektroenoptik, Germany, 1/60-5/71 (6)

37

PROGRESS IN RAD SCI - International Scientific Radio Union, Progress in Radio Science (TK6541-155), 1966 (1)

QUART APPL MATH - Quarterly of Applied Mathematics, Providence, R.I., U.S.A., 1967 (1)

RAD ENG AND ELEC - Radio Engineering and Electronics (USSR) and Radio Engineering (English translation of Radioteknika i Elektronika), New York, N.Y. U.S.A., 1/65-12/70 (15)

RADIO PHYS - Soviet Radiophysics and Quantum Electronics (English translation of Izvestiya Vysshikh Uchebnykh Zavedenii Radio fizika), New York, N.Y. U.S.A., 1/65-12/70 (14)

SOLAR PHYS - Solar Physics (in English) Dordrecht, Netherlands, 1969 (1)

Z ANGE MATH UND PHYS - Zeitschrift fuer Angewandte Mathematik und Physik, Basel, Switzerland, 1965 (1)
LIST 2

FIRST AUTHOR LIST

<table>
<thead>
<tr>
<th>Author</th>
<th>Page Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGGARWAL A K</td>
<td>67</td>
</tr>
<tr>
<td>AIKEN R T</td>
<td>69</td>
</tr>
<tr>
<td>ALLEN D A</td>
<td>66</td>
</tr>
<tr>
<td>ANDREEV I V</td>
<td>65</td>
</tr>
<tr>
<td>ARSAEV I E</td>
<td>68</td>
</tr>
<tr>
<td>ARTEMYEV A V</td>
<td>69</td>
</tr>
<tr>
<td>AUSTIN M E</td>
<td>65</td>
</tr>
<tr>
<td>AXTELLE G E JR</td>
<td>65</td>
</tr>
<tr>
<td>BAKHAREVA M F</td>
<td>68(2)</td>
</tr>
<tr>
<td>BARABANENKOV YU N</td>
<td>69</td>
</tr>
<tr>
<td>BASSANINI P</td>
<td>67</td>
</tr>
<tr>
<td>BECKMANN P</td>
<td>65(2)</td>
</tr>
<tr>
<td>BENDER P L</td>
<td>64, 65, 67</td>
</tr>
<tr>
<td>BERAN M J</td>
<td>66, 67, 68(2), 69, 70</td>
</tr>
<tr>
<td>BERGSTRAND E</td>
<td>60</td>
</tr>
<tr>
<td>BERTOLOTTI M</td>
<td>68, 69(2), 70(2), 71</td>
</tr>
<tr>
<td>BIBERMAN L M</td>
<td>52</td>
</tr>
<tr>
<td>BJERHAMMAR A</td>
<td>60</td>
</tr>
<tr>
<td>BLOM J</td>
<td>69</td>
</tr>
<tr>
<td>BOURICIOUS G M B</td>
<td>70</td>
</tr>
<tr>
<td>BOURKOV V G</td>
<td>67</td>
</tr>
<tr>
<td>BOURRET R C</td>
<td>62(2)</td>
</tr>
<tr>
<td>Bowers H C</td>
<td>64</td>
</tr>
<tr>
<td>BREMMER H</td>
<td>64, 66</td>
</tr>
<tr>
<td>BROOKNER E L</td>
<td>69, 71</td>
</tr>
<tr>
<td>BROWN W P JR</td>
<td>66, 67(3)</td>
</tr>
<tr>
<td>BUCK A L</td>
<td>65, 67</td>
</tr>
<tr>
<td>BUGNOLO D S</td>
<td>60, 61</td>
</tr>
<tr>
<td>BUNKIN F V</td>
<td>69, 70</td>
</tr>
<tr>
<td>BURLAMACCHI P</td>
<td>67(2)</td>
</tr>
<tr>
<td>BUSER R G</td>
<td>70, 71</td>
</tr>
<tr>
<td>CARLSON F P</td>
<td>69(2)</td>
</tr>
<tr>
<td>CARNEVALE M</td>
<td>68</td>
</tr>
<tr>
<td>CATHEY W T</td>
<td>68, 70</td>
</tr>
<tr>
<td>CHASE D M</td>
<td>65, 66</td>
</tr>
<tr>
<td>CHATTERTON E J</td>
<td>65</td>
</tr>
<tr>
<td>CHERNOV L A</td>
<td>60</td>
</tr>
<tr>
<td>CHU T S</td>
<td>67(2)</td>
</tr>
<tr>
<td>CHYTIL B</td>
<td>70</td>
</tr>
<tr>
<td>CLEMMISHA B R</td>
<td>66</td>
</tr>
<tr>
<td>CLIFFORD S F</td>
<td>70</td>
</tr>
<tr>
<td>COMSTOCK C</td>
<td>65</td>
</tr>
<tr>
<td>CONSORTINI A</td>
<td>63, 64, 65, 66, 67(2)</td>
</tr>
<tr>
<td>COULMAN C E</td>
<td>65, 66, 67, 68, 69</td>
</tr>
<tr>
<td>CURCIO J A</td>
<td>65</td>
</tr>
<tr>
<td>DAKESAMANSKAYA I</td>
<td>70</td>
</tr>
<tr>
<td>DAVIS J I</td>
<td>65, 66</td>
</tr>
<tr>
<td>DAVYDOV B I</td>
<td>59</td>
</tr>
<tr>
<td>DEITZ P H</td>
<td>67, 69(2)</td>
</tr>
<tr>
<td>DELANGE O</td>
<td>63</td>
</tr>
<tr>
<td>DEMYANEKOV L N</td>
<td>68</td>
</tr>
<tr>
<td>DEREVYANKOV N F</td>
<td>68</td>
</tr>
<tr>
<td>DEWOLF D A</td>
<td>65(2), 67(3), 68, 69</td>
</tr>
<tr>
<td>DOLIN L S</td>
<td>68</td>
</tr>
<tr>
<td>DOYLE W M</td>
<td>65</td>
</tr>
<tr>
<td>EARNshaw K B</td>
<td>67</td>
</tr>
<tr>
<td>EDWARDS D N</td>
<td>65</td>
</tr>
<tr>
<td>EICHMANN G</td>
<td>71</td>
</tr>
<tr>
<td>ESPOSITO R</td>
<td>67</td>
</tr>
<tr>
<td>ETCHEVERY R D</td>
<td>67</td>
</tr>
<tr>
<td>FARHAT N H</td>
<td>69</td>
</tr>
<tr>
<td>FARROW J B</td>
<td>70</td>
</tr>
<tr>
<td>FEIZULIN Z I</td>
<td>67, 70</td>
</tr>
<tr>
<td>Felsen L B</td>
<td>70</td>
</tr>
<tr>
<td>FINKELBERG V M</td>
<td>63, 68</td>
</tr>
<tr>
<td>FIocco G</td>
<td>63</td>
</tr>
<tr>
<td>FITZMAURICE M W</td>
<td>69</td>
</tr>
<tr>
<td>FRAKIN E E</td>
<td>68</td>
</tr>
<tr>
<td>FRIED D L</td>
<td>65(4), 66(3), 67(10), 68, 69, 71</td>
</tr>
<tr>
<td>FRIEDEN B R</td>
<td>67</td>
</tr>
<tr>
<td>FURUTSU K</td>
<td>63</td>
</tr>
<tr>
<td>GARDNER S</td>
<td>64</td>
</tr>
<tr>
<td>GASKILL J D</td>
<td>68, 69</td>
</tr>
<tr>
<td>GAZARYAN Y L</td>
<td>69</td>
</tr>
<tr>
<td>GEBHARDT F G</td>
<td>69</td>
</tr>
<tr>
<td>GELFER E I</td>
<td>70</td>
</tr>
<tr>
<td>GILMARTIN T J</td>
<td>69</td>
</tr>
<tr>
<td>GJESSING D T</td>
<td>62, 69</td>
</tr>
<tr>
<td>GOLDSTEIN I</td>
<td>65(2)</td>
</tr>
<tr>
<td>GOODMAN J W</td>
<td>66</td>
</tr>
<tr>
<td>GOODWIN F E</td>
<td>65, 68</td>
</tr>
<tr>
<td>GRACHEVA M F</td>
<td>65, 66, 67(2), 69, 70(3)</td>
</tr>
<tr>
<td>GRAY</td>
<td>70</td>
</tr>
<tr>
<td>GURVICH A S</td>
<td>68(2), 70</td>
</tr>
<tr>
<td>HALL D N B</td>
<td>67</td>
</tr>
<tr>
<td>HARDY K R</td>
<td>69</td>
</tr>
<tr>
<td>Name</td>
<td>Year(s)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>HARGER R O</td>
<td>67</td>
</tr>
<tr>
<td>HARRIS JAMES L</td>
<td>64, 66</td>
</tr>
<tr>
<td>HEIDBRETER G R</td>
<td>66(2), 67(3)</td>
</tr>
<tr>
<td>HELSTROM C W</td>
<td>69</td>
</tr>
<tr>
<td>HERRICK R B</td>
<td>66</td>
</tr>
<tr>
<td>HILL H A</td>
<td>66</td>
</tr>
<tr>
<td>HO T L</td>
<td>68, 69, 70</td>
</tr>
<tr>
<td>HOZARA H</td>
<td>66, 67, 68</td>
</tr>
<tr>
<td>HOFFMAN W C</td>
<td>64(2)</td>
</tr>
<tr>
<td>HOGG D C</td>
<td>63, 69</td>
</tr>
<tr>
<td>HOKH D H</td>
<td>64, 65, 66(2), 69(3)</td>
</tr>
<tr>
<td>HORNER J L</td>
<td>70</td>
</tr>
<tr>
<td>HOVERSTEN R O</td>
<td>70</td>
</tr>
<tr>
<td>HULETT H R</td>
<td>67</td>
</tr>
<tr>
<td>IMAI M</td>
<td>70</td>
</tr>
<tr>
<td>ISHIMARU A</td>
<td>69(2)</td>
</tr>
<tr>
<td>IZUMOV A O</td>
<td>68, 69</td>
</tr>
<tr>
<td>KALASHNIKOV N P</td>
<td>66</td>
</tr>
<tr>
<td>KALLISTRATOVA M A</td>
<td>66(2)</td>
</tr>
<tr>
<td>KARAL F G</td>
<td>64</td>
</tr>
<tr>
<td>KARAVAININOV V N</td>
<td>57</td>
</tr>
<tr>
<td>KAROLUS A</td>
<td>60</td>
</tr>
<tr>
<td>KATZ I</td>
<td>66</td>
</tr>
<tr>
<td>KAZANTSEV A N</td>
<td>67</td>
</tr>
<tr>
<td>KAZARIAN R A</td>
<td>70</td>
</tr>
<tr>
<td>KELLER J B</td>
<td>62, 64, 69</td>
</tr>
<tr>
<td>KERMISCH</td>
<td>70</td>
</tr>
<tr>
<td>KERR D E</td>
<td>66</td>
</tr>
<tr>
<td>KERR J R</td>
<td>70</td>
</tr>
<tr>
<td>KMELEVTSOV S S</td>
<td>70</td>
</tr>
<tr>
<td>KIEBURTZ R B</td>
<td>67(2)</td>
</tr>
<tr>
<td>KING M</td>
<td>65</td>
</tr>
<tr>
<td>KINOSHITA Y</td>
<td>68(4), 69</td>
</tr>
<tr>
<td>KLEEN R H</td>
<td>70</td>
</tr>
<tr>
<td>KLYATSKIN V I</td>
<td>68, 69(3), 70</td>
</tr>
<tr>
<td>KNESTRICK G L</td>
<td>67</td>
</tr>
<tr>
<td>KNOV C M</td>
<td>64</td>
</tr>
<tr>
<td>KOLCHINSKI I G</td>
<td>59</td>
</tr>
<tr>
<td>KOMISSAROV V M</td>
<td>66, 67(2)</td>
</tr>
<tr>
<td>KON A I</td>
<td>65, 69(2), 70(2)</td>
</tr>
<tr>
<td>KRAVTSOV YU A</td>
<td>68(2), 69(3), 70</td>
</tr>
<tr>
<td>KUPIEC I</td>
<td>69</td>
</tr>
<tr>
<td>LAHTI J N</td>
<td>69</td>
</tr>
<tr>
<td>LAMB G L JR</td>
<td>62</td>
</tr>
<tr>
<td>LAUSSADE J P</td>
<td>69, 70</td>
</tr>
<tr>
<td>LAWRENCE R S</td>
<td>70(2)</td>
</tr>
<tr>
<td>LEE R W</td>
<td>69(2)</td>
</tr>
<tr>
<td>LITVINOVA T P</td>
<td>70</td>
</tr>
<tr>
<td>LIVINGSTON P M</td>
<td>66, 70</td>
</tr>
<tr>
<td>LUCY R F</td>
<td>67, 68</td>
</tr>
<tr>
<td>LUTOMIRSKI R F</td>
<td>69(2), 71</td>
</tr>
<tr>
<td>MACADAM D P</td>
<td>70</td>
</tr>
<tr>
<td>MACCREADY P B JR</td>
<td>62</td>
</tr>
<tr>
<td>MACRAKIS M S</td>
<td>65</td>
</tr>
<tr>
<td>MALKUS W V R</td>
<td>54</td>
</tr>
<tr>
<td>MANDICS P A</td>
<td>69</td>
</tr>
<tr>
<td>MANO K</td>
<td>69, 70(2)</td>
</tr>
<tr>
<td>MAZUMDER M K</td>
<td>70</td>
</tr>
<tr>
<td>MAZUROWSKI M J</td>
<td>65</td>
</tr>
<tr>
<td>MEYER-ARENDT J R</td>
<td>65(2), 66</td>
</tr>
<tr>
<td>MINTZER D</td>
<td>53</td>
</tr>
<tr>
<td>MITCHELL R L</td>
<td>58</td>
</tr>
<tr>
<td>MIYAKE MIKIO</td>
<td>70</td>
</tr>
<tr>
<td>MOLLER F</td>
<td>64</td>
</tr>
<tr>
<td>MOLYNEUX J E</td>
<td>68, 71(2)</td>
</tr>
<tr>
<td>MONIN A S</td>
<td>59, 62</td>
</tr>
<tr>
<td>MORDUKHOVICH M I</td>
<td>69, 70</td>
</tr>
<tr>
<td>MORELAND J P</td>
<td>69</td>
</tr>
<tr>
<td>MEUER P F</td>
<td>67</td>
</tr>
<tr>
<td>MUNICK R J</td>
<td>65(2)</td>
</tr>
<tr>
<td>MUSHIYAKO Y</td>
<td>65</td>
</tr>
<tr>
<td>NAIDA O N</td>
<td>70</td>
</tr>
<tr>
<td>NEUMANN J</td>
<td>69</td>
</tr>
<tr>
<td>NEURINGER J L</td>
<td>70</td>
</tr>
<tr>
<td>NOEL T M</td>
<td>63</td>
</tr>
<tr>
<td>NOVIKOV E A</td>
<td>63, 64</td>
</tr>
<tr>
<td>NUGENT L J</td>
<td>66</td>
</tr>
<tr>
<td>OCHS G R</td>
<td>69(2)</td>
</tr>
<tr>
<td>OGURA Y</td>
<td>62</td>
</tr>
<tr>
<td>OWENS J C</td>
<td>65, 69</td>
</tr>
<tr>
<td>PANOFSKY H A</td>
<td>69</td>
</tr>
<tr>
<td>PARRENT G B JR</td>
<td>59</td>
</tr>
<tr>
<td>PERMIN G V</td>
<td>69</td>
</tr>
<tr>
<td>PESKOFF A</td>
<td>68</td>
</tr>
<tr>
<td>PIERONI L</td>
<td>70</td>
</tr>
<tr>
<td>PISAREVA V V</td>
<td>60</td>
</tr>
<tr>
<td>PLATE E J</td>
<td>69</td>
</tr>
<tr>
<td>POND S</td>
<td>63, 66</td>
</tr>
<tr>
<td>PRESNYAKOV L P</td>
<td>65</td>
</tr>
<tr>
<td>RABINOWITZ P</td>
<td>62</td>
</tr>
<tr>
<td>RAMSEY J V</td>
<td>59, 62</td>
</tr>
<tr>
<td>RATCLIFFE J A</td>
<td>56</td>
</tr>
</tbody>
</table>
REIGER S H, 63
REISMAN E, 65, 66
REYNOLDS A J, 61
REYNOLDS G O, 64
RICHET S L, 67
RIZVI S H S, 70
ROGERS C B, 65
ROMANOVA L M, 66
ROSE H W, 71
ROSENBAUM S, 69
ROSS D, 68, 69
RYZHOV YU A, 68, 70(2)
RYZNAR E, 65
SALEH A A M, 67
SAINDER M I, 70(2)
SCHMELTZER R A, 67
SEDIN V YA, 70
SETTE D, 65
SHABELNlKOV A V, 68, 70
SHAPIRO J H, 71
SHIN E E H, 68
SHISHOV V I, 68
SHUT'TKO A V, 64
SIEGENTOF PH, 65
SIEGMAN A E, 66(2)
SINGH K, 70
SKINNER T J, 65
SKROTSKII G V, 68
SKRYPNIK G I, 65, 66
SODHA M S, 70
STAVROUDIS O N, 71
STOTSKII A A, 69
STRAUB H W, 65(2)
STREZHK P E, 67
STROMBEHN J W, 66, 67, 68(2), 70(2)
SUCH H H, 71
SUBRAMANIAN M, 65, 67
SUTTON G W, 69
SUZUKI T, 66
TATARKI V I, 53, 61, 62(2), 63, 64
66, 67(4), 69
TAYLOR L S, 66, 67(2), 68(2), 69(2), 70, 71
TEICH M C, 68, 69
THIEDE E C, 70
THOMPSON M C, 60

TATTERTON P J, 70
TRABKA E A, 66
TSVANG L R, 69
TYSON E T, 68
VAITSEL V I, 70
VARVATIS A D, 71
VIGLIN A S, 66
VEDENSIKII B A, 67
WAKSBERG A L, 70
WALDMAN G S, 70
WARD R C, 67
WATERMAN A J JR, 65
WEBB E K, 64
WEINER M M, 67
WHEELEN A D, 55, 64
WHITMAN A M, 70
WHITTEN J R, 65(2)
WILKINS E M, 60, 63
YEH K C, 62, 67, 68
YUNG M C, 64
YURA H T, 69
YZUMOV A O, 69
ZAITSEV VU A, 68
ZIGULEV V N, 65
ZWANG L R, 60
SUMMARY

In this interim report three areas of interest have been considered: averaging times for random data, phase structure function data and a continuation of a bibliography. The averaging time study reviewed approaches contained in the literature showing that the averaging time depends on the quantity of interest and on the particular criterion. The phase structure function computations gave curves intended to be useful in experiment design and data interpretation. The bibliography presented a listing of recent journal articles and author and journal lists.
BIBLIOGRAPHY

