ON THE MAXIMUM OF A STATIONARY INDEPENDENT INCREMENT PROCESS

by

SHELDON M. ROSS

OPERATIONS RESEARCH CENTER

COLLEGE OF ENGINEERING
UNIVERSITY OF CALIFORNIA · BERKELEY

Reproduced by NATIONAL TECHNICAL INFORMATION SERVICE
Springfield, Va 22151
ON THE MAXIMUM OF A STATIONARY INDEPENDENT INCREMENT PROCESS

by

Sheldon M. Ross
Department of Industrial Engineering
and Operations Research
University of California, Berkeley

NOVEMBER 1971

This research has been partially supported by the Office of Naval Research under Contract NO0014-69-A-0200-1010 and the U.S. Army Research Office-Durham under Contract DA-31-124-ARO-D-331 with the University of California. Reproduction in whole or in part is permitted for any purpose of the United States Government.
ON THE MAXIMUM OF A STATIONARY INDEPENDENT INCREMENT PROCESS

Research Report

Sheldon M. Ross

November 1971

DA-31-124-ARO-D-331

20014501B14C

ORC 71-29

This document has been approved for public release and sale; its distribution is unlimited.

Also supported by the Office of Naval Research under Contract N00014-69-A-0200-1010.

U.S. Army Research Office-Durham
Box CM, Duke Station
Durham, North Carolina 27706

SEE ABSTRACT.
<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stationary Independent Increment Process</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renewal Process</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ladder Height</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ABSTRACT

A stationary independent increment process is the continuous time analogue of the discrete random walk, and, as such, has a wide variety of applications. In this paper we consider $M(t)$, the maximum value that such a process attains by time t. By using renewal theoretic methods we obtain results about $M(t)$. In particular we show that if μ, the mean drift of the process, is positive, then $\frac{M(t)}{t}$ converges to μ, and $E[M(t+h) - M(t)] \to h\mu$.
ON THE MAXIMUM OF A STATIONARY INDEPENDENT INCREMENT PROCESS

by

Sheldon M. Ross

Let \(\{X(t), t \geq 0\} \) be a separable stationary independent increment process continuous in probability and with \(X(0) = 0 \). Suppose that \(E[X(t)] = \mu t \) where \(\mu > 0 \), and let

\[
M(t) = \sup_{0 \leq s \leq t} X(s).
\]

Theorem 1:

(i) \(M(t)/t \overset{a.s.}{\to} \mu \) as \(t \to \infty \).

(ii) \(E[M(t)/t] \overset{a.s.}{\to} \mu \) as \(t \to \infty \).

Proof:

Fix some constant \(b > 0 \), and define \(T_n, J_n, n \geq 1 \), by

\[
T_1 = \inf \{t : X(t) > b\}, X(T_1) = b + J_1,
\]

\[
T_n = \inf \{t : X(t) > b + X(T_{n-1})\}, X(T_n) = b + X(T_{n-1}) + J_n, \quad n > 1.
\]

Now, due to the stationary independent increment assumption, it follows that \(\{T_n - T_{n-1}, n \geq 1\} \) is a renewal process. Letting \(N(t) \) be the number of renewals by time \(t \) for this process, i.e., \(N(t) = \max \{n : T_n \leq t\} \), we have

\[
(1) \quad bN(t) + J_1 + \ldots + J_{N(t)} \leq M(t) \leq bN(t) + J_1 + \ldots + J_{N(t)} + b.
\]

Now, from the strong law of large numbers and the renewal result \(N(t)/t \overset{a.s.}{\to} 1/ET_1 \), we have that
(2) \[
\frac{1}{t} (bN(t) + J_1 + \ldots + J_{N(t)}) \xrightarrow{a.s.} \frac{b + \text{ET}_1}{\text{ET}_1} .
\]

Now, from a similar theorem in discrete time (i.e., Stein's lemma), it follows that \(\text{ET}_1 < \infty\) and thus from Martingale theory

(3) \[
\text{E}[b + J] = \text{E}[X(T_1)] = \mu \text{ET}_1 ,
\]

and hence (1) follows from (1), (2) and (3). To prove (ii), we first note that

\[
\frac{1}{t} \text{E}[bN(t) + J_1 + \ldots + J_{N(t)}] = bN(t)/t + \frac{\text{EJ}_1(\text{EN}(t) + 1)}{t} - \frac{\text{E}[J_{N(t)+1}]}{t}
\]

by Wald's equation. However, by regarding \(J_1\) as a reward earned at the time of the \(i^{th}\) renewal it follows, since \(\text{EJ}_1 < \infty\), by standard arguments ([1], Page 53) that \(\frac{\text{E}[J_{N(t)+1}]}{t} \to 0\). Hence, by the elementary renewal theorem,

\[
\frac{1}{t} \text{E}[bN(t) + J_1 + \ldots + J_{N(t)}] + \frac{b + \text{ET}_1}{\text{ET}_1} = \mu
\]

and (ii) is proven.

\textbf{Q.E.D.}

\textbf{Theorem 2:}

If \(\text{E}[X^2(t)] < \infty\), then, for each \(h > 0\),

\[
\text{E}[M(t + h) - M(t)] \to h\mu .
\]

\textbf{Proof:}

By (1) we have

\[
b(N(t + h) - N(t)) + J_1 + \ldots + J_{N(t+h)} - (J_1 + \ldots + J_{N(t)}) - b \leq M(t + h) - M(t) \leq b(N(t + h) - N(t)) + J_1 + \ldots + J_{N(t+h)} - (J_1 + \ldots + J_{N(t)}) + b .
\]
Taking expectations, and using Wald's equation, yields

\[(b + E_J)E[N(t + h) - N(t)] + E[J_{N(t)+1}] - E[J_{N(t+h)+1}] - b \leq
\]
\[E[M(t + h) - M(t)] \leq (b + E_J)E[N(t + h) - N(t)] + E[J_{N(t)+1}] -
\]
\[E[J_{N(t+h)+1}] + b.
\]

We shall show in the ensuing lemma that \(\lim_{t \to \infty} E[J_{N(t)+1}]\) exists and is finite.

Hence, the result follows from the above by first applying Blackwell's theorem and then letting \(b \to 0\).

Q.E.D.

Lemma 1:

If \(E[X^2(t)] < \infty\), then

\[
\lim_{t \to \infty} E[J_{N(t)+1}] = \frac{E[J_{1,T_1}]}{E[T_1]} < \infty.
\]

Proof:

Let \(g(t) = E[J_{N(t)+1}]\) and let \(F\) denote the distribution of \(T_1\). Then

\[
g(t) = \int_0^\infty E[J_{N(t)+1} \mid T_1 = x]dF(x)
\]
\[= \int_0^t g(t - x)dF(x) + \int_t^\infty E[J_1 \mid T_1 = x]dF(x).
\]

This renewal type equation has the solution

\[
g(t) = h(t) + \int_0^t h(t - x)dm(x)
\]
where

\[h(t) = \int_{t}^{\infty} E[J_1 | T_1 = x]dF(x). \]

From the key renewal theorem it follows that

\[
\lim_{t \to \infty} \frac{\int_0^t h(t)dt}{E[T_1]} = \frac{\int_0^t E[J_1 | T_1 = x]dF(x)dt}{E[T_1]} = \int_0^\infty \frac{xE[J_1 | T_1 = x]dF(x)}{E[T_1]} = \frac{E[J_1T_1]}{E[T_1]}
\]

where the interchange is justified by the nonnegativity of rewards. That \(E[J_1T_1] < \infty \) follows from a similar result in discrete time. (The discrete time result states that for a random walk with positive drift whose steps have finite variance, the variance of the value of the process the first time it exceeds \(b \) is finite. The equivalent discrete time version of \(E[J_1T_1] < \infty \) then follows from Stein's lemma upon application of the Cauchy-Schwarz inequality.)

Q.E.D.

Remarks:

The technique employed in the above proof is similar to the ladder variable approach in fluctuation theory. That is, we say that a ladder point is reached not when the process attains a new high but when it passes the previous ladder height by at least some fixed value. It is to be hoped that this technique will prove useful in studying other properties of stationary independent increment processes. Also this approach should be contrasted with the approach, recently developed by M. Rubinovitch, in which a point \(t \) is said to be a ladder point if \(M(t) = X(t) \).

By applying the theory of regenerative events, as developed by Kingman, Rubinovitch...
is then able to obtain many interesting results.

For a discrete time proof of (i), the interested reader should consult Heyde.
REFERENCES

