EVALUATION OF EXPERIMENTAL DRIVE SPRINGS FOR THE XM19 RIFLE

TECHNICAL REPORT

HENRY P. SWIESKOWSKI AND WILLIAM C. McKENNA

August 1971

RESEARCH DIRECTORATE

WEAPONS LABORATORY AT ROCK ISLAND

RESEARCH, DEVELOPMENT AND ENGINEERING DIRECTORATE

U. S. ARMY WEAPONS COMMAND

Approved for public release, distribution unlimited.
DISPOSITION INSTRUCTIONS:

Destroy this report when it is no longer needed. Do not return it to the originator.

DISCLAIMER:

The findings of this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The citation of commercial products in this report does not constitute an official endorsement or approval of such products.
Laboratory tests and a theoretical study were conducted to determine the optimum design for increasing the life of the XM19 drive spring. Spring endurance tests were conducted by the Research Directorate of the Weapons Laboratory at Rock Island. Fatigue properties of eight experimental drive spring designs were evaluated under simulated firing conditions. The experimental springs consisted of various materials and strand constructions of 3, 7, or 14 wires. A theoretical study was performed by the University of Illinois under direction of the Research Directorate on the dynamic response of helical compression springs. The derived equations include the effects of spring mass and large deflections. Experiments were conducted and time-displacement records of impact-loaded springs were taken. Theoretical and experimental data were correlated and were in close agreement. It was determined from this investigation that of the eight experimental designs that were evaluated, the two-piece spring assembly was superior because it retained maximum loads at the completion of the endurance tests.
1. Simulated Testing
2. Multiple Wire Springs
3. Dynamic Loading
4. Wave Propagation
5. Analysis
EVALUATION OF EXPERIMENTAL DRIVE SPRINGS FOR THE XM19 RIFLE

Henry P. Swieskowski
and
William C. McKenna

August 1971
ABSTRACT

Laboratory tests and a theoretical study were conducted to determine the optimum design for increasing the life of the XM19 drive spring.

Spring endurance tests were conducted by the Research Directorate of the Weapons Laboratory at Rock Island. Fatigue properties of eight experimental drive spring designs were evaluated under simulated firing conditions. The experimental springs consisted of various materials and strand constructions of 3, 7, or 14 wires.

A theoretical study was performed by the University of Illinois under direction of the Research Directorate on the dynamic response of helical compression springs. The derived equations include the effects of spring mass and large deflections. Experiments were conducted and time-displacement records of impact-loaded springs were taken. Theoretical and experimental data were correlated and were in close agreement.

It was determined from this investigation that of the eight experimental designs that were evaluated, the two-piece spring assembly was superior because it retained maximum loads at the completion of the endurance tests.
CONTENTS

<table>
<thead>
<tr>
<th>Title Page</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>ii</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>iii</td>
</tr>
<tr>
<td>Subject</td>
<td>1</td>
</tr>
<tr>
<td>Objective</td>
<td>1</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Discussion</td>
<td>1</td>
</tr>
<tr>
<td>1. Spring Endurance Tests</td>
<td>1</td>
</tr>
<tr>
<td>2. Theoretical Study</td>
<td>5</td>
</tr>
<tr>
<td>Conclusion</td>
<td>5</td>
</tr>
<tr>
<td>Recommendations</td>
<td>6</td>
</tr>
<tr>
<td>Appendices</td>
<td></td>
</tr>
<tr>
<td>Appendix A - Illustrations</td>
<td>8</td>
</tr>
<tr>
<td>Appendix B - Contract Report</td>
<td>26</td>
</tr>
<tr>
<td>Distribution</td>
<td>54</td>
</tr>
<tr>
<td>DD Form 1473 Document Control Data - R&D</td>
<td>59</td>
</tr>
</tbody>
</table>
SUBJECT

Experimental drive springs for the XM19 rifle.

OBJECTIVE

The objectives of this evaluation were to obtain endurance data on XM19 drive springs under simulated firing conditions, to conduct a comparative study on the endurance properties of the various spring designs, to make recommendations for future development, and to conduct an analytical study including derivation of mathematical formulae for calculation of the dynamic behavior of helical compression springs and to apply the findings of the study for recommendation of an improved XM19 drive spring.

INTRODUCTION

The drive spring in the XM19 rifle functions in a dual capacity, as a drive spring and as a firing pin spring. The reasons for the spring operational failures are that appreciable spring set and load loss during firing result in insufficient spring energy for primer ignition. The spring energy required for reliable firing pin operation is 85 - 120 inch-ounces.

DISCUSSION

1. Spring Endurance Tests

The experimental XM19 drive springs were endurance-tested on the Spring Fatigue Tester. This tester was designed to simulate the actual firing conditions in the weapon. The velocities, accelerations, and deflections imparted to the drive spring in the weapon are reproduced on the tester. The duplication of the kinematic conditions is produced by a rotating cam with specially designed follower and guiding components. The design of the cam is based on a typical time-displacement curve of the spring motion in the weapon. A photograph of the tester showing the spring specimen and guiding components is included as Figure 1 in Appendix A.

Eight different XM19 drive spring designs were endurance-tested. Each spring was cycled 10,000 times. Free height and load readings were taken before testing and at the end of every 1000 compressions. The minimum test height was initially 5.60 inches and was increased during the tests to allow for a greater spring solid height. Two of the drive spring configurations were designed and developed by the Research Directorate, Weapons Laboratory at Rock Island. One of these was fabricated from a seven-wire strand of music wire.
material and was the first design to be endurance-tested. The other USAWECOM drive spring design was based on a 14-wire strand of stainless steel material and was the final design to be evaluated. Drawings and complete specifications of each of the eight designs tested are given in Appendix A. A brief description of the pertinent characteristics of each experimental design is as follows:

DESIGN 1

Outside coil diameter = .440 in. ± .007
Number of wires in strand = 7
Strand diameter = .080 in.
Free height = 14.78 in.
Load = deflection rate = 2.0 lb/in.
Material - music wire
Number of springs tested = 8 springs

DESIGN 2

This design was a two-piece spring assembly in series, the short spring was installed at the moving end of the assembly:

<table>
<thead>
<tr>
<th></th>
<th>Long Spring</th>
<th>Short Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outside coil diameter</td>
<td>.457 in. .007</td>
<td>.430 in. .005</td>
</tr>
<tr>
<td>Number of wires in strand</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Strand diameter</td>
<td>.075</td>
<td>.059</td>
</tr>
<tr>
<td>Free height</td>
<td>15.63 in. .25</td>
<td>3.00</td>
</tr>
<tr>
<td>Load deflection rate</td>
<td>2.4 lb/in.</td>
<td>-</td>
</tr>
<tr>
<td>Material</td>
<td>music wire</td>
<td>music wire</td>
</tr>
<tr>
<td>Number of springs tested</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
DESIGN 3
Outside coil diameter = .451 in. ± .005
Number of wires in strand = 3
Strand diameter = .073 in.
Free height = 17.31 in.
Load-deflection rate = 1.4 lb/in.
Material = music wire, oil-tempered
Number of springs tested = 3

DESIGN 4
Outside coil diameter = .500 in.
Number of wires in strand = 7
Strand diameter = .097 in.
Free height = 13.25
Load-deflection rate = 3.3 lb/in.
Material = music wire, oil-tempered
Number of springs tested = 3

DESIGN 5
Outside coil diameter = .451 in. ± .005
Number of wires in strand = 3
Strand diameter = .073 in.
Free height = 17.31 in.
Load-deflection rate = 1.4 lb/in.
Material = silicone chrome, oil-tempered
Number of springs tested = 3
DESIGN 6
Outside coil diameter = .5105 in. ± .0025
Number of wires in strand = 3
Strand diameter = .102 in.
Free height = 13.405
Load-deflection rate = 3.1 lb/in.
Material = titanium
Number of springs tested = 3

DESIGN 7
This design was identical to Design 3 except that the first 20 coils at the moving spring-end were coated in a plastic material.

DESIGN 8
Outside coil diameter = .440 in. ± .007
Number of wires in strand = 14
Strand diameter = .100
Free height = 18.53
Load-deflection rate = 1.1
Material = stainless steel, type 302
Number of springs tested = 2

NOTE: This design represents a new type of strand construction for U. S. weapon spring applications. Heretofore, U. S. stranded wire springs were either a 3-wire or a 7-wire configuration. This spring and Design 1 were designed by the Research Directorate of the Weapons Laboratory at Rock Island.

Detailed test results of the springs are given in the tables in Appendix A. Measured values for free height and loads at two test-heights are given prior to testing and at the end of every 1000 cycles. The total reductions in free height and loads after the 10,000 cycles are also listed. Some springs attained their original free height after 10,000 compressions, but a loss in load values occurred. This loss can
be attributed to the fact that the individual wires in the strand became loose during the test with a resultant decrease in the load deflection rate. With respect to the two test-loads measured, the load at the maximum test height of 9.600 inches is the more important one since it indicates the amount of spring energy for firing pin activation. A low load-value at this height may result in failure to fire because of insufficient spring energy.

The three springs fabricated of titanium material (Design 6) are of interest since only a small loss in free height and load values occurred. Titanium is regarded as an unsuitable spring material, and little, if any, literature is available on springs formed of titanium. Titanium has rather low physical properties and is not recommended for highly stressed applications.

2. Theoretical Study

The theoretical study of the dynamic response of springs was performed at the University of Illinois under Contract DAAH03-69-C-0092. Time-displacement photographs were taken of impact-loaded springs and test results were correlated with theoretical findings. This study is included as Appendix B of this report.

CONCLUSIONS

No broken springs occurred; all springs satisfactorily sustained the 10,000 cycle test.

The design that retained the maximum load readings at 9.600 inches throughout the 10,000-cycle test was Design 2, the two-piece spring in series. The load values were approximately 50 per cent higher for this design than for any other design. The two-piece spring also incurred the greatest load loss during the test. However, the original load measurements of this spring were sufficiently large to ensure that final measurements were the maximum of all the experimental designs. The high loads that Design 2 exhibited are required for elimination of misfires because of insufficient spring energy.

This is the first time that a stranded spring of more than 7 wires has been used in a U. S. weapon. Previously, stranded wire springs for U. S. weapons have been of a 3-wire or a 7-wire construction. With respect to the two 14-wire springs evaluated in this test, one spring withstood the test exceptionally well.

Several graphs were prepared in the theoretical study to illustrate the relationship of the important variables. In the study, a plot of
the shearing stress in the wire with respect to the ratio Δ/h, where Δ represents the spring deflection and h is the free height of the spring is shown as Figure 6. This relationship is shown with the ratio c/r acting as a parameter; here c is the radius of the wire diameter and r is the radius of the coil diameter. The stress decreases as the ratio c/r decreases for the same value of Δ/h (Figure 6). Hence, to reduce operating stress levels, the use of multiple springs with smaller wire sizes is necessary. The 14-wire strand spring design that was endurance-tested on the Spring Fatigue Tester represents the maximum number of wires that can be satisfactorily fabricated for the space-load conditions of the XM19 drive spring application.

Theoretical and test results obtained from the study of the dynamic response of springs were correlated and were in close agreement. Differences between the theoretical and the test values were less than 1 per cent.

RECOMMENDATIONS

Based on the results obtained in this investigation, it is recommended that the two-piece design be considered for adoption as the standard drive spring for the XM19 Rifle.
APPENDICES

APPENDIX A. Illustrations

APPENDIX B. Contract Report
APPENDIX A

Figure 1. Photograph Spring Fatigue Tester

Specification Sheet, Design 1, USAWECOM 7-Wire Strand Spring

Drawing B53099-10209, Design 2, 3-Wire Strand Spring Used in Series Combination

Drawing B53099-10278, Design 2, Single-Wire Spring Used in Series Combination

Drawing B53099-10096, Design 3, 3-Wire Strand Spring

Drawing B53099-10099, Design 4, 7-Wire Strand Spring

Drawing B53099-10114, Design 5, 3-Wire Strand Spring

Drawing B53099-10135, Design 6, 3-Wire Strand Spring

Specification Sheet, Design 8, USAWECOM, 14-Wire Strand Spring

<table>
<thead>
<tr>
<th>TABLE</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Test Results, Spring Design 1</td>
</tr>
<tr>
<td>II</td>
<td>Test Results, Spring Design 2</td>
</tr>
<tr>
<td>III</td>
<td>Test Results, Spring Design 3</td>
</tr>
<tr>
<td>IV</td>
<td>Test Results, Spring Design 4</td>
</tr>
<tr>
<td>V</td>
<td>Test Results, Spring Design 5</td>
</tr>
<tr>
<td>VI</td>
<td>Test Results, Spring Design 6</td>
</tr>
<tr>
<td>VII</td>
<td>Test Results, Spring Design 7</td>
</tr>
<tr>
<td>VIII</td>
<td>Test Results, Spring Design 8</td>
</tr>
</tbody>
</table>
DESIGN 1

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wire Size</td>
<td>.029* .026*</td>
</tr>
<tr>
<td>Outside Diameter (in.)</td>
<td>.440 ± .007</td>
</tr>
<tr>
<td>Total Coils</td>
<td>63</td>
</tr>
<tr>
<td>Type of Ends</td>
<td>Closed and Silver-Soldered</td>
</tr>
<tr>
<td>Free Height, Approx. (in.)</td>
<td>14.78</td>
</tr>
<tr>
<td>Mean Assembled Height (in.)</td>
<td>9.600</td>
</tr>
<tr>
<td>Load at Mean Assembled Height (lb)</td>
<td>10.0 ± 1.0</td>
</tr>
<tr>
<td>Minimum Operating Height (in.)</td>
<td>5.600</td>
</tr>
<tr>
<td>Load at Minimum Operating Height (lb)</td>
<td>28.0 ± 4.0</td>
</tr>
<tr>
<td>Load - Deflection Rate (lb/in.)</td>
<td>2.0</td>
</tr>
<tr>
<td>Maximum Solid Height (in.)</td>
<td>5.50</td>
</tr>
<tr>
<td>Spring Helix</td>
<td>R. H.</td>
</tr>
</tbody>
</table>

MATERIAL. Music Wire QQ 470

STRESS RELIEVE. Heat at 450° ± 25° for 30 minutes

PRESET. Compress to solid height 3 times prior to gaging

* .029 is diameter of core wire
* .026 is diameter of outer wire
Design 2

Two-Piece Spring in Series

Dimensions

<table>
<thead>
<tr>
<th>11</th>
<th>21</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>10099-10267</td>
<td>DRIVE SPRING</td>
<td></td>
</tr>
<tr>
<td>ECON TRM</td>
<td>MATERIAL: MUSIC WIRE</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>APP</td>
<td>B: NO97384, 53099-10278</td>
</tr>
<tr>
<td>A</td>
<td>APPLICATION</td>
<td></td>
</tr>
</tbody>
</table>

- WIRE SIZE: .059 DIA. MUSIC WIRE
- O.D.: .430 ±.005
- I.D.: .302 DIA. MIN.
- SPRING MOUNTED LEFT HAND

Notes:

- 2 CLOSED COILS EACH END, BEFORE GRINDING FLAT.
- SILVER SOLDER ALL AROUND 2 END COILS BOTH ENDS.

- Sheet / 6 /
WIRE SIZE: .032±.0005 DIA. MUSIC WIRE (7 STRANDS)
COIL O.D. -- .500
FREE LENGTH "H" -- 13.25
TOTAL NO. COILS -- 50 (48 ACTIVE COILS)
ENDS CLOSED -- NOT GROUND
STRAND DIA -- .037 (REF. 7 STRANDS)
TO WORK OVER .366 DIA. ROD
SOLID HEIGHT -- .580
DEFLECTION .050 WITH 9.7 LBS. LOAD

NOTES:
1. EMBRITTLEMENT RELIEF: MIL-W-6875.
2. MATERIAL: MUSIC WIRE, OIL TEMPERED, QQ-W-620.
3. SOLDER OR BRAZE BOTH ENDS OF EXPOSED WIRE.

DIMENSIONS ARE IN INCHES AFTER FLARING. TO:
ANG CO.
DEC 2,082-
OWNERSHIP INDEX:
3 PLACE 13 PLACE

MATERIAL: APP
APPLICATION: APP

TWISTED WIRE SPRING
DRIVE (7 STRAND)

REFERENCE SCALE:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DESIGN 4

A.97384 53099-10099
STRESS RELIEVE AFTER COILING AT 310°F FOR 1 HOUR.

1. SILICON CHROME WIRE, OIL TEMP, SAE 8734
2. SOLDER OR BRAZE BOTH ENDS OF EXPOSED WIRE.

WIRE SIZE .034 .005 DIA
O.D. .035 .005
LENGTH 17.31
TOTAL NO. COILS 79
ENDS CLOSED NOT GROUND
STRAND DIA .073 REF
WORKS OVER .300 DIA. ROD
SOLID HEIGHT 5.77
DEFLECTION 7.68 WITH 10.7 LBS LOAD

DESIGN 5
NOTES:
1. MATERIAL: TITANIUM WIRE,
 (Ti-13V-11Cr-3Al).
2. STRESS RELIEVE AFTER COILING.
3. SOLDER OR BRAKE BOTH ENDS OF EXPOSED WIRE.
USAWE.COM DESIGN

14-WIRE STRAND SPIW DRIVE SPRING

DESIGN 8

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wire Size (in.)</td>
<td>.020</td>
</tr>
<tr>
<td>Outside Diameter (in.)</td>
<td>.440 ± .007</td>
</tr>
<tr>
<td>Total Coils</td>
<td>60</td>
</tr>
<tr>
<td>Type of Ends</td>
<td>Closed and Silver-Soldered</td>
</tr>
<tr>
<td>Free Height, Approx. (in.)</td>
<td>19.53</td>
</tr>
<tr>
<td>Mean Assembled Height (in.)</td>
<td>9.60</td>
</tr>
<tr>
<td>Load at Mean Assembled Height (lb)</td>
<td>10.0 ± 1.0</td>
</tr>
<tr>
<td>Minimum Operating Height (in.)</td>
<td>5.60</td>
</tr>
<tr>
<td>Load at Minimum Operating Height (lb)</td>
<td>28.0 ± 4.0</td>
</tr>
<tr>
<td>Load - Deflection Rate (lb/in.)</td>
<td>1.12</td>
</tr>
<tr>
<td>Maximum Solid Height (in.)</td>
<td>5.55</td>
</tr>
<tr>
<td>Spring Helix</td>
<td>R. H.</td>
</tr>
</tbody>
</table>

MATERIAL. Stainless Steel, Type 302

STRESS RELIEVE. Heat at 900° ± 25° for 30 minutes

PRESET. Compress to solid height 3 times prior to gaging
<table>
<thead>
<tr>
<th>NO. OF CYCLES</th>
<th>ORIGINAL</th>
<th>1000</th>
<th>2000</th>
<th>3000</th>
<th>4000</th>
<th>5000</th>
<th>6000</th>
<th>7000</th>
<th>8000</th>
<th>9000</th>
<th>10,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free Height</td>
<td></td>
</tr>
<tr>
<td>SPRING 1</td>
<td>P Ø 9.6"</td>
<td>12.0</td>
<td>10.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P Ø 5.6"</td>
<td>31.0</td>
<td>28.8</td>
<td>26.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPRING 2</td>
<td>P Ø 9.6"</td>
<td>11.3</td>
<td>10.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P Ø 5.6"</td>
<td>30.3</td>
<td>25.6</td>
<td>24.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPRING 3</td>
<td>P Ø 9.6"</td>
<td>10.4</td>
<td>9.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P Ø 5.6"</td>
<td>26.4</td>
<td>23.0</td>
<td>23.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPRING 4</td>
<td>P Ø 9.6"</td>
<td>10.6</td>
<td>10.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P Ø 5.6"</td>
<td>25.0</td>
<td>23.0</td>
<td>23.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPRING 5</td>
<td>P Ø 9.6"</td>
<td>10.6</td>
<td>10.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P Ø 5.6"</td>
<td>26.0</td>
<td>26.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPRING 6</td>
<td>P Ø 9.6"</td>
<td>10.6</td>
<td>10.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P Ø 5.6"</td>
<td>27.0</td>
<td>25.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPRING 7</td>
<td>P Ø 9.6"</td>
<td>11.6</td>
<td>10.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P Ø 5.6"</td>
<td>28.8</td>
<td>25.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPRING 8</td>
<td>P Ø 9.6"</td>
<td>11.6</td>
<td>10.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P Ø 5.6"</td>
<td>27.3</td>
<td>26.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

USNECON DESIGN

7-WIRE STAND, NICKEL WIRE MATERIAL

EXPERIMENTAL SPIN ORIVE SPRINGS

AMOUNT LOSS

<table>
<thead>
<tr>
<th>NO. OF CYCLES</th>
<th>ORIGINAL</th>
<th>1000</th>
<th>2000</th>
<th>3000</th>
<th>4000</th>
<th>5000</th>
<th>6000</th>
<th>7000</th>
<th>8000</th>
<th>9000</th>
<th>10,000</th>
<th>AMOUNT OF LOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHORT SPRING 1</td>
<td></td>
</tr>
<tr>
<td>Free Height</td>
<td>3.00</td>
<td>0.00</td>
</tr>
<tr>
<td>LOAD IN SERIES P @ 9.6"</td>
<td>22.2 lb.</td>
<td>17.8</td>
<td>17.8</td>
<td>17.8</td>
<td>17.8</td>
<td>17.8</td>
<td>16.4</td>
<td>16.4</td>
<td>16.4</td>
<td>16.4</td>
<td>16.4</td>
<td>5.8</td>
</tr>
<tr>
<td>LOAD IN SERIES P @ 6.25</td>
<td>34.4 lb.</td>
<td>32.7</td>
<td>32.7</td>
<td>32.7</td>
<td>32.7</td>
<td>32.7</td>
<td>32.4</td>
<td>32.4</td>
<td>32.4</td>
<td>32.4</td>
<td>32.4</td>
<td>2.0</td>
</tr>
<tr>
<td>SHORT SPRING 1</td>
<td></td>
</tr>
<tr>
<td>Free Height</td>
<td>3.00</td>
<td>2.93</td>
<td>2.87</td>
</tr>
<tr>
<td>LONG SPRING 1</td>
<td>16.34</td>
<td>15.20</td>
<td>15.16</td>
<td>15.08</td>
<td>14.94</td>
<td>14.86</td>
<td>14.86</td>
<td>14.80</td>
<td>14.80</td>
<td>14.78</td>
<td>14.78</td>
<td>.56</td>
</tr>
<tr>
<td>LOAD IN SERIES P @ 9.6"</td>
<td>20.8</td>
<td>17.0</td>
<td>17.0</td>
<td>17.0</td>
<td>16.6</td>
<td>16.3</td>
<td>16.1</td>
<td>15.8</td>
<td>15.8</td>
<td>15.8</td>
<td>15.8</td>
<td>5.0</td>
</tr>
<tr>
<td>LOAD IN SERIES P @ 6.25</td>
<td>33.7</td>
<td>30.7</td>
<td>30.7</td>
<td>29.3</td>
<td>28.7</td>
<td>28.7</td>
<td>28.5</td>
<td>28.5</td>
<td>28.5</td>
<td>28.5</td>
<td>28.0</td>
<td>5.7</td>
</tr>
<tr>
<td>NO. OF CYCLES</td>
<td>ORIGINAL</td>
<td>1000</td>
<td>2000</td>
<td>3000</td>
<td>4000</td>
<td>5000</td>
<td>6000</td>
<td>7000</td>
<td>8000</td>
<td>9000</td>
<td>10,000</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>----------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>Free Height</td>
<td>P @ 9.6"</td>
<td>17.80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P @ 6.25</td>
<td>17.60</td>
<td></td>
</tr>
<tr>
<td>SPRING 1</td>
<td></td>
<td>17.60</td>
<td></td>
</tr>
<tr>
<td>Free Height</td>
<td>P @ 9.6"</td>
<td>17.60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P @ 6.25</td>
<td>17.60</td>
<td></td>
</tr>
<tr>
<td>SPRING 2</td>
<td></td>
<td>17.60</td>
<td></td>
</tr>
<tr>
<td>Free Height</td>
<td>P @ 9.6"</td>
<td>17.60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P @ 6.25</td>
<td>17.60</td>
<td></td>
</tr>
<tr>
<td>SPRING 3</td>
<td></td>
<td>17.60</td>
<td></td>
</tr>
<tr>
<td>Free Height</td>
<td>P @ 9.6"</td>
<td>17.60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P @ 6.25</td>
<td>17.60</td>
<td></td>
</tr>
<tr>
<td>NO. OF CYCLES</td>
<td>ORIGINAL</td>
<td>1000</td>
<td>2000</td>
<td>3000</td>
<td>4000</td>
<td>5000</td>
<td>6000</td>
<td>7000</td>
<td>8000</td>
<td>9000</td>
<td>10,000</td>
<td>AMOUNT LOSS</td>
</tr>
<tr>
<td>---------------</td>
<td>----------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>Free Height</td>
<td>13.00 in.</td>
<td>12.96</td>
<td>12.96</td>
<td>12.96</td>
<td>12.96</td>
<td>12.96</td>
<td>12.94</td>
<td>12.94</td>
<td>12.94</td>
<td>12.94</td>
<td>12.94</td>
<td>.06</td>
</tr>
<tr>
<td>SPRING 1</td>
<td>10.8 lb.</td>
<td>10.6</td>
<td>.2</td>
</tr>
<tr>
<td>P Ø 6.25</td>
<td>29.0 lb.</td>
<td>29.0</td>
<td>0</td>
</tr>
<tr>
<td>SPRING 2</td>
<td>11.6</td>
<td>.0</td>
</tr>
<tr>
<td>P Ø 6.25</td>
<td>32.3</td>
<td>31.8</td>
<td>31.8</td>
<td>31.8</td>
<td>31.8</td>
<td>31.3</td>
<td>31.0</td>
<td>31.0</td>
<td>31.0</td>
<td>31.0</td>
<td>31.0</td>
<td>1.3</td>
</tr>
<tr>
<td>Free Height</td>
<td>13.20</td>
<td>12.70</td>
<td>.50</td>
</tr>
<tr>
<td>SPRING 3</td>
<td>13.6</td>
<td>11.6</td>
<td>2.0</td>
</tr>
<tr>
<td>P Ø 6.25</td>
<td>27.0</td>
<td>24.6</td>
<td>2.4</td>
</tr>
<tr>
<td>NO. OF CYCLES</td>
<td>ORIGINAL</td>
<td>1000</td>
<td>2000</td>
<td>3000</td>
<td>4000</td>
<td>5000</td>
<td>6000</td>
<td>7000</td>
<td>8000</td>
<td>9000</td>
<td>10,000</td>
<td>Amount Loss</td>
</tr>
<tr>
<td>---------------</td>
<td>----------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>Free Height</td>
<td>17.04 in.</td>
<td>17.00</td>
<td>17.00</td>
<td>17.00</td>
<td>16.94</td>
<td>16.94</td>
<td>16.92</td>
<td>16.92</td>
<td>16.92</td>
<td>16.92</td>
<td>16.92</td>
<td>.12</td>
</tr>
<tr>
<td>SPRING 1</td>
<td>P @ 9.6"</td>
<td>11.3 lb.</td>
<td>10.8</td>
<td>10.8</td>
<td>10.8</td>
<td>10.6</td>
<td>10.6</td>
<td>10.6</td>
<td>10.6</td>
<td>10.6</td>
<td>10.6</td>
<td>.2</td>
</tr>
<tr>
<td></td>
<td>P @ 6.25</td>
<td>20.3 lb.</td>
<td>19.8</td>
<td>19.8</td>
<td>19.0</td>
<td>19.0</td>
<td>19.0</td>
<td>19.0</td>
<td>18.8</td>
<td>18.8</td>
<td>18.8</td>
<td>1.5</td>
</tr>
<tr>
<td>Free Height</td>
<td>17.10</td>
<td>17.06</td>
<td>17.06</td>
<td>17.02</td>
<td>17.02</td>
<td>17.02</td>
<td>17.02</td>
<td>17.02</td>
<td>17.02</td>
<td>17.02</td>
<td>17.02</td>
<td>.08</td>
</tr>
<tr>
<td>SPRING 2</td>
<td>P @ 9.6"</td>
<td>11.6</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>.6</td>
</tr>
<tr>
<td></td>
<td>P @ 6.25</td>
<td>19.8</td>
<td>19.8</td>
<td>19.7</td>
<td>19.8</td>
<td>19.8</td>
<td>19.8</td>
<td>19.8</td>
<td>19.8</td>
<td>19.8</td>
<td>19.8</td>
<td>.0</td>
</tr>
<tr>
<td>Free Height</td>
<td>17.48</td>
<td>17.40</td>
<td>17.40</td>
<td>17.40</td>
<td>17.40</td>
<td>17.40</td>
<td>17.38</td>
<td>17.38</td>
<td>17.38</td>
<td>17.38</td>
<td>17.38</td>
<td>.10</td>
</tr>
<tr>
<td>SPRING 3</td>
<td>P @ 9.6"</td>
<td>13.3</td>
<td>12.0</td>
<td>12.0</td>
<td>12.0</td>
<td>11.8</td>
<td>11.8</td>
<td>11.8</td>
<td>11.8</td>
<td>11.8</td>
<td>11.8</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td>P @ 6.25</td>
<td>24.6</td>
<td>22.5</td>
<td>22.5</td>
<td>22.5</td>
<td>22.5</td>
<td>22.5</td>
<td>22.5</td>
<td>22.5</td>
<td>22.5</td>
<td>22.5</td>
<td>2.1</td>
</tr>
<tr>
<td>NO. OF CYCLES</td>
<td>ORIGINAL</td>
<td>1000</td>
<td>2000</td>
<td>3000</td>
<td>4000</td>
<td>5000</td>
<td>6000</td>
<td>7000</td>
<td>8000</td>
<td>9000</td>
<td>10,000</td>
<td>AMOUNT LOSS</td>
</tr>
<tr>
<td>---------------</td>
<td>----------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>Free Height</td>
<td></td>
</tr>
<tr>
<td>SPRING 1</td>
<td></td>
</tr>
<tr>
<td>P @ 9.6"</td>
<td>8.6 lb.</td>
<td>8.6</td>
<td>8.6</td>
<td>8.6</td>
<td>8.6</td>
<td>8.3</td>
<td>8.3</td>
<td>8.3</td>
<td></td>
<td></td>
<td></td>
<td>.3</td>
</tr>
<tr>
<td>P @ 6.25</td>
<td>18.8 lb.</td>
<td>18.8</td>
<td>18.8</td>
<td>18.8</td>
<td>18.8</td>
<td>18.8</td>
<td>18.8</td>
<td>18.8</td>
<td></td>
<td></td>
<td></td>
<td>.0</td>
</tr>
<tr>
<td>Free Height</td>
<td></td>
</tr>
<tr>
<td>SPRING 2</td>
<td></td>
</tr>
<tr>
<td>P @ 9.6"</td>
<td>8.6</td>
<td>8.3</td>
<td>8.3</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td></td>
<td></td>
<td></td>
<td>.6</td>
</tr>
<tr>
<td>P @ 6.25</td>
<td>19.0</td>
<td>18.8</td>
<td>18.8</td>
<td>18.8</td>
<td>18.8</td>
<td>18.6</td>
<td>18.6</td>
<td>18.6</td>
<td></td>
<td></td>
<td></td>
<td>.4</td>
</tr>
<tr>
<td>Free Height</td>
<td></td>
</tr>
<tr>
<td>SPRING 3</td>
<td></td>
</tr>
<tr>
<td>P @ 9.6"</td>
<td>8.0</td>
<td>7.8</td>
<td>7.8</td>
<td>7.8</td>
<td>7.8</td>
<td>7.8</td>
<td>7.8</td>
<td>7.8</td>
<td></td>
<td></td>
<td></td>
<td>.2</td>
</tr>
<tr>
<td>P @ 6.25</td>
<td>18.6</td>
<td>18.6</td>
<td>18.6</td>
<td>18.6</td>
<td>18.3</td>
<td>18.3</td>
<td>17.8</td>
<td>17.8</td>
<td></td>
<td></td>
<td></td>
<td>.8</td>
</tr>
<tr>
<td>NO. OF CYCLES</td>
<td>ORIGINAL</td>
<td>1000</td>
<td>2000</td>
<td>3000</td>
<td>4000</td>
<td>5000</td>
<td>6000</td>
<td>7000</td>
<td>8000</td>
<td>9000</td>
<td>10,000</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>----------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>Free Height</td>
<td></td>
<td>.42</td>
<td></td>
</tr>
<tr>
<td>P 0 9.6°</td>
<td>17.62 in.</td>
<td>17.48</td>
<td>17.46</td>
<td>17.30</td>
<td>17.30</td>
<td>17.30</td>
<td>17.30</td>
<td>17.20</td>
<td>17.20</td>
<td>17.20</td>
<td>17.20</td>
<td></td>
</tr>
<tr>
<td>SPRING 1</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>P 0 6.25</td>
<td>11.5 lb.</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>10.5</td>
<td>10.5</td>
<td>10.5</td>
<td>10.5</td>
<td>10.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20.3 lb.</td>
<td>19.7</td>
<td>19.7</td>
<td>19.7</td>
<td>19.7</td>
<td>19.7</td>
<td>19.7</td>
<td>19.3</td>
<td>19.3</td>
<td>19.3</td>
<td>19.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>NO. OF CYCLES</td>
<td>ORIGINAL</td>
<td>1000</td>
<td>2000</td>
<td>3000</td>
<td>4000</td>
<td>5000</td>
<td>6000</td>
<td>7000</td>
<td>8000</td>
<td>9000</td>
<td>10,000</td>
<td>AMOUNT</td>
</tr>
<tr>
<td>---------------</td>
<td>----------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>Free Height</td>
<td>19.14 in.</td>
<td>19.0</td>
<td>19.0</td>
<td>18.98</td>
<td>18.98</td>
<td>18.98</td>
<td>18.98</td>
<td>18.98</td>
<td>18.98</td>
<td>18.98</td>
<td>18.98</td>
<td>.16</td>
</tr>
<tr>
<td>SPRING 1</td>
<td></td>
</tr>
<tr>
<td>P @ 9.6"</td>
<td>12.8 lb.</td>
<td>11.0</td>
<td>10.4</td>
<td>10.0</td>
<td>9.7</td>
<td>9.5</td>
<td>9.5</td>
<td>9.5</td>
<td>9.5</td>
<td>9.5</td>
<td>9.5</td>
<td>3.3</td>
</tr>
<tr>
<td>P @ 7.0</td>
<td>14.0 lb.</td>
<td>14.0</td>
<td>13.0</td>
<td>12.0</td>
<td>12.0</td>
<td>12.0</td>
<td>12.0</td>
<td>12.0</td>
<td>12.0</td>
<td>12.0</td>
<td>12.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Free Height</td>
<td>18.16</td>
<td>17.96</td>
<td>17.94</td>
<td>17.94</td>
<td>17.94</td>
<td>17.94</td>
<td>17.92</td>
<td>17.92</td>
<td>17.92</td>
<td>17.92</td>
<td>17.92</td>
<td>.24</td>
</tr>
<tr>
<td>SPRING 2</td>
<td></td>
</tr>
<tr>
<td>P @ 9.6"</td>
<td>12.0</td>
<td>11.5</td>
<td>.5</td>
</tr>
<tr>
<td>P @ 7.0</td>
<td>16.0</td>
<td>15.0</td>
<td>15.0</td>
<td>14.5</td>
<td>14.5</td>
<td>14.5</td>
<td>14.5</td>
<td>14.5</td>
<td>14.5</td>
<td>14.5</td>
<td>14.5</td>
<td>1.5</td>
</tr>
</tbody>
</table>
APPENDIX B

Report, "Dynamic Response of Springs," on the study performed at the University of Illinois under Contract DAAF03-69-C-0092
DYNAMIC RESPONSE OF SPRINGS

Introduction

In many problems of engineering significance, which involve the dynamics of springs, the mass of the spring can be neglected and it is usually assumed that the spring is linear. These assumptions allow one to formulate the problem so that in many cases a mathematical solution is possible. The problem, however, becomes much more complex if one considers the mass of the spring and assumes that large displacements are possible.

A. E. H. Love presents expressions for the static response of helical springs subjected to large deflections. In a more recent work, Curt I. Johnson lists formulas and derivations of a design procedure for dynamically loaded extension and compression springs. In an article by J. Dick, the analysis of a simple shock wave in a helical spring is discussed. R. Geballe, reviews a theory presented by Krebs and Weidlich. This treatment is correct only when the spring extensions lie in a limited region near the unloaded length. N. J. Durant derives an expression for the stress in a dynamically loaded spring in compression when the helix angle is small. In a paper by Y. Kagawa, the longitudinal and the torsional vibrations of helical springs of finite length with small pitch are analyzed. A wide-band, short-duration, pulse technique is used by W. Britton and G. Langley to investigate the stress wave propagation in helical springs. In a paper by B. L. Johnson and E. E. Stewart, transfer functions are presented for helical springs.

Theory

As far as the static response of a spring is concerned, the following can be written:

\[\Delta = f_1 (F, T, E, v, h, c, r, p) \] (1)

where

\[\Delta = \text{deflection of the spring from its unstretched length (see Fig. 1)} \]

\[F = \text{axial force in the spring} \]

*Numbers in parentheses refer to List of References.
Twisting moment applied to the spring
modulus of elasticity
Poisson's ratio
unstretched length of the spring
radius of the circular cross section of the wire
radius of the spring in its unstretched position
and
pitch of the spring in its unstretched position.

Also,

θ = f₂ (F, T, E, v, h, c, r, p) \tag{2}

where

θ = angle of twist of the spring.

It should be noted that the cross section of the wire is assumed to be circular. If this is not the case, then a characteristic length should be used instead of r. If, for example, a square cross sectional wire were being considered, the length of a side would be used.

Equation (1) can be written, after applying the theory of dimensional analysis, in the following form:

\[\frac{\Delta}{r} = f₃ \left(\frac{F}{Er^2}, \frac{T}{Er^3}, v, \frac{c}{r}, \frac{p}{r}, \frac{h}{r} \right) \tag{3} \]

However, since \(\Delta \) is a linear function of h, Eq. (3) can be reduced to

\[\frac{\Delta}{h} = f₄ \left(\frac{F}{Er^2}, \frac{T}{Er^3}, v, \frac{c}{r}, \frac{p}{r} \right) \tag{4} \]

Similar remarks can be made concerning Eq. (2) and, hence,

\[\frac{\theta r}{h} = f₅ \left(\frac{F}{Er^2}, \frac{T}{Er^3}, v, \frac{c}{r}, \frac{p}{r} \right) \tag{5} \]

For a given spring, v, \(\frac{c}{r} \) and \(\frac{p}{r} \) are constants and therefore, Eq. (4) and (5) can be written as:

\[\frac{\Delta}{h} = \epsilon = f₆ \left(\frac{F}{Er^2}, \frac{T}{Er^3} \right) \tag{6} \]

\[\frac{\theta r}{h} = \beta = f₇ \left(\frac{F}{Er^2}, \frac{T}{Er^3} \right) \tag{7} \]
where
\[\epsilon = \frac{\Delta}{h} \] = strain in the spring

and
\[\beta = \frac{\theta_r}{h} \] = rotational strain in the spring.

If Eq. (6) and (7) are solved for T and F, the following results:
\[\frac{T}{Er^2} = f(\epsilon, \beta) \] (8)

and
\[\frac{T}{Er^3} = g(\epsilon, \beta) \] (9)

The equations which determine the dynamic response of a spring will now be derived. Figure 2 shows an element of the spring of original length \(dx \) at the original position \(x \) and then shows the same element of the spring at time \(t \). A summation of forces in the \(x \) direction yields:
\[\frac{\partial F}{\partial \epsilon} \frac{\partial^2 u}{\partial x^2} \frac{\partial \phi}{\partial \beta} \frac{\partial^2 \phi}{\partial x^2} = \frac{M}{h} \frac{\partial^2 u}{\partial t^2} \] (10)

where
- \(u = u(x, t) \) = displacement of the spring
- \(\phi = \phi(x, t) \) = rotation of the spring about the \(x \) axis
- \(\epsilon = \frac{\partial u}{\partial x} \) = strain in the spring
- \(\beta = \frac{\partial \phi}{\partial x} \) = rotational strain in the spring

and
- \(M \) = total mass of the spring.

A summation of moments about the \(x \) axis yields:
\[\frac{\partial T}{\partial \epsilon} \frac{\partial^2 u}{\partial x^2} \frac{\partial \phi}{\partial \beta} \frac{\partial^2 \phi}{\partial x^2} = \frac{Mr^2}{h} \frac{u^2 \phi}{\partial t^2} \] (11)
Equations (8) and (9) determine the static response of springs. It will now be assumed that the static equations can be used to calculate the coefficients in the dynamic equations (10) and (11). If one considers a thin wire helical spring, Eqs. (8) and (9) can be determined from a theory given by Love. The following equations can be written from the general theory of bending and twisting of thin rods in Love's work:

\[
\frac{Fr^2}{EI} = \frac{r}{r_1} \cos a_1 \left[\frac{r}{r_1} \sin a_1 \cos a_1 - \sin a \cos a \right] - \frac{r}{r_1} \sin a_1 \left[\frac{r}{r_1} \cos^2 a_1 - \cos^2 a \right]
\]

(12)

and

\[
\frac{Tr}{EI} = \frac{\sin a_1}{(1 + \nu)} \left[\frac{r}{r_1} \sin a_1 \cos a_1 - \sin a \cos a \right] + \cos a_1 \left[\frac{r}{r_1} \cos^2 a_1 - \cos^2 a \right]
\]

(13)

where

- \(I \) = moment of inertia of the circular cross section
- \(r \) = initial radius of the cylinder on which the helix lies
- \(r_1 \) = final radius of the cylinder on which the helix lies
- \(a \) = initial angle which the tangent makes with a plane perpendicular to the axis of the helix
- \(a_1 \) = final angle which the tangent makes with a plane perpendicular to the axis of the helix.

If the initial pitch of the spring is \(p \), then

\[
p = 2\pi r \tan a.
\]

(14)

The final pitch \(p_1 \) is given by the expression

\[
p_1 = 2\pi r_1 \tan a_1.
\]

(15)

Equations (12) and (13) determine the static response of a helical spring.
The geometric relation between the length of the wire \(L \) and the unstretched length of the spring \(h \) is

\[h = L \sin a \] \hspace{1cm} (16)

If the change in length of the wire is neglected, the following expression can be written

\[h_1 = L \sin a_1 \] \hspace{1cm} (17)

where \(h_1 \) is the final length of the spring and hence

\[\Delta = h_1 - h = L (\sin a_1 - \sin a) \] \hspace{1cm} (18)

The geometric relation between the length \(h \), the radius \(r \) and the total helix angle \(\gamma \) is

\[\gamma = \frac{h}{r \tan a} \] \hspace{1cm} (19)

Also, the total final helix angle is

\[\gamma_1 = \frac{h_1}{r_1 \tan a_1} \] \hspace{1cm} (20)

Hence the angle of twist is given by the expression

\[\theta = \gamma_1 - \gamma = L \left[\frac{\cos a_1}{r_1} - \frac{\cos a}{r} \right] \] \hspace{1cm} (21)

Equation (18) and (21) can be written in the following dimensionless form:

\[\frac{\Delta}{h} = \frac{\sin a_1}{\sin a} - 1 \] \hspace{1cm} (22)

and

\[\frac{\theta r}{h} = \frac{1}{\sin a} \frac{r}{r_1} \cos a_1 - \cos a \] \hspace{1cm} (23)

The curvature \(K \) and the torsion \(\tau \) of a helix are given by the following equations

\[K = \frac{\cos^2 a}{r} \] \hspace{1cm} (24)

and

31
\[\tau = \frac{\sin a \cos a}{r} \]

Also

\[K_1 = \frac{\cos^2 a_1}{r_1} \]

and

\[\tau_1 = \frac{\sin a_1 \cos a_1}{r_1} \]

where \(K_1 \) is the final curvature and \(\tau_1 \) is the final torsion. The bending moment \(M \) and the torque \(\mathcal{T} \) in the spring are related to the curvature \(K \) and the torsion \(\tau \) by the equations

\[M = EI (K_1 - K) \]

and

\[\mathcal{T} = GJ (r_1 - \tau) \]

where \(J \) is the polar moment of inertia and \(G \) is the modulus of rigidity in shear. Hence, using strength of materials formulas for the bending and torsional stresses, \(\sigma \) and \(S \), the following results:

\[\sigma = \frac{Mc}{I} = Ec \left[\frac{\cos^2 a_1}{r_1} - \frac{\cos^2 a}{r} \right] \]

and

\[S = \frac{Tc}{J} = Gc \left[\frac{\sin a_1 \cos a_1}{r_1} - \frac{\sin a \cos a}{r} \right] \]

Equations (30) and (31) can be written in the following dimensionless form:

\[\sigma = \frac{c}{E} \left[\frac{r}{r_1} \cos^2 a_1 - \cos^2 a \right] \]

and

\[S = \frac{c}{2r (1 + \nu)} \left[\frac{r}{r_1} \sin a_1 \cos a_1 - \sin a \cos a \right] \]
Several plots of the preceding equations are shown in Fig. 3, 4, 5, 6, 7, 8, 9 and 10.

The quantities $\frac{\partial F}{\partial e}$, $\frac{\partial F}{\partial \theta}$, $\frac{\partial T}{\partial e}$ and $\frac{\partial T}{\partial \theta}$, which occur in the dynamic equations (10) and (11), will now be determined from the static equations. Since

$$
epsilon = \frac{\sin a}{\sin a_1} - 1 \quad (34)$$

and

$$\beta = \frac{1}{\sin a} \left[\frac{r}{r_1} \cos a_1 - \cos a \right] \quad (35)$$

equations (12) and (13) can be written as

$$\frac{Pr}{Bl} = \left(\beta \sin a + \cos a \right) \sin a \left[-\nu \left(\frac{1 + \varepsilon}{1 + \nu} \right) \left(\beta \sin a + \cos a \right) \right]$$

$$+ \frac{(1 + \varepsilon) \cos^2 a}{\sqrt{1 - (1 + \varepsilon)^2 \sin^2 a}} - \frac{\cos a}{(1 + \nu)} \quad (36)$$

and

$$\frac{Pr}{Bl} = \left(\frac{1 + \varepsilon}{1 + \nu} \right) \sin^2 a \left[(1 + \varepsilon) \left(\beta \sin a + \cos a \right) - \cos a \right]$$

$$+ \left(\beta \sin a + \cos a \right) \left[1 - (1 + \varepsilon)^2 \sin^2 a \right]$$

$$\sqrt{1 - (1 + \varepsilon)^2 \sin^2 a} \cos^2 a \quad (37)$$

Hence Eq. (36) and (37) yield:

$$\frac{r^2}{Bl} \frac{\partial F}{\partial e} = \left(\beta \sin a + \cos a \right) \sin a \left[-\nu \left(\frac{1 + \varepsilon}{1 + \nu} \right) \left(\beta \sin a + \cos a \right) \right]$$

$$+ \frac{\cos^2 a}{\left[1 - (1 + \varepsilon)^2 \sin^2 a \right]^{3/2}} \quad (38)$$

$$\frac{r^2}{Bl} \frac{\partial F}{\partial \theta} = \frac{r}{Bl} \frac{\partial T}{\partial e} = \sin^2 a \left[\left(\frac{1 + \varepsilon}{1 + \nu} \right) \cos^2 a \right]$$

$$\sqrt{1 - (1 + \varepsilon)^2 \sin^2 a}$$

$$- \frac{\cos a}{(1 + \nu)} \left[\frac{1 + \varepsilon}{1 + \nu} \nu \left(\beta \sin a + \cos a \right) \right] \quad (39)$$

and
\[
\frac{r}{EI} \frac{\partial T}{\partial \theta} = \sin \alpha \left[1 - \frac{\nu (1 + \epsilon)^2}{(1 + \nu)} \sin^2 \alpha \right]
\]

Letting

\[
\frac{r}{h} = \frac{\bar{r}}{h}
\]

\[
\frac{x}{h} = \frac{\bar{x}}{x}
\]

\[
\frac{u}{h} = \frac{\bar{u}}{u}
\]

\[
\sqrt{\frac{M h r^2}{EI}} = \bar{t}
\]

and

\[
\frac{\bar{r}}{h} \phi = \bar{\nu},
\]

Eq. (10) and (11) become

\[
\frac{r^2}{EI} \frac{\partial^2 F}{\partial \epsilon^2} \frac{\partial^2 \bar{u}}{\partial \epsilon^2} + \frac{r^2}{EI} \frac{\partial^2 F}{\partial \theta^2} \frac{\partial^2 \bar{u}}{\partial \alpha^2} = \frac{\partial^2 \bar{u}}{\partial \alpha^2}
\]

and

\[
\frac{r}{EI} \frac{\partial^2 F}{\partial \epsilon^2} \frac{\partial^2 \bar{v}}{\partial \epsilon^2} + \frac{r}{EI} \frac{\partial^2 F}{\partial \theta^2} \frac{\partial^2 \bar{v}}{\partial \alpha^2} = \frac{\partial^2 \bar{v}}{\partial \alpha^2}.
\]

Hence, the dynamic response of the spring reduces to the solution of Eq. (46) and (47) subject to the initial and boundary conditions. Once \(\bar{u} = \bar{u}(x, t) \) and \(\bar{v} = \bar{v}(x, t) \) are known, then the quantities \(\epsilon = \frac{\partial u}{\partial \epsilon} \) and \(\beta = \frac{\partial \phi}{\partial x} \) can be computed and hence the stresses can be determined from Eq. (32) and (33). It should be noted that in the above theory it is assumed that the coils of the spring do not touch each other.

Equations (46) and (47) are nonlinear and coupled and hence it would be advantageous if the equations could be simplified. It should be noted that in Eq. (38) and (39) the term \(\beta \) is multiplied by \(\sin \alpha \). For most springs \(\alpha \) is small and as can be seen from Fig. 4, the term \(\beta \) is small for the static case with zero \(T \). Hence the term \(\beta \sin \alpha \) will be neglected in the case of springs which are impacted by a mass. It also seems reasonable to assume that in the case the term \(\frac{r}{EI} \frac{\partial F}{\partial \epsilon} \) is a constant and is given by the equation
\[
\frac{r}{EI} \frac{\partial F}{\partial \varepsilon} = \sin a \left[1 - \frac{\nu}{(1+\nu)} \cos^2 a \right]
\] \hspace{1cm} (48)

Neglecting the term \(\frac{r}{EI} \frac{\partial F}{\partial \varepsilon} \frac{\partial^2 \nu}{\partial x^2} \), Eq. (46) becomes

\[
\sin a \left[1 - \frac{\nu}{1+\nu} \cos^2 a \right] \frac{\partial^2 \bar{u}}{\partial x^2} = \frac{\partial^2 \bar{u}}{\partial t^2} \hspace{1cm} (49)
\]

which is the wave equation.

Hence, in the case of a helical spring, which is impacted by a mass, the problem reduces to the solution of Eq. (49) which satisfies the initial and boundary conditions. In order to check the validity of the above assumptions, tests were run on a helical spring which was initially compressed and impacted by a mass. The results were recorded by a streak camera. A schematic drawing of the apparatus is shown in Fig. 11.

The unstretched length of the spring was 18.25 in. and weighed 0.415 lb. The compressed length of the spring before impact was 17.70 in. Also, \(r = 0.500 \) in., \(p = 0.315 \) in. and \(c = 0.050 \) in. The spring was impacted by a mass which weighed 0.656 lb. at a velocity of about 300 in. per sec. The drum on the streak camera has a radius of 6 in. and was rotating at 2.94 revolutions per second. The results of the tests are shown in Fig. 12. Neglecting the rotation of the spring about the \(x \) axis, this figure gives the axial displacement of each element of the spring.

According to the theory, the equation

\[
a^2 \frac{\partial^2 \bar{u}}{\partial x^2} = \frac{\partial^2 \bar{u}}{\partial t^2} \hspace{1cm} (50)
\]

where \(a \) is the wave speed and

\[
a^2 = \sin a \left[1 - \frac{\nu}{1+\nu} \cos^2 a \right] \hspace{1cm} (51)
\]

has to be solved with the following initial and boundary conditions:

\[
\bar{u}(\bar{x}, 0) = \bar{x} \bar{\delta} \hspace{1cm} (52)
\]

\[
\bar{u}(\bar{x}, 0) = 0 \hspace{1cm} (53)
\]

\[
\bar{u}(0, \bar{t}) = 0 \hspace{1cm} (54)
\]

\[
\bar{u}(1, \bar{t}) = g(\bar{\delta}) \hspace{1cm} (55)
\]

Equation (52) expresses the condition that the spring has an initial displacement.
Equation (53) states that the spring has no initial velocity. Equation (54) implies no deflection at the end \(\bar{x} = 0 \) and Eq. (55) expresses the known deflection at the end \(\bar{x} = 1 \) as a function of time.

Letting

\[
\bar{u}_1 = \bar{u} - \bar{x} \delta
\]

Eq. (50), (52), (53), (54) and (55) become

\[
a^2 \frac{\partial^2 \bar{u}_1}{\partial \bar{x}^2} = \frac{\partial^2 \bar{u}_1}{\partial t^2} \tag{57}
\]

\[
\bar{u}_1 (\bar{x}, 0) = 0 \tag{58}
\]

\[
\frac{\partial \bar{u}_1}{\partial \bar{x}} (\bar{x}, 0) = 0 \tag{59}
\]

\[
\bar{u}_1 (0, t) = 0 \tag{60}
\]

\[
\bar{u}_1 (1, t) = g(t) - \delta = \bar{h}(t) \tag{61}
\]

The solution of Eq. (57) through (61) can be obtained, as shown in Fig. 12, by moving the displacement curve along the line with a velocity \(a \). The calculated position of particular point on the spring is shown in Fig. 12.

For the given spring,

\[
\tan a = \frac{p}{2\pi r} = \frac{0.315}{2\pi \times 0.5} = 0.1002
\]

Therefore \(\sin a = 0.0997, \ \cos a = 0.995 \) and \(a = 0.283 \). The time required for a disturbance to move from one end of the spring to the other is

\[
\bar{t}_1 = \frac{1}{a} = 3.53
\]

or

\[
t_1 = \bar{t}_1 \sqrt{\frac{M h \bar{x}^2}{B I}} = 0.02032 \ \text{sec}
\]

Hence, the velocity is

\[
v = \frac{17.70 \ \text{in.}}{0.02032} = 871 \ \text{in/sec} \ (\text{theory})
\]

From Fig. 12
and hence the velocity is

\[v = \frac{17.70}{0.02036} = 870 \text{ in/sec (experiment)} \]

The quantity

\[\delta = \frac{17.70 - 18.25}{18.25} = -0.0301 \]

and the time that the mass is in contact with the spring is (taken from Fig. 12)

\[\tau = \frac{9.40}{12 \times 2.94} = 0.0848 \text{ sec} \]

and hence

\[\bar{\tau} = \frac{0.0848}{\sqrt{\frac{M h r^2}{EI}}} = 14.72 \]

It should be noted, from Fig. 12, that some of the coils of the spring are in contact. This would tend to increase the stresses in the spring considerably since the area of contact is along a line. In order to examine this further, another picture was taken of the same spring in which the spring was compressed 5.50 in. before being impacted. The results are shown in Fig. 14 where the drum was rotating at 5.88 revolutions per sec. One can notice the large number of coils being compressed together thus increasing the stresses over a large length of the spring.
Summary and Conclusions

In the previous section, a theory was presented which would predict the dynamic response of springs. An experiment was performed in order to check the assumptions made in the theory. The experiment consisted of impacting a spring with a mass and recording the results with a streak camera. Figures 12 and 14 are two such recordings. In the theory, the assumption was made that the coils did not come in contact with each other. This assumption is valid if the spring is not impacted to too great an extent. As can be seen from Fig. 12 and 14, there was contact between the coils. It is felt that if the impact was not as large, their would be less discrepancy between theory and experiment. This contact between the coils occurs along a line and hence large stresses result.

In Fig. 14, where the spring was initially compressed to a large degree, contact between the coils occurred over a large portion of the spring after impact. If these stresses are in the inelastic range, a permanent shortening of the spring would result after each impact. This means that even though the stresses are below the elastic limit in the static case when the coils are just touching, the stresses can be considerably above the elastic limit in the dynamic case.

In the static case, for a given stiffness one can reduce the stresses by making the spring out of several finer wires. A considerable reduction in the torsional stresses occurs and it is felt that this would also reduce the stresses in the dynamic case.

Another method for reducing the stresses would be to construct the spring so that the cross section of the spring wire would be rectangular. This would reduce considerably the stresses due to impacting of the coils on one another since the area of contact would be much larger.

The above theory would be modified so that contact between the coils could be taken into account in the dynamic case. Also expressions could be determined which would yield an expression for the stresses. It is apparent that any additional meaningful research in this area would have to take into account the contact between the coils. This could be a possible future area of investigation.
LIST OF REFERENCES

Fig. 1

Spring Configuration
Fig. 2

Free Body Diagram for an Element of the Spring
Fig. 3
Plot of $\frac{\text{Fr}^2}{\text{Et}}$ vs. $\frac{\Delta}{h}$
Fig. 4

Plot of β vs. $\frac{\Delta}{h}$

$-\frac{\theta r}{h} = -\beta$

$a = 0.20$
$v = 0.25$
$T = 0$
Plot of $\frac{r_1}{r}$ vs. $\frac{\Delta}{h}$

Fig. 5

- $a = 0.20$
- $\nu = 0.25$

$T = 0$

$\beta = 0$
Fig. 6

Plot of $\frac{S}{E}$ vs. $\frac{\Delta}{h}$
Fig. 7

Plot of $\frac{\sigma}{E}$ vs. $\frac{\Delta}{h}$

$a = 0.20$
$\nu = 0.25$
$T = 0$

$\frac{c}{r} = 0.10$
$\frac{c}{r} = 0.08$
$\frac{c}{r} = 0.06$
$\frac{c}{r} = 0.04$
$\frac{c}{r} = 0.02$
Fig. 8

Plot of $\frac{Tr}{El}$ vs. $\frac{\Delta}{h}$
Fig. 9

Plot of $\frac{S_E}{E}$ vs. $\frac{\Delta}{h}$

$a = 0.20$
$v = 0.25$
$\beta = 0$
Fig. 10

Plot of $\frac{\sigma}{E}$ vs. $\frac{\Delta}{h}$
A Means of Triggering the Streak Camera from an Event

A Means of Triggering the Streak Camera from an Event

"A" sweep triggered when projectile passes photocell
"B" sweep triggered after preset delay

Tektronix 556 dual-beam scope

Var. delay

"A" Gate "B" Gate

Delay signal

"A" Preamp

"B" Preamp

Shutter opening relay

Shutter closing relay

Fig. 11

50
Solution of Wave Equation

Fig. 13
Fig. 14. Compressed Length of Spring = 12.75 in, Drum Speed 5.88 Revolution per sec.