UNIVERSITY OF OKLAHOMA MEDICAL CENTER

PERIPHERAL AND CARDIAC FACTORS
IN EXPERIMENTAL SEPTIC SHOCK

Lerner B. Hinshaw

Technical Report No. 42
University of Oklahoma Medical Center THEMIS Contract

This document has been approved for public release and sale; its distribution is unlimited.

Reproduction in whole or in part is permitted for any purpose of the United States Government

MEDICAL CENTER RESEARCH AND DEVELOPMENT OFFICE
OF THE UNIVERSITY OF OKLAHOMA FOUNDATION, INC.
800 Northeast Thirteenth Street
Oklahoma City, Oklahoma 73104

NATIONAL TECHNICAL INFORMATION SERVICE
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
Peripheral and Cardiac Factors in Experimental Septic Shock

Peripheral pooling mechanisms apparently predominate in the early phase of endotoxin shock in bringing about a decrease in cardiac output. Left ventricular function appears to be entirely normal and only a longer sustained period of hypotension would be expected to bring about impairment of myocardial performance. A variety of indirect mechanisms resulting from poor systemic hemodynamic status may ultimately contribute to myocardial failure in the later stages of shock.
PERIPHERAL AND CARDIAC FACTORS IN EXPERIMENTAL SEPTIC SHOCK

Lerner B. Hinshaw

Technical Report No. 42
University of Oklahoma Medical Center THEMIS Contract
August 30, 1971

Research sponsored by the Office of Naval Research
Contract N00014-68-A-0496
Project NR 105-516

Reproduction in whole or in part is permitted for any purpose of the United States Government

This document has been approved for public release and sale; its distribution is unlimited.

MEDICAL CENTER RESEARCH AND DEVELOPMENT OFFICE OF THE UNIVERSITY OF OKLAHOMA FOUNDATION, INC.
Introduction

The insidious and sometimes precipitous development of septic shock in man involves mechanisms not clearly understood. Cardiovascular changes have been reported to occur within seconds following an intravenous injection of endotoxin in dogs (5,7,19,22), and at variable times after injection of endotoxin in monkeys (8,10,13) or live E. coli organisms in the canine and primate species (3,11,14,15). Although the animal shock model has been studied extensively in recent years, the precise mechanisms involved in the early development of shock are not clearly understood. Recent emphasis has been focused on the causes of inadequate tissue perfusion in this form of shock. Of particular importance have been studies in which cardiac output decreased significantly in the early phase of shock. Several explanations have been proposed to account for the early decrease in flow and these will be the subject of this presentation.

Peripheral pooling mechanisms.

Venous return decreases in the mammalian species following administration of endotoxin (13,22) which may readily account for the reported decrease in cardiac output. Peripheral mechanisms resulting in the early sequestration of blood in various organs or anatomical regions have been described (4,6,9,12,13,16,19,22) and seem to vary with the species (12). There is evidence for hepatosplanchnic pooling in the dog (6,9,19,22), extra-hepatosplanchnic pooling in both dog and monkey (4,12,13), and pulmonary pooling in the latter species (13). There is no evidence for early pooling in skin and muscle in any species (7,16). Early sequestration of perfusate in the monkey is primarily intravascular and is apparently quite generalized according to a recent study carried out in this laboratory (8,13). Trapping of blood in the subhuman primate appears to occur not only in the pulmonary bed, but in
the capacitance vessels of the systemic circulation and in dilated pre-capillary vessels (13).

Cardiac Mechanisms

Although the evidence is strong for a significant degree of peripheral pooling of blood in the endotoxin animal model, the possibility exists that cardiac mechanisms may also be elicited to effectively diminish cardiac output in the early phase of shock. Endotoxin could conceivably poison the heart directly, or indirectly bring into play detrimental circulating factors which of themselves might depress myocardial contractility. Evidence for heart failure in endotoxin shock in animals (1,21) and septic shock in man (2,20) has been published.

The concern of this report is focused on the role of the heart in the early phase of shock before long standing effects of poor perfusion have most probably damaged the myocardium. In the latter situation, all organs would eventually fail to function. However, the present discussion is focused on the earlier period of shock which might conceivably provide insight into the role of the heart. If the heart is found to fail early, that is, within 2-4 hours after endotoxin, cardiac failure could be established as a precipitating factor in the development of irreversible shock.

Research from this laboratory has failed to provide evidence for an early detrimental action of endotoxin on the myocardium (17,18), and even the effects of systemic hypotension and acidosis after endotoxin have provided no evidence for early heart failure. Death is seen to occur in animals receiving endotoxin, but a normal heart continually exchanging blood with the shocked animal performs normally (17,18). Three hours of systemic hypotension and depressed cardiac output after endotoxin fails to elicit myocardial damage, while left ventricular
end diastolic pressure, myocardial contractility, cardiac power (work/sec),
$\frac{dP}{dT}$, O_2 uptake and CO_2 production are unchanged from control values 290
minutes after endotoxin injection (17). Cardiac performance is also found to
be unimpaired after endotoxin in the presence of beta adrenergic blockade (18).
Normal cardiac contractility is observed in the presence of acidosis, and myo-
cardial O_2 uptake is found to be independent of pH values. Coronary blood
flow is diminished in the hypotensive state but elevated markedly above control
values when mean arterial pressure (afterload) is returned to the control
(pre-shock) level. Oxygen delivery to the heart appears adequate since O_2
uptake is normal and coronary venous O_2 content is elevated above control
values when afterload is restored to pre-shock levels.

These studies appear to clearly demonstrate that endotoxin exerts no early
direct toxic action on the myocardium but that indirect factors most probably
intervene during the intermediate or later stages of shock. The effects of
prolonged systemic hypotension and progressive peripheral pooling would be
expected to result in the eventual depression of cardiac function at later
stages of shock on the basis of diminished coronary perfusion pressure and
insufficient myocardial blood flow.

Summary

Peripheral pooling mechanisms apparently predominate in the early phase
of endotoxin shock in bringing about a decrease in cardiac output. Left
ventricular function appears to be entirely normal and only a longer sustained
period of hypotension would be expected to bring about impairment of myocardial
performance. A variety of indirect mechanisms resulting from poor systemic
hemodynamic status may ultimately contribute to myocardial failure in the later
stages of shock.
References

