THEORETICAL EQUATIONS IN DESIGN OF THE PROPOSED CRESSENT CITY HARBOR ISLAND CROSS SECTIONS
TECHNICAL REPORT 4-69-9

THEORETICS IN DESIGN OF THE PROPOSED
CRESCENT CITY HARBOR TSUNAMI MODEL

by
G. H. Keulegan
J. Harriso't
M. J. Mathews

June 1969

Sponsored by
U. S. Army Engineer District
San Francisco

Conducted by
U. S. Army Engineer Waterways Experiment Station
CORPS OF ENGINEERS
Vicksburg, Mississippi

THIS DOCUMENT HAS BEEN APPROVED FOR PUBLIC RELEASE
AND SALE; ITS DISTRIBUTION IS UNLIMITED
The important wave parameters to be considered for tsunami model studies are wave height and period, and wave-front orientation. The first two of these parameters can be determined by marigraphic measurements or by visual observations; however, wave-front orientation has never been accurately observed at the problem site (Crescent City, Calif.). A digital computer program was written to plot wave rays from three recent epicentral locations to Crescent City to obtain approximate tsunami-front orientations. The refraction diagrams were checked by comparing the computed and actual arrival times of the wave fronts. The actual arrival times were obtained from recording tide stations at Crescent City and Hilo, Hawaii. Initial wave-front orientations near the earthquake epicenter were either assumed or taken from the literature. The frequency distribution of wave heights at Crescent City is a necessary consideration in the overall study. The period of record for tsunamis at Crescent City is too short to determine the frequency distribution of the wave heights; thus, an attempt was made to correlate the tsunami records from particular stations in the San Francisco and Hilo Harbor areas with the Crescent City record could be artificially lengthened. Correlation between the Hilo Harbor and Crescent City data indicates that the 1964 tsunami at Crescent City was abnormally severe. Effects of distance on wave-height attenuation were investigated and compared with theoretical predictions. On the basis of these considerations, a tentative frequency relation was derived and a risk-duration relation was prepared from the frequency relation. The selected values of the test-wave dimensions (height and period) and orientation determined, to a considerable extent, the model configuration necessary to ensure results sufficiently accurate for purposes of the model study. Since experience in the design and operation of long-period wave
THE CONTENTS OF THIS REPORT ARE NOT TO BE USED FOR ADVERTISING, PUBLICATION, OR PROMOTIONAL PURPOSES. CITATION OF TRADE NAMES DOES NOT CONSTITUTE AN OFFICIAL ENDORSEMENT OR APPROVAL OF THE USE OF SUCH COMMERCIAL PRODUCTS.
13. ABSTRACT (Continued)

models is scant, it was deemed necessary to conduct preliminary tests utilizing a pneumatic wave generator in a two-dimensional flume. The results of these tests were compared with theoretical predictions from an idealized mathematical model and on the basis of these tests, a preliminary model design was proposed. Further two-dimensional testing is deemed necessary before a satisfactory design of the three-dimensional model can be accomplished.
FOREWORD

The theoretical study described herein was requested by the District Engineer, U. S. Army Engineer District, San Francisco, in a letter to the Office, Chief of Engineers, dated 15 September 1967; authority to perform the investigation was granted by the Office, Chief of Engineers, in an indorsement dated 7 November 1967. The investigation was conducted during the period December 1967 to August 1968.

The study was conducted in the Hydraulics Division of the U. S. Army Engineer Waterways Experiment Station under the direction of Mr. T. P. Fortson, Jr., Chief of the Hydraulics Division, and Mr. R. Y. Hudson, Chief of the Wave Dynamics Branch. The investigation was conducted by Dr. G. H. Keulegan, Resident Consultant, CPT J. Harrison, Military Assistant, and Mr. M. J. Mathews, Research Hydraulic Engineer.

Directors of the Waterways Experiment Station during the conduct of this investigation and preparation and publication of this report were COL John R. Oswalt, Jr., CE, and COL Levi A. Brown, CE. Technical Directors were Messrs. J. B. Tiffany and F. R. Brown.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOREWORD</td>
<td>v</td>
</tr>
<tr>
<td>NOTATION</td>
<td>ix</td>
</tr>
<tr>
<td>CONVERSION FACTORS, BRITISH TO METRIC UNITS OF MEASUREMENT.</td>
<td>xiii</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>xv</td>
</tr>
<tr>
<td>PART I: INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>PART II: TSUNAMI CHARACTERISTICS AT CRESCENT CITY, CALIF.</td>
<td>4</td>
</tr>
<tr>
<td>Maximum Observed Height of the 1964 Tsunami</td>
<td>4</td>
</tr>
<tr>
<td>Period of the 1964 Tsunami</td>
<td>6</td>
</tr>
<tr>
<td>Spectral Analysis of a Portion of the 1960 Tsunami Records</td>
<td>7</td>
</tr>
<tr>
<td>Resonance</td>
<td>15</td>
</tr>
<tr>
<td>PART III: PREPARATION OF TSUNAMI REFRACTION DIAGRAMS</td>
<td>20</td>
</tr>
<tr>
<td>Theoretical Development</td>
<td>20</td>
</tr>
<tr>
<td>Computer Program</td>
<td>28</td>
</tr>
<tr>
<td>Refraction Diagrams</td>
<td>30</td>
</tr>
<tr>
<td>PART IV: PROBABILITY OF OCCURRENCE OF TSUNAMIS OF VARIOUS HEIGTS AT CRESCENT CITY</td>
<td>43</td>
</tr>
<tr>
<td>Frequency Distribution of Tsunamis of Various Heights at Crescent City</td>
<td>43</td>
</tr>
<tr>
<td>Risk Evaluation</td>
<td>44</td>
</tr>
<tr>
<td>Comparison of Tsunami Heights at Hilo and Crescent City</td>
<td>45</td>
</tr>
<tr>
<td>Irregular Tsunami Heights at Hilo</td>
<td>47</td>
</tr>
<tr>
<td>Tsunami Height Attenuation with Distance Traveled</td>
<td>47</td>
</tr>
<tr>
<td>Singularity of 1964 Alaskan Tsunami</td>
<td>49</td>
</tr>
<tr>
<td>PART V: FLUME TESTS AND RESULTS.</td>
<td>55</td>
</tr>
<tr>
<td>Wave Generator and Flume</td>
<td>55</td>
</tr>
<tr>
<td>Model Scale Relations</td>
<td>56</td>
</tr>
<tr>
<td>First Series of Tests, Undistorted Model</td>
<td>59</td>
</tr>
<tr>
<td>Second Series of Tests, Distorted Model Without Screens</td>
<td>59</td>
</tr>
<tr>
<td>Third Series of Tests, Distorted Model with Screens</td>
<td>61</td>
</tr>
<tr>
<td>Similarity Rules for Wave Periods</td>
<td>61</td>
</tr>
<tr>
<td>Problems for Future Study</td>
<td>64</td>
</tr>
<tr>
<td>PART VI: CONCLUSIONS</td>
<td>66</td>
</tr>
</tbody>
</table>
LITERATURE CITED .. 67

TABLES 1-3
APPENDIX A: COMPUTER PROGRAM FOR "TSUNAMI REFRACTION A1
APPENDIX B: TRANSFORMATION OF WAVE MOTION ON THE EARTH'S SURFACE TO A MERCATOR REPRESENTATION OF THAT SURFACE. B1
APPENDIX C: TSUNAMI REFRACTION IN THE AREA OF A THEORETICAL ISLAND. C1
APPENDIX D: SHELF OSCILLATIONS IN THE CRESCENT CITY AREA. D1
TABLE D1
APPENDIX E: STANDING WAVES IN TSUNAMI MODEL CHANNELS E1
TABLE E1
NOTATION

a Radius of zero contour of the theoretical island in fig. Cl; constant used in an integration formula
A Constant used in equation D17
\[A, A_1, A_2, B, B_1, B_2, C, C_1, C_2, D, D_1, D_2, E, E_1, E_2 \]
Coefficients used in the surface fitting procedure of the computer program

b Radius of the largest contour of the theoretical island in fig. Cl; constant used in an integration formula
b Physical distance between wave rays at a point of unknown wave height, \(h_b \)
b Physical distance between wave rays at a point of known wave height, \(h_0 \)
B Constant used in equation D14
BW Effective bandwidth of band-pass filter
C Tsunami celerity in the open ocean; \(C = \sqrt{gH} \)

\(C_1 \) Constant found in equation B9; \(C_1 = \left(\frac{H_0}{1 + \frac{H_0}{H}} \right)^{1/2} \)

\(C_2 \) Constant found in equation C15
D Time in years in equation 26
\(e_s \) Probable error inherent in the estimate
\(f_1 \) Fundamental frequency of a resonating body; equation 1
\(h \) Height of initial wave from generator; elevation above mean water level
\(h_b \) Unknown wave height
\(h_c \) Open-ocean wave height near Crescent City shelf
\(h_h \) Open-ocean wave height near Hilo shelf
\(h_0 \) Known wave height
\(h_t \) Wave height after \(t \) hours of travel
Wave height after one hour of travel

Depth of water through which wave ray is passing; assumed water depth on a Mercator map; mean water depth at any location in a channel

Depth value assigned to an intersection within a grid of depth values

Initial water level in flume before release; water depth at wave generator; water depth; water depth over a shelf at a distance \(L \) from the shore (equation D1)

Water depth at a random point \(P_1 \) within a grid of depth values

Appointed depth defined in fig. D1; maximum depth of ocean surrounding theoretical island

Bessel function of order zero of the first kind

Bessel function of order one of the first kind

Constant between 0.06 and 0.10 depending on the air space and the aperture openings of the pneumatic wave generator

Constant; \(K = \frac{C}{H^{1/2}} \); \(K^2 = C_1^{-2} - 1 \); radius of curvature of a curve in rectangular coordinates; constant; \(K = \frac{L^2}{gH_o} \)

Bessel function of order zero of the second kind

Bessel function of order one of the second kind

Length of sloping channel

Water-surface length; length of submerged shelf off Crescent City

Curve fitting coefficient

Curve fitting coefficient; ratio of \(\frac{\Delta x}{\Delta x_o} \) and \(\frac{\Delta y}{\Delta y_o} \); degree of freedom

Average frequency of occurrence of tsunamis of equal or greater height \(h \); factor used in the solution of equation D30

\[N = \frac{T \sqrt{gH_o}}{L} = \frac{4\pi}{2K^{1/2}} \]

Arbitrary point on a curve in \(x,y \) coordinate system

Successive computation points along a wave ray
q Risk associated with an equal or greater event occurring during
a given time period D years

r Polar coordinate measure of distance \(r = \frac{x}{\cos \theta} \); radius of
hypothetical island between zero and maximum contour

\[r' = \frac{\partial r}{\partial \theta} \]

\[r'' = \frac{\partial^2 r}{\partial \theta^2} \]

R Radius of the earth, assuming spherical shape

s Distance along a wave ray

S Vertical model scale

SL Sample length

S_1 Ray path over a given Mercator map

\(t \) Time; tsunami travel time \(t = \int \frac{ds}{V} \)

\(T \) Period of forcing function; wave period

\(T_c \) Fundamental period of bay oscillation; tsunami travel time from
source to the Crescent City area

\(T_{cr} \) Critical resonant period for a given body of water

\(T_h \) Tsunami travel time from source to Hilo area

\(T_p \) Assumed period of the 1964 tsunami \(T_p = 28 \) min

u Dimensionless horizontal velocity component

U Wave velocity

V Wave celerity on a Mercator map; wave celerity

\(V_o \) Tsunami celerity, \(V_o = \sqrt{gR_o} \)

x Measurement of length; part of total length of water surface \(L \)

\[x, y \] Length of grid square edge in \(x \) and \(y \) direction, respec-
tively (Note: \(x = y \)); lengths measured on a Mercator map cor-
responding to \(x \) and \(y_o \); coordinate locations in Cartesian
coordinate system

\[x_o, y_o \] Lengths measured on a sphere of radius \(R \)

\(x_1 \) Distance from shore to beginning of shelf

\(y(t) \) Periodic signal

\(Y_n \) Amplitude of nth component of a Fourier series

\(Y_o, Y_1, Y_2, Y_3 \) Amplitudes of respective components in a Fourier series
\[z = \sinh y \]
\(\alpha \) Slope of a given basin
\(\delta \) Dimensionless depth parameter
\[\delta x \]
\[\delta y \]
Coordinates of the random point \(P \) measured from \(H(1,1) \)
\(\Delta p_1 \) Amount that suction pressure in pneumatic generator is decreased upon opening air valves
\(\Delta p_0 \) Pneumatic generator suction pressure prior to opening air valves
\(\Delta x_o \) Elementary length on a parallel of latitude \(\phi \)
\(\Delta y_o \) Elementary length on a meridian of longitude \(\phi \)
\(\zeta \) Dimensionless length parameter
\(\eta \) Dimensionless depth parameter; maximum elevation above mean, equation E7; \(\left(\frac{dx}{dy} \right)^2 \) on a Mercator map
\(\theta \) Wave ray angle measured positive counterclockwise from the positive x-axis; angle in polar coordinates; variable in equation D12
\(\theta_a \) Angle shown in fig. C2 which is the angle between the positive x-axis and the intersection of a wave ray with the island's zero contour
\(\theta_b \) Angle shown in fig. C2 which is the angle between the x-axis and the intersection of a wave ray with the island's maximum contour
\(\theta_o \) Wave ray angle measured positive counterclockwise from the positive x-axis
\[\theta_L = 2^{1/2} \]
\(\lambda \) Constant (taken equal to 0.4) related to nozzle energy loss in the pneumatic wave generator
\(\xi \) Dimensionless length or depth parameter
\(\rho \) Water density
\(\omega \) \(\sigma = 2\pi/T \)
\(\tau \) Dimensionless time parameter
\(\phi \) Degrees of longitude
\(\phi_n \) Phase angle of nth component of a Fourier series
\(\psi \) Degrees of latitude

\[\text{xii} \]
CONVERSION FACTORS, BRITISH TO METRIC UNITS OF MEASUREMENT

British units of measurement used in this report can be converted to metric units as follows:

<table>
<thead>
<tr>
<th>Multiply</th>
<th>By</th>
<th>To Obtain</th>
</tr>
</thead>
<tbody>
<tr>
<td>inches</td>
<td>2.54</td>
<td>centimeters</td>
</tr>
<tr>
<td>feet</td>
<td>0.3048</td>
<td>meters</td>
</tr>
<tr>
<td>miles</td>
<td>1.609344</td>
<td>kilometers</td>
</tr>
<tr>
<td>square feet</td>
<td>0.092903</td>
<td>square meters</td>
</tr>
<tr>
<td>feet per second</td>
<td>0.3048</td>
<td>meters per second</td>
</tr>
<tr>
<td>per second</td>
<td></td>
<td>per second</td>
</tr>
</tbody>
</table>
The important wave parameters to be considered for tsunami model studies are wave height and period, wave-front orientation, and the frequency of occurrence of waves of different heights. The first two of these parameters can be determined by marigraphic measurements or by visual observations; however, wave-front orientation, which is an important variable in the construction and operation of a model, has never been accurately observed at the problem site (Crescent City, Calif.). A digital computer program was written to plot wave rays from three recent epicentral locations to Crescent City to obtain approximate tsunami-front orientations and to compute refraction coefficients in the Crescent City area. The refraction diagrams were checked by comparing the computed and actual arrival times of the wave fronts. The actual arrival times were obtained from recording tide stations at Crescent City and Hilo, Hawaii. Initial wave-front orientations near the earthquake epicenter were either assumed or taken from the literature.

The frequency distribution of wave heights at Crescent City is a necessary consideration in the overall study. The period of record for tsunamis at Crescent City is too short to determine the frequency distribution of the wave heights; thus, an attempt was made to correlate the tsunami records from particular stations in the San Francisco and Hilo Harbor areas so that the Crescent City record could be artificially lengthened. Correlation between the Hilo Harbor and Crescent City data indicates that the 1964 tsunami at Crescent City was abnormally severe. Effects of distance on wave-height attenuation were investigated and compared with theoretical predictions. On the basis of these considerations, a tentative frequency relation was derived and a risk-duration relation was prepared from the frequency relation.

The selected values of the test-wave dimensions (height and period) and orientation determine, to a considerable extent, the model configuration necessary to ensure results sufficiently accurate for purposes of the model study. Since experience in the design and operation of long-period wave models is scant, it was deemed necessary to conduct preliminary tests utilizing a pneumatic wave generator in a two-dimensional flume. The results of these tests were compared with theoretical predictions from an idealized mathematical model, and on the basis of these tests, a preliminary model design was proposed. Further two-dimensional testing is deemed necessary before a satisfactory design of the three-dimensional model can be accomplished.
THEORETICS IN DESIGN OF THE PROPOSED
CRESSENC CITY HARBOR TSUNAMI MODEL

PART I: INTRODUCTION

1. Crescent City, Calif., with a resident population of approximately 3200, is located on the northern California coast approximately 20 miles* from the California-Oregon border. The combination of nearshore undersea topography, resonant characteristics of the surrounding nearshore area, and exposed position on the coast makes Crescent City particularly susceptible to tsunamis originating anywhere in the Pacific seismic belt.

2. The primary purposes of this investigation were to conduct a theoretical study of tsunamis with particular emphasis on their occurrence at Crescent City, and to provide input data for a hydraulic model which is to be used to determine the characteristics of proposed barrier plans to protect the city and harbor of Crescent City from future tsunamis. Because of the magnitude of this many-faceted problem, it was decided to divide the study into four major sections, namely, the wave input for the proposed model, the tsunami refraction problem, the frequency of occurrence of tsunamis of various heights at Crescent City, and the flume tests conducted to determine details of the proposed model.

3. In the Crescent City Harbor tsunami model, as in any model of the same scope and nature, one of the primary elements to consider is that of wave input. In a general sense this involves decisions as to the magnitude, form, and period of the critical waves in a specific tsunami wave train. Equally important is the orientation of the wave fronts approaching the harbor area, which determines the alignment of the wave generator during model testing. Unfortunately, owing to the early destruction of the harbor tide gages during the 1964 tsunami, the magnitude and form of the waves for this occurrence could not be accurately determined. The disastrous effects of this particular tsunami appear to have been associated

* A table of factors for converting British units of measurement to metric units is given on page xiii.
with extensive inundation by a rising horizontal water surface instead of a borelike configuration sometimes associated with tsunamis. The limit of the inundation is well defined, and accordingly, verification of the model processes will rely solely on the limits of this inundation.

4. To determine the wave directions at the positions of the model wave generator, a new tsunami refraction diagram technique was developed by the authors. Refraction diagrams were prepared for three recent tsunamis (Alaska, 1964; Chile, 1960; and Kamchatka, 1952), and wave-front patterns charted from each of the sources were determined for the nearshore areas at Crescent City and Hilo, Hawaii. Van Dorn's 10-min wave-front configuration was used as the starting position for ray trajectories for the Alaskan tsunami. Starting lines for the other two tsunamis were assumed by the investigators.

5. In the selection of test waves for the Crescent City Harbor tsunami model, the question arises as to whether the effectiveness of protective structures should be determined for tsunami intensities greater than the one that occurred in 1964. In this connection, a study was made to ascertain the probability of the occurrence of tsunamis at Crescent City with more critical dimensions than those of the 1964 tsunami. The frequency distribution of tsunamis at Hilo Harbor was determined from a considerable number of occurrences, and it was assumed that the Hilo frequency distribution is similar to that for Crescent City. The correlation of the observed tsunami heights for these two localities was examined in light of the tsunami sources.

6. After the orientation, height, and period of the test waves have been selected, the linear scales of the model and the extent of the sea area lying between the wave generator and the harbor, which must be included within the model limits, can be determined. The extent of the required sea area is related to the number of wave cycles to be simulated in the operation of the model. The greater the sea area, the larger the number of cycles that can be reproduced in the model, and the more accurate will be the observable wave phenomena. Cost considerations, however, impose restrictions on the allowable space; yet it is essential that the model sea area be of such size that a minimum of one initial wave cycle.
is completed. Therefore, the necessary condition is that the fundamental period of the resonant oscillation of the model sea, between the coast and the generator, correspond to the largest period of the prototype waves selected for testing. Tests in a two-dimensional wave flume became necessary to develop the basic ideas concerning this aspect in the design of the proposed three-dimensional model. The results of these tests are presented herein.
PART II: TSUNAMI CHARACTERISTICS AT CRESCENT CITY, CALIF.

Maximum Observed Height of the 1964 Tsunami

7. Crescent City is located at a point on the California coast that is particularly susceptible to the damaging effects of tsunamis. The largest tsunami recorded at Crescent City was the one generated by the 1964 Alaskan earthquake. Fig. 1 is a reproduction of the marigram of the 1964 tsunami taken from the wave gage at Citizen's Dock in Crescent City Harbor.

![Gage record of 1964 tsunami at Crescent City](image)

Fig. 1. Gage record of 1964 tsunami at Crescent City

8. The first problem was that of organizing the information contained in the various reports concerning the observed heights of the 1964 tsunami at Crescent City. After reviewing the available data, it is believed that the tide gage at Citizen's Dock was rendered inoperable by the wave crest preceding the largest wave. Therefore, in order to assimilate the tsunami observations, the sequence of wave crests has been designated...
as shown in fig. 2.* Accordingly, the wave crest that destroyed the tide gage was the fourth crest, while the largest wave was the fifth crest. The dashed lines in fig. 2 indicate Wilson's extrapolations of the wave record.

9. Since it was considered undesirable to rely on an extrapolation of the crest height for the fifth crest from the existing record, observations of eyewitnesses were the only available means of estimating the rise and fall characteristics of the fifth and largest crest. The observations from four sources are tabulated in fig. 3. It is interesting to note that there is a large degree of disagreement as to the magnitudes of the crest heights, even for crests that were recorded by the tide gage. This may be due in part to the disagreement as to what constituted

<table>
<thead>
<tr>
<th></th>
<th>TUDOR⁵</th>
<th>WILSON¹</th>
<th>WIEGEL³</th>
<th>MAGNIES UBAED, SF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1ST CREST</td>
<td>14.5</td>
<td>14.5</td>
<td>16.1</td>
<td></td>
</tr>
<tr>
<td>1ST TROUGH</td>
<td>0.2</td>
<td>-2.0</td>
<td>-2.0</td>
<td></td>
</tr>
<tr>
<td>2D CREST</td>
<td>12.0</td>
<td>10.0</td>
<td>11.0</td>
<td></td>
</tr>
<tr>
<td>2D TROUGH</td>
<td>2.2</td>
<td>0.8</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>3D CREST</td>
<td>2.6</td>
<td>1.0</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>3D TROUGH</td>
<td>2.2</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>4TH CREST</td>
<td>20.5</td>
<td>20.8</td>
<td>17.2</td>
<td></td>
</tr>
<tr>
<td>4TH TROUGH</td>
<td>1.0</td>
<td>-5.5 (±4 TO ±7)</td>
<td>-5.5 (±4 TO ±7)</td>
<td></td>
</tr>
<tr>
<td>5TH CREST</td>
<td>13.5</td>
<td>18.5 (18 TO 21)</td>
<td>18.5 (18 TO 21)</td>
<td></td>
</tr>
<tr>
<td>5TH TROUGH</td>
<td></td>
<td>-2.0 (0 TO ±4)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HEIGHT VALUES FOR 1964 TSUNAMI (IN FT REFERRED TO MLLW)

Fig. 2. Wave configuration of 1964 tsunami (from Wilson)

Fig. 3. The selected design wave

* Fig. 2 is from reference 1; crest notations have been added.
distinct troughs and crests. The fifth crest and preceding trough heights were reported by Wiegel and Magoon after extensive interviews with reliable observers who were on or near Citizen's Dock during the tsunami. As a result, the reported heights should be within a tolerable range of accuracy. For this report, and for any subsequent model testing, an assumed maximum wave with the height characteristics shown at the bottom of fig. 3 was selected.

Period of the 1964 Tsunami

10. Tudor, in reconstructing the Crescent City marigram for the 1964 Alaskan tsunami, gives the following times (PST) for the occurrences of the crests: first crest 2352, 27 March; second crest 0020 and fourth crest 0115, 28 March. What Tudor calls the fourth crest has been indicated in this report as the fifth crest. Accordingly, the period of the first wave is 28 min and the mean period of the sequence of the first four waves is 27.6 min. This value can be compared with the periods of the corresponding tsunami observations on the northwestern coast of the United States. These periods are approximately as follows:

<table>
<thead>
<tr>
<th>Location</th>
<th>Period, min</th>
<th>Location</th>
<th>Period, min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neah Bay, Wash.</td>
<td>31</td>
<td>Rincon Island, Calif.</td>
<td>30</td>
</tr>
<tr>
<td>Friday Harbor, Wash.</td>
<td>31</td>
<td>Santa Monica, Calif.</td>
<td>26</td>
</tr>
<tr>
<td>Astoria, Oreg.</td>
<td>30</td>
<td>Los Angeles, Calif.</td>
<td>30</td>
</tr>
<tr>
<td>San Francisco, Calif.</td>
<td>30</td>
<td>Newport Bay, Calif.</td>
<td>31</td>
</tr>
<tr>
<td>Alameda, Calif.</td>
<td>30</td>
<td>La Jolla, Calif.</td>
<td>31</td>
</tr>
<tr>
<td>Avila Beach, Calif.</td>
<td>30</td>
<td>San Diego, Calif.</td>
<td>31</td>
</tr>
</tbody>
</table>

The above values, which were obtained by scanning the tsunami tide gage records shown by Spaeth and Berkman, are close enough to the periods of waves assigned to Crescent City so that the value of $T = 28 \text{ min}$ can be selected as the characteristic period of 1964 Alaskan tsunami. Tide gage records of the 1964 tsunami at other localities show the presence of waves of other periods that are missing in the corresponding record for
Crescent City owing to the early destruction of the gage. These may be inferred from the very complete gage records taken at Crescent City during the 1960 tsunami from Chile.

Spectral Analysis of a Portion of the 1960 Tsunami Records

11. A useful method for describing a vibrating environment, whether it be random, periodic, or a mixture of both, is to determine the spectral composition of the response data representing the environment. Several different spectral density functions might be conceived and employed to describe the frequency composition of random or periodic vibration responses of which two are amplitude spectra and power spectra. Each of the periodic spectra consists of discrete components at specific frequencies and harmonics of these frequencies; for random vibration data, each of the spectra is continuous with responses possible at any or all frequencies in the spectrum.

12. Because of the relatively small number of visually obvious discrete frequencies, the wave records of the May 1960 tsunami at Crescent City were treated as periodic vibration data. Any periodic signal \(y(t) \) can be expressed by a Fourier series as follows:

\[
y(t) = Y_0 + Y_1 \sin (2\pi f_1 t + \phi_1) + Y_2 \sin (4\pi f_1 t + \phi_2) + \ldots
\]

\[
= Y_0 + \sum_{n=1}^{\infty} Y_n \sin (2\pi n f_1 t + \phi_n)
\]

where \(f_1 \) is the fundamental frequency in cps, \(Y_n \) is the amplitude of the \(n \)th component, and \(\phi_n \) is the phase angle of the \(n \)th component. A description in terms of the harmonic amplitudes and frequencies is possible by frequency spectrum analysis and is presented as the remainder of this section.

13. Mr. J. L. Ferguson of the WES Electronic Data Reduction Lab undertook the task of producing the amplitude spectra (frequency versus
wave-height plots) for a portion of the Crescent City tsunami height record of May 1960. The record submitted for analysis was an average of the readings taken at Citizen’s Dock and Dutton’s Dock in Crescent City Harbor. The average record was done by hand by personnel of the Hilo Model Branch, U. S. Army Engineer District, Honolulu, in 1965. Because of the 2-min phase lag between the response at the two locations, each of the records was offset 1 min before the average heights were computed. The results of this effort are presented as figs. 5-8.

14. The steps taken in processing the pictorial wave record prior to reduction by the analog wave analyzer are outlined below:

a. The pictorial record of the tsunami was transferred to a digital magnetic tape (in a compatible BCD format) by a pencil-line follower (Edwin Industries model PF10A). The follower digitized and recorded the y-coordinates (from a prescribed base line) at 1-mm horizontal increments along the entire 18.5-hr pictorial record.

b. A digital to analog conversion was then effected by a small digital computer (Scientific Controls Corporation model 650-2), and the resulting analog signal was processed by the wave analyzer (Gulton Ortholog model OR-WA/1) diagrammed in fig. 4.

15. Each of the frequency spectra (figs. 5-8) was generated by a slow-moving filter or “window” of the indicated bandwidth. The entire

![Diagram of Analog Wave Analyzer](image)

* Butterworth filters are discussed in most comprehensive texts dealing with the theory of electrical filters.

Fig. 4. Analog wave analyzer
Fig. 5. Frequency spectra for entire tsunami record, 0530 to 2400 hr, 23 May 1960, at Crescent City with 0.00194-, 0.00388-, and 0.0097-cpm filters.
Fig. 6. Frequency spectra for the period 0530 to 1300 hr, 23 May 1960, at Crescent City with 0.00194-, 0.00388-, and 0.0097-cpm filters
Fig. 7. Frequency spectra for the period 1300 to 1700 hr, 23 May 1960, at Crescent City with 0.00394-, 0.00388-, and 0.00097-cpm filters
Fig. 8. Frequency spectra for the period 1700 to 2400 hr, 23 May 1960, at Crescent City with 0.00194-, 0.00388-, and 0.0097-cpm filters.
analog wave record signal was continuously cycled through the analyzer and the window position moved so slowly across the spectrum that any wave height may be considered as being associated with its discrete frequency. All signal amplitudes of a particular frequency were averaged (by means of an RC averaging network within the wave analyzer) over the entire time period to obtain the average wave height. This height, as shown in the plots, would not be comparable to a maximum height as measured from the wave record. Since none of the frequencies appeared at all times on the wave record, the heights shown on the spectrum plots are lower than the maximum heights measured on the pictorial record with the heights for the least occurring frequencies being the most out of proportion.

16. Each of the four separate record lengths of the 1960 tsunami at Crescent City was subjected to analysis using three separate window widths. The entire record (from 0530 to 2400 hr, 23 May 1960) was analyzed first. The record was then divided into three parts, 0530 to 1300 hr, 1300 to 1700 hr, and 1700 to 2400 hr; and separate analyses were performed on each of these parts. Because of the amplitude averaging technique and the distribution of the wave record spectral frequencies, the plotted height increased as the window width increased for the three separate analyses of the four series of runs.

17. The statistical methods commonly used to establish confidence limits with respect to the accuracy of the wave-height measurements, shown in figs. 5-8, are the statistical coefficient of variation and the chi-square distribution.

18. The statistical coefficient of variation expresses the probable error, e_s, as

$$e_s = \frac{1}{\sqrt{BW \times SL}} \tag{2}$$

where

- $e_s = $ probable error inherent in the estimate
- $BW = $ effective bandwidth of band-pass filter
- $SL = $ sample length (in units corresponding to the bandwidth)

Moody states that this method should not be used when the numerical value $
Fig. 9. Chi-square distribution chart for establishing confidence levels of amplitude spectra of e_s exceeds 0.20 (20 percent). Table 1 shows that all values of e_s exceed 20 percent; therefore, the chi-square distribution method (fig. 9) must be used. The abscissa of fig. 9 is in units of degrees of freedom, the ordinate is in units of the ratio of the estimated to the true value, and the parameter is the confidence band.

19. Degrees of freedom are given by

$$n = 2 \times BW \times SL$$

(3)

where

$n = \text{degree of freedom}$
20. Confidence levels for each of the time intervals studied, with their corresponding bandwidths, are shown in fig. 9. A large number of degrees of freedom are required to obtain a high confidence in an estimate. Equation 3 shows that this can be accomplished by using either wider filter bandwidths or longer sample lengths. For reasonable sample lengths the problem is most acute at the low-frequency end of the spectrum because of the narrowness of the filter required to resolve the resonances.

21. It should be noted from fig. 9 that, while degrees of freedom in excess of 100 do not produce proportionately more confidence, those observations with less than 20 degrees of freedom produce such wide confidence intervals that they are of questionable value.

22. While one cannot place any confidence in the fact that the plotted heights are peak values, the predominant periods of 80.0, 33.0, 22.0, and 18.0 min are clearly defined in all cases and can be accepted with confidence. These predominant periods are in good agreement with those mentioned in the following discussion of resonance, which were computed by considering the oscillations of the Crescent City area from the offshore shelf to the beach.

Resonance

23. The Omori principle that the tsunami periods observed in a bay are nearly the same as those of the usual secondary oscillations of that bay has been confirmed by Honda, Terada, and Isitani. The principle is shown to be valid in the undulations of numerous bays along the coasts of the Pacific Ocean and the Sea of Japan. Suda and Seki in their study of the Atacama tsunami of 1922 and of the Aleutian tsunami of 1923 found that the second and third harmonics of the fundamental periods are highly predominant in bay areas. The latter finding appears to apply also to the undulations of the 1960 tsunami at Crescent City.

24. The Omori principle suggests that the greater tsunami heights observed in some bays should also be examined on the basis of resonance. Wilson observes that the excessive heights noted at Port Alberni, Canada, during the 1964 Alaskan tsunami were brought about because of the parabolic
variation of channel depths, with the width being nearly constant. Likewise, the greater heights observed at Port Littleton, New Zealand, were due to the uniformly sloping floor of the channel. For the analyses of these two cases, Wilson makes a judicial application of Lamb's treatment of the oscillation of bays of such configurations, imposing the condition that the mouths of the bays are nodal lines.¹

25. Similarly, the periods of oscillations of the offshore shelf in the proximity of Crescent City, as shown in fig. 10, have been considered. The shelf is regarded as sloping uniformly with the depth of the shelf $H_c = 350$ ft, and the length of the shelf $L = 16$ nautical miles. Assuming that the depth at the coast is nil, computations for the periods of the various harmonics give values of 89, 35, 18, 15, and 13 min, which curiously enough are in approximate agreement with the periods found in the spectral analysis of the 1960 tsunami. Other computations were also made, assuming that the shelf at the coast has a finite depth. However, the effect of this assumption is to increase the value of the fundamental periods. A more thorough treatment of shelf oscillations is presented in Appendix D. Noting that the shelf environment enclosing Crescent City may be regarded as approximating a semicircular basin, Wilson makes use of an analysis by Goldsborough¹² and finds a satisfactory agreement between the observed and computed periods of the 1960 tsunami.

26. Hilo Bay and the sea vicinity of Crescent City are both susceptible to resonance. Since the periods of the fundamental oscillations of these two localities are different, the magnification of heights in each will be different for a given tsunami of a definite period. Another consideration which may be significant is the following. The phenomenon of resonance is most conveniently observed with standing waves in rectangular basins. Experience shows that as the periods of the forcing oscillations are decreased from an initially large value and are made to approach the period of the greatest fundamental oscillation of the basin, the wave magnification in the basin increases steadily to a limiting value. Then, when the period of the forcing oscillation is further decreased even by a small value, the wave magnification decreases markedly. There was an evidence of this in the Hilo Bay model study. As the main object of that
Fig. 10. Crescent City shelf location and dimensions
Fig. 11. Wave amplification in Hilo Bay; pilot model study

The study was to examine the effect of model distortion, for the simplicity and the purity of observed results, the bay barrier was completed forming a truncated bay. The average results of the magnification ratio \(\frac{h_b}{h_o} \), \(h_b \) being the wave height at the barrier and \(h_o \) the wave height at the bay mouth, from all the tests are shown in fig. 11 as a function of \(\frac{T}{T_c} \) (\(T \) being the period of the forcing waves and \(T_c \) the fundamental period of oscillation). There is a marked peak in the magnification values at \(\frac{T}{T_c} = 0.99 \). Accordingly, the interval \(\frac{\Delta T}{T_c} \) for which the waves are appreciably magnified is about \(\frac{\Delta T}{T_c} = 0.075 \). In the same figure the theoretical magnification curve is also given.

Eventually the question will be asked whether there is a discernible and consistent correlation between the tsunami heights observed
at Hilo Bay and those in the sea approaches of Crescent City. The above discussions suggest that correlation may be noted for the situations where the tsunami waves have periods which are removed from the periods of the fundamentals of the localities by an amount of about $\Delta T = 0.075T_c$ or greater.
28. After a considerable literature search it was deemed desirable to use the digital computer facilities at the U. S. Army Engineer Waterways Experiment Station (WES) to prepare the refraction diagrams. In January 1968, the main computer center utilized an 8000-space main memory GE-225 computer and an off-line Calcomp 750 incremental plotter. Attempts were first made to modify existing computer programs for use on the GE-225; however, the existing programs not only proved difficult to modify but did not incorporate all the features considered necessary for this particular problem. Therefore, a computer program was written specifically for tsunami refraction.

29. Ippen presents the basic equation for wave ray refraction as:

\[\frac{\Delta \theta}{\Delta s} = \frac{1}{C} \left(\sin \theta \frac{\partial C}{\partial x} - \cos \theta \frac{\partial C}{\partial y} \right) \]

where, considering an x, y rectangular coordinate system, \(\frac{\Delta \theta}{\Delta s} \) represents the change in the angle \(\theta \) with respect to the distance moved along the ray (ds) and \(\frac{\partial C}{\partial x} \) and \(\frac{\partial C}{\partial y} \) represent the partial derivatives of the velocity in the x- and y-directions, respectively. C is the wave celerity and \(\theta \) the instantaneous angular orientation of the ray.

30. Consider two positions, \(P_0 \) and \(P_1 \), on a ray moving in the x-, y-plane as shown in fig. 12; \(P_0 \) and \(P_1 \) represent two successive points on the ray with a velocity of travel at each point of \(C = \sqrt{\frac{g}{H}} \). Considering \(H \) as the depth of water through which this ray travels,

\[\frac{\partial C}{\partial x} = \frac{1}{2} g^{1/2} H^{-1/2} \frac{\partial H}{\partial x} \]

and

\[\frac{1}{C} \frac{\partial C}{\partial x} = \frac{1}{2H} \frac{\partial H}{\partial x} \]
In a like manner,

\[
\frac{1}{C} \frac{\partial C}{\partial y} = \frac{1}{2H} \frac{\partial H}{\partial y} \quad (6)
\]

Substitution of equations 5 and 6 into equation 4 yields

\[
\frac{d\theta}{ds} = \frac{1}{2H} \left(\sin \theta \frac{\partial H}{\partial x} - \cos \theta \frac{\partial H}{\partial y} \right) \quad (7)
\]

Noting that \(\sin \theta = \frac{\partial y}{ds} \) and \(\cos \theta = \frac{\partial x}{ds} \), equation 7 becomes

\[
\frac{d\theta}{ds} = \frac{1}{2H} \left(\frac{\partial y}{ds} \frac{\partial H}{\partial x} - \frac{\partial x}{ds} \frac{\partial H}{\partial y} \right) \quad (8)
\]

Using a small increment for \(ds \) allows

\[
ds = \sqrt{dx^2 + dy^2}
\]

or

\[
ds = dx \sqrt{1 + \left(\frac{dy}{dx} \right)^2} \quad (9)
\]
Substitution of equation 9 into equation 8 yields

\[
\frac{d\theta}{ds} = \frac{1}{2H} \left(\frac{dy}{dx} \frac{\partial H}{\partial x} - \frac{\partial H}{\partial y} \right) \left[\frac{1}{1 + \left(\frac{dy}{dx} \right)^2} \right]^{3/2} \tag{10}
\]

Small \^16 shows that the curvature \(\frac{d\theta}{ds} \) of a curve \(y = f(x) \) at a point \(P(x,y) \) in rectangular coordinates is given by:

\[
\frac{d\theta}{ds} = \frac{\frac{d^2y}{dx^2}}{\left[1 + \left(\frac{dy}{dx} \right)^2 \right]^{3/2}} \tag{11}
\]

where \(\frac{d^2y}{dx^2} \) and \(\left(\frac{dy}{dx} \right)^2 \) are to be evaluated at \(P(x,y) \). Therefore, equating equation 10 to equation 11 yields

\[
\frac{\frac{d^2y}{dx^2}}{\left[1 + \left(\frac{dy}{dx} \right)^2 \right]^{3/2}} = \frac{1}{2H} \left(\frac{dy}{dx} \frac{\partial H}{\partial x} - \frac{\partial H}{\partial y} \right) \left[\frac{1}{1 + \left(\frac{dy}{dx} \right)^2} \right]^{1/2}
\]

or

\[
\frac{d^2y}{dx^2} = \left(\frac{dy}{dx} \frac{\partial H}{\partial x} - \frac{\partial H}{\partial y} \right) \left[1 + \left(\frac{dy}{dx} \right)^2 \right] \frac{1}{2H} \tag{12}
\]

A Taylor's expansion of the function of \((y_o + \Delta y)\) yields

\[
y_o + \Delta y = y_o + \frac{dy}{dx} \Delta x + \frac{1}{2} \frac{d^2y}{dx^2} \Delta x^2 + \ldots
\]

or, considering only the first three terms,

\[
\Delta y = \frac{dy}{dx} \Delta x + \frac{1}{2} \frac{d^2y}{dx^2} \Delta x^2 \tag{13}
\]

Substitution of equation 12 into equation 13 yields

\[
\Delta y = \frac{dy}{dx} \Delta x + \frac{1}{2H} \left(\frac{dy}{dx} \frac{\partial H}{\partial x} - \frac{\partial H}{\partial y} \right) \left[1 + \left(\frac{dy}{dx} \right)^2 \right] \Delta x^2 \tag{14}
\]
Equation 14 shows that by starting with known values of H, $\frac{dV}{dx}$, $\frac{\partial H}{\partial x}$, $\frac{\partial H}{\partial y}$ at P_0, and for an assigned value of Δx, one can compute the Δy of point P_1. The location of P_1 is then simply $x_0 + \Delta x$, $y_0 + \Delta y$.

31. To move from P_1 to point P_2, it is necessary to know $\frac{dy}{dx}$ at P_1. So, $\frac{dy}{dx}$ at P_1 is $\tan(\theta_0 + \Delta \theta)$ and it can be shown that

$$\tan(\theta_0 + \Delta \theta) = \tan \theta_0 + (1 + \tan^2 \theta_0) \Delta \theta$$

(Equation 15)

Equation 10 can be written as

$$\frac{\Delta \theta}{\Delta s} = \frac{1}{2H} \left(\frac{dV}{dx} \frac{\partial H}{\partial x} - \frac{\partial H}{\partial y} \right) \sqrt{1 + \left(\frac{dy}{dx} \right)^2}$$

or

$$\Delta \theta = \frac{1}{2H} \left(\frac{dV}{dx} \frac{\partial H}{\partial x} - \frac{\partial H}{\partial y} \right) \Delta x$$

(Equation 16)

Therefore,

$$\left(\frac{dV}{dx} \right)_{P_1} = \left(\frac{dV}{dx} \right)_{P_0} + \frac{1}{2H} \left[1 + \left(\frac{dy}{dx} \right)^2 \right] \left(\frac{dV}{dx} \frac{\partial H}{\partial x} - \frac{\partial H}{\partial y} \right) \Delta x$$

or from equation 12

$$\left(\frac{dV}{dx} \right)_{P_1} = \left(\frac{dV}{dx} \right)_{P_0} + \left(\frac{d^2y}{dx^2} \right)_{P_0} \Delta x$$

(Equation 17)

32. The time of travel along an increment Δs is given by

$$\Delta t = \frac{(\Delta x^2 + \Delta y^2)^{1/2}}{\sqrt{gh}}$$

(Equation 18)

Thus, for a given starting position (x,y), initial angle $\frac{dy}{dx}$, and computational increment Δx, the corresponding Δy increment can be calculated. This next point's $(P_1$ in fig. 12) coordinates $(x_0 + \Delta x, y_0 + \Delta y)$ and the computed $(\frac{dy}{dx})_{P_1}$ then become the basis for computation to P_2.

23
This process is continued throughout the length of the ray.

33. It is apparent from equation 14 that it is necessary to determine the depth at a given point (such as \(P_0 \)) in order to progress to the next point \((P_1) \). Equation 14 shows that the incremental computation of the orthogonal path is expressed as a function of \(H(x,y) \), so the path of the ray can be constructed across a grid of water depths, each having an x- and y-dimension in the grid area.

34. A regular, square grid of finite boundaries was overlaid on a map showing the area through which the waves were to travel, and depth values were assigned to each of the grid intersections. In general, however, the points for which a depth value is required (beginning points of each incremental segment) will not fall on the regular grid points, so it is necessary to interpolate for the required values of the depth.

35. Dobson\(^ {17} \) utilized a least squares method to fit a surface of 12 grid points in the immediate vicinity of the area of interest and Wilson\(^ {18} \) used a least squares fit to the four closest depth values to calculate the depth at an arbitrary point within a grid square. It is apparent that very few surfaces can be accurately described by a second degree equation when applied to the entire grid; but when it is fitted locally, in a mosaic manner, it is a relatively accurate method for interpolating the depth at intermediate points. Of course, the method would yield best results if the ocean bottom was a second order surface, but should yield satisfactory results if a small enough grid is used. The method used to find the interpolated depth as well as \(\frac{\partial H}{\partial x} \) and \(\frac{\partial H}{\partial y} \) is outlined in the following paragraphs.

36. Fig. 13 shows the grid points surrounding the area of interest in which it is desired to find the depth at a randomly placed point \(P_1 \). This can be done if the depths at each grid intersection are known. It was decided that best results could be obtained if two surfaces were fit through the area of interest and if the depth were computed for the random point \(P_1 \), which is the average of these two surface fits; likewise, it was considered best to utilize the average values of \(\frac{\partial H}{\partial x} \) and \(\frac{\partial H}{\partial y} \) computed from each of these two surfaces.

37. One may solve for the depth at point \(P_1 \), \(H_{P_1} \), using
equation 19 where the coefficients A, B, C, D, and E are computed by taking the average values of two sets of coefficients obtained from two different surface fits through the same area.

$$H_{p1} = H(i,j) + A \delta x + B \delta y + C \delta x \delta y + D \delta x^2 + E \delta y^2 \quad (19)$$

38. If one considers the depth values $H(i,j)$, $H(i+1,j)$, $H(i,j-1)$, $H(i+1,j+1)$, $H(i+1,j-1)$, and $H(i,j+1)$ as shown in fig. 1h, the set of simultaneous equations 20 may be used to solve for the first set of coefficients.

39. Another surface fit through the area of interest considering the depths shown in fig. 15 will yield another set of coefficients describing a second order surface passing through the same area of interest. The set of simultaneous equations used to solve for a second set of coefficients is shown as equation 21.

Fig. 13. Arrangement of grid points for surface fitting procedure
Fig. 14. Arrangement of grid points for fitting the first surface through the area of interest

\[H_{(i+2,j)} = H_{(1,j)} + 2A_1 x + 4B_1 x^2 \]

\[H_{(1,j+1)} = H_{(1,j)} + B_1 y + E_1 y^2 \]

\[H_{(1,j-1)} = H_{(1,j)} - B_1 y + E_1 y^2 \]

\[H_{(i+1,j+1)} = H_{(1,j)} + A_1 x + B_1 y + C_1 xy + D_1 x^2 + E_1 y^2 \]

\[H_{(i+1,j-1)} = H_{(1,j)} + A_1 x - B_1 y - C_1 xy + D_1 x^2 + E_1 y^2 \]
Fig. 15. Arrangement of grid points for fitting the second surface through the area of interest

\[
\begin{align*}
H_{(i+1,j)} &= H_{(1,j)} + A_2x + D_2y^2 \\
H_{(i,j+1)} &= H_{(1,j)} + B_2y + E_2y^2 \\
H_{(i,j+2)} &= H_{(1,j)} + 2B_2y + 4E_2y^2 \\
H_{(i+2,j+1)} &= H_{(1,j)} + 2A_2x + B_2y + 2C_2xy + 4D_2x^2 + E_2y^2 \\
H_{(i+1,j+2)} &= H_{(1,j)} + A_2x + 2B_2y + 2C_2x^2 + 4E_2y^2
\end{align*}
\]
40. The average value for each of these two sets of coefficients is given by

\[
\begin{align*}
A &= \frac{A_1 + A_2}{2} \\
B &= \frac{B_1 + B_2}{2} \\
C &= \frac{C_1 + C_2}{2} \\
D &= \frac{D_1 + D_2}{2} \\
E &= \frac{E_1 + E_2}{2}
\end{align*}
\]

(22)

Substitution of these coefficient values and the correct values for the locations \((6x, 6y)\) of the randomly spaced point in the grid square into equation 19 will yield the depth \(H_{pq}\) at the random point. Partial differentiation of equation 19 with respect to \(x\) and \(y\), respectively, will yield

\[
\frac{\partial H}{\partial x} = A + C6y + D6x
\]

and

\[
\frac{\partial H}{\partial y} = B + C6x + E6y
\]

(23)

Computer Program

41. A listing of the program with an explanation of the program variables and an example of input data are presented in Appendix A. The depth values used as input data for the program were a weighted average of three independently obtained depths. One of the sources used was the ocean depths averaged over areas of one-degree squares of latitude and longitude and compiled as computer printout available from the National Oceanographic Data Center. The second and third sources of depth data (both
from the U. S. Naval Oceanographic Office) were an unpublished collection of ocean sounding sheets at an approximate scale of 1:800,000, and the H.O. series of charts at an approximate scale of 1:5,990,000. The plots that were obtained from the computer were referenced to the 1:5,990,000 series charts.

42. The presentation of a geoidal surface (the earth) on a map requires that the representation be distorted in some way. Most Mercator projections (the most common charting method for maps used for navigation and ocean studies) are projected in true scale at 0° latitude (the equator) with the distortion becoming greater the farther one moves from the equator as shown in fig. 16. At a given point on a Mercator map the distortion is the same in all directions and is equal to the secant of the latitude at which one is located (i.e., at 60° north or south latitude a Mercator map is distorted by a factor of 2.0).

Fig. 16. Equal distances represented at different latitudes on a Mercator projection
To get a true picture of wave travel over large distances and particularly through many degrees of latitude, one must compensate for this distortion.

43. Two methods of compensation were considered for this study. Dr. Ledolph Baer of the Lockheed-California Company has devised an essentially undistorted flat representation of the earth’s surface by drawing a map on an icosahedral-gnomonic projection. The earth’s surface was divided into 20 sections and each of these sections was individually projected (using a gnomonic projection) onto a flat surface with the center point of each section being the tangent point between the earth and the map. Each of the sections is therefore undistorted at its center, but becomes increasingly distorted toward the edges of that individual section.

44. The second method studied, and the one adopted for application to this problem, was to distort each computed or assigned Δ distance by the secant of the latitude of its location. Careful examination of the theoretical treatment of the problem revealed that this could be easily accomplished by multiplying each of the depth values which were to be input to the program by the square of the secant of the latitude at which these depth values were located. A rigorous treatment of this is presented in Appendix B. This multiplication was performed before inputting the depth data; therefore, all the depth values of the input data grid shown in Appendix A have already been multiplied by the secant squared of the latitude of their respective location. This has the effect of showing the wave path on the map as if it had taken place on the earth’s surface and had then been transferred point by point to the map.

45. To test the foregoing numerical techniques, it was deemed necessary to compare the computer-drawn refraction diagrams with those obtained by a closed solution of wave refraction around a given island shape. Such an example is described in Appendix C.

Refraction Diagrams

46. The refraction diagrams computed and drawn by the previously described technique are shown in figs. 17-25. The figures show three recent tsunami-front patterns (Alaska, 1964; Chile, 1960; and Kamchatka, 1952) from each of the given sources to Crescent City and Hilo, Hawaii. The
Fig. 17. Refraction diagram for Alaskan tsunami of March 28, 1964
Fig. 19. Refraction diagram in the Hilo area from the Alaskan tsunami of March 28, 1964
Fig. 20. Refraction diagram for Chilean tsunami of May 22, 1960
Fig. 22. Refraction diagram in Hilo area from Chilean tsunami of May 22, 1960
Fig. 25. Refraction diagram in Hilo area from Kamchatka tsunami of November 4, 1952
waves were drawn through the open ocean areas on 1:6,000,000-scale maps and
upon arrival in the nearshore areas of Crescent City and Hilo, the tsunami
fronts were transferred to a larger scale map (1:196,548 in the case of
Crescent City and 1:1,650,000 in the case of Hilo) and continued to very
near the two respective points of interest.

47. The tsunami fronts from each of the three locations are clearly
defined in the Crescent City area, thus describing definite wave fronts
for model wave generator placement. The tsunami-front patterns approach
coincidence from the three sources as they approach Crescent City.

48. Refraction theory dictates that the wave height h_b (shown in
fig. 26) will be

$$h_b = h_o \left(\frac{b_o}{b_b} \right)^{1/2} \quad (24)$$

where

- h_o = known wave height at any distance x from the epicenter
- b_o = physical distance between rays at some known wave height (h_o)
- b_b = physical distance between rays at a point at which one is
 seeking a wave height h_b

Assuming that h_o is a constant known quantity for each of the beginning
tsunamis at a given location, the quantity $(b_o/b_b)^{1/2}$ should give the rel-
ative wave heights at any other desired location for the same tsunami.
The distances b_o and b_b were scaled from the small-scale sheets, and
the quantity $(b_o/b_b)^{1/2}$ for the nearshore areas at Hilo and Crescent City
is shown in the following tabulation:

<table>
<thead>
<tr>
<th>Tsunami</th>
<th>Hilo, Hawaii</th>
<th>Crescent City, Calif.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alaska 1964</td>
<td>$b_o^{1/2}$</td>
<td>$b_o^{1/2}$</td>
</tr>
<tr>
<td>Chile 1960</td>
<td>0.2</td>
<td>0.09</td>
</tr>
<tr>
<td>Kamchatka 1952</td>
<td>0.6</td>
<td>0.08</td>
</tr>
</tbody>
</table>

It must be noted that one could obtain different values for the ratio
Fig. 26. Refraction notation

\((b_o/b_b)^{1/2}\) by choosing another point such as halfway between the tsunami source and the point of interest for the measurement of \(h_o\) and \(b_o\). Since the tsunami height \(h_o\) probably does not vary much in the open ocean, the selection of any other point will undoubtedly change the final nearshore wave height \(h_b\) by changing the \((b_o/b_b)^{1/2}\) ratio.

49. No attempt was made to present a design wave height \(h_b\). The four lowest values of \((b_o/h_b)^{1/2}\) given in the above tabulation dictate that the wave was exceedingly small (considering its small height in the open ocean), a condition that was not present at either of the two given locations for any of these tsunamis. The magnitude of these terms does infer, however, that no wave magnification takes place in the open ocean.
due to gross wave refraction. Local severe discontinuities will undoubtedly cause local wave amplitude increases even in the open ocean; however, an unusually large amplitude associated with any tsunami is probably due to severe shore refraction, shoaling conditions, and the resonance of the particular nearshore area. Comparison of tsunami heights at various locations mentioned in Part IV shows wave heights for which all wave-height magnification factors (refraction, shoaling, and friction) have already been considered. It is seen that tsunamis of equal periods passing through equal water depths will exhibit equal wave-height increases due to shoaling. The time of travel of the tsunamis shown in figs. 17-25 is very close to that presented in the literature. 6,21,22
PART IV: PROBABILITY OF OCCURRENCE OF TSUNAMIS OF VARIOUS HEIGHTS AT CRESCEnt City

Frequency Distribution of Tsunamis of Various Heights at Crescent City

50. The relation of the tsunami height versus frequency of occurrence for Hilo has been determined by Professor Cox, both on the basis of visual observations and marigraphic tide recordings. The first group covers a period of about 130 years and the latter a shorter period of about 24 years. The heights refer to runup values, which are derived from the given bay heights by multiplying the latter values by 1.5. A significant fact recognized by Cox is that the frequency relation needs to be expressed differently depending on the magnitude of the heights. For the smaller heights a power law is indicated, whereas for the larger heights the logarithmic form is more appropriate. Our present interest is in the latter.

Keeping in mind the frequency relation for bay tsunami heights, the Cox determinations were divided by 1.5 and are presented in fig. 27. Wiegel gives some similar results for Crescent City based on 16 observations, of which those relating to larger heights are also plotted in fig. 27. The curve representing average

Fig. 27. Distribution function for maximum wave height
values from these two determinations has the equation

$$N = 0.125e^{-0.14h}$$ \hspace{1cm} (25)

where N denotes the average frequency of occurrence of tsunamis of equal or greater height h (measured in feet).

Risk Evaluation

51. In arriving at a statistical interpretation of the distribution law shown above, the method adopted by Wiegel\(^3\) has been followed. With N given by equation 25, the risk may be established using Poisson's rule

$$q = 1 - e^{-ND}$$ \hspace{1cm} (26)

where D represents duration in years. Curves based on this relation are shown in fig. 28. The figure shows that there is about a 40 percent chance

![Fig. 28. Probability of maximum wave height exceeding a given value in a given duration](image-url)
that a tsunami will strike Crescent City in a 100-year interval with a maximum wave height of at least 23 ft; furthermore, there is a 20 percent chance that such a wave will occur in a 45-year period, and a 95 percent chance that such a wave will strike the town within a period of 600 years. Agreeing with Wiegel, it will be remarked that an extension of tsunami heights to values much above those that have been observed may be erroneous.

Comparison of Tsunami Heights at Hilo and Crescent City

52. In the treatment shown above, a tacit assumption is made that a correlation exists between the tsunami heights at Hilo and Crescent City for a given instance of tsunami occurrence and that the correlation is one of equality. Table 2 shows the heights observed at Hilo and the heights observed at Crescent City or values reduced from the heights observed at San Francisco and the neighboring localities of Los Angeles and San Diego. On the basis of data obtained since 1948, it is found that, on the average, the Crescent City tsunami heights are 2.7 times greater than the values observed in San Francisco, Los Angeles, and San Diego (see Fig. 29). The source of the data in Table 2 relating to tsunamis 1 to 13, inclusive, is a catalog.
preparing for the International Tsunami Information Center. Additional sources of data for tsunamis 14 to 18, inclusive, are reports of the U. S. Coast and Geodetic Survey. The heights refer to the maximum rise or fall noted during a tsunami. The values from table 2 are plotted in fig. 30. If the points relating to tsunamis 2, 3, 4, and 5 in table 2 are ignored, the remaining points suggest that, on the average, during a given tsunami the wave heights at Hilo and at Crescent City are similar.

Fig. 30. Respective tsunami heights at Crescent City and Hilo for the same tsunami
Irregular Tsunami Heights at Hilo

53. It would not be amiss to reconsider tsunami cases 2, 3, 4, and 5, which show excessively large values. These are runup heights and even if an allowance is made for this fact, the reduced bay height values are still far higher than might be expected. From a tabulation given by Spaeth and Berkman, it is inferred that the ratios of the tsunami heights at Hilo to those at Honolulu for the incidences of 1952, 1957, 1960, and 1964 are 1.79, 2.78, 1.75, and 4.62, respectively. The mean ratio, 2.73, may be used to infer the probable tsunami heights at Hilo. This reduction is done in table 3 for tsunamis 2, 3, 4, and 5 (as listed in table 2), and it is seen that the heights inferred for Hilo are of the same order of magnitude as the heights at Crescent City. Occasionally Hilo shows excessively high runup values for reasons difficult to assess.

Tsunami Height Attenuation with Distance Traveled

54. The data points of fig. 30 (a comparison of tsunami heights at Hilo and Crescent City) show scattering. This possibly could be explained on the basis of the distances of the observation localities from the tsunami generating area. Hilo is nearly a central point of the Pacific perimeter of earthquake activity. It is thus proper that the tsunami heights of any locality be compared with those at Hilo. For other points, the effect of distances of tsunami travel needs to be considered. This is particularly true for localities that exhibit resonant conditions. Distance affects the periods which, in turn, modify the magnification of waves in bays subject to resonance. Distance also modifies the tsunami heights. This matter is examined further in the next section.

55. In order to accurately correlate wave heights at Hilo and Crescent City, it is necessary to determine the dependence of wave height on travel distance. Unfortunately, this functional dependence has been determined for only very ideal cases and even there a certain amount of confusion exists.

56. The attenuation of wave height follows the general relation
\[\frac{h_b}{h_o} = x^n \]

where

\(h_b \) = wave height at a distance \(x \) from the source
\(h_o \) = wave height at the source

The relation is unmanageable in this form since the wave does not travel in a straight line from point to point. The above equation was derived from measurements and theory for constant average depth conditions and the approximate values for the exponent \(n \) are tabulated below.\(^\text{25}\)

<table>
<thead>
<tr>
<th>Case</th>
<th>(n)</th>
<th>Case</th>
<th>(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Three-dimensional:</td>
<td></td>
<td>Two-dimensional:</td>
<td></td>
</tr>
<tr>
<td>Leading waves</td>
<td>5/6</td>
<td>Leading waves</td>
<td>1/3</td>
</tr>
<tr>
<td>Wave body</td>
<td>1</td>
<td>Wave body</td>
<td>1/2</td>
</tr>
</tbody>
</table>

Since the tsunami-generating earthquakes occur along a fault line, the wave form may actually be somewhere between these two extremes.

57. Tsunami wavelengths are of such magnitude that tsunamis may be considered shallow-water waves and the amplitude-to-depth ratio is small enough to be negligible. The wave speed is thus very nearly equal to the limiting value

\[c = \sqrt{gH_o} \]

where

\(c \) = wave celerity
\(g \) = the gravitational constant
\(H_o \) = the depth of the water

One would expect, therefore, to obtain a degree of correlation between wave height and time of travel shown by the general form

\[h_t = h_1 t^{-m} \]

where, in this case, \(h_1 \) is the wave height after one hour of travel, \(t \) is the travel time in hours, \(m \) is a curve fitting coefficient, and \(h_t \) is the wave height after \(t \) hours of travel. Available data for the 1960
The travel time on all the figures was determined by the time of arrival of the first wave as detected by tidal gaging stations. Attempts were made to correlate time with both the initial wave height and the maximum oscillation of the water surface. Figs. 31 and 33 exhibit a very high degree of scatter, so the values were averaged over convenient intervals and plotted on log-log paper. A straight line was fitted to the log-log plot by the least squares method in the general form of equation 29 and the resulting plots are shown as figs. 32 and 34.

58. The wave height is seen to diminish with an increase in time according to the general exponential relation; however, the data are too erratic to use as a basis for predicting wave-height distribution. It is generally believed that the nearshore conditions have a much greater effect on the wave height than travel distance. Wave measurements would have to be made in the open ocean to avoid the complicating factors due to nearshore and harbor topography.

Singularity of 1964 Alaskan Tsunami

59. In fig. 30 Crescent City wave heights are compared with those of Hilo Bay, and the Crescent City height from the 1964 Alaskan tsunami is close to the first rise of the water surface. Importantly, the largest wave height observed was that of the fifth wave; it rose about 23 ft, and indicates a very large disparity from the curve purportedly showing the trend in the correlation of heights between Hilo Bay and Crescent City. This large disparity cannot be explained on the basis of travel time from the generating area to these localities under consideration. If one considers h_c and h_h to be the tsunami heights at the shelf approaches to Crescent City and to Hilo Bay, respectively, and T_c and T_h to be the travel times of the tsunami wave from the generating area to these localities, then according to the relation shown in the previous section,

$$\frac{h_c}{h_h} = \left(\frac{T_c}{T_h}\right)^{5/6}$$

(30)
Fig. 32. Log-log plot of information in fig. 31
Spaeth and Berkman\(^6\) give \(T_h = 325\) min and \(T_c = 243\) min, and hence
\(h_c/h_h = 1.27\). Refraction analysis shows that the energy reductions at
these two localities are also of approximately similar values. Thus, one
needs to seek other factors for the anomaly. One possibility, of course,
could be the presence of disparities in the resonant stages of the two
localities during this particular tsunami. One would expect a higher wave
magnification at Crescent City than that at Hilo Bay, if at Crescent City
\(T - T_{cr}\) the quantity \(\frac{T - T_{cr}}{T_{cr}}\) was almost nil, and at Hilo Bay, of a moderate
amount. As precise determinations of the critical periods \(T_{cr}\) of the two
localities are as yet not forthcoming, the matter cannot now be resolved.
Another possibility could be an uneven concentration of energy along the
crest of the wave front at the generating area. This is also a matter
that is not amenable to an accurate determination.

60. Wilson has summarized much useful information relating the
fault length, tsunami source dimension, tsunami height, and tsunami period
and frequency with earthquake intensity.\(^1\) Such information gives insight
into the mechanism of tsunamis, but this is hardly adequate to predict what
the tsunami heights at Crescent City would be if another earthquake oc-
curred in the Alaskan area having an intensity of 8.5 on the Richter scale.
The most relevant information desired is the frequency-height relation for
Crescent City. From the latter point of view, the exaggerated disturbances
of the 1964 Alaskan tsunami hardly fit the course of expected events of
Crescent City, and one is forced to regard the manifestation as a singular
event of rare probability.
PART V: FLUME TESTS AND RESULTS

61. Because of the long period and large height of the 1964 Crescent City tsunami, it was deemed necessary to make flume studies before final selection of the Crescent City model configuration.

Wave Generator and Flume

62. An existing 5-ft-wide, 100-ft-long concrete flume was used for preliminary testing. The object of the tests was to determine the characteristics of a long-period wave model.

63. A sketch of the pneumatic wave generator used in the majority of flume tests is shown in fig. 35. It consists of a rectangular steel vessel with a nozzle attached to the mouth of the tank. The top is provided with a valve leading to the aspirator and another set of valves leading to the open air. In a simple manner of operation, the flume water is raised from an initial level H_0, measured from the flume bottom, to a level H. During this process the air valves are closed. Next, the aspirator valve is closed and the air valves are opened. Assume that the initial wave of the efflux is rectangular in shape and is of constant height h. In the tentative design of the tank, use was made of the relation

3" NIPPLE CONNECTED TO VACUUM
2" SOLENOID VALVE

Fig. 35. Pneumatic wave generator used in the majority of flume tests
\[\frac{h}{H_0} = \left(\frac{H}{H_0} - 1 \right) \left(1 - \frac{1}{k_1} \frac{h}{H_0} \right)^{\frac{k_1}{1 + \lambda}} \]

(31)

which contains in addition to \(H_0 \), \(h \), and \(H \), the quantities \(k_1 \) and \(\lambda \). The significance of \(k_1 \) is shown in the following statements. Prior to the opening of the air valves the suction pressure in the tank is \(\Delta p_o \), say

\[\Delta p_o = \rho g (H - H_0) \]

(32)

Following the opening of the air valves, the suction pressure is decreased to \(\Delta p_1 \), allowing the flow of water from the generator and

\[k_1 = \frac{\Delta p_o - \Delta p_1}{\Delta p_o} \]

(33)

The value of \(k_1 \) may vary between 0.06 and 0.10 by a proper selection of the air gap in the tank and the aperture sizes of the valves. A good value to take is \(k_1 = 0.085 \). The quantity \(\lambda \) is related to the energy loss in the area of the nozzle and would have a reasonable value of 0.426.

64. The generator was designed with the present 1:125 undistorted scale model of the Crescent City coast and the sea environment in mind. The prototype depth of water in the approaches to the harbor is approximately 62 ft. This gives a model depth \(H_0 \) of 0.5 ft. A prototype design wave of 30 ft would have a value \(h = 0.24 \) ft. Entering equation 31 with the quantities \(h = 0.24 \) ft, \(H_0 = 0.5 \) ft, \(\lambda = 0.4 \), and \(k_1 = 0.085 \) yields \(H = 5.0 \) ft. Allowing 1 ft for the air space, the height of the generator tank would be 6 ft. To determine the length of the tank, it is imagined that after the efflux from the tank is completed, the generated wave is triangular in shape and extends from the generator to the model coast. This distance is about 80 ft in the model. At the front, the height of wave is 0.5 ft. Thus, the wave area is 20 sq ft, requiring that the length of the tank be 4 ft.

Model Scale Relations

65. The derivation of scale relations becomes more meaningful if
based on physical relations. Tsunami model waves are essentially translation waves where the particle velocities in a vertical section are nearly constant. The appropriate dynamic and kinematic equations are, ignoring friction,

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + g \frac{\partial h}{\partial x} = 0$$ \hspace{1cm} (34)

$$\frac{\partial h}{\partial t} + \frac{\partial }{\partial x} (uh) = 0$$ \hspace{1cm} (35)

These may be put in dimensionless form. For this, velocities are measured in terms of $\sqrt{gH_0}$, horizontal lengths in terms of L, a characteristic length, and vertical distances, depths, and wave elevations in terms of H_0, a characteristic depth, and time, in terms of a characteristic time, the wave period T. In other words, putting

$$u = \frac{U}{\sqrt{gH_0}}$$

$$\zeta = \frac{x}{L}$$

$$\eta = \frac{h}{H_0}$$

$$\delta = \frac{H}{H_0}$$

$$\tau = \frac{t}{T}$$

the dynamic and kinematic equations become

$$\frac{\partial u}{\partial \tau} + \frac{\partial u}{\partial \zeta} + \frac{\partial \eta}{\partial \zeta} = 0$$

$$\frac{\partial \eta}{\partial \tau} + \frac{\partial }{\partial \zeta} (uh) = 0$$

provided that

$$\frac{L}{T \sqrt{gH_0}} = \text{constant}$$
Thus, if the model be constructed affinely similar to the prototype, that is at corresponding points

$$\delta_m = \delta_p$$

then, at corresponding points

$$u_m = u_p$$

and

$$\eta_m = \eta_p$$

provided that

$$\left(\frac{L}{T\sqrt{gH_o}} \right)_m = \left(\frac{L}{T\sqrt{gH_o}} \right)_p$$

which is the scale for the periods. Let S be the scale for depths and r the model distortion, a quantity larger than unity. Then, with

$$S = \frac{H_p}{H_m}$$
$$rS = \frac{L_p}{L_m}$$

one has

$$T_m = \frac{1}{rS^{1/2}} T_p$$

66. Three series of tests were made for this part of the study. The first series was made using a horizontal and vertical scale of 1:125. This is the scale of the existing Crescent City model which was constructed at the WES for short-period wave studies. The horizontal scale was then enlarged to 1:375 (the vertical scale remaining 1:125) and the contours in
the flume floor remolded for the second series of tests. A set of hardware-cloth wave screens was then placed in front of the wave generator and the third series of tests was run using the same model scales as those used in the second series. The flume bottom configurations for the different series of tests are shown in fig. 36.

![Diagram showing flume bottom configurations](image)

Fig. 36. Flume bottom configurations for the three series of tests

First Series of Tests, Undistorted Model

67. A typical wave record for the case of an undistorted model with a scale of 1:125 is shown in fig. 37. This series of tests was performed to investigate the possibility of utilizing the Crescent City model presently situated at the WES. It became evident from this series of tests that it was not possible to develop a sufficiently long-period model wave due to the interference of the resonant waves in the flume. The resonant characteristics of this size model cause undesirable interaction which makes it impossible to model even a half-period wave.

Second Series of Tests, Distorted Model Without Screens

68. A typical wave record for this case is shown in fig. 38. There
Fig. 37. Typical wave record in undistorted flume

Fig. 38. Typical wave record in distorted flume; $T_m = 35$ sec

Model Time, sec

$S = 128$ $H_w = 5.585$ ft $f = 0.975$

$T_m = 35$ sec
appear to be two objectionable characteristics in this case.

a. The wave record is very spiked with the initial stage of the wave being greatly affected by undesirable exit conditions of the wave generator.

b. The resonant characteristics of the model again make it impossible to input a wave of the desired period. The flume configuration consisted of a long uniform section up to the contoured area at the end of the flume. A "coupling effect" was evident with the two areas resonating independently at their own characteristic frequencies rather than as a whole.

Third Series of Tests, Distorted Model with Screens

69. Hardware-cloth wave screens were installed in the distorted model in an attempt to eliminate the objectionable peaks mentioned in the second series of tests. A typical wave record presented as fig. 39 shows that this objective was partially accomplished; however, the resonant interference in the barrier was still in great evidence and it was still impossible to generate a satisfactory model wave.

Similarity Rules for Wave Periods

70. In all three cases studied in the flume (undistorted profile, distorted profile without screens, and distorted profile with screens), the resonant characteristics of the basin interfered with the functioning of the model. Recognizing the fact that the resonances will always be strong unless an

Fig. 39. Typical wave record in distorted flume with screens
TERMINOLOGY: \(\xi = \ell / L \)

\(\ell = \text{foreslope length} \)
\(L = \text{model length} \)
\(H = \text{depth at wave generator} \)
\(T = \text{resonant wave period} \)

<table>
<thead>
<tr>
<th></th>
<th>Undistorted Flume</th>
<th>Distorted Flume</th>
<th>Distorted Flume with Screens</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\xi_1)</td>
<td>0.97</td>
<td>0.30</td>
<td>0.28</td>
</tr>
<tr>
<td>(L)</td>
<td>70 ft</td>
<td>88 ft</td>
<td>86 ft</td>
</tr>
<tr>
<td>(H_0)</td>
<td>0.67 ft</td>
<td>0.70 ft</td>
<td>0.66 ft</td>
</tr>
<tr>
<td>T (_{\text{calc}})</td>
<td>47 sec</td>
<td>39 sec</td>
<td>39 sec</td>
</tr>
<tr>
<td>T (_{\text{obs}})</td>
<td>46 sec</td>
<td>35 sec</td>
<td>35 sec</td>
</tr>
</tbody>
</table>

Fig. 40. A comparison of theoretical and observed periods for different model configurations.

An extremely large model is built, it was realized that the model should be constructed to resonate at the desired period.

71. A theoretical analysis of a resonant model is included in Appendix E. The results of the theoretical development were verified by the preliminary model tests with the correlation between the observed and the calculated period shown in fig. 40. The theoretical analysis also indicated the similarity criteria to be used in designing a resonant model. The ratio of model period to prototype period was shown to be
\[
\frac{\tau_m}{\tau_p} = \frac{1}{r S^{1/2}}
\]

(36)

where

\[r = \text{distortion ratio} = \frac{S_H}{S_V} \]
\[S = S_V = \text{vertical scale} \]
\[T = \text{period of oscillation} \]

Furthermore, the resonant period for a triangular, two-dimensional basin with a closed end is found to be

\[T = 0.55 \frac{L}{H_o^{1/2}} \]

or

\[T_m = 0.55 \left(\frac{L_m}{\alpha p r} \right)^{1/2} \]

(37)

where

\[L = \text{length of the basin} \]
\[\alpha = \text{bottom slope} \]

72. Employing these criteria, a resonant two-dimensional model can be designed for a particular observed prototype period. A table of possible model dimensions is presented in fig. 41. These values were calculated for a prototype period of 28 min and a bottom slope of 0.0060, both of which conditions were realized at Crescent City during the 1964 tsunami.
Problems for Future Study

73. One of the main findings of the aforementioned tests is that, in the model, the length of the sea area between the wave generators and the harbor should be great enough to create at least one cycle of the wave approximating that of the prototype. In the interest of economy of construction and to avoid an excessively long model, it is necessary that the model be distorted. A further requirement, as can be deduced from the analysis of scale, is that the model be constructed affinely with the prototype. This would mean that the bottom contours of the area from the harbor to the generator should be sloping. Based on these requirements, the model dimensions necessary for different depth scales and different distortions are summarized in fig. 41. A slightly modified wave generator (shown in fig. 42) will be used in any subsequent testing.

74. Among the problems to be considered is the manner of controlling the air valves that would lead to the formation of a well-shaped wave. The efficacy of screens to eliminate the secondary undulations related to the efflux of water from the generator needs to be examined anew. Another quite intriguing problem is the feasibility of utilizing the waves repeated in the flume following the initial operation of the generator tank.

75. One basic problem remaining is the effect of distortion on the runup. The necessity of the study was
particularly emphasized by Professor R. L. Wiegel in a conference held at the WES August 8-9, 1968. In the development of the analysis for the scales it was shown, tacitly, that similarity of the wave quantities, particle velocity and wave elevation, exists in the flume independently of distortion, provided that the period of the model is correctly selected. This is a consequence of the dynamic and kinematic equations applicable to the flume. The argument cannot be applied to the runup. Although resort may be made to another analysis to establish the runup extensions, it would be more satisfactory to resolve the question experimentally.
PART VI: CONCLUSIONS

76. Based on the results of the material presented in this report, it is concluded that:

a. The wave characteristics that should be used in the proposed model testing program to simulate the highest wave of the 1964 tsunami at Crescent City are a 23-ft, 25-min-period, rising tide with a maximum run-up to about the +20 ft allw contour.

b. Shelf resonance in the offshore Crescent City area is a key factor in the unusual height and duration of the 1964 tsunami, and probably, but to a lesser extent, of all other tsunamis causing a water-surface rise at Crescent City.

c. Linear spectral analyses performed on a portion of the 1960 tsunami record at Crescent City show that the contained periods of this tsunami coincide with those derived by Keulegan and Wilson to be the resonant oscillations of the offshore shelf area.

d. A digital computer program that allowed for the distortion present in maps drawn by Mercator projection was coded for tsunami refraction across the Pacific Ocean area and was tested successfully. Refraction diagrams computed and drawn by the above program for three recent tsunamis (Alaska, 1964; Chile, 1960; and Kamchatka, 1952) established nearshore wave-front patterns at Crescent City. These nearshore wave fronts will dictate the wave generator alignment in any subsequent model testing program. The refraction diagrams also showed that no overall tsunami height increase was caused by refraction in the open ocean.

e. The probability of occurrence studies indicated that tsunami heights at Hilo and Crescent City are similar and that the 1964 tsunami was a singular event with only a 20 percent probability of occurrence during any 45-year period.

f. The use of an undistorted tsunami model of the Crescent City area will not be feasible; and the sea environment of the model should be of such a magnitude that the fundamental period of the resonant oscillations of the model sea-to-land area corresponds to the largest period of the selected test wave.

Additional wave-flume tests are required to determine the optimum linear scales of the model and the required sea area that must be reproduced to ensure accurate reproduction of prototype tsunami action in the harbor and overbank areas at Crescent City.
LITERATURE CITED

<table>
<thead>
<tr>
<th>Time Interval</th>
<th>Effective Bandwidth (cpm)</th>
<th>Degrees of Freedom (%)</th>
<th>70% Confident That Estimated Value Will Be</th>
<th>90% Confident That Estimated Value Will Be</th>
<th>95% Confident That Estimated Value Will Be</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Greater Than</td>
<td>Less Than</td>
<td>Greater Than</td>
</tr>
<tr>
<td>0530-2400 hr</td>
<td>0.00194</td>
<td>68.1</td>
<td>4.3</td>
<td>--**</td>
<td>0.44 x TV</td>
</tr>
<tr>
<td>0530-2400 hr</td>
<td>0.00388</td>
<td>48.2</td>
<td>8.6</td>
<td>0.69 x TV**</td>
<td>1.15 x TV</td>
</tr>
<tr>
<td>0530-2400 hr</td>
<td>0.0097</td>
<td>30.5</td>
<td>21.6</td>
<td>0.82 x TV</td>
<td>1.15 x TV</td>
</tr>
<tr>
<td>0530-1300 hr</td>
<td>0.00194</td>
<td>107.0</td>
<td>1.75</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>0530-1300 hr</td>
<td>0.00388</td>
<td>75.8</td>
<td>3.49</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>0530-1300 hr</td>
<td>0.0097</td>
<td>47.7</td>
<td>8.74</td>
<td>0.70 x TV</td>
<td>1.18 x TV</td>
</tr>
<tr>
<td>1300-1700 hr</td>
<td>0.00194</td>
<td>147.0</td>
<td>0.930</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>1300-1700 hr</td>
<td>0.00388</td>
<td>107.5</td>
<td>1.93</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>1300-1700 hr</td>
<td>0.0097</td>
<td>65.3</td>
<td>4.66</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>1700-2400 hr</td>
<td>0.00194</td>
<td>111.0</td>
<td>1.63</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>1700-2400 hr</td>
<td>0.00388</td>
<td>78.1</td>
<td>3.26</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>1700-2400 hr</td>
<td>0.0097</td>
<td>49.5</td>
<td>8.14</td>
<td>0.70 x TV</td>
<td>1.21 x TV</td>
</tr>
</tbody>
</table>

* Less than 5 degrees of freedom (cannot read values from fig. 9).
** TV = true value.
Table 2

Tsunami Heights for Hilo and Crescent City
(From Reference 24)

<table>
<thead>
<tr>
<th>No.</th>
<th>Date</th>
<th>Generating Area</th>
<th>Honolulu, ft</th>
<th>Hilo, ft</th>
<th>San Francisco, ft</th>
<th>Crescent City, ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1883 Aug 26</td>
<td>Krakatoa Volcano</td>
<td>0.79</td>
<td>2.16*</td>
<td>0.33</td>
<td>0.9**</td>
</tr>
<tr>
<td>2</td>
<td>1906 June 15</td>
<td>Sanriku</td>
<td>0.33</td>
<td>7.9</td>
<td>0.67</td>
<td>1.8**</td>
</tr>
<tr>
<td>3</td>
<td>1922 Nov 10</td>
<td>Telcahuano</td>
<td>0.33</td>
<td>4.9</td>
<td>0.33</td>
<td>0.9**</td>
</tr>
<tr>
<td>4</td>
<td>1923 Feb 4</td>
<td>N. Chile</td>
<td>0.98</td>
<td>6.9</td>
<td>0.67</td>
<td>1.8**</td>
</tr>
<tr>
<td>5</td>
<td>1923 Apr 13</td>
<td>E. Kamchatka</td>
<td>2.9</td>
<td>20.0</td>
<td>0.33</td>
<td>0.9**</td>
</tr>
<tr>
<td>6</td>
<td>1927 Nov 4</td>
<td>Point Argaello</td>
<td>0.06</td>
<td>0.33</td>
<td>0.1</td>
<td>0.3**</td>
</tr>
<tr>
<td>7</td>
<td>1928 June 16</td>
<td>Mexico</td>
<td>0.16</td>
<td>0.66</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>8</td>
<td>1933 Mar 3</td>
<td>Sarriku</td>
<td>0.33</td>
<td>0.33</td>
<td>0.66</td>
<td>1.8**</td>
</tr>
<tr>
<td>9</td>
<td>1944 Dec 7</td>
<td>Kii</td>
<td>0.33</td>
<td>0.90*</td>
<td>0.33†</td>
<td>0.9†</td>
</tr>
<tr>
<td>10</td>
<td>1946 Dec 21</td>
<td>Nankaido, Japan</td>
<td>0.33</td>
<td>0.90*</td>
<td>0.33</td>
<td>0.98</td>
</tr>
<tr>
<td>11</td>
<td>1952 Mar 4</td>
<td>Tokachi, Hokkaido</td>
<td>0.67</td>
<td>0.33</td>
<td>1.98</td>
<td>0.67</td>
</tr>
<tr>
<td>12</td>
<td>1963 Oct 12</td>
<td>S. Kuril Island</td>
<td>0.67</td>
<td>1.31</td>
<td>--</td>
<td>1.64</td>
</tr>
<tr>
<td>13</td>
<td>1964 Apr 1</td>
<td>E. Aleutian Island</td>
<td>1.94(4.1)††</td>
<td>26.6</td>
<td>0.98(1.7)</td>
<td>3.0(5.9)</td>
</tr>
<tr>
<td>14</td>
<td>1952 Nov 4</td>
<td>E. Kamchatka</td>
<td>2.3(4.4)</td>
<td>12.1(7.9)</td>
<td>1.96(3.5)</td>
<td>3.6(6.8)</td>
</tr>
<tr>
<td>15</td>
<td>1957 Mar 9</td>
<td>Adak Island</td>
<td>1.97</td>
<td>8.9</td>
<td>0.67</td>
<td>4.3</td>
</tr>
<tr>
<td>16</td>
<td>1960 May 22</td>
<td>S. Chile</td>
<td>3.3(5.5)</td>
<td>37.8(9.6)†</td>
<td>1.64(2.9)</td>
<td>12.1(10.9)</td>
</tr>
<tr>
<td>17</td>
<td>1964 Mar 28</td>
<td>Prince William Island</td>
<td>1.64(2.7)</td>
<td>6.9(12.5)†</td>
<td>4.25(7.4)</td>
<td>20.6(20.6)</td>
</tr>
</tbody>
</table>

* From correlation with Honolulu heights (Hon. heights × 2.73).
** From correlation with San Francisco heights (S.F. heights × 2.7)(see fig. 29).
† Nearby station.
†† Numbers in parentheses refer to C&GS reports or other.
Table 3
Comparison of Honolulu and Hilo Heights for Tsunamis with Large Runup at Hilo

<table>
<thead>
<tr>
<th>No.</th>
<th>Date</th>
<th>Generating Area</th>
<th>Hilo, ft</th>
<th>Honolulu, ft</th>
<th>Hilo Reduced,* ft</th>
<th>Crescent City, ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1896 June 15</td>
<td>Sanriku</td>
<td>7.9</td>
<td>0.33</td>
<td>0.90</td>
<td>1.81</td>
</tr>
<tr>
<td>3</td>
<td>1906 Aug 17</td>
<td>Talcahuano</td>
<td>4.9</td>
<td>0.33</td>
<td>0.90</td>
<td>0.89</td>
</tr>
<tr>
<td>4</td>
<td>1922 Nov 10</td>
<td>N. Chile</td>
<td>6.9</td>
<td>0.98</td>
<td>2.68</td>
<td>1.84</td>
</tr>
<tr>
<td>5</td>
<td>1923 Feb 4</td>
<td>E. Kamchatka</td>
<td>20.0</td>
<td>2.9</td>
<td>7.91</td>
<td>0.9</td>
</tr>
</tbody>
</table>

* Values shown for "Hilo Reduced" are Honolulu values multiplied by 2.73.
APPENDIX A: COMPUTER PROGRAM FOR TSUNAMI REFRACTION

Explanation of Variables and Program Listing

1. The program, for which a listing is given, is written in FORTRAN II and has been run successfully on the GE-225 computer at the U. S. Army Engineer Waterways Experiment Station, Vicksburg, Miss. The program gives output suitable for the off-line Calcomp 750 plotter system at the same installation.

2. The compilation takes approximately 150 sec, and the program executes at the approximate rate of three points per second on the GE-225. These execution times include reading the data for a 35 x 35 grid and printing output every 50 points.

Program: 22-Z5-074, Waterways Experiment Station

3. Input Variables

MM The number of grid intersections along the x-axis.
NN The number of grid intersections along the y-axis.
NOR The number of rays to be refracted during one run.
NPRINT Frequency for printed output.
GRID The length in inches along one edge of a grid square.
H(I,J) Depth data at the grid intersections (Note: I ≤ MM, J ≤ NN).
X,Y Coordinates (in inches) of the starting point for each ray.
ANGIE Initial direction of the wave ray, measured in degrees counterclockwise from the positive x-axis.
DELTAX Computational x increment (Δx) measured in feet.
DIST The number of feet corresponding to the length of a grid square (measured at the equator).
CCNV Conversion factor to change the depth readings to feet.
TIMEX Dictates the number of seconds of actual wave travel between tic marks placed on the ray. (Note: The wave-front positions may be marked TIMEX seconds apart on the ray.)
TIME The time in seconds at the beginning of a wave ray computation.

4. Output Variables

ANGLE \{ X,Y \} As previously described except applied to the successive computational steps instead of the initial conditions.

DEPTH The interpolated depth in feet at successive computational points.

5. Variables Not Previously Defined

HE(1), HE(2), ... HE(10). . Depths at grid intersections used for surface fitting computations.

SMALLX, SMALLY Distances, in feet, of the point of interest measured from \(M(I,J) \).

PHEWXY, PHWXY \(\frac{\partial^2 M}{\partial x^2} \) , found from the surface fitting procedure.

D2YDX2 \(\frac{d^2 y}{dx^2} \)

DXY \(\frac{dy}{dx} \)

DEULDAY The increment of \(y_x(\Delta y) \), computed from a given increment of \(x_y(\Delta x) \).

DELTAT The time increment between successive points of calculations.

6. It must be noted that the format for the depth data is not variable but, of course, may be changed to suit the needed requirements.

7. The plotting steps are incorporated as an integral part of the program. A set of x-, y-axes are drawn with Mx tic marks placed on the x-axis and Ny tic marks placed on the y-axis. These tic marks are placed GRID inches apart and the axes form a reference by which the plotter output may be overlaid on the original map and the rays (which are drawn by the Calcomp plotter) traced from the plotter sheet to the original map.

8. Because of main memory limitations in the GE-225, the maximum size grid that can be used is 35 x 35.

9. A program listing and an example of input for the computer program are found on the following pages.
PROGRAM LISTING

C THEORETICAL TSUNAMI STUDY FOR CRESCENT CITY, CALIFORNIA
C JOHN HARRISON 22-25-674
C PROGRAM COMPUTES AND PLOTS REFRACTION DIAGRAMS FOR A TSUNAMI
DIMENSION H(35,35), HE(101)
TANF(ANGRAD)=SIN(ANGRAD)/COS(ANGRAD)
G=32.174
READ 1, MM, NN, NOR, MPRINT, GRID
1 FORMAT(4I10, 10.9)
L=0
READ 2, (MI, JJ, I=1, MM, J=1, NN)
2 FORMAT (7F10.3)
CALL PLOT(0.0, -30.0, -31)
CALL PLOT(0.0, 30.0, -31)
MNP = MM - 1
NMP = NN - 1
CALL TMK(0.0, 0.0, GRID, MNP, 0.1, 0.0, 1.0, 0.1)
CALL TMK(0.0, 0.0, GRID, NMP, -0.1, 0.0, 1.0, 0.1)
CALL PLOT(0.0, 0.0, -31)
1082 READ 3, XI, ANGLE, DELTAX, DIST, CONV, TIMEX, TIME
MPRN = 1
LL=L+
3 FORMAT(8F10.3)
MNP = 1
TIMES=TIMEX
PRINT 14
14 FORMAT(3I1, 2X, 10HANGLE(1DEG), 5X, 16H COORDINATE(I), 5X, 16H COORDIN
LATE(1), 10H DIST RCT, 12H DEPTH(11)
999 ANGRAD=ANGLE*0.0174532925
602 I=1, X/GRID
J=1, +Y/GRID
425 HE(1)=H(I, J)=CONV
HE(2)=H(I+1, J)=CONV
HE(3)=H(I, J+1)=CONV
HE(4)=H(I+1, J+1)=CONV
HE(5)=H(J+1, I)=CONV
HE(6)=H(J, I+1)=CONV
HE(7)=H(J+1, I+1)=CONV
HE(8)=H(I, J-1)=CONV
HE(9)=H(I-1, J)=CONV
HE(10)=H(I-1, J-1)=CONV
902 XX=1,
YY=1
XFEET = DIST*X/GRID
YFEET = DIST*Y/GRID
SMALLX = XFEET-XX=DIST
SMALLY = YFEET-YY=DIST
PROGRAM LISTING (cont'd)

E1 = (-E1[4] + E1[8]) / (2. + DIST * DIST)

IF (ANGRAD > 90) THEN
 PLOT X = Y + 1
ELSE
 PLOT X = -Y + 1
END IF

GO TO 1400
NEB = 2
GO TO 816

CALL PLOT (X, Y, Z)

IF (TIME < 0.0) THEN
 TIME = 0.0
END IF

CALL TMK (X, Y, Z, ANGLE, TIME, GRID)

IF (TIME > 180.0) THEN
 GO TO 800
END IF

CALL TMK (X, Y, Z, ANGLE, TIME, GRID)

GO TO 800

CALL PLOT (X, Y, Z)

GO TO 800

CALL PLOT (X, Y, Z)

GO TO 800
CALL TMK(PLOTX,PLOTY,0.0,1.0,ANGLE,1.0,1.0)
CALL PLOT [X,Y,3]
GO TO 888
991 PLOTX=PLOTX
PLOTY=PLOTY
CALL TMK(PLOTX,PLOTY,0.0,1.0,ANGLE,1.0,1.0)
CALL PLOT [X,Y,3]
888 TIME=TIME+TIME
825 TIME=TIME+DELTA
DELTA=DELTA+GRID/DIST
DELTA=DELTA+GRID/DIST
X=X+DELTA
ANGLE=ANGLE
IF(ANGLE=80.013002,3002,3001)
3001 IF(ANGLE=80.013002,3002,3002)
3002 PRINT 3002
3003 FORMAT(132,ANGLE IS BETWEEN 89 DEG AND 271 DEG, START A NEW RAY)
GO TO 1001
3000 DELTA=DELTA+DIST/GRID
XXX=XXX
YYY=YYY
ZZZ=GRID*2.
IF(XXX=1000,1000,1000)
1000 PRINT 5000
5010 FORMAT(135, XRAY IS GOING OFF RIGHT SIDE OF PLOT)
GO TO 1003
1000 IF/YYYY=145001,5004,1010
5004 PRINT 5004
5002 FORMAT(135, XRAY IS GOING OFF TOP OF PLOT)
GO TO 1003
100C IF/YYYY=145001,5003,5003
5003 PRINT 5003
5004 FORMAT(135, XRAY IS GOING OFF BOTTOM OF PLOT)
100l IF(LLL=1025,1003,1003
1025 PRINT 800,ANGLE,X,Y,TIME,DEPTH
GO TO 1002
1003 CALL PLOT(0.0,0.0,999)
PRINT 800,ANGLE,X,Y,TIME,DEPTH
REMIND 3
READ 1, JOHN
END
<table>
<thead>
<tr>
<th>Depth and (values in feet) (below waterline) acquired</th>
<th>Number of computations per printout</th>
<th>Number of runs to be drawn</th>
<th>Length of a grid square (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>38.38. 35. 32. 29. 26. 23. 20. 17. 14. 11. 8. 5. 2.</td>
<td>36.16. 35.15. 34.14. 33.13. 32.12. 31.11. 30.10. 29.09. 28.08. 27.07. 26.06. 25.05. 24.04.</td>
<td>33 values = first complete line of depth values</td>
<td></td>
</tr>
</tbody>
</table>

| 4760. 4754. 4748. 4742. 4736. 4730. 4724. 4718. 4712. 4706. 4700. 4694. 4688. | 34.47. 35.46. 36.45. 37.44. 38.43. 39.42. 40.41. 41.40. 42.39. 43.38. 44.37. 45.36. 46.35. | 1.45 |

| 4219. 4213. 4207. 4201. 4195. 4189. 4183. 4177. 4171. 4165. 4159. 4153. 4147. | 40.93. 41.88. 42.83. 43.78. 44.74. 45.69. 46.64. 47.59. 48.54. 49.49. 50.44. 51.39. | 0.95 |

| 4444. 4438. 4432. 4426. 4420. 4414. 4408. 4402. 4396. 4390. 4384. 4378. | 42.75. 43.69. 44.64. 45.58. 46.53. 47.47. 48.42. 49.36. 50.31. 51.25. 52.19. 53.13. | 0.45 |

| 4388. 4382. 4376. 4370. 4364. 4358. 4352. 4346. 4340. 4334. 4328. 4322. | 41.87. 42.80. 43.73. 44.66. 45.59. 46.52. 47.45. 48.38. 49.31. 50.24. 51.17. 52.10. | 0.95 |

| 4322. 4316. 4310. 4304. 4298. 4292. 4286. 4280. 4274. 4268. 4262. 4256. | 41.39. 42.32. 43.25. 44.18. 45.11. 46.04. 46.97. 47.90. 48.83. 49.76. 50.69. 51.62. | 0.45 |

| 4266. 4260. 4254. 4248. 4242. 4236. 4230. 4224. 4218. 4212. 4206. 4199. | 41.12. 42.05. 43.02. 43.99. 44.96. 45.93. 46.89. 47.86. 48.83. 49.79. 50.76. 51.72. | 0.95 |

| 4210. 4203. 4197. 4191. 4184. 4177. 4170. 4163. 4156. 4149. 4142. 4135. | 40.68. 41.62. 42.56. 43.50. 44.44. 45.38. 46.32. 47.26. 48.20. 49.14. 50.08. 51.02. | 0.45 |

| 3882. 3876. 3870. 3864. 3858. 3852. 3846. 3840. 3834. 3828. 3822. 3816. | 37.29. 38.23. 39.17. 40.11. 41.05. 42.00. 42.94. 43.88. 44.82. 45.76. 46.70. 47.64. | 0.95 |

| 3320. 3313. 3306. 3299. 3292. 3285. 3278. 3271. 3264. 3257. 3250. 3243. | 31.72. 32.66. 33.59. 34.54. 35.48. 36.42. 37.36. 38.30. 39.24. 40.18. 41.12. 42.06. | 0.45 |

| 2777. 2770. 2763. 2756. 2749. 2742. 2735. 2728. 2721. 2714. 2707. 2699. | 26.31. 27.25. 28.19. 29.13. 30.07. 31.01. 31.95. 32.89. 33.83. 34.77. 35.71. 36.64. | 0.95 |

| 2354. 2347. 2340. 2333. 2326. 2319. 2312. 2305. 2298. 2291. 2283. 2276. | 22.22. 23.17. 24.11. 25.05. 25.99. 26.93. 27.87. 28.80. 29.74. 30.68. 31.61. 32.55. | 0.45 |

| 1831. 1824. 1817. 1810. 1803. 1795. 1788. 1780. 1773. 1765. 1758. 1750. | 16.94. 17.87. 18.80. 19.73. 20.65. 21.58. 22.50. 23.43. 24.35. 25.28. 26.20. 27.12. | 0.95 |

| 1408. 1401. 1393. 1386. 1378. 1371. 1363. 1356. 1348. 1341. 1333. 1325. | 12.76. 13.69. 14.62. 15.54. 16.47. 17.39. 18.32. 19.24. 20.17. 21.09. 22.02. 22.94. | 0.45 |

| 996. 989. 982. 975. 968. 961. 953. 946. 939. 932. 924. 917. | 9.39. 10.32. 11.25. 12.18. 13.11. 14.04. 14.97. 15.90. 16.83. 17.76. 18.69. 19.62. | 0.95 |

A6
<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4299</td>
<td>4792</td>
<td>4783</td>
<td>4683</td>
<td>4353</td>
<td>4174</td>
<td>3965</td>
</tr>
<tr>
<td>4294</td>
<td>4120</td>
<td>4410</td>
<td>4064</td>
<td>4649</td>
<td>4545</td>
<td>4578</td>
</tr>
<tr>
<td>4770</td>
<td>4329</td>
<td>4374</td>
<td>4752</td>
<td>4388</td>
<td>4698</td>
<td>4696</td>
</tr>
<tr>
<td>4576</td>
<td>4089</td>
<td>4682</td>
<td>4129</td>
<td>4525</td>
<td>4603</td>
<td>4923</td>
</tr>
<tr>
<td>4567</td>
<td>4674</td>
<td>4642</td>
<td>4762</td>
<td>4672</td>
<td>4672</td>
<td>4762</td>
</tr>
<tr>
<td>4926</td>
<td>4440</td>
<td>4591</td>
<td>4623</td>
<td>4567</td>
<td>4422</td>
<td>4523</td>
</tr>
<tr>
<td>4541</td>
<td>4295</td>
<td>4666</td>
<td>4712</td>
<td>4753</td>
<td>4608</td>
<td>4758</td>
</tr>
<tr>
<td>4128</td>
<td>5216</td>
<td>5276</td>
<td>5264</td>
<td>4920</td>
<td>3640</td>
<td>3624</td>
</tr>
<tr>
<td>4587</td>
<td>3742</td>
<td>3972</td>
<td>4342</td>
<td>3450</td>
<td>5668</td>
<td>5845</td>
</tr>
<tr>
<td>4933</td>
<td>4925</td>
<td>4932</td>
<td>4933</td>
<td>4933</td>
<td>4933</td>
<td>4933</td>
</tr>
<tr>
<td>5132</td>
<td>5049</td>
<td>5513</td>
<td>5913</td>
<td>5445</td>
<td>5344</td>
<td>5344</td>
</tr>
<tr>
<td>4657</td>
<td>4476</td>
<td>5047</td>
<td>5249</td>
<td>5462</td>
<td>5904</td>
<td>5936</td>
</tr>
<tr>
<td>5484</td>
<td>5651</td>
<td>5999</td>
<td>5887</td>
<td>5014</td>
<td>5968</td>
<td>4876</td>
</tr>
<tr>
<td>4545</td>
<td>4542</td>
<td>4843</td>
<td>4929</td>
<td>5126</td>
<td>5763</td>
<td>5857</td>
</tr>
<tr>
<td>5927</td>
<td>5118</td>
<td>5719</td>
<td>5118</td>
<td>5118</td>
<td>5118</td>
<td>5118</td>
</tr>
<tr>
<td>5231</td>
<td>5233</td>
<td>5192</td>
<td>5144</td>
<td>5441</td>
<td>4878</td>
<td>4878</td>
</tr>
<tr>
<td>4722</td>
<td>4830</td>
<td>4686</td>
<td>4774</td>
<td>4794</td>
<td>4874</td>
<td>4874</td>
</tr>
<tr>
<td>4994</td>
<td>4933</td>
<td>4932</td>
<td>5271</td>
<td>5378</td>
<td>4751</td>
<td>4523</td>
</tr>
<tr>
<td>4562</td>
<td>4774</td>
<td>4474</td>
<td>4618</td>
<td>5134</td>
<td>5626</td>
<td>5866</td>
</tr>
<tr>
<td>5241</td>
<td>5234</td>
<td>5293</td>
<td>5297</td>
<td>5297</td>
<td>5272</td>
<td>5352</td>
</tr>
<tr>
<td>5233</td>
<td>5439</td>
<td>5378</td>
<td>5390</td>
<td>5290</td>
<td>5139</td>
<td>5210</td>
</tr>
<tr>
<td>5979</td>
<td>5972</td>
<td>4889</td>
<td>4944</td>
<td>5298</td>
<td>5178</td>
<td>5132</td>
</tr>
<tr>
<td>5118</td>
<td>5271</td>
<td>4934</td>
<td>4987</td>
<td>5150</td>
<td>4765</td>
<td>4446</td>
</tr>
<tr>
<td>5483</td>
<td>5133</td>
<td>5171</td>
<td>4971</td>
<td>5308</td>
<td>5216</td>
<td>5201</td>
</tr>
<tr>
<td>5189</td>
<td>5091</td>
<td>5414</td>
<td>9441</td>
<td>5348</td>
<td>5409</td>
<td>5569</td>
</tr>
<tr>
<td>5415</td>
<td>5276</td>
<td>5578</td>
<td>5448</td>
<td>5488</td>
<td>5346</td>
<td>5346</td>
</tr>
<tr>
<td>5268</td>
<td>5248</td>
<td>4923</td>
<td>4942</td>
<td>5112</td>
<td>4946</td>
<td>4907</td>
</tr>
<tr>
<td>5917</td>
<td>5518</td>
<td>5998</td>
<td>5689</td>
<td>5602</td>
<td>5574</td>
<td>5567</td>
</tr>
<tr>
<td>5459</td>
<td>5389</td>
<td>5605</td>
<td>5591</td>
<td>5463</td>
<td>5561</td>
<td>5649</td>
</tr>
<tr>
<td>5405</td>
<td>5581</td>
<td>5642</td>
<td>5568</td>
<td>5477</td>
<td>5549</td>
<td>5511</td>
</tr>
<tr>
<td>5368</td>
<td>5805</td>
<td>5265</td>
<td>5298</td>
<td>5377</td>
<td>5361</td>
<td>5242</td>
</tr>
<tr>
<td>5378</td>
<td>5505</td>
<td>6084</td>
<td>6254</td>
<td>5800</td>
<td>5745</td>
<td>5747</td>
</tr>
<tr>
<td>5935</td>
<td>5990</td>
<td>5745</td>
<td>5725</td>
<td>5646</td>
<td>5646</td>
<td>5646</td>
</tr>
<tr>
<td>5629</td>
<td>5629</td>
<td>5622</td>
<td>5817</td>
<td>5546</td>
<td>5697</td>
<td>5697</td>
</tr>
<tr>
<td>5722</td>
<td>5444</td>
<td>5616</td>
<td>5942</td>
<td>5999</td>
<td>5540</td>
<td>5695</td>
</tr>
<tr>
<td>5514</td>
<td>5492</td>
<td>5723</td>
<td>5882</td>
<td>4787</td>
<td>4997</td>
<td>4862</td>
</tr>
<tr>
<td>5253</td>
<td>5231</td>
<td>5382</td>
<td>5933</td>
<td>5630</td>
<td>5320</td>
<td>5766</td>
</tr>
<tr>
<td>5903</td>
<td>6171</td>
<td>6250</td>
<td>6126</td>
<td>5966</td>
<td>6259</td>
<td>6103</td>
</tr>
<tr>
<td>6601</td>
<td>5939</td>
<td>5892</td>
<td>5876</td>
<td>5904</td>
<td>6196</td>
<td>6464</td>
</tr>
<tr>
<td>5544</td>
<td>5564</td>
<td>5649</td>
<td>5665</td>
<td>5649</td>
<td>5665</td>
<td>5649</td>
</tr>
<tr>
<td>5696</td>
<td>5620</td>
<td>5630</td>
<td>5606</td>
<td>5661</td>
<td>5381</td>
<td>5293</td>
</tr>
<tr>
<td>5435</td>
<td>5415</td>
<td>4952</td>
<td>4970</td>
<td>5504</td>
<td>5561</td>
<td>5944</td>
</tr>
<tr>
<td>5925</td>
<td>6276</td>
<td>6252</td>
<td>6178</td>
<td>6242</td>
<td>6257</td>
<td>6112</td>
</tr>
<tr>
<td>5968</td>
<td>5839</td>
<td>6011</td>
<td>6200</td>
<td>6286</td>
<td>6347</td>
<td>6332</td>
</tr>
<tr>
<td>X (ft)</td>
<td>Y (ft)</td>
<td>Z (ft)</td>
<td>X (ft)</td>
<td>Y (ft)</td>
<td>Z (ft)</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>1320</td>
<td>1110</td>
<td>1120</td>
<td>1130</td>
<td>1140</td>
<td>1150</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- **X, Y coordinates of ray origin**
- **Delta (AD)**: Computational Increment (ft)
- **Conversion from fathoms to feet**
- **Time at the beginning of ray**
- **Initial ray angle (deg.)**
- **Length of grid square at 0° latitude (ft)**
- **Time interval between wave fronts (sec)**
APPENDIX D: TRANSFORMATION OF WAVE MOTION ON THE EARTH'S SURFACE TO A MERCATOR REPRESENTATION OF THAT SURFACE

1. Latitudinal and meridional lines of a sphere may be represented on a map so that the latitudes are horizontal, parallel lines and the longitudes are vertical, parallel lines. Such a representation is termed a Mercator projection and is orthomorphic (i.e., the distortion is uniform in all directions at each point on the map).

2. Let \(\Delta x_o \) = elementary length on a parallel of latitude, \(\phi \)
 \(\Delta y_o \) = elementary length on a meridian, \(\phi \)
 \(R \) = radius of the sphere
 \(\Delta x = R \phi \cos \psi \)
 \(\Delta y = R \phi \)

3. Let \(\Delta x \) and \(\Delta y \) be corresponding lengths on a Mercator map.
Since the projection is orthomorphic,

\[
\frac{\Delta x}{\Delta x_o} = \frac{\Delta y}{\Delta y_o} = n
\]

Since two consecutive meridians separated by \(\Delta \phi \) are represented on the Mercator map by parallel lines separated by \(\Delta x = R \phi \), we have

\[
\frac{\Delta x}{\Delta x_o} = \frac{R \phi \cos \psi}{R \phi} = \sec \psi = n
\]

Therefore,

\[
\frac{\Delta y}{\Delta y_o} = n = \sec \psi = \frac{\Delta y}{\Delta y_o}
\]

Then

\[
\frac{\Delta y}{\Delta \phi} = R \sec \psi
\]

\[
y = R \int_{0}^{\psi} \sec \psi \, d\psi
\]

and

\[
y = R \log \tan \left(\frac{\psi}{2} + \frac{\pi}{2} \right)
\]

BL

Preceeding page blank
Considering a unit sphere where \(R = 1 \),

\[
e^y = \tan \left(\frac{\pi}{4} + \frac{\psi}{2} \right)
\]

(B1)

Also, it can be shown that

\[
e^y = \sec \psi + \tan \psi
\]

(B2)

4. The above derivation shows that the distances on a sphere are magnified by the factor \(\sec \psi \) on a Mercator representation of this sphere. The present problem is to determine a method of plotting wave motion which takes place on the earth's surface on a Mercator map. This is accomplished in the present methodology by multiplying the actual input depths by the secant squared of the latitudinal angle \(\psi \). Since

\[
V_0 = \sqrt{gH_0}
\]

\[
V = \sqrt{gH_0 \sec^2 \psi} = \sec \psi \sqrt{gH_0}
\]

and

\[
V = V_0 \sec \psi
\]

The time element \(dt \) is invariable since

\[
dt = \frac{ds}{V} = \frac{dS_0 \sec \psi}{V_0 \sec \psi} = \frac{dS_0}{V_0}
\]

5. This subjective reasoning can be proved in more definite form. Referring to fig. B1, the basic refraction equation is:

\[
\frac{d\theta}{ds} = \frac{1}{c} \left(\sin \theta \frac{dc}{dx} - \cos \theta \frac{dc}{dy} \right)
\]

where

\[
\sin \theta = \frac{dy}{ds} = \frac{\frac{dy}{dx}}{\sqrt{(dx)^2 + (dy)^2}} = \frac{1}{\sqrt{\left(\frac{dx}{dy}\right)^2 + 1}}
\]
Fig. B1. Wave ray notation

\[\cos \theta = \frac{dx}{ds} = \frac{1}{\sqrt{1 + \left(\frac{dy}{dx}\right)^2}} \]

and

\[
\begin{align*}
\frac{\partial C}{\partial y} &= \frac{1}{2} KH^{-1/2} \frac{\partial H}{\partial y} \\
\frac{\partial C}{\partial x} &= \frac{1}{2} KH^{-1/2} \frac{\partial H}{\partial x}
\end{align*}
\]

where \(C = KH^{1/2} \).

Therefore

\[
\frac{d\theta}{ds} = \frac{1}{2H} \frac{\partial H}{\partial x} - \frac{1}{2H} \frac{\partial H}{\partial y} \frac{1}{\sqrt{\left(\frac{ dyn }{dx}\right)^2 + 1}}
\]

B3
Also

\[\frac{d\theta}{ds} = \frac{\frac{d^2 y}{dx^2}}{\left[1 + \left(\frac{dy}{dx} \right)^2 \right]^{3/2}} \]

\[\frac{\frac{d^2 y}{dx^2}}{\left[1 + \left(\frac{dy}{dx} \right)^2 \right]^{3/2}} = \frac{1}{2H} \left[\frac{\frac{dH}{dx}, \frac{dy}{dx}}{\sqrt{1 + \left(\frac{dy}{dx} \right)^2}} - \frac{\frac{dH}{dy}}{\sqrt{1 + \left(\frac{dy}{dx} \right)^2}} \right] \]

\[\frac{d^2 y}{dx^2} = \frac{1 + \left(\frac{dy}{dx} \right)^2}{2H} \left(\frac{dH}{dx} \frac{dy}{dx} - \frac{dH}{dy} \right) \quad \text{(B3)} \]

Now

\[e^y = \sec \theta + \tan \theta \]

\[\tan \theta = e^y - \sec \theta \]

\[\tan^2 \theta = e^{2y} - 2e^y \sec \theta + \sec^2 \theta \]

and

\[\sec^2 \theta - 1 = \tan^2 \theta \]

so

\[2e^y \sec \theta = 1 + e^{2y} \]

\[\sec \theta = \frac{1}{2} (e^y - e^{-y}) = \cosh y \]

The depths are transformed so that

\[H = H_0 \sec^2 \theta \quad \text{(B4)} \]

In a sea of uniform depth

\[H = H_0 \sec^2 \theta = H_0 \cosh^2 y \]

\[\text{(B4)} \]
\[
\frac{\partial^2 \phi}{\partial y^2} = 2H_0 \cosh y \sinh y
\]

\[
\frac{1}{H} \frac{\partial H}{\partial y} = \frac{2H_0 \cosh y \sinh y}{H_0 \cosh^2 y} = 2 \tanh y
\] \hspace{1cm} (B5)

Substituting equation B5 into equation B3 and noting that \(\frac{\partial y}{\partial x} = 0 \) (in this case)

\[
\frac{d^2 y}{dx^2} = -\frac{1}{2} \cdot 2 \tanh y \left[1 + \left(\frac{dy}{dx} \right)^2 \right]
\] \hspace{1cm} (B6)

Then, taking \(x \) as a function of \(y \),

\[
\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}}
\]

\[
\frac{d^2 y}{dx^2} = \frac{d}{dx} \left(\frac{dx}{dy} \right)^{-1} = \frac{d}{dy} \left(\frac{dx}{dy} \right)^{-1} \frac{dy}{dx}
\]

\[
\frac{d^2 y}{dx^2} = -\frac{\frac{d^2 x}{dy^2}}{\left(\frac{dx}{dy} \right)^3} = \tanh y \left(\frac{dx}{dy} \right)^3 \left[1 + \left(\frac{dy}{dx} \right)^2 \right]
\] \hspace{1cm} (B7)

\[
\frac{d^2 x}{dy^2} = \tanh y \left[\left(\frac{dx}{dy} \right)^3 + \frac{dx}{dy} \right]
\]

\[
\frac{d}{dy} \left(\frac{dx}{dy} \right)^2 = 2 \tanh y \left[\left(\frac{dx}{dy} \right)^4 + \left(\frac{dx}{dy} \right)^2 \right]
\]

Setting

\[
\left(\frac{dx}{dy} \right)^2 = \eta
\] \hspace{1cm} (B8)

we have

\[
\frac{d\eta}{dy} = 2 \tanh y (\eta^2 + \eta)
\] \hspace{1cm} (B5)
\[
\frac{d\eta}{\eta} = 2 \tanh y \, dy
\]

\[
\frac{d\eta}{\eta} - \frac{d\eta}{1 + \eta} = 2 \tanh y \, dy
\]

Integrating

\[
\ln \eta - \ln (1 + \eta) = 2 \ln \cosh y + \ln c_1
\]

or

\[
\frac{\eta}{1 + \eta} = c_1^2 \cosh^2 y
\]

since

\[
\eta_b = \left(\frac{dx}{dy}\right)_0 = \cot^2 \psi
\]

where \(\psi\) is the angle between the ray and the x-axis. At \(y = 0\), \(c_1\) is evaluated as

\[
c_1^2 = \frac{\eta_b}{1 + \eta_b}
\]

6. For example, if the ray follows the equator, \(\theta = 0\), \(\cot^2 \theta = \infty\), and \(c_1\) becomes unity. If the ray follows a meridian, \(\theta = 90^\circ\), \(\cot^2 \theta = 0\), and \(c_1^2 = 0\). Now

\[
\eta = c_1^2 \cosh^2 y + \eta_1^2 \cosh^2 y
\]

or

\[
\eta = \frac{c_1^2 \cosh^2 y}{1 - c_1^2 \cosh^2 y}
\]

\[
\eta = \left(\frac{dx}{dy}\right)^2 = \frac{\cosh^2 y}{c_1^2 - \cosh^2 y}
\]

\[
\frac{dx}{dy} = \frac{\cosh y}{\sqrt{c_1^{-2} - 1 - \sinh^2 y}}
\]
Setting
\[c_1^2 - 1 = K^2 \]
\[\frac{dx}{dy} = \frac{\cosh y}{\sqrt{K^2 - \sinh^2 y}} \]

Then integrating
\[x - x_0 = \int_0^y \frac{\cosh y \, dy}{\sqrt{K^2 - \sinh^2 y}} \]

by setting
\[\sinh y = z \]
\[d(\sinh y) = \cosh y \, dy = dz \]
\[x - x_0 = \int_0^{\sinh^{-1} z} \frac{dz}{\sqrt{K^2 - z^2}} = \sinh^{-1} \left(\frac{z}{K} \right) \left|_0^{\sinh^{-1} z} \right. \]

one obtains
\[\sin (x - x_0) = \frac{\sinh y}{K} \]

(B11)

Differentiating equation B11 yields
\[\cos (x - x_0) \, dx = \frac{\cosh y}{K} \, dy \]
\[\frac{dx}{dy} = \frac{\cosh y}{K \cos (x - x_0)} \]

(B12)

Also
\[\sin^2 (x - x_0) = \frac{\sinh^2 y}{K^2} \]

(B13)

Then
\[\cos^2 (x - x_0) = 1 - \frac{\sinh^2 y}{K^2} \]

(B14)
Combining equations B13 and B14 into equation B12 one obtains

\[\frac{dx}{dy} = \frac{\cosh y}{\sqrt{k^2 - \sin^2 y}} \quad (B15) \]

The tsunami travel time can be represented by the equation

\[t = \int_{S_1} \frac{ds}{V} \quad (B16) \]

where

- \(S_1 \) is the path of the ray
- \(V \) is the velocity over the path on a Mercator map

The velocities have been assumed to be

\[V_o = \sqrt{cR_0}, \; V = V_o \sec \psi \]

Therefore

\[t = \frac{1}{V_o} \int_{S_1} \frac{ds}{\sec \psi} \]

(B17)

7. In order to test the depth transformation, consider a wave initiated at \(x = 0, \; y = 0 \), and traveling to the meridian \(x = \frac{\pi}{2} \). Equation B17 becomes

\[t = \frac{1}{V_o} \int_0^{\pi/2} \frac{\sqrt{1 + \left(\frac{dy}{dx}\right)^2}}{\cosh y} \quad \text{dx} \]

(B18)

Equation B15 becomes

\[\left(\frac{dy}{dx} \right)^2 = \frac{k^2 - \sinh^2 y}{\cosh^2 y} \]

\[1 + \left(\frac{dy}{dx} \right)^2 = \frac{k^2 - \sinh^2 y + \cosh^2 y}{\cosh^2 y} = 1 + \frac{k^2}{\cosh^2 y} \]

B18
Therefore
\[t = \frac{\sqrt{1 + K^2}}{V_o} \int_0^{\pi/2} \frac{dx}{\cosh^2 y} \]
(B19)

From equation B11, equation B19 becomes
\[t = \frac{\sqrt{1 + K^2}}{V_o} \int_0^{\pi/2} \frac{dx}{1 + K^2 \sin^2 (x - x_0)} \]
and, when \(x_0 = 0 \),
\[t = \frac{\sqrt{1 + K^2}}{V_o} \int_0^{\pi/2} \frac{dx}{1 + K^2 \sin^2 x} \]
(B20)

Equation B20 can be integrated by the formula
\[\int \frac{dx}{a^2 + b^2 \sin^2 x} = \frac{1}{a\sqrt{a^2 + b^2}} \tan^{-1} \left(\frac{\sqrt{a^2 + b^2} \tan x}{a} \right) \]
so that
\[t = \frac{\sqrt{1 + K^2}}{V_o} \left[\frac{1}{\sqrt{1 + K^2}} \tan^{-1} \left(\sqrt{1 + K^2} \tan x \right) \right]_0^{\pi/2} \]
\[t = \frac{1}{V_o} \left(\frac{\pi}{2} - 0 \right) = \frac{\pi}{2V_o} \]

8. It can be concluded from the development given above that all waves starting from \((x, y) = 0, 0\) reach the meridian \(x = \frac{\pi}{2} \) at the same time. Since this fact can be immediately understood to occur on a sphere covered with a uniform depth of ocean, and has been shown to occur under the proposed transformation of depths onto a Mercator map, the proposed transformation is justified.

9. A refraction diagram drawn by digital computer techniques utilizing the above presentation (and previously discussed at length) is shown in fig. B32. This refraction takes place across an idealized ocean which everywhere covers the earth's surface to an equal depth.
Fig. B2. Representation of wave refraction on Mercator map
1. In order to test the numerical technique for drawing refraction diagrams, it was deemed necessary to check the solution against a closed solution for a special case. A circular island of the idealized dimensions shown in fig. C1 was chosen as a model.

![Profile of island used to test refraction program](image)

Fig. C1. Profile of island used to test refraction program

2. While considering a circular island, it is convenient to transform the refraction equation

\[
\frac{d^2 y}{dx^2} = \frac{1}{2H} \left(\frac{dy}{dx} \frac{d^2 H}{dx^2} - \frac{dH}{dx} \frac{d^2 y}{dy^2} \right) \left[1 + \left(\frac{dy}{dx} \right)^2 \right]
\]

(C1)

into polar coordinates \(r \) and \(\theta \) so that

\[
\begin{align*}
 x &= r \cos \theta \\
 y &= r \sin \theta
\end{align*}
\]

(C2)

First, we write equation C1 as

\[
K = \frac{1}{2H} \left(\frac{dy}{dx} \frac{d^2 H}{dx^2} - \frac{dH}{dx} \frac{d^2 y}{dy^2} \right) \left[1 + \left(\frac{dy}{dx} \right)^2 \right]^{\frac{1}{2}}
\]

(C3)

where the radius of curvature of a curve \(K \) in rectangular coordinates is defined as
In polar coordinates

\[
K = \frac{\frac{\text{d}^2 r}{\text{d}x^2}}{\left[1 + \left(\frac{\text{d}r}{\text{d}x}\right)^2\right]^{3/2}}
\]

\[\text{(c4)}\]

In polar coordinates

\[
K = \frac{r^2 + 2r'^2 - r''}{(r^2 + r'^2)^{3/2}}
\]

\[\text{(c5)}\]

where

\[r' = \frac{\text{d}r}{\text{d}\theta}\]

and

\[r'' = \frac{\text{d}^2 r}{\text{d}\theta^2}\]

Now

\[
\frac{\text{d}y}{\text{d}x} = \frac{r'\sin \theta + r\cos \theta}{r'\cos \theta - r\sin \theta}
\]

and

\[
1 + \left(\frac{\text{d}y}{\text{d}x}\right)^2 = \frac{(r'\cos \theta - r\sin \theta)^2 + (r'\sin \theta + r\cos \theta)^2}{(r'\cos \theta - r\sin \theta)^2}
\]

\[
= \frac{r'^2\cos^2 \theta + \sin^2 \theta + r'^2\sin^2 \theta + r\cos \theta + r^2(\sin^2 \theta + \cos^2 \theta)}{(r'\cos \theta - r\sin \theta)^2}
\]

\[
1 + \left(\frac{\text{d}y}{\text{d}x}\right)^2 = \frac{r'^2 + r^2}{(r'\cos \theta - r\sin \theta)^2}
\]

\[\text{(c6)}\]

From equation C3

\[
K \sqrt{1 + \left(\frac{\text{d}y}{\text{d}x}\right)^2} = \frac{1}{2a} \left(\frac{\text{d}y}{\text{d}x} \frac{\partial H}{\partial x} - \frac{\partial H}{\partial y}\right)
\]

\[\text{(c7)}\]

C2
and from equations C5 and C6
\[
K \left[\sqrt{1 + \left(\frac{\partial y}{\partial x} \right)^2} \right] = \frac{r + 2r' - r^2}{(r^2 + r'^2)(r' \cos \theta - r \sin \theta)} \tag{C8}
\]

The terms of equation C7 are expanded as follows:
\[
\frac{\partial H}{\partial x} = \frac{\partial H}{\partial r} \frac{\partial r}{\partial x} + \frac{\partial H}{\partial \theta} \frac{\partial \theta}{\partial x}
\]
\[
\frac{\partial H}{\partial y} = \frac{\partial H}{\partial r} \frac{\partial r}{\partial y} + \frac{\partial H}{\partial \theta} \frac{\partial \theta}{\partial y}
\]

and
\[
\frac{\partial r}{\partial x} = \cos \theta, \quad \frac{\partial r}{\partial y} = \sin \theta
\]
\[
\frac{\partial \theta}{\partial x} = -\frac{\sin \theta}{r}, \quad \frac{\partial \theta}{\partial y} = \frac{\cos \theta}{r}
\]

Now since
\[
\frac{\partial y}{\partial x} = \frac{r' \sin \theta + r \cos \theta}{r' \cos \theta - r \sin \theta}
\]
\[
\frac{1}{2H} \left(\frac{\partial y}{\partial x} \frac{\partial H}{\partial x} - \frac{\partial H}{\partial y} \right)
\]
\[
= \frac{1}{2H} \left[(r' \sin \theta + r \cos \theta) \frac{\partial H}{\partial x} - (r' \cos \theta - r \sin \theta) \frac{\partial H}{\partial y} \right] \tag{C9}
\]

Considering these terms separately
\[
(r' \sin \theta + r \cos \theta) \frac{\partial H}{\partial x} = (r' \sin \theta + r \cos \theta) \left(\cos \theta \frac{\partial H}{\partial r} - \frac{\sin \theta}{r} \frac{\partial H}{\partial \theta} \right)
\]
\[
= r' \sin \theta \cos \theta \frac{\partial H}{\partial r} + r \cos^2 \theta \frac{\partial H}{\partial r} - \frac{r' \sin^2 \theta}{r} \frac{\partial H}{\partial \theta} - \sin \theta \cos \theta \frac{\partial H}{\partial \theta}
\]

C3
\[(r' \cos \theta - r \sin \theta) \frac{\partial H}{\partial y} = (r' \cos \theta - r \sin \theta) \left(\sin \theta \frac{\partial H}{\partial r} + \cos \theta \frac{\partial H}{\partial \theta} \right) \]

\[= r' \cos \theta \sin \theta \frac{\partial H}{\partial r} - r \sin^2 \theta \frac{\partial H}{\partial r} + \frac{r'}{r} \cos^2 \theta \frac{\partial H}{\partial \theta} - \cos \theta \sin \theta \frac{\partial H}{\partial \theta} \]

Therefore

\[(r' \sin \theta + r \cos \theta) \frac{\partial H}{\partial x} - (r' \cos \theta - r \sin \theta) \frac{\partial H}{\partial y} = r \frac{\partial H}{\partial r} - \frac{r'}{r} \frac{\partial H}{\partial \theta} \]

and

\[\frac{1}{2H} \left(\frac{\partial}{\partial x} \frac{\partial H}{\partial x} - \frac{\partial}{\partial y} \frac{\partial H}{\partial y} \right) = \frac{1}{2H} \left(r \frac{\partial H}{\partial r} - \frac{r'}{r} \frac{\partial H}{\partial \theta} \right) \frac{1}{r' \cos \theta - r \sin \theta} \]

Now, combining equations C7, C8, and C9 yields

\[r^2 + 2r^2 - r^2 = \frac{1}{2H} \left(r \frac{\partial H}{\partial r} - \frac{r'}{r} \frac{\partial H}{\partial \theta} \right) \left(r^2 + r^2 \right) \]

Equation C10 is the refraction equation in polar coordinates.

3. Let us assume that the island is symmetrical so that

\[\frac{\partial H}{\partial \theta} = 0 \]

Therefore

\[r^2 + 2r^2 - r^2 = \frac{1}{2H} \left(r \frac{\partial H}{\partial r} \right) \left(r^2 + r^2 \right) \]

The hypothetical island is illustrated in fig. C1 and is defined by the equations

C4
\[H = H_0 \left(\frac{r}{a} \right)^2 \quad a < r < b \]
\[H = H_1 = H_0 \left(\frac{b}{a} \right)^2 \quad b < r \]

\[\frac{\partial H}{\partial r} = 2H_0 \left(\frac{r}{a} \right) \]

\[\frac{r \frac{\partial H}{\partial r}}{H} = 2 \]

Simplifying equation C11 according to these boundary conditions yields

\[r^2 + 2r'r^2 - rr'' = r^2 + r'^2 \quad \text{(C12)} \]

or

\[-rr'' + r'^2 = 0 \]

\[-r \frac{d^2 r}{d\theta^2} + \left(\frac{dr}{d\theta} \right)^2 = 0 \quad \text{(C13)} \]

Now one may solve equation C13 for \(\theta \) as a function of \(r \):

\[\frac{dr}{d\theta} = \frac{1}{\frac{dr}{d\theta}} \]

\[\frac{d^2 r}{d\theta^2} = - \left(\frac{\frac{d^2 \theta}{dr^2}}{\left(\frac{d\theta}{dr} \right)^3} \right) \]

and equation C13 becomes

\[r \frac{d^2 \theta}{dr^2} + \frac{d\theta}{dr} = 0 \quad \text{(C14)} \]
The solution of equation C14 is

$$\theta = C_1 \log r + C_2$$ \hspace{1cm} (C15)

In order to solve for the two constants in equation C15, consider a plan view of the given island shape (fig. C2). The x-axis is situated parallel to the incident ray direction and all angles are measured in the usual counterclockwise direction from the positive x-axis.

4. At the point of entrance of the ray to the island's influence

$$\frac{dr}{rd\theta} = \tan \left(\theta_b - \frac{\pi}{2} \right) = -\cot \theta_b$$ \hspace{1cm} (C16)

Therefore

$$\frac{d\theta}{dr} = -\frac{\tan \theta_b}{r_b}$$

C6
From equation C15

\[\frac{d\theta}{dr} = \frac{C_1}{r_b} \]

and therefore

\[C_1 = -\tan \theta_b \quad (C_{17}) \]

\(C_2 \) is eliminated by considering \((r_b, \theta_b)\) and another arbitrary point \((r, \theta)\) on the shelf so that

\[\theta_b = C_1 \log r_b + C_2 \]

and

\[\theta = C_1 \log r + C_2 \]

yielding

\[\theta - \theta_b = -\tan \theta_b \log \frac{r}{r_b} \quad (C_{18}) \]

Thus, the equation of a ray entering the surroundings of the island at the point \(r = r_b \), \(\theta = \theta_b \) is

\[\theta = \theta_b - \tan \theta_b \log \frac{r}{r_b} \quad (C_{19}) \]

The ray will reach the island coast zero contour (at \(r = a \)) at an azimuth of

\[\theta_a = \theta_b - \tan \theta_b \log \frac{a}{b} \quad (C_{20}) \]

5. An example of the foregoing discussion is shown below. If
\[\theta_b = 135^\circ = \frac{3\pi}{4} \]

\[\tan \theta_b = -1 \]

so that

\[\theta_a = \frac{3\pi}{4} + \log \frac{a}{b} \]

Typical values of \(\theta_a \) (with \(\theta_b = \frac{3\pi}{4} \)) for various values of the ratio \(\frac{a}{b} \) are tabulated below:

<table>
<thead>
<tr>
<th>(\frac{a}{b})</th>
<th>(\log \frac{a}{b})</th>
<th>(\theta_a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>-0.693</td>
<td>1.666</td>
</tr>
<tr>
<td>0.4</td>
<td>-0.916</td>
<td>1.443</td>
</tr>
<tr>
<td>0.3</td>
<td>-1.204</td>
<td>1.155</td>
</tr>
<tr>
<td>0.2</td>
<td>-1.609</td>
<td>0.750</td>
</tr>
<tr>
<td>0.1</td>
<td>-2.303</td>
<td>0.057</td>
</tr>
</tbody>
</table>

6. Fig. C3 shows a typical refraction pattern around the given island shape to which the specific dimensions shown in the figure have been assigned. The results given by the accepted computer program agree very closely with those produced by the theoretical treatment.
Fig. C3. Typical refraction pattern around the theoretical island.
APPENDIX D: SHELF OSCILLATIONS IN THE CRESCENT CITY AREA

1. One may consider the oscillations of an ocean shelf by analyzing the simplified two-dimensional model shown in fig. D1. The model configuration consists of

![Two-dimensional model shelf](image)

Fig. D1. Two-dimensional model shelf

A uniformly sloping shelf which drops off to infinity at the ocean end and is terminated by a vertical wall near the land.

2. Let the distance x be measured from the point of intersection of the still-water surface and the shelf slope. The shelf then extends from the point $x = x_1$ to $x = L$. The depth of water varies uniformly as

$$H = H_0 \frac{x}{L} \quad (D1)$$

3. Denoting the surface disturbance as h, the velocity of water in a section x by u, and the time by t, the equation of motion becomes

$$\frac{\partial u}{\partial t} = -g \frac{\partial h}{\partial x} \quad (D2)$$

where g is the gravitational acceleration. The conservation of mass equation is

$$D1$$

Preceding page blank
These relations assume that the amplitude \(h \) is small in comparison with the depth \(H \), that the vertical acceleration is negligible, and that the velocity \(u \) is uniform across the section. The waves induced are assumed to be shallow-water waves.

4. The elimination of \(u \) from equations D2 and D3 yields

\[
\frac{\partial^2 h}{\partial t^2} - g \frac{\partial}{\partial x} \left(H \frac{\partial h}{\partial t} \right) = 0
\]

(D4)

As we are interested in standing wave oscillations over the shelf, let

\[
h = \eta \cos \sigma t
\]

(D5)

\[
u = \nu \sin \sigma t
\]

(D6)

where \(\sigma = \frac{2\pi}{T} \) and \(T \) is the period of the oscillation. Substituting from equation D5 into equation D4 yields

\[
g \frac{\partial}{\partial x} \left(H \frac{\partial \eta}{\partial t} \right) + \sigma^2 \eta = 0
\]

(D7)

Now, let us suppose that \(x \) is measured in terms of \(L \), and write

\[
s = \frac{x}{L}
\]

(D8)

also

\[
s = \frac{H}{H_0}
\]

Equation D7 transforms to

\[
\frac{\partial}{\partial s} \left(s \frac{\partial \eta}{\partial s} \right) + K\eta = 0
\]

(D9)

where

D2
\[K = \frac{\sigma^2 L^2}{\theta_o^4} \] (D10)

Equation D9 may be written as
\[g \frac{d^2 \eta}{ds^2} + \frac{d^2 \eta}{d\theta^2} + K\eta = 0 \] (D11)

We may set
\[\theta = 2s^{1/2} K^{1/2} \] (D12)

and write equation D11 as
\[\frac{d^2 \eta}{ds^2} + \frac{1}{2} \frac{d^2 \eta}{d\theta^2} + \eta = 0 \] (D13)

which is a Bessel equation of zero order and hence
\[\eta = A J_0(\theta) + B K_0(\theta) \] (D14)

where \(J_0 \) and \(K_0 \) are zero order Bessel functions of the first and second kind, respectively. The height of the disturbance is
\[h = \left[A J_0(\theta) + B K_0(\theta) \right] \cos \omega t \] (D15)

If the oscillations of the open sea are given at \(x = L \) to be
\[h = \eta_o \cos \omega t \] (D16)

then
\[\eta_o = A J_0(\theta_L) + B K_0(\theta_L) \] (D17)

where
\[\theta_L = 2 K^{1/2} \]
5. A second relation similar to equation D17 involving, likewise,
the constants A and δ should be obtained. At the point $\xi = \xi_1$ the
particle velocity is defined.

6. Reconsider equation D12 and substitute from equations D5 and D6.

\begin{equation}
\tag{D18}
\sigma = -\delta \frac{\partial \varphi}{\partial x}
\end{equation}

or

\begin{equation}
\tag{D19}
\sigma = \frac{\eta}{L} \frac{\partial \varphi}{\partial \xi}
\end{equation}

This can also be written as

\begin{equation}
\tag{D20}
\frac{\partial}{\partial \xi} \left[\frac{1}{2} \frac{\varphi^2}{\kappa \ell} \right] = -\frac{\partial \varphi}{\partial x}
\end{equation}

Differentiating equation D15 with respect to ξ,

\begin{equation}
\frac{d\eta}{d\theta} = A\varphi' \xi^2 + \varphi \xi' \varphi'
\end{equation}

and since

\begin{equation}
J''(\theta) = -J_1(\theta)
\end{equation}

and

\begin{equation}
K''(\theta) = -K_1(\theta)
\end{equation}

we have

\begin{equation}
\frac{d\eta}{d\theta} = -A J_1(\theta) - B K_1(\theta)
\end{equation}

(D21)

Now

\begin{equation}
\frac{d\eta}{d\xi} = \frac{d\eta}{d\theta} \frac{d\theta}{d\xi} \quad \text{and} \quad \frac{d\theta}{d\xi} = \frac{2K}{\theta}
\end{equation}

so that

\begin{equation}
\tag{D4}
\end{equation}
Substituting equation D22 into equation D21 yields
\[
\frac{d\theta}{d\xi} = \frac{-2K}{\theta} \left[AJ_1(\theta) + BK_1(\theta) \right]
\]
and from equation D20 the velocity relation is
\[
\frac{v}{\sqrt{\theta_0}} = \frac{2K}{\theta} \left[AJ_1(\theta) + BK_1(\theta) \right]
\]
where
\[
\theta = 2s^{1/2} \theta_1^{1/2}
\]
At the coast, \(\xi = \xi_1 \), the particle velocity \(u = 0 \), and hence \(V \) vanishes and
\[
AJ_1(\theta_1) + BK_1(\theta_1) = 0
\]
where
\[
\theta_1 = 2\xi_1^{1/2} \theta_1^{1/2}
\]
Solving for \(A \) and \(B \) from equations D18 and D24
\[
A = \frac{K_1(\theta_1) \theta_0}{\Delta}
\]
\[
B = \frac{-J_1(\theta_1) \theta_0}{\Delta}
\]
where
\[
\Delta = J_0(\theta_L)K_1(\theta_1) - J_1(\theta_1)K_0(\theta_L)
\]
Substitute into equation D15 so that
\[\frac{\bar{H}}{H_0} = \frac{J_0(\theta)K_1(\theta) - K_0(\theta)J_1(\theta)}{\Delta} \] (D29)

7. The solution of the above equations is presented in the following statements. When the waves which excite the shelf system occur at a fundamental frequency of the shelf, the wave heights at the shore \(\xi = \xi_1 \) will become infinite (under the original assumptions). For various values of \(\xi_1 \), we can determine the roots of

\[\Delta = J_c(\theta_L)K_1(\theta_L) - J_1(\theta_L)K_0(\theta_L) \] (D28 bis)

The values are shown in table D1 in terms of \(N \) where

\[N = \frac{T \sqrt{gH_0}}{L} = \frac{4\pi}{2k^{1/2}} \] (D30)
Table D2

N Values for Various Values of \(\xi_1 \)

<table>
<thead>
<tr>
<th>(\xi_1)</th>
<th>(\xi_1)</th>
<th>(N_2)</th>
<th>(N_3)</th>
<th>(N_4)</th>
<th>(N_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5.226</td>
<td>2.276</td>
<td>1.436</td>
<td>0.066</td>
<td>0.842</td>
</tr>
<tr>
<td>0.01</td>
<td>5.129</td>
<td>2.202</td>
<td>1.381</td>
<td>0.063</td>
<td>--</td>
</tr>
<tr>
<td>0.022</td>
<td>5.013</td>
<td>2.112</td>
<td>1.319</td>
<td>0.058</td>
<td>--</td>
</tr>
<tr>
<td>0.04</td>
<td>4.880</td>
<td>2.016</td>
<td>1.250</td>
<td>0.054</td>
<td>--</td>
</tr>
<tr>
<td>0.09</td>
<td>4.511</td>
<td>1.797</td>
<td>1.204</td>
<td>0.049</td>
<td>--</td>
</tr>
<tr>
<td>0.16</td>
<td>4.045</td>
<td>1.558</td>
<td>0.950</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Note:

\[N = \frac{T \sqrt{gH_c}}{L} = \frac{\mu n}{2K^{1/2}} \]

\[\xi_1 = \frac{\chi_1}{L} \]
1. For simplicity in argument it will be assumed that the harbor and bay environments in the tsunami model can be approximated by the special channel configuration shown in fig. E1.

![Idealized channel configuration](image)

Along the distance OA, the harbor and bay area is correctly contoured. Along the distance AB, the water depth is constant. The wave generator placed at B constitutes a barrier, and at this point the particle velocity u vanishes when flow from or into the generator has ceased. For the successful operation of the model it is desired that the period of the standing waves in this particular channel be greater than or equal to the tsunami model period. Although in principle it is always desirable that harbor and bay contours be reproduced up to the foot of the generator, this may not be possible because of cost considerations. In any case one must have an expression for the period of the slowest oscillation.

Law of depth:

$$
H = H_0 \frac{x}{L} \quad 0 < x < L \\
H = H_0 \quad L < x < L
$$

Dynamic equation:

$$
\frac{\partial u}{\partial t} = -g \frac{\partial h}{\partial x}
$$

(S2)
Continuity condition:

\[\frac{\partial h}{\partial t} + \frac{\partial}{\partial x} (H u) = 0 \] \hspace{1cm} (E3)

Details of these relations can be found in reference 27. From equations E2 and E3

\[\frac{\partial^2 h}{\partial t^2} - g \frac{\partial}{\partial x} \left(H \frac{\partial h}{\partial x} \right) = 0 \] \hspace{1cm} (E4)

Introducing

\[h = \eta \cos \sigma t , \sigma = \frac{2\pi}{T} \] \hspace{1cm} (E5)

equation E4 gives

\[\sigma^2 \eta + g \frac{\partial}{\partial x} \left(H \frac{\partial \eta}{\partial x} \right) = 0 \]

Introducing

\[\xi = \frac{x}{L}, \xi_1 = \frac{\xi}{L} \] \hspace{1cm} (E6)

the last equation becomes

\[\sigma^2 \eta + \frac{g H_0}{L^2} \frac{d}{d\xi} \left(\frac{H}{H_0} \frac{d \eta}{d\xi} \right) = 0 \] \hspace{1cm} (E7)

Also

\[K = \frac{\sigma^2 L^2}{gH_0} \] \hspace{1cm} (E8)

whereupon

\[\frac{d}{d\xi} \left(\frac{H}{H_0} \frac{d \eta}{d\xi} \right) + K \eta = 0 \] \hspace{1cm} (E9)

One must consider two solutions of the equation, first for the range
\[0 < \xi \leq \xi_1 \text{ and second for the range } \xi_1 < \xi \leq 1. \text{ For the first range } \]

\[\frac{H}{H_0} = \frac{\xi}{\xi_1} \quad (E10) \]

and equation E9 becomes

\[\xi \frac{d^2 \eta_1}{d\xi^2} + \frac{d\eta_1}{d\xi} + K \xi \eta_1 = 0 \quad (E11) \]

Subject to the condition that \(\eta_1 \) is finite at \(\xi = 0 \), the proper solution is (Lamb27)

\[\eta_1 = A_1 J_\frac{1}{2} \left(2 \xi^{1/2} \xi_1^{1/2} K^{1/2} \right) \quad (E12) \]

For the range \(\xi_1 < \xi \leq 1 \), since \(\frac{H}{H_0} = 1 \), equation E9 becomes

\[\frac{d^2 \eta_2}{d\xi^2} + K \eta_2 = 0 \quad (E13) \]

and the solution is

\[\eta_2 = A_2 \cos K^{1/2} \xi + B_2 \sin K^{1/2} \xi \quad (E14) \]

Now at \(\xi = 1 \), \(u = 0 \) and thus \(\frac{d\eta_2}{d\xi} = 0 \). By differentiation

\[\frac{d\eta_2}{d\xi} = K^{1/2} \left(-A_2 \sin K^{1/2} \xi + B_2 \cos K^{1/2} \xi \right) \quad (E15) \]

and

\[A_2 \sin K^{1/2} = B_2 \cos K^{1/2} \]

E3
\[B_2 = A_2 \tan \frac{k}{2} \]

(E16)

At the section through \(A \), \(\xi = \xi_1 \), and both \(\eta \) and \(\frac{d\eta}{d\xi} \) are continuous. Hence,

\[
\begin{align*}
\eta_1 &= \eta_2, \quad \xi = \xi_1 \\
\frac{d\eta_1}{d\xi} &= \frac{d\eta_2}{d\xi}, \quad \xi = \xi_1
\end{align*}
\]

(E17)

Then from equations E12 and E14

\[A_1 J_0 \left(2\xi_1 \frac{k}{2} \right) = A_2 \cos \frac{k}{2} \xi_1 + B_2 \sin \frac{k}{2} \xi_1 \]

(E18)

and

\[A_1 J'_0 \left(2\xi_1 \frac{k}{2} \right) = \frac{k}{2} \left(-A_2 \sin \frac{k}{2} \xi_1 + B_2 \cos \frac{k}{2} \xi_1 \right) \]

or

\[A_1 J'_0 \left(2\xi_1 \frac{k}{2} \right) = -A_2 \sin \frac{k}{2} \xi_1 + B_2 \cos \frac{k}{2} \xi_1 \]

(E19)

Making use of equation E16

\[A_1 J_0 \left(2\xi_1 \frac{k}{2} \right) = A_2 \left(\cos \frac{k}{2} \xi_1 + \tan \frac{k}{2} \sin \frac{k}{2} \xi_1 \right) \]

(E20)

and

\[A_1 J'_0 \left(2\xi_1 \frac{k}{2} \right) = A_2 \left(-\sin \frac{k}{2} \xi_1 + \tan \frac{k}{2} \cos \frac{k}{2} \xi_1 \right) \]

(E21)
Dividing equation E21 by equation E20 and utilizing the rule

\[J_0'(-) = -J_1(-) \] \hspace{1cm} (E22)

one has

\[\frac{-J_1 \left(\frac{2 \xi_1 K^{1/2}}{2} \right)}{J_0 \left(\frac{2 \xi_1 K^{1/2}}{2} \right)} = \tan \frac{K^{1/2}}{2} - \tan \frac{K^{1/2}}{2} \xi_1 \]

\[\frac{1 + \tan K^{1/2} \tan K^{1/2} \xi_1}{1 + \tan K^{1/2} \tan K^{1/2} \xi_1} \]

or more simply

\[\frac{J_1 \left(\frac{2 \xi_1 K^{1/2}}{2} \right)}{J_0 \left(\frac{2 \xi_1 K^{1/2}}{2} \right)} = -\tan \left[K^{1/2} \left(1 - \xi_1 \right) \right] \] \hspace{1cm} (E23)

The roots of this equation of least value for specified values of \(\xi_1 \), through equation E8, determine the periods \(T \) of the slowest oscillation.

2. Determination of the periods is simpler for the two extreme cases represented by \(\xi_1 = 0 \) and \(\xi_1 = 1 \). Consider the first case, \(\xi_1 = 0 \).

Since \(J_1(0) = 0 \), from equation E23

\[\tan K^{1/2} = 0 \] \hspace{1cm} (E24)

and hence

\[K^{1/2} = \pi, \quad K = \pi^2 \]

Substitute this into equation E8 to obtain

\[T = \frac{2L}{\sqrt{8H_0}} \] \hspace{1cm} (E25)

a well known result.
3. Taking the second case \(s_1 = 1 \), as \(J_0 \left(2K^{1/2} \right) \) is finite, equation E23 yields

\[
J_1 \left(2K^{1/2} \right) = 0
\]

(E26)

the root of the smallest value being

\[2K^{1/2} = 3.8317 \]

which gives

\[K = 4.0530 \]

Substituting this in equation E28, one has

\[
T = 3.121 \frac{L}{\sqrt{gH_0}}
\]

(E27)

4. The determination of the roots of equation E23 for other values of \(s_1 \) must be carried out by trials. Some other determinations of \(K^{1/2} \) are given in table E1, along with the corresponding values of \(N \) in the expression

\[
T = N \frac{L}{\sqrt{gH_0}} \quad , \quad N = \frac{2\pi}{K^{1/2}}
\]

(E28)
<table>
<thead>
<tr>
<th>ξ_1</th>
<th>$K^{1/2}$</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>3.142</td>
<td>2.000</td>
</tr>
<tr>
<td>0.10</td>
<td>3.137</td>
<td>2.002</td>
</tr>
<tr>
<td>0.20</td>
<td>3.100</td>
<td>2.026</td>
</tr>
<tr>
<td>0.30</td>
<td>3.007</td>
<td>2.090</td>
</tr>
<tr>
<td>0.33</td>
<td>2.952</td>
<td>2.128</td>
</tr>
<tr>
<td>0.40</td>
<td>2.837</td>
<td>2.214</td>
</tr>
<tr>
<td>0.50</td>
<td>2.642</td>
<td>2.378</td>
</tr>
<tr>
<td>0.60</td>
<td>2.454</td>
<td>2.560</td>
</tr>
<tr>
<td>0.70</td>
<td>2.285</td>
<td>2.750</td>
</tr>
<tr>
<td>0.80</td>
<td>2.141</td>
<td>2.934</td>
</tr>
<tr>
<td>0.90</td>
<td>2.020</td>
<td>3.110</td>
</tr>
<tr>
<td>0.75</td>
<td>2.210</td>
<td>2.843</td>
</tr>
<tr>
<td>1.00</td>
<td>2.013</td>
<td>3.121</td>
</tr>
</tbody>
</table>