MANUAL ON AEROELASTICITY
SUBJECT AND AUTHOR INDEX

Edited by
E.C. Pike

This publication is sponsored by the Structures and Materials Panel of AGARD
FOREWORD

The Subject Index and Author Index cover all the chapters in the six loose-leaf volumes of the Manual on Aeroelasticity and were up to date in April 1970. Since that date new chapters of the Manual have been published in the AGARD Report series.

Entries are given by Volume, Chapter and Page number. For example, II/9/56 denotes Volume II, Chapter 9, page 56. The letter S after a Chapter number denotes a Supplement to that Chapter. The letters TG denote the section of Tables and Graphs in Volume VI. The abbreviation INTRO denotes the Introductory Survey in Volume I.

A.J.BARRETT
Chairman, Structures and Materials Panel
CONTENTS

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOREWORD</td>
</tr>
<tr>
<td>SUBJECT INDEX</td>
</tr>
<tr>
<td>AUTHOR INDEX</td>
</tr>
<tr>
<td>LIST OF CONTENTS OF MANUAL ON AEREOELASTICITY</td>
</tr>
</tbody>
</table>
SUBJECT INDEX

Abel's theorem II/2/40
Ablation plates I/7/37-8
Acceleration effects IV/9/14-15
Acceleration potential II/1/13-14
Accelerometers IV/1/25-6, 27: IV/5/39: IV/7/25, 26
Accident investigation III/5/2
Ackeret theory III/7/5/10, 16, 41, 49
Aerodynamic aspects Volume II
Aerodynamic coefficients see Derivatives
Aerodynamics forces approximations II/5/11-55
generalised definition I/INTRO/2
formulæ II/Chapter 4: II/Chapter 7:
III/4/4, 27: III/7/7: III/8/9-12, 17-20
growth III/2/20
measurement II/1/22-3
propeller III/9/5-7, 10-13
Aeroplane section effects
Aerofoil sections
Aerofoil theory
comparison with experiment II/10/6-18, 48-9
non-stationary (unsteady) II/Chapter 8
symmetric aerofoils II/8/18-33
supersonic and hypersonic II/9/9-28
Aeronautical Research Committee I/INTRO/47-7
A.G.C. technique IV/3/30
Albedo's theorem II/2/40
Altitude effects
flutter control surfaces III/5/10: V/3/21
panels III/7/14
wings V/2/25-7
mass balance V/4/7, 9-12
models IV/6/11-17, 20-23: IV/7/14
Aluminium panels III/7/10-16, 18, 22, 24: III/7/5-9, 33, 40
cylinders III/7/26-8: III/7/81
“Amplitude response” technique IV/10/5-7
Ankylisis 1/6/40, 51
Apparatus mass concept II/6/7, 12
Approximate methods
aerodynamic forces III/5/11-55
flutter V/Chapter 6
static aerelasticity III/2/12-38: III/3/5-11, 14
Arrow-head wings II/5/14-36-8: II/10/25-8
Aspect ratio
buffet effect on buzz V/3/8
on derivatives II/1/27-30, 40-41
on divergence II/1/23
on flutter control surfaces V/3/8
on derivatives II/1/27-30, 40-41
on divergence II/1/23
on flutter control surfaces V/3/8
on derivatives II/1/27-30, 40-41
on divergence II/1/23
Backlash
classification II/10/6-18, 48-9
non-stationary (unsteady) II/Chapter 8
symmetric aerofoils II/8/18-33
supersonic and hypersonic II/9/9-28
non-stationary (unsteady) II/Chapter 8
Aeronautical Research Committee I/INTRO/47-7
A.G.C. technique IV/3/30
Ailerons
buffet III/5/4
derivatives II/11/39
effectiveness V/1/6-7
flutter IV/9/12-13: V/3/16, 17-23, 24:
V/4/9-30, 12-13, 14
impedance test IV/8/4-13
inboard III/3/19: V/1/9
reversal V/1/5-9
tip V/1/9
Airship-flow concept II/1/19
All-moving controls see Tailplanes
Beam vibration
simple beam theory 1/2/5-6, 8, 14: 1/3/31:
III/1/4-5, 19: III/2/24-30, 40-44: II/3/14
thermal effects 1/7/12-16, 19-21, 30-34
Bearings IV/5/7-8
Bending moment idealised III/2/15,20
wing root V/1/3
Bending rigidity
panels III/7/15,17,20: III/7S/18
Bernoulli's equation II/7/6,9,13,62,63: II/8/14
Biconvex aerofoils
flapping III/9/3-16: III/10/10,11
flutter I/INTRO/25-6: III/Chapter 9:
bond testing IV/6/22
ground testing IV/6/33
Blasius procedure II/8/22
Bodies of revolution slender
influence coefficients III/7S/10: IV/l/27
Boundary conditions general aerodynamic II/1/14-15
indicial function II/6/2-4
lifting surface II/5/7-9
slender body III/7/7-9
structural vibration I/2/4-5: III/7/7: III/7S/9
Boundary layer attached II/9/39-46
"compliance" II/9/42-6,49
displacement thickness II/9/39-42,48
effects II/Chapter 9
panel flutter III/7S/13,14,29-32,44
idealised II/9/42,45: III/7S/13,14
time-dependent II/9/38-53
see also Separation
Boundary-value problems classical II/1/20
three-dimensional II/4/38: II/5/1,2,5-9
two-dimensional II/2/4-6,11
Box methods II/5/19-29: II/9/31
Bubbles, in propellants I/8/22
Buckling Euler III/7/8
panels III/7/10,12,37-41: III/7S/47-54
Skin III/1/7-8
thermal I/7/19-29,35-7
Buffeting I/INTRO/20-21,40-41: III/5/11:
V/5/1,14,41,53
Buzz III/5/10-11: V/5/26-54
Calibration of equipment IV/5/33: IV/10/23
Cantilever wings, flutter III/1/4: III/4/2:
V/6/14,16
Castigliano's Theorem I/7/8
Cathetometer IV/1/15
Cauchy-Riemann equations II/8/4
Centre of gravity effect
body-freedom flutter V/2/41-3
control surface flutter V/3/18: V/6/52
Centre of pressure effect III/4/24: III/5/9:
V/1/5: V/2/4: V/4/13
Characteristic equations I/4/3,6,10
Characteristic phase lag I/3/1,24-7
Characteristics, method of III/9/33
Charts, static aeroelasticity III/2/24: III/3/10-11
"Choking" frequency, autopilot III/8/23,28
Circulation function see Theodorsen function
Collocation method see Kernel function procedure
"Comfort stall" (blades) III/10/17
Component Analyser Technique IV/2/3,18-20
Component resolvers IV/5/51-2
Compressibility effects see Mach number effects
Compressor blades see Blades
Computers, use in autopilots III/8/13
dynamic stability III/6/29
general III/1/13: III/Chapter 4S
influence coefficients III/7S/10: IV/l/27
model testing IV/7/1
non-linear problems I/6/24-5
panel flutter III/7S/7
propeller flutter III/9/21
Cones, circular III/7/43-5,58-61: II/9/37,49
Conformal mapping II/2/1,12: II/4/81-4:
II/8/3-38
Continuous media, damping I/3/14-15
Continuum methods II/2/1,12,13
Contours, flutter speed I/INTRO/33
Control circuit III/3/2-3,4,8,19: III/5/2:
IV/9/14
Control points, lift functions II/5/51-5
Control reversal see Reversal
Control surface balance I/4/43-5
coupling with airframe I/5/34-5
degrees of freedom III/4/11-12
derivatives II/Chapter 10: II/11/7,33-60:
V/1G/4-5,15-24,42-138
flexibility III/3/2-3,4,8,19
flutter III/4/22-3: V/Chapter 3: V/5/26-54:
V/Chapter 6
ground testing I/4/42-9
linearised sonic theory II/4/63-8
pressure distribution III/3/3
profile discontinuity III/5/11
Control systems manual I/4/46-8: I/5/1,6-8
powered I/4/48-9: I/Chapter 5: V/Chapter 4
Dirichlet problem II/9/33
Discrete methods I/2/1-2,12
Displaced frequency method I/4/17,8,82-3
Displacement functions I/INTRO/6-9
Dissipation function I/4/5-6
Divergence
blades III/10/10-12

general I/INTRO/18,19,21-2: III/1,1,2:

III/Chapter 2: V/Chapter 1
panel flutter III/7/27,28
record analysis IV/9/10

Donnell equations III/78,45,47
Doppler equipment IV/9,3-4
doubt-sheet method II/9/30
downwash
calculations II/5,32-3: II/8,9,11,17

distribution II/5,13,34: II/6,15

mean II/8,41

points, choice of III/3,24-6: II/4,14-19

variation II/8,13-14

drag parachutes III/7,37

dundulant integrals II/4,14: III/4,32,33

Duncan functions I/2,5: III/4,20

dynamic amplification factors I/3,15-21

dynamic balance V/3,9,14,20-28

dynamic flexibility matrices I/3,29

dynamical

equations I/INTRO/1-5,12-14

systems I/6,3-38

variables I/INTRO/1-5

Eddy shedding II/5,8: III/10,21: V/5,2,22-3

Eddy-current damping IV/5,24-5,27

Edge constraint III/7,21-2: III/78,22,37,39,51

Eigenvalue problems I/2,11: I/3,23: III/4,6-7,

II,28,35:II,6,17,19,26-9: III/7,9-10

Elastic axis III/6,10,17: IV/1/1: V/3,10,12-20

Elementary system IV/3,1,4,5,18-19

Elevator flutter III/5,5: V/3,24-5

Empirical methods II/2/50

Energy

active I/3,29

dissipation III/8,7: IV/3,14-16,19,28-30

formulations I/7,8

kinetic I/2,2,4,7,8: III/8,5,6,8-9,16-17:

IV/3,5-6,7

potential III/8,5,6

reactive I/3,29-31

Energy supplied method I/4,17-18

Equations, conditioning of III/1,12,14:

III/4,13-14,20

Equations of motion I/INTRO/1-5,12-14

"Equivalent profile" technique II/10,8,12,13

"Equivalent" wing V/6,72-5

Errors, random III/1/19: III/4,21-2

Eulerian equations III/4,9

Excitation I/3,7,27-35: I/Chapter 4

harmonic III/4,27-9: IV/3,4-5

in flight tests III/1,15-16: IV/10,14-21

in wind tunnel tests IV/5,13,20,32,42-4:

IV/7,25, IV/8,23

points of IV/3,21,29-30

Exciters I/4,15,16,81,86: IV/3,3,29-30

see also Excitation, Force generators
Expansions method II/5,13-14,23-9: II/8,3
Experimental methods Volume IV

comparison with theory II/Chapter 10:

III/1,22,24-6: III/9,14-16: IV/10,25

influence coefficients IV/Chapter 1

static aerelastic effects III/2,51-2: III/3,17-18

Explosive charges III/4,29

External stores
effect on derivatives III/11,63-6: III/1,18

effect on divergence III/2,4

effect on wing flutter III/5,5

models III/1,19: IV/7,16,17: IV/8,6,12

optimum position III/2,55

rotary inertia I/2,9

vibration analysis I/2,9,13

Failure

models IV/8,5: IV/9,7

power controls IV/4,8

structural III/1,1: III/5,2

Fatigue IV/10,3,4: V/3,29,33

Feedback
effect on flutter III/4,12

force IV/4,11,13

structural IV/4,5

Filtering I/4,35-40: III/8,26: IV/10,17-19

Fin and rudder
derivatives II/11,60-66

flutter V/3,24: V/4,9,11,20

Finite-difference equations I/1,15,19,20

Finite-element method I/7,17: III/2,45:

III/7S,6

Flaps

buzz V/5,28,32,36,9,43-50,52

hinge moments II/1,134

Flat spot I/6,1-2,20,21,39,45-9

Flexibility

controls III/3,2,4,8,12,13,19

effect on analysis III/2,28

function III/1,5

helicopter blades III/10,12

influence coefficients IV/1,3,4

propellers III/9,16-18

representation of III/1,4

vehicles III/8,24

wings III/9,19-21

Flexural axis I/1,4: V/2,21,23: V/6,12,18,

19,23,7,40,43

Flexural centre V/6,75

Flight tests III/1,15-17,24-5: III/2,53-4:

III/Chapter 5: IV/Chapter 10

Fluids, motion in tanks I/Chapter 8

Flutter

ailerons I/3,17,24: V/4,8,10,12,13-14

approximations IV/Chapter 6

boundaries

models IV/6,18-19

panels III/7,4,5: III/7S,13,20,53

flutter III/9,10,11: III/10,11,12

calculations

approximate III/6,21: V/Chapter 6

automated processes III/Chapter 4S

in practice III/Chapter 4

light aircraft III/1,25

value of V/3,4,5
displacement IV/3/24-7
measurement IV/5/53
natural
choice of IV/3/27
definition I/3/19-20: III/8/7
determination I/3/33
pseudo - I/4/24
ratio V/3/15-17,18-21
reduced, effect on derivatives VI/TG
requirements V/3/8-9

Frequency parameter
control surfaces V/3/7-8
definition I/INTRO/11
history II/1/3-4
liquids I/8/39-67
Frequency sweep IV/3/7: IV/10/7,16
Friction, solid I/INTRO/9,44-5: I/4/19,40,51-3:
fundamental V/2/28-31,35
Galerkin method

Fuel sloshing I/6/2: I/Chapter 8:
historical review IV/10/2-3
Fuel tanks see Tanks

Frequency parameter
control surfaces V/3/7-8
definition I/INTRO/11
history II/1/3-4
liquids I/8/39-67
Frequency sweep IV/3/7: IV/10/7,16
Friction, solid I/INTRO/9,44-5: I/4/19,40,51-3:
fundamental V/2/28-31,35
Galerkin method

specific force
rotation I/11/10/12
stiffness IV/4/10,12
Stability
in calculations I/4/1-3,9: III/4S/4
in prediction I/1/6,14,17,18
mass and stiffness I/1/24: III/8/7:
IV/3/15,23-30
panel flutter III/7/12
Gravitational effects IV/6/7
Green's theorem II/1/11-13: II/4/69: II/5/30:
II/6/8
Ground resonance tests I/Chapter 4: III/1/3,
8,9,21-4: III/5/5-7,12,15: IV/Chapter 2:
IV/4/15: IV/10/12

Gusts
early work I/1/4,8-9
response I/6/47-53: IV/10/3-4
sharp-edged I/4/29-31
Gyration, radius of
pitching (wing flutter) V/2/28-38
control surface V/6/36
Gyros
Gyroscopic forces III/9/4-5

Gyroscopic forces III/9/4-5

Half-span technique IV/5/7,42
Hanging scale I/11/15,17
Hard oscillator characteristics V/5/51
Harmonic balance method III/7S/47,51
Harmonic excitation see Excitation
Heat conduction equation (Fourier) I/7/1
Heating, aerodynamic see Kinetic heating
Height effects see Altitude effects
Helicopter blade flutter III/Chapter 10
see also Rotors
Helmholtz equation II/7/1
vorticity theorem II/8/4,12
Hermite matrices III/45/11,24; III/6/24
Hessenberg matrix III/45/27
Hinge moment differences II/10/34,47-8; II/11/7,33-60
effect on buzz V/5/44-50,54
effect on impedance I/S/19-22
prediction of III/3/17; V/5/44
Hinge position, effect on buzz V/5/50,51
Hinge stiffness, effect on buzz V/5/42,43,46
Hooke's Law I/7/3,22
Horn balance V/3/14
Hsu's method III/3/34-7
Hyperbolic radius III/9/31-2
Hypersonic flow
initial response II/5/46,53
oscillations II/9/24-8
Hysteresis
damping
curves I/3/4-5; 9-10,12
measurement IV/5/11,22
magnetic IV/5/28
stability boundary V/5/30
structural non-linearity I/6/21-3,39,
49-51: IV/1/10
Impedance
complex I/3/11
experimental determination I/5/29-33
manual controls I/5/6-8
matching V/4/5
models IV/8/11
powered controls I/5/8-33: III/5/6:
IV/Chapter 4
testing I/4/19-20; III/5/6
transfer IV/1/10-11
variation with frequency IV/4/9
Impulsive loading IV/INTRO/39-40
Incidence effects
buzz V/5/42,43,48
pure pitching oscillations V/5/16-20
stalling flutter V/11/12,14
wing flutter V/2/16-17
Incompressible flow theory II/2/10-20
Indicial
admittance I/INTRO/39: III/4/33
aerodynamics II/Chapter 6
functions II/6/4-46
loading II/6/9-12,15,19-30,33-8,44-7
method IV/INTRO/11
response II/1/5; II/6/2,6,14,15,30,33,38,
50,53-4
Inertia
axis V/2/23-5; V/5/14
coefficients III/4/13,22
compensation I/4/79-83
coupling III/1/3,9
distribution III/1/3
effect on wing flutter V/2/23-40
forces I/INTRO/1; III/2/20,29; III/3/2,4
measurement of IV/Chapter 3
moment of
control surfaces V/3/12,14,18-23,27
determination I/4/64-6,72
fuselage V/7/4-14
rolling V/2/38
spars IV/7/16
tab V/3/27
parameters III/4/24
product of
control surfaces V/3/13,14
tab V/3/27
rotatory I/2/9-14
linkage III/5/13-14,15
"inexorable forcing" see rigid drives
inflow angle III/9/12-13: III/10/15-20
Influence coefficient method I/INTRO/5,6:
I/2/6-14: III/1/20; III/1/6: III/4/5
Influence coefficients
accuracy III/4/8
dynamic stability III/6/4-17,24
high temperature structures III/1/23
measurement IV/Chapter 1
panel flutter III/7/5,41
static aeroelastic phenomena III/2/26-51:
III/3/11,14-15
three-dimensional supersonic theory
II/5/11,26-7
Influence points IV/1/7-8
Instability
conditions for V/5/3-4
prediction of III/Chapter 1
regions II/2/27
Instrumentation
flight flutter tests III/5/1,12,16: IV/10/21-5
ground resonance tests IV/2/10-14
load application IV/1/14-27
measurement of deformation III/8/1-2:
IV/1/14-27
measurement of derivatives IV/5/47-53
model vibration tests IV/7/23-6
rocket, sled and free-falling tests IV/9/6-7
Integral equation
analytical solution II/3/10-16,43-8
method II/2/23-6: III/1/4-5; III/7/9-10:
III/7/8
three-dimensional sonic II/4/3-11
three-dimensional subsonic III/3/3-10
three-dimensional supersonic II/1/5-55
Integration
chordwise II/3/21-9; II/5/43-6
constants V/6/58-71
method IV/5/17-18
numerical II/4/19-24
spanwise II/3/29-33: II/5/46-9
Interaction
aerodynamic and structural III/1/1: III/8/2
autopilot and structure III/Chapter 8
shock-wave boundary-layer V/5/2,8,40-41
Interference
aerodynamic III/1/2
wind tunnel II/10/1,10,40-41
wing-tip tanks II/11/64
Interpolation functions II/3/18-19
Iteration methods
 automatic processes III/4S/13-19
 dynamic stability III/6/2,3-20,26-9
 non-linear problems I/6/25-8
 panel flutter III/7/9-10
 static aeroelasticity III/2/36-8

Jacks
 circuit diagram IV/4/14
 equations of motion IV/4/18-19
 impedance IV/Chapter 4
 load application IV/1/14
 operation IV/4/2-4
 stalling III/4/24
 stiffness III/5/11
 Joukowsky profile II/8/3,18-20,23,29,30,35,38
 Jump phenomenon I/6/36-7: I/8/11

Kelvin circulation theorem II/8/4
Kelvin modes I/7/4,5

Kernel function method
 comparison of theory and experiment II/10/19,23,36
 lifting-surface theory III/4S/10
 panel flutter III/7S/5
 static aeroelasticity III/2/33,47-8
 thickness effects II/8/3
 three-dimensional supersonic theory II/5/31,33-4,40,42,51-5

Kinetic heating
c.ffect on divergence and reversal V/1/10
 general effects I/INTRO/41
 non-linearity I/6/3
 simulation of IV/6/25-6
 Kirchhoff's formula II/6/38
 Kássner effect III/4/31,32,34
 Kutta condition II/2/9-10: II/6/2,9,16:
 II/8/2,4,7,39,42

Lagrange equations
 aircraft flutter III/4/1,9,27
 conservative structure I/4/3
 dissipative structure I/4/6
 general I/INTRO/2,9: III/1/5,6
 panel flutter III/7/7
 powered controls V/4/2-8
 propeller flutter III/9/4
 vehicle with autopilot III/8/6,7,15-7
 interpolation formula I/1/19
 multiplier technique I/2/5

Laplace equation
 II/2/10,13: II/4/80,81,86:
 II/6/30,32: II/7/1,13,20,48: II/8/4,7:
 II/9/28,33
 law I/4/76
 operator V/4/4
 transform I/3/6: II/2/30,31,40
 transformation method III/7/8: III/7S/6
 Lateral control, methods of V/1/7-9
 Lateral-antisymmetric motion I/INTRO/5
 Launch acceleration I/8/65
 Least-squares method III/2/35-6,47-8:
 IV/1/10

Lenz's law I/4/76
Lever, measuring IV/1/23-5,27
Lyapunov method III/7S/6,17,20
Lift-curve slope
effect on flutter V/5/23-6
tail V/1/5
 wing V/1/5
Lift functions II/3/40,49,50,60
Lifting-line theory II/1/20: II/3/1: II/6/21:
 II/11/19: III/4S/10
Lifting-surface methods
 automatic processes III/4S/8-11
 matrix form III/4/5-6
 oscillating finite wings III/1/20-22
Lifting-surface theory
comparison with experiment II/10/19,25,
 28,29,43
derivatives II/8/37
 three-dimensional
incompressible II/6/27
 sonic II/4/1,11-36
 subsonic II/3/1
two-dimensional subsonic II/6/16
Lifting surfaces, thickness effects II/9/7-20
Light aircraft, flutter III/1/26
Limit cycle
 panel flutter III/7S/47,51,52,55
 single-degree-of-freedom flutter
 V/5/5,30-35,46-50
Linear Differential equation II/1/11-12,138
Linear superposition II...: III/7/7
Linear systems II/1/23
Linearised equation II/10/10
Linearised theory
comparison with experiment II/Chapter 10
derivative moment coefficient II/9/18
damping V/6/18
 phIo, expectation II/2/18-20
 stability boundaries II/9/14
 stability II/1/18-19
 three-dimensional II/4/1,4-11: II/5/1
 two-dimensional II/Chapter 2
Linearity, assumption of I/INTRO/23,10:
 I/4/1: III/1/7: III/2/8: IV/3/2
Liquid effect on flutter III/7S/45:
Liquid propellant dynamics I/Chapter 8
Liquid surface motion I/8/21,27,61,68-9
Lissajous figures I/4/80: IV/7/25: IV/8/3
Load application IV/1/11-14,26-7
Load cells IV/1/1
Loading
coustic I/2/15
aerodynamic III/2/4-5
dynamic I/2/14
initial II/6/5,7
 pulse II/6/12,14,27,30,33
 see also Indicial loading
Load see Aerodynamic forces
Local linearisation method II/9/2,20-23,31,35,41
Logarithmic
circuit IV/5/16-17
decrement III/6/30,31: III/7/12,32:
 IV/3/19-20: IV/5/10,15-17
 increment III/7/25-6
 spiral IV/5/15
Longitudinal-symmetric motion

Lorentz coordinates

Lumped parameter method

Mach number, critical

Mach number effects on

buzz V/5/29-36,39

control surface flutter V/3/7-9,18:

V/6,37,41
derivatives I/INTRO/11:

II/10,28,32:

II/11,30-32:

V/6,19-22,35:

VI/TG/11-138
divergence III/2/3
dynamic pressure V/1,2,3
gust response II/6,49,51

lateral control V/11,7,8
models IV/6,9-17:

IV/7/1,3-14;
IV/8/7-11

p,nel flutter III/7,10,11:

III/7S/16,24-33,40,41

powered controls V/4,8,12-13

root bending moment V/1,3,4

sonic theory II/4/9-11

stalling flutter V/5/15

wing flutter V/6/23-3,5,9,16,20,25-7:

V/6,22-8

wing stiffness requirements V/2,19-21

Magnetic analysis method I/4/35-40

Magnetic tape IV/5/13,14,17

Manoeuvrability, rolling V/1,6-8

Mantegne's equation III/7S/49

M's added to small models I/4/74-5,8-56 and spring systems I/4/51-60

distribution I/4/17:

II/3/64:

IV/2,23-7

equivalent IV/3/24

generalised I/4/16,61-2,82-3,86

ratio V/3,18,20,21,22-3

Mass-balancing

aileron IV/9,12,13

blades III/10,12

control surfaces and tabs III/5/4,8-15:

V/3,1,4,9-14,17,21,28,31-3:

V/6,53-5

failure of support III/5/2

powered controls V/4,1,6-15

pre-flight calculations III/4/23

test apparatus IV/5,34,37-9

Mathieu functions II/1,18:

II/2,20-23,26:

II/7,26,27

Matrix methods

admittance concept IV/2,20-21

automatic processes III/4S/11-28

damping effect on resonance I/3/1,2-21,37
dynamic stability III/6,7-12,17,21

flutter problems III/4,3-11,13-14:

III/6,22-9

general application III/1,5-6,9-12

generalised forces II/4,31-6

generalised masses IV/3/23-6

panel flutter III/7/10,12:

III/7S/5-6,41

static aeroelastic phenomena III/2,26-32,

41-3:

III/3/11-14

structural influence coefficients I/2,6-13:

I/3,1,10-11:

IV/4,2,14,16-18,23-7

Maxwell model I/3,1,5,6,9-10,13,17,22:

I/7,4

Mechanical Instability III/9,17

Membrane

flutter III/7,16,3-7,38:

III/7S/53

tension III/7,12,13,16,27:

III/7S/16,17,39

Mirrors see Optical

Missiles method III/4/3S/13-14,20,21,22

Missiles profiles III/3S/19,21,23,37,38

Missiles III/8/14-28

Modal methods III/2,32,3,38:

III/8,4,5-8,28

see also Rayleigh-Ritz method

Model tests

comparison with theory III/1,24-6

propeller flutter III/9,1,10,11,13,21-2

representation of full-scale I/INTRO/32-5,42-4:

III/1,13,17,21

uses of I/INTRO/42:

IV/7,2-3

Models

buzz V/5/54

construction IV/Chapter 7

control surfaces V/3,5,6

failure IV/8,5:

IV/9,7

falling-body IV/6,21:

IV/Chapter 9

flexible IV/5/45:

V/2,8,14

flutter III/5/8:

IV/Chapter 7:

IV/Chapter 8:

V/2,2,3,8,9

full-scale IV/9,10

high-speed IV/7,20-21

history of types IV/7,3-12

instabilities IV/8,4-5

layouts IV/9,7-10

light-weight IV/7,5-6,7,19,25

low-aspect-ratio IV/7,15

low-speed IV/7,16-19

materials IV/7,16-21

mathematical I/3,3-15:

III/2,12,13-24:

III/3,5-11:

III/4,2:

III/8,3,4:

III/9,11,17

mechanical I/3,3-15:

I/8,48,51,55,56

rigidity IV/7,15,16

rocket-carried IV/INTRO/35:

IV/6,23:

IV/Chapter 9:

V/1,7

similarity IV/Chapter 6:

IV/7,12-13

sled-carried IV/Chapter 9

sting-mounted IV/5,31,39

support IV/6,6:

IV/7,22-3,24

small, ground testing I/4/73-87

thermoelastic IV/7,22

transonic IV/7,10,11,12,19:

IV/8,10-11

Modes

adjoint III/6,24

all-moving tailplane V/4,15-21

branch III/4,20-21

choice of

deformation I/1,19

propeller-rotor III/9,21

control surfaces V/3,23-5

damping effects I/3,1,21,4-27

definitions I/10,4

determination I/4S/3-6,29-35

excitation I/3,27-35

flexural, of missile III/8,14-28

natural I/3,23-4,31,35:

IV/4,24

normal

calculation III/1,13,22-3:

III/4,9-11,20

I/Chapter 8

definition I/1,24

effects III/4,21-2:

III/5,11-12

excitation IV/2,3

properties IV/2,3
powered controls V/4/9-14
prescribed III/6/21,22
representation of III/8/3
rigid-body II/7/22-5,45-8,73: III/1/12-18
separation of III/8/13
suspiration effects I/4/51-62,66-71
twist V/6/14
wing V/Chapter 2
Modulus
complex I/3/8
spring I/3/7
Monoplane, flutter I/INTRO/46: II/1/4:
V/1/1
Muller’s method III/4/18
Multhopp’s method II/3/1,2,30-33
Nacelles
damping III/9/9,10,11
effect on derivatives II/11/63-6
flexible III/9/3-4
underhung III/3/2
see also External stores
Neumann’s problem II/2/11
Newtonian theory II/9/24,25,27-8,38
Nodal lines, points III/1/18,19: III/4/14:
V/2/3,29,37: V/3/14
Noise loading I/INTRO/41
Non-dimensional parameters
V/5/4-6,27-8,39,43-6,48
Non-linearities
aerodynamic
importance of I/INTRO/12
incidence and Mach number effects II/10/12-14
types of II/9/1: III/1/6-7
helicopter blades III/10/13
panel flutter III/7/10,40
powered controls III/5/1,13: V/4/5
single-degree-of-freedom V/5/1/3,4,32-5,51
structural I/4/18-20: I/5/8: I/Chapter 6:
III/1/7-9
Non-stationary theory see Unsteady theory
Normal coordinates II/1/9-13: III/1/9,10-15:
Nose shapes (controls) III/5/13-14
Notation
control surface V/5/27
derivatives II/2/46: VI/11/6-7
flutter equations V/6/6
in different countries II/2/46
Nozzle, rotating III/8/14,17-18
Nusselt number IV/6/26
Nyquist diagram III/7/10: III/8/13,26
One-degree-of-freedom systems
see Single-degree-of-freedom systems
Operational flexibility I/3/7
Operational methods II/2/30-31
Operational modulus I/3/7-8
Optical deflectometer IV/1/15,17: IV/7/23
Optical lever IV/1/23-4,27
Optical methods, vibration testing I/4/76
Oscillations
bending V/5/10-11,26
control surface V/5/26-54
decaying IV/3/5,18-19,23: IV/5/10-14:
IV/10/16-21
flapping II/10/28
flutter IV/5/18-20
forced V/5/41,46
harmonic II/2/8-9: III/4S/7,9: III/6/1:
V/5/5
modes, definitions II/10/4
"POGO" I/8/19,65
pure pitching V/5/6-10,15-21
quasi-periodic V/5/32,33
relaxation I/6/33-4
self-excited V/5/6,22-6,41-2,46-7,50
short-period V/6/44
sinusoidal IV/5/4: V/5/16,18,28,33,34
small II/7/65-8
types of I/6/35
Oscillator, electronic I/2/20: I/5/26
Oscilloscopes IV/5/14-16,21,26,52,53: IV/8/3
Ovary ellipsoid II/7/46
Panel flutter I/INTRO/25: II/9/42,49-51:
Perturbation methods I/6/7-16
Phase-angie sweep IV/3/10-11
Phase criterion I/4/15
Phase-plane method I/6/3-7
Phase portraits I/6/3-7,31,32
Phase resonance, excitation at IV/5/26-31
Phase-shifting network IV/15/15,21,49,53
Phase stabilisation III/8/27
Pick-ups IV/2/10: I/Chapter 5: IV/7/25
Piston theory
automatic processes III/4S/8
general II/1/15-17: III/1/14: III/4/7-9
hypersonic II/5/46: II/9/18-19,24-5,40
panel flutter III/Chapter 7: III/Chapter 7S
sonic II/2/41
supersonic II/2/18-19: II/10/16,43: III/2/49
Pitching axis V/5/18,20
Pitching moment
aeroelastic effects III/2/17,22,24
derivatives III/10/24,25-33,45,46: II/11/7
Planforms
effect on flutter V/2/5-15,20
optimum V/1/7,9
Plastic behaviour I/7/6
Plate theory III/2/45-6: III/7S/49
Plates
ablating I/7/37-8
thermoelasticity I/7/12,15-16,21-7
vibration and stiffness I/7/30-38
see also Panel flutter
Plotter, automatic III/4S/29
Plunging wing II/Chapter 6
"POGO" oscillation II/8/19,65
Posio’s equation II/10/10
Potential energy, minimum I/2/3
Potential flow theory
general II/1/9-10: II/5/1
in flutter prediction V/5/36-40,43
in panel flutter III/7/10: III/7S/4S,46
Potential functions I/Chapter 8
Potential meters IV/7/25
Power plant, representation of III/9/3-4
Powered controls
buzz prevention III/5/11
control rotation frequency V/6/32
fluct V/Chapter 4
non-linearity I/10/2/4
impedance measurement III/1/24: IV/Chapter 4
special problems 1/INTRO/45: III/5/6
Prandtl number IV/6/26
Pressure
difference, formulae II/2/33-2
differential (panels) III/75/49,51,52
distribution, measurements II/10/23
dynamic
and stiffness ratio IV/5/5,10,12
at control reversal III/3/2,7,8,12,17-18
at divergence III/2/4,51-2
compenability and swep E V/1/1-2
panel flutter III/7/15-17,20: III/78/18,
30-45
loading II/9/24,25
perturbation III/3/6-7
plotting IV/5/43,44-6
Pressure potential procedure II/5/31-3
Prolate spheroid II/7/46
Propellant dynamics IV/Chapter 8
Propeller flutter III/Chapter 9
Proper vectors 1/4/5
Prototype flutter investigation III/1/14-15,17
Pulsation see Frequency, angular
Quasi-static
approach III/7/6,7,29
definition I/INTRO/5
derivatives 1/INTRO/10,38-9: III/1/15
effects III/2/2,3,17,23:
stiffness I/3/24
theory III/6/1: III/75/10,49
"Raft" mounting IV/3/41,42
Raked wing II/10/43,44
Ramberg-Osgood equation I/7/6
Ranges, aeroelastic IV/6/21
Rayleigh-Ritz method
fluct equations II/5/9-11
general I/2/3-5
in automatic processes III/45/4
panel flutter III/7/4: III/78/5,25
static aeroelastic phenomena II/3/24
Rayleigh's principle I/2/3: I/4/11-12:
III/6/19,26
Reaction, measurement of IV/5/32-46
Real-gas effects II/9/28
Resonance relations (Maxwell's) II/6/46-7:
III/2/25-6: IV/1/4-5,6,7,10
Record analysis IV/9/10-13
Recording see Data recording
Rectifier IV/5/50
Reference axes I/1/1-3
Relaxation modulus I/7/5
Representation
of aerodynamic forces I/INTRO/9-12
of controls I/INTRO/8
of damping I/INTRO/8-9
of structure I/INTRO/5-9: I/2/1
of structural deformation I/Chapter 1
of suspension, in ground tests I/4/51-62
v=an-rigid I/INTRO/6
Resonance
ampStude 1/4/9
curves I/4/8-10,19-20: IV/3/7-9,10
effect of damping I/Chapter 3
many degrees of freedom I/3/21-37
mode I/INTRO/6,7: I/4/51-60
phase I/3/20,23,33-3: I/4/9,19-20,80-81
position of IV/10/10-14
principle I/3/31-5
pseudo- I/3/33-5
single-degree-of-freedom I/3/15-21
testing in flight I/INTRO/35
Resonance tests see Ground resonance tests
Response
amplitude I/4/19
calculations, in practice III/Chapter 4
curves IV/5/23
dynamic III/4/26-35
forced I/3/35-7
indicial II/6/2,6,14,15,30,33,38,50
jacks IV/4/1
measurement IV/8/2: IV/10/21-3
prediction III/Chapter 1
quadrature IV/2/19,20
to atmospheric turbulence III/4/33-5
to single impulse III/4/9-33
Restrain, variable I/3/35-4
Retention control I/INTRO/19,22-3: III/1/2:
III/3/2,6,7,18: V/1/1-10
Reverse flow theory II/5/15: II/6/46:
II/8/37: III/2/49
Reynolds number effects I/INTRO/11:
IV/6/6-7: IV/8/12: V/15/20,21,25
Riemann's method II/2/28-30
Rigid-body freedoms III/1/12,15
Rigidity see Stiffness
Ring analysis I/7/18-19
Ritz-averaging method I/6/16
Rivet slip I/6/1,2: III/1/7
Rocket impulse units I/4/29-30: IV/10/23-5
see also Excitation
Rocket models IV/6/20-21,23: IV/Chapter 9
Rocket tests
buzz V/5/43
Rockets, liquid dynamics I/8/15-19,62,65-6
Rolling
manoeuvrability V/1/6-8
moment III/2/17: III/3/8,13
Root, wing
fixed V/2/33,37
freedom V/2/40-44
lift distribution II/7/33-7
Rudder see Fin and rudder
Safety factor, flutter IV/6/27
Safety margins IV/8/12
Saint Venant torsion I/1/5: IV/7/16
Sand method, vibration testing IV/4/76
Scale factors IV/6/2
Schmitt trigger circuit IV/5/30,49
Secondary effects, structural I/2/14
Second-order theories II/9/34-8
Self-excitation IV/5/27-31,42-4
Sensor-analysers I/4/20: IV/3/11-14,27
Sensors I/5/41-6
Separation
 effect on unsteady forces I/II/38
 localised III/1/7
 models IV/6/7
 panels III/7/23
 shock-induced III/5/3,10,11: V/5/21, 30,31,42,48,53
 slender wings II/7/61-74
 stalling flutter II/9/51-3: V/5/14-15
Sero controls III/4/11-12: III/3/13,15,16: III/Chapter 8
Shakers I/3/31-6: IV/2/4-11,14-18: IV,7/25
Shapes, natural
definition I/4/4
determination of I/4/25,35-6
excitation of I/4/14-16
blades I/4/85
suspension effects I/4/60-61
Sheet-and-stringer structures, thermoelasticity I/7/17
Shear
conical III/7/33: III/7S/47,55
copper III/7S/43
cylindrical III/7/23-33: III/7S/7-8,14,15,41,54,55
steel III/7S/43
thickness requirements III/7/25,26,29,30,32,41
vibration analysis I/2/15
Shock-wave boundary-layer interaction V/5/2,8,40-41
Shock waves
 effect on buzz V/5/40-43
 effect on panel flutter III/7/22
Short-period oscillation III/1/12
Similarity
parameters IV/6/4,6,25-6: IV/7/12-13:
 IV/8/7
relations III/1/18
requirements IV/Chapter 6: IV/7/12-13:
 IV/8/7
Simulators, flutter III/1/13,15
Sine curves IV/3/11-14,21
Singularity
 logarithmic II/3/33-4: II/4/24-31
 vortex II/7/61
Sinusoidal
 forcing IV/4/3: IV/8/3: IV/10/5
 generators IV/5/51-2
 oscillations IV/5/4: V/5/16,18,28,33,34
 "Skeleton line" technique II/10/8
Skin thickness V/2/22
Sled-carried models IV/6/20-21: IV/Chapter 9
Slender-body theory
 general II/1/19: II/Chapter 7: III/1/14: III/4/6
 static aeroelastic phenomena III/2/49
 thickness effects II/9/33-8
 Slender-wing theory
 comparison with experiment II/10/30,43
 general III/4/6
 indicial aerodynamics II/6/6,7,32-3,36
 thickness effects II/9/33-8
 Slotted tunnels II/10/40-41
 "Slow oscillation" assumption III/7/17
 Small perturbation method II/1/11: II/5/5: II/9/3
 Snaking I/INTRO/20,44
 Sommerfeld radiation II/2/10,21
 Sonic flow
 two-dimensional theory II/2/33-41
 three-dimensional theory II/Chapter 4
 Spars, model IV/7/16,17-18,20-21
 Splitter-plate V/5/51,52
 Spoilers
V/1/7: V/5/41,42,52-3
 Spray, propellants I/8/21-2
 Spring
 bearings IV/5/8,37
 constraints III/2/20
 constraint IV/5/10,20,25,34
 rate (sacks) IV/4/6,17,19
 tabs I/6/2,39: III/1/7,8: III/5/1,14-16:
 IV/6/53
 Spring support technique V/2/40
 Springs
 calibrated IV/1/22
 cubic hardening I/6/41-3
 cubic softening I/6/43-4
 elastic I/3/1-15
 Stabilizer (of oscillations) IV/5/29,30,31
 Stability
 analysis III/8/13
 boundaries
 helicopter blades III/10/17
 panels III/1/35,38-41: III/7S/15,19,20,24,7,33,39,52
 propeller III/9/8-9
 supersonic thin wing II/9/14
 calculations III/6/29-32
 conditions III/8/25-8
 definitions I/INTRO/14-17
 determinant I/5/37-41
 Stagnation point, choice of II/8/38-42
 Stagnation pressure and temperature IV/6/12-17
 Stalling flutter see Flutter
 Static aeroelastic phenomena II/Chapter 2:
 III/Chapter 3: V/Chapter 1
 Static balance V/3/11-12,17,18-20,22-3,28
 Static margin V/6/47
 Steady-state solution I/4/9
 Steady-state stresses III/4/30
 Step-by-step methods, non-linear problems I/6/23-4
 Stick jerking I/INTRO/35
 Stiletto integral II/9/35
 Stiffness
 aerodynamic III/1/17
 all-moving tailplanes V/4/15-21
 beams I/7/30-38
 bending III/5/6: III/8/6
 compensation I/4/76-83
Target towftn III/7/37
Telemetry IV/10/26
Temperature distribution in structure I/7/1
Test functions III/4/14-16
Tests
equipment IV/1/11-26: IV/2/4-14: IV/4/8-13: IV/5/6,7
full-scale I/INTRO/35-6,42
impedance IV/Chapter 4
techniques IV/2/14-21: IV/Chapter 5
types I/INTRO/42
vibration IV/1/23-6
see also Model tests, Ground resonance tests
Theodorsen function II/2/15: II/6/14;21,22: III/6/30: VI/TG/2-4
Theory
comparison with experiment II/Chapter 10:
III/1/22,24-6: III/9/14-16: IV/10/25
Thermal stresses I/INTRO/41: I/2/1: I/7/10-16,
324: III/4/25: V/1/10
Thermistors IV/5/30
Thermoelasticity I/Chapter 7
Thickness effects (aerofoil)
II/Chapter 8: II/Chapter 9: V/2/15-16:
V/5/9-10,31,43,48
Thrust, propeller III/9/11-12
Thrust orientation III/8/1,2,14-28
Thrust rods IV/2/14,15,16
Time parameter I/4/2
Torsion motor III/8/21
Torque tube I/5/27-9
Transducers IV/1/19: IV/2/12:
IV/9/6: IV/10/23
Transfer Function Analysers (TFA) IV/4/13
Transfer functions I/1/21: I/II/6/31-2: III/8/22,26
Transients I/4/35-40: IV/3/5,16-23: IV/5/13,17,18:
IV/9/13-14: IV/10/17-28
Transonic effects
control surface flutter V/3/29: V/4/15
wing flutter V/2/3-4,11,15,16,25
Transonic flow
comparison of theory with experiment
II/10/14,35-42
derivatives II/11/30-32
general II/1/12-13,17
incorrect data III/5/9-11
Trigger circuit IV/5/30,49
Tail
derivatives I/1/60,62
flutter I/1/16; III/1/16: III/5/7:
V/3/24: V/4/19-20
models IV/7/8,13: IV/8/6
Tuned systems IV/5/22-4,31: IV/10/17-29,21
Turbulence, atmospheric III/4/33-5: III/9/22-3:
IV/10/3-4
see also Gusts
Twist, axis of III/1/2
Twisting moments III/2/15,20
Two-mode analysis III/7/16,24: III/7/39, 45,49,51,52
Two-root procedure III/45/14-15,21
Tyres, interference from III/5/12
Unsteady theory II/Chapter 8: III/6/30
U-shaped interconnections V/4/20-1
Valves (powered controls) I/5/11-17,23-7:
IV/4/2-7,15-18
Vane, auxiliary oscillating IV/10/15
Variational method I/2/5-6,12,13
Vector response plot IV/10/12-13
"Vectorial analysis" technique IV/10/5,7-14
Velocity measurement, models IV/9/3-4,5-6
Velocity potential
delta wings II/4/44-8
expansion III/5/13-14,51-5
in half-space III/5/11-29
in whole space III/5/30-31
low-aspect-ratio wings II/4/69-78,98-102
method II/2/10-15
perturbation II/7/6,8,10,12,14-16,17-18,61
rectangular wings II/4/36-68
wing-body combinations II/4/78-98
Vibration
analysis I/4/31-40
by inversion (magnetic analysis) I/4/35-40
graphical I/4/32,33-5
spectral I/4/32-3
beams I/7/30-35
engine III/5/23
ground testing I/Chapter 4
plates I/7/30-38
propeller III/5/2,3
still-air III/6/22-5
structures I/Chapter 2
thermally induced I/7/30-32
types of III/5/2-3
wind-induced V/5/25
"Vortex", flutter tests III/4/33
Virtual Work principle I/1/15-16,19-20:
I/7/8-9: III/2/34
Viscoelastic behaviour I/7/4-6
Viscosity
air, effect on derivatives II/1/2
propellants I/8/26-7,72
von Mises method see Mises
Vortex distribution method II/2/15-18
Vortex generators III/5/10: V/5/53
Vortex lattice theories II/9/30
Vortex position and strength II/7/62-5,68
VTOL III/9/1,12,13,21-2
Wagner-Kappus Torsion-Bending Theory I/1/5
Wake
finite II/1/15
functions II/8/25-34
line II/8/5,7,12
vortices II/8/11
Wattmeter IV/5/52-3
Wave equation II/1/10-11
Waves
standing II/2/2: III/7/8,32,47,55
travelling II/7/23-5,33-7: III/7/8,11,20,32,
41,47,55
Wavy walls II/9/45,49,51,52: III/7/8,11-12
piston theory III/4/7
three-dimensional theory II/10/42-3:
 II/Chapter 5
two-dimensional theory II/2/28-33: II/10/14-18
Support, models III/1/19: III/2/52: IV/5/7:
 IV/6/6
Support, structure
ground tests IV/1/8,9: IV/2/14
 see also Suspension
Surface integrals II/5/43-9
Surface methods III/2/30-32,40: III/3/14
Surface theory III/7/16: III/7S/23
Suspension (ground testing) II/4/50-72
Sweepback effect
on approximate formulae V/6/12,24-6,29,32
on bending oscillations V/5/10-11,15
on body-freedom flutter V/2/42
on buzz V/5/50
on derivatives II/11/27-30
on dynamic pressure V/1/2,3
on lateral control V/1/7-9
on loss of lift V/1/5
on negative damping V/5/9-10
on panel flutter III/75/20,21,22,29,41
on, root bending moment V/1/3,4
on static aeroelastic phenomena II/2/2-3,
 5-6,16,19
on wing flutter V/2/5-15,24,29-31
Swept wing
 experiments II/10/24,28,46,50
 two-dimensional treatment II/1/18
Swirl II/8/11-12
Tabs
dampers V/3/29
fail-safe V/3/29
flutter V/Chapter 3: V/6/47-54,66-71
geared III/5/15,16
hinge moment II/1/7,33,34
mass-balancing V/3/28
servo III/5/15,16
spring II/6/2,39: III/1/7,8: III/5/1,14-16:
 V/3/29: V/6/53
types V/3/26
Tachometer IV/2/10
Tail surfaces
derivatives II/11/60-63
main surface flutter V/6/11-28,58-60
static aeroelastic phenomena III/2/30:
 III/3/14
Tailplanes
all-moving III/1/2: III/5/7: IV/8/6-7:
 V/4/15-21
effect on body-freedom flutter V/2/42
error in flutter calculations III/4/22
flutter analysis III/5/5-7
ground resonance tests III/1/22
 see also T-tail
Tanks
liquid dynamics I/Chapter 8
tip II/11/63-6: III/1/18-25: III/2/4,55
Taper, structural I/1/9
taper ratio effect
on derivatives II/11/27-30,40
on flutter V/2/13-15: V/6/14,18-26,33,34
Webber number 1/8/70
Wedge profiles
 comparison of theory with experiment
 II/10/16,18
 hypersonic flow II/9/46-9
 oscillating II/9/23-7
Weight functions II/3/19-24
Weighting methods III/2/33-6
Weissinger method III/2/49
Whirl flutter III/Chapter 9
Wielandt's method III/45/17-19,25: III/6/19
Wind tunnel tests
 comparison with theory II/Chapter 10
derivatives II/11/27-30: IV/Chapter 5
 high-speed IV/6/9-20
 low-speed IV/6/20
 media other than air IV/6/24-5
techniques IV/Chapter 7: IV/Chapter 8
 see also Models
Wind tunnels
 blow-down IV/7/6,20: IV/8/4,11
 interference II/10/1,10,40-41: IV/5/33-4:
 IV/7/13: IV/9/11-12
 operation IV/8/3-4
 resonance II/10/11
Wind-induced vibrations V/5/25
Wing theory Volume II
Wing tips
effect of shape on flutter V/2/9-10
Wing-body combinations
sonic theory II/4/78-98
slender II/7/14-16,48-61

Wings
 arrow-head II/5/14,36-8: II/10/25-8
 comparison of theory with experiment
 II/2/14: II/Chapter 10
cropped delta II/7/24-5,58-61
deflection I/1/10-18
delta
 comparison of theory with experiment
 I/2/14
 indicial aerodynamics II/6/31-3,41-3,52
 influence coefficients I/2/6
 slender-wing theory II/7/29
 three-dimensional sonic theory II/4/74-8
derivatives II/11/8-32: VI/TG/4-5,11-14,
 26-41
 flutter V/Chapter 2: V/5/6-26: V/6/10,11,
 13-28,58-60
 low-aspect-ratio I/2/6-7: II/4/69-78,
 98-118: II/11/19-26: II/2/5,6,30,45-6:
 III/3/14,16
 raked II/10/43,44
 rectangular
 comparison of theory with experiment
 II/10/25,37,38,43,50
 indicial aerodynamics II/6/30-31,34,43-5
 slender-wing theory II/7/23-4,29
 three-dimensional sonic theory II/4/36-68
 slender I/2/6: II/7/10-13,17-31,61-74: II/9/9-20
 see also Wing theory, Wing-body combinations
CONTENTS OF VOLUME I

PART I - STRUCTURAL ASPECTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Author(s)</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Analytical Representation of the Deformation of Structures</td>
<td>W.S. Hemp</td>
<td>Aug. 1959</td>
</tr>
<tr>
<td>2</td>
<td>Vibration Analysis of Aircraft Structures</td>
<td>J.M. Hedgepeth</td>
<td>Aug. 1959</td>
</tr>
<tr>
<td>3</td>
<td>Influence of Internal Damping on Aircraft Resonance</td>
<td>B.M. Fraeijis de Veubeke</td>
<td>Nov. 1959</td>
</tr>
<tr>
<td>4</td>
<td>Theory of Ground Vibration Testing</td>
<td>ONERA Staff</td>
<td>May 1960</td>
</tr>
<tr>
<td>5</td>
<td>The Influence of Powered Controls</td>
<td>D. Benun</td>
<td>Aug. 1959</td>
</tr>
<tr>
<td>6</td>
<td>Structural Non-Linearities</td>
<td>D.L. Woodcock</td>
<td>Apr. 1960</td>
</tr>
<tr>
<td>7</td>
<td>Thermoelasticity</td>
<td>B.A. Boley</td>
<td>Feb. 1968</td>
</tr>
<tr>
<td>8</td>
<td>Liquid Propellant Dynamics</td>
<td>H.N. Abramson</td>
<td>Dec. 1967</td>
</tr>
</tbody>
</table>

CONTENTS OF VOLUME II

PART II - AERODYNAMIC ASPECTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Author(s)</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>General Introduction</td>
<td>I.E. Garrick</td>
<td>June 1960</td>
</tr>
<tr>
<td>2</td>
<td>Two-Dimensional Linearized Theory</td>
<td>A.I. van der Vooren</td>
<td>July 1960</td>
</tr>
</tbody>
</table>

The dates given relate to the acceptance of the manuscript by AGARD
CHAPTER 3 D.E.Williams Three-Dimensional Subsonic Theory Jan.1961
CHAPTER 4 D.E.Davies Three-Dimensional Sonic Theory Nov.1960
CHAPTER 5 C.E.Watkins Three-Dimensional Supersonic Theory Nov.1960
CHAPTER 6 H.Lomax Indicial Aerodynamics Nov.1960
CHAPTER 7 D.L.Woodcock Slender-Body Theory Apr.1962
CHAPTER 8 H.G.Küssner Non-Stationary Theory of Airfoils of Finite
Thickness in Incompressible Flow Dec.1960
CHAPTER 9 M.T.Landahl and H.Ashley Thickness and Boundary-Layer Effects
(A revision of the original chapter by H.Ashley and G.Zartarian, Nov.1960)
CHAPTER 10 W.E.A.Acum The Comparison of Theory and Experiment
for Oscillating Wings May 1962

CONTENTS OF VOLUME III

PART III – PREDICTION OF AEROELASTIC PHENOMENA

CHAPTER 1 E.G.Broadbent An Introduction to the Prediction of
Aeroelastic Phenomena Feb.1963
CHAPTER 2 F.W.Diederich Divergence and Related Static
Aeroelastic Phenomena Nov.1963
CHAPTER 3 F.W.Diederich Loss of Control Aug.1964
CHAPTER 4 E.G.Broadbent Flutter and Response Calculations in
Practice Apr.1963
CHAPTER 5 J.C.A.Baldock and L.T.Niblett Diagnosis and Cure of Flutter Troubles Apr.1962
CHAPTER 6 A.I. van der Vooren General Dynamic Stability of Systems
with Many Degrees of Freedom Nov.1961
CHAPTER 7 Y.C.B.Fung A Summary of the Theories and
Experiments on Panel Flutter Feb.1961
CHAPTER 8 H.Lazennec The Effect of Structural Deformation on
the Behaviour in Flight of a Servo-Control
in Association with an Automatic Pilot July 1968
CHAPTER 9 W.H.Reed Propeller-Rotor Whirl Flutter Sep.1967
CHAPTER 10 N.D.Ham Helicopter Blade Flutter Sep.1967
PART IV - EXPERIMENTAL METHODS

CHAPTER 1 D.J.Martin and T.Lauten Measurement of Structural Influence Coefficients Oct.1961
CHAPTER 3 H.Gauzy Measurement of Inertia and Structural Damping Feb.1961
CHAPTER 4 J.C.Hall Experimental Techniques for the Measurement of Power Control Impedance June 1964
CHAPTER 5 J.B.Bratt Wind Tunnel Techniques for the Measurement of Oscillatory Derivatives Jan.1961
CHAPTER 6 C.Scruton and N.C.Lambourne Similarity Requirements for Flutter Model Testing Nov.1960
CHAPTER 7 L.S.Wasserman and W.J.Mykytow Model Construction Jan.1961
CHAPTER 8 L.S.Wasserman and W.J.Mykytow Wind Tunnel Flutter Tests Jan.1961

CONTENTS OF VOLUME V

PART V - FACTUAL INFORMATION ON FLUTTER CHARACTERISTICS

CHAPTER 1 K.A.Foss Divergence and Reversal of Control Feb.1960
CHAPTER 2 D.R.Gaukroger Wing Flutter Feb.1960
CHAPTER 3 A.A.Regier Flutter of Control Surfaces and Tabs Feb.1960
CHAPTER 4 A.D.N.Smith Flutter of Powered Controls and of All-Moving Tailplanes Apr.1960
CHAPTER 5 N.C.Lambourne Flutter in One Degree of Freedom Revision Aug.1960
CHAPTER 6 W.G.Molyneux Approximate Formulæ for Flutter Prediction Feb.1968

CONTENTS OF VOLUME VI

PART VI - COLLECTED TABLES AND GRAPHS

A.I. van der Vooren The Theodorsen Circulation Function. Aerodynamic Coefficients Jan.1964